Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * fs/f2fs/gc.c |
| 3 | * |
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| 5 | * http://www.samsung.com/ |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | #include <linux/fs.h> |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/backing-dev.h> |
| 14 | #include <linux/init.h> |
| 15 | #include <linux/f2fs_fs.h> |
| 16 | #include <linux/kthread.h> |
| 17 | #include <linux/delay.h> |
| 18 | #include <linux/freezer.h> |
| 19 | |
| 20 | #include "f2fs.h" |
| 21 | #include "node.h" |
| 22 | #include "segment.h" |
| 23 | #include "gc.h" |
| 24 | #include <trace/events/f2fs.h> |
| 25 | |
| 26 | static int gc_thread_func(void *data) |
| 27 | { |
| 28 | struct f2fs_sb_info *sbi = data; |
| 29 | struct f2fs_gc_kthread *gc_th = sbi->gc_thread; |
| 30 | wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; |
| 31 | unsigned int wait_ms; |
| 32 | |
| 33 | wait_ms = gc_th->min_sleep_time; |
| 34 | |
| 35 | set_freezable(); |
| 36 | do { |
| 37 | wait_event_interruptible_timeout(*wq, |
| 38 | kthread_should_stop() || freezing(current) || |
| 39 | gc_th->gc_wake, |
| 40 | msecs_to_jiffies(wait_ms)); |
| 41 | |
| 42 | /* give it a try one time */ |
| 43 | if (gc_th->gc_wake) |
| 44 | gc_th->gc_wake = 0; |
| 45 | |
| 46 | if (try_to_freeze()) |
| 47 | continue; |
| 48 | if (kthread_should_stop()) |
| 49 | break; |
| 50 | |
| 51 | if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { |
| 52 | increase_sleep_time(gc_th, &wait_ms); |
| 53 | continue; |
| 54 | } |
| 55 | |
| 56 | if (time_to_inject(sbi, FAULT_CHECKPOINT)) { |
| 57 | f2fs_show_injection_info(FAULT_CHECKPOINT); |
| 58 | f2fs_stop_checkpoint(sbi, false); |
| 59 | } |
| 60 | |
| 61 | if (!sb_start_write_trylock(sbi->sb)) |
| 62 | continue; |
| 63 | |
| 64 | /* |
| 65 | * [GC triggering condition] |
| 66 | * 0. GC is not conducted currently. |
| 67 | * 1. There are enough dirty segments. |
| 68 | * 2. IO subsystem is idle by checking the # of writeback pages. |
| 69 | * 3. IO subsystem is idle by checking the # of requests in |
| 70 | * bdev's request list. |
| 71 | * |
| 72 | * Note) We have to avoid triggering GCs frequently. |
| 73 | * Because it is possible that some segments can be |
| 74 | * invalidated soon after by user update or deletion. |
| 75 | * So, I'd like to wait some time to collect dirty segments. |
| 76 | */ |
| 77 | if (sbi->gc_mode == GC_URGENT) { |
| 78 | wait_ms = gc_th->urgent_sleep_time; |
| 79 | mutex_lock(&sbi->gc_mutex); |
| 80 | goto do_gc; |
| 81 | } |
| 82 | |
| 83 | if (!mutex_trylock(&sbi->gc_mutex)) |
| 84 | goto next; |
| 85 | |
| 86 | if (!is_idle(sbi)) { |
| 87 | increase_sleep_time(gc_th, &wait_ms); |
| 88 | mutex_unlock(&sbi->gc_mutex); |
| 89 | goto next; |
| 90 | } |
| 91 | |
| 92 | if (has_enough_invalid_blocks(sbi)) |
| 93 | decrease_sleep_time(gc_th, &wait_ms); |
| 94 | else |
| 95 | increase_sleep_time(gc_th, &wait_ms); |
| 96 | do_gc: |
| 97 | stat_inc_bggc_count(sbi); |
| 98 | |
| 99 | /* if return value is not zero, no victim was selected */ |
| 100 | if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true, NULL_SEGNO)) |
| 101 | wait_ms = gc_th->no_gc_sleep_time; |
| 102 | |
| 103 | trace_f2fs_background_gc(sbi->sb, wait_ms, |
| 104 | prefree_segments(sbi), free_segments(sbi)); |
| 105 | |
| 106 | /* balancing f2fs's metadata periodically */ |
| 107 | f2fs_balance_fs_bg(sbi); |
| 108 | next: |
| 109 | sb_end_write(sbi->sb); |
| 110 | |
| 111 | } while (!kthread_should_stop()); |
| 112 | return 0; |
| 113 | } |
| 114 | |
| 115 | int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) |
| 116 | { |
| 117 | struct f2fs_gc_kthread *gc_th; |
| 118 | dev_t dev = sbi->sb->s_bdev->bd_dev; |
| 119 | int err = 0; |
| 120 | |
| 121 | gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); |
| 122 | if (!gc_th) { |
| 123 | err = -ENOMEM; |
| 124 | goto out; |
| 125 | } |
| 126 | |
| 127 | gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; |
| 128 | gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; |
| 129 | gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; |
| 130 | gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; |
| 131 | |
| 132 | gc_th->gc_wake= 0; |
| 133 | |
| 134 | sbi->gc_thread = gc_th; |
| 135 | init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); |
| 136 | sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, |
| 137 | "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); |
| 138 | if (IS_ERR(gc_th->f2fs_gc_task)) { |
| 139 | err = PTR_ERR(gc_th->f2fs_gc_task); |
| 140 | kfree(gc_th); |
| 141 | sbi->gc_thread = NULL; |
| 142 | } |
| 143 | out: |
| 144 | return err; |
| 145 | } |
| 146 | |
| 147 | void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) |
| 148 | { |
| 149 | struct f2fs_gc_kthread *gc_th = sbi->gc_thread; |
| 150 | if (!gc_th) |
| 151 | return; |
| 152 | kthread_stop(gc_th->f2fs_gc_task); |
| 153 | kfree(gc_th); |
| 154 | sbi->gc_thread = NULL; |
| 155 | } |
| 156 | |
| 157 | static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) |
| 158 | { |
| 159 | int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY; |
| 160 | |
| 161 | switch (sbi->gc_mode) { |
| 162 | case GC_IDLE_CB: |
| 163 | gc_mode = GC_CB; |
| 164 | break; |
| 165 | case GC_IDLE_GREEDY: |
| 166 | case GC_URGENT: |
| 167 | gc_mode = GC_GREEDY; |
| 168 | break; |
| 169 | } |
| 170 | return gc_mode; |
| 171 | } |
| 172 | |
| 173 | static void select_policy(struct f2fs_sb_info *sbi, int gc_type, |
| 174 | int type, struct victim_sel_policy *p) |
| 175 | { |
| 176 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| 177 | |
| 178 | if (p->alloc_mode == SSR) { |
| 179 | p->gc_mode = GC_GREEDY; |
| 180 | p->dirty_segmap = dirty_i->dirty_segmap[type]; |
| 181 | p->max_search = dirty_i->nr_dirty[type]; |
| 182 | p->ofs_unit = 1; |
| 183 | } else { |
| 184 | p->gc_mode = select_gc_type(sbi, gc_type); |
| 185 | p->dirty_segmap = dirty_i->dirty_segmap[DIRTY]; |
| 186 | p->max_search = dirty_i->nr_dirty[DIRTY]; |
| 187 | p->ofs_unit = sbi->segs_per_sec; |
| 188 | } |
| 189 | |
| 190 | /* we need to check every dirty segments in the FG_GC case */ |
| 191 | if (gc_type != FG_GC && |
| 192 | (sbi->gc_mode != GC_URGENT) && |
| 193 | p->max_search > sbi->max_victim_search) |
| 194 | p->max_search = sbi->max_victim_search; |
| 195 | |
| 196 | /* let's select beginning hot/small space first in no_heap mode*/ |
| 197 | if (test_opt(sbi, NOHEAP) && |
| 198 | (type == CURSEG_HOT_DATA || IS_NODESEG(type))) |
| 199 | p->offset = 0; |
| 200 | else |
| 201 | p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; |
| 202 | } |
| 203 | |
| 204 | static unsigned int get_max_cost(struct f2fs_sb_info *sbi, |
| 205 | struct victim_sel_policy *p) |
| 206 | { |
| 207 | /* SSR allocates in a segment unit */ |
| 208 | if (p->alloc_mode == SSR) |
| 209 | return sbi->blocks_per_seg; |
| 210 | if (p->gc_mode == GC_GREEDY) |
| 211 | return 2 * sbi->blocks_per_seg * p->ofs_unit; |
| 212 | else if (p->gc_mode == GC_CB) |
| 213 | return UINT_MAX; |
| 214 | else /* No other gc_mode */ |
| 215 | return 0; |
| 216 | } |
| 217 | |
| 218 | static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) |
| 219 | { |
| 220 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| 221 | unsigned int secno; |
| 222 | |
| 223 | /* |
| 224 | * If the gc_type is FG_GC, we can select victim segments |
| 225 | * selected by background GC before. |
| 226 | * Those segments guarantee they have small valid blocks. |
| 227 | */ |
| 228 | for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { |
| 229 | if (sec_usage_check(sbi, secno)) |
| 230 | continue; |
| 231 | clear_bit(secno, dirty_i->victim_secmap); |
| 232 | return GET_SEG_FROM_SEC(sbi, secno); |
| 233 | } |
| 234 | return NULL_SEGNO; |
| 235 | } |
| 236 | |
| 237 | static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) |
| 238 | { |
| 239 | struct sit_info *sit_i = SIT_I(sbi); |
| 240 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| 241 | unsigned int start = GET_SEG_FROM_SEC(sbi, secno); |
| 242 | unsigned long long mtime = 0; |
| 243 | unsigned int vblocks; |
| 244 | unsigned char age = 0; |
| 245 | unsigned char u; |
| 246 | unsigned int i; |
| 247 | |
| 248 | for (i = 0; i < sbi->segs_per_sec; i++) |
| 249 | mtime += get_seg_entry(sbi, start + i)->mtime; |
| 250 | vblocks = get_valid_blocks(sbi, segno, true); |
| 251 | |
| 252 | mtime = div_u64(mtime, sbi->segs_per_sec); |
| 253 | vblocks = div_u64(vblocks, sbi->segs_per_sec); |
| 254 | |
| 255 | u = (vblocks * 100) >> sbi->log_blocks_per_seg; |
| 256 | |
| 257 | /* Handle if the system time has changed by the user */ |
| 258 | if (mtime < sit_i->min_mtime) |
| 259 | sit_i->min_mtime = mtime; |
| 260 | if (mtime > sit_i->max_mtime) |
| 261 | sit_i->max_mtime = mtime; |
| 262 | if (sit_i->max_mtime != sit_i->min_mtime) |
| 263 | age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), |
| 264 | sit_i->max_mtime - sit_i->min_mtime); |
| 265 | |
| 266 | return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); |
| 267 | } |
| 268 | |
| 269 | static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, |
| 270 | unsigned int segno, struct victim_sel_policy *p) |
| 271 | { |
| 272 | if (p->alloc_mode == SSR) |
| 273 | return get_seg_entry(sbi, segno)->ckpt_valid_blocks; |
| 274 | |
| 275 | /* alloc_mode == LFS */ |
| 276 | if (p->gc_mode == GC_GREEDY) |
| 277 | return get_valid_blocks(sbi, segno, true); |
| 278 | else |
| 279 | return get_cb_cost(sbi, segno); |
| 280 | } |
| 281 | |
| 282 | static unsigned int count_bits(const unsigned long *addr, |
| 283 | unsigned int offset, unsigned int len) |
| 284 | { |
| 285 | unsigned int end = offset + len, sum = 0; |
| 286 | |
| 287 | while (offset < end) { |
| 288 | if (test_bit(offset++, addr)) |
| 289 | ++sum; |
| 290 | } |
| 291 | return sum; |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * This function is called from two paths. |
| 296 | * One is garbage collection and the other is SSR segment selection. |
| 297 | * When it is called during GC, it just gets a victim segment |
| 298 | * and it does not remove it from dirty seglist. |
| 299 | * When it is called from SSR segment selection, it finds a segment |
| 300 | * which has minimum valid blocks and removes it from dirty seglist. |
| 301 | */ |
| 302 | static int get_victim_by_default(struct f2fs_sb_info *sbi, |
| 303 | unsigned int *result, int gc_type, int type, char alloc_mode) |
| 304 | { |
| 305 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| 306 | struct sit_info *sm = SIT_I(sbi); |
| 307 | struct victim_sel_policy p; |
| 308 | unsigned int secno, last_victim; |
| 309 | unsigned int last_segment = MAIN_SEGS(sbi); |
| 310 | unsigned int nsearched = 0; |
| 311 | |
| 312 | mutex_lock(&dirty_i->seglist_lock); |
| 313 | |
| 314 | p.alloc_mode = alloc_mode; |
| 315 | select_policy(sbi, gc_type, type, &p); |
| 316 | |
| 317 | p.min_segno = NULL_SEGNO; |
| 318 | p.min_cost = get_max_cost(sbi, &p); |
| 319 | |
| 320 | if (*result != NULL_SEGNO) { |
| 321 | if (IS_DATASEG(get_seg_entry(sbi, *result)->type) && |
| 322 | get_valid_blocks(sbi, *result, false) && |
| 323 | !sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) |
| 324 | p.min_segno = *result; |
| 325 | goto out; |
| 326 | } |
| 327 | |
| 328 | if (p.max_search == 0) |
| 329 | goto out; |
| 330 | |
| 331 | last_victim = sm->last_victim[p.gc_mode]; |
| 332 | if (p.alloc_mode == LFS && gc_type == FG_GC) { |
| 333 | p.min_segno = check_bg_victims(sbi); |
| 334 | if (p.min_segno != NULL_SEGNO) |
| 335 | goto got_it; |
| 336 | } |
| 337 | |
| 338 | while (1) { |
| 339 | unsigned long cost; |
| 340 | unsigned int segno; |
| 341 | |
| 342 | segno = find_next_bit(p.dirty_segmap, last_segment, p.offset); |
| 343 | if (segno >= last_segment) { |
| 344 | if (sm->last_victim[p.gc_mode]) { |
| 345 | last_segment = |
| 346 | sm->last_victim[p.gc_mode]; |
| 347 | sm->last_victim[p.gc_mode] = 0; |
| 348 | p.offset = 0; |
| 349 | continue; |
| 350 | } |
| 351 | break; |
| 352 | } |
| 353 | |
| 354 | p.offset = segno + p.ofs_unit; |
| 355 | if (p.ofs_unit > 1) { |
| 356 | p.offset -= segno % p.ofs_unit; |
| 357 | nsearched += count_bits(p.dirty_segmap, |
| 358 | p.offset - p.ofs_unit, |
| 359 | p.ofs_unit); |
| 360 | } else { |
| 361 | nsearched++; |
| 362 | } |
| 363 | |
| 364 | secno = GET_SEC_FROM_SEG(sbi, segno); |
| 365 | |
| 366 | if (sec_usage_check(sbi, secno)) |
| 367 | goto next; |
| 368 | if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) |
| 369 | goto next; |
| 370 | |
| 371 | cost = get_gc_cost(sbi, segno, &p); |
| 372 | |
| 373 | if (p.min_cost > cost) { |
| 374 | p.min_segno = segno; |
| 375 | p.min_cost = cost; |
| 376 | } |
| 377 | next: |
| 378 | if (nsearched >= p.max_search) { |
| 379 | if (!sm->last_victim[p.gc_mode] && segno <= last_victim) |
| 380 | sm->last_victim[p.gc_mode] = last_victim + 1; |
| 381 | else |
| 382 | sm->last_victim[p.gc_mode] = segno + 1; |
| 383 | sm->last_victim[p.gc_mode] %= MAIN_SEGS(sbi); |
| 384 | break; |
| 385 | } |
| 386 | } |
| 387 | if (p.min_segno != NULL_SEGNO) { |
| 388 | got_it: |
| 389 | if (p.alloc_mode == LFS) { |
| 390 | secno = GET_SEC_FROM_SEG(sbi, p.min_segno); |
| 391 | if (gc_type == FG_GC) |
| 392 | sbi->cur_victim_sec = secno; |
| 393 | else |
| 394 | set_bit(secno, dirty_i->victim_secmap); |
| 395 | } |
| 396 | *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; |
| 397 | |
| 398 | trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, |
| 399 | sbi->cur_victim_sec, |
| 400 | prefree_segments(sbi), free_segments(sbi)); |
| 401 | } |
| 402 | out: |
| 403 | mutex_unlock(&dirty_i->seglist_lock); |
| 404 | |
| 405 | return (p.min_segno == NULL_SEGNO) ? 0 : 1; |
| 406 | } |
| 407 | |
| 408 | static const struct victim_selection default_v_ops = { |
| 409 | .get_victim = get_victim_by_default, |
| 410 | }; |
| 411 | |
| 412 | static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) |
| 413 | { |
| 414 | struct inode_entry *ie; |
| 415 | |
| 416 | ie = radix_tree_lookup(&gc_list->iroot, ino); |
| 417 | if (ie) |
| 418 | return ie->inode; |
| 419 | return NULL; |
| 420 | } |
| 421 | |
| 422 | static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) |
| 423 | { |
| 424 | struct inode_entry *new_ie; |
| 425 | |
| 426 | if (inode == find_gc_inode(gc_list, inode->i_ino)) { |
| 427 | iput(inode); |
| 428 | return; |
| 429 | } |
| 430 | new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, GFP_NOFS); |
| 431 | new_ie->inode = inode; |
| 432 | |
| 433 | f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); |
| 434 | list_add_tail(&new_ie->list, &gc_list->ilist); |
| 435 | } |
| 436 | |
| 437 | static void put_gc_inode(struct gc_inode_list *gc_list) |
| 438 | { |
| 439 | struct inode_entry *ie, *next_ie; |
| 440 | list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { |
| 441 | radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); |
| 442 | iput(ie->inode); |
| 443 | list_del(&ie->list); |
| 444 | kmem_cache_free(f2fs_inode_entry_slab, ie); |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | static int check_valid_map(struct f2fs_sb_info *sbi, |
| 449 | unsigned int segno, int offset) |
| 450 | { |
| 451 | struct sit_info *sit_i = SIT_I(sbi); |
| 452 | struct seg_entry *sentry; |
| 453 | int ret; |
| 454 | |
| 455 | down_read(&sit_i->sentry_lock); |
| 456 | sentry = get_seg_entry(sbi, segno); |
| 457 | ret = f2fs_test_bit(offset, sentry->cur_valid_map); |
| 458 | up_read(&sit_i->sentry_lock); |
| 459 | return ret; |
| 460 | } |
| 461 | |
| 462 | /* |
| 463 | * This function compares node address got in summary with that in NAT. |
| 464 | * On validity, copy that node with cold status, otherwise (invalid node) |
| 465 | * ignore that. |
| 466 | */ |
| 467 | static void gc_node_segment(struct f2fs_sb_info *sbi, |
| 468 | struct f2fs_summary *sum, unsigned int segno, int gc_type) |
| 469 | { |
| 470 | struct f2fs_summary *entry; |
| 471 | block_t start_addr; |
| 472 | int off; |
| 473 | int phase = 0; |
| 474 | bool fggc = (gc_type == FG_GC); |
| 475 | |
| 476 | start_addr = START_BLOCK(sbi, segno); |
| 477 | |
| 478 | next_step: |
| 479 | entry = sum; |
| 480 | |
| 481 | if (fggc && phase == 2) |
| 482 | atomic_inc(&sbi->wb_sync_req[NODE]); |
| 483 | |
| 484 | for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { |
| 485 | nid_t nid = le32_to_cpu(entry->nid); |
| 486 | struct page *node_page; |
| 487 | struct node_info ni; |
| 488 | |
| 489 | /* stop BG_GC if there is not enough free sections. */ |
| 490 | if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) |
| 491 | return; |
| 492 | |
| 493 | if (check_valid_map(sbi, segno, off) == 0) |
| 494 | continue; |
| 495 | |
| 496 | if (phase == 0) { |
| 497 | f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, |
| 498 | META_NAT, true); |
| 499 | continue; |
| 500 | } |
| 501 | |
| 502 | if (phase == 1) { |
| 503 | f2fs_ra_node_page(sbi, nid); |
| 504 | continue; |
| 505 | } |
| 506 | |
| 507 | /* phase == 2 */ |
| 508 | node_page = f2fs_get_node_page(sbi, nid); |
| 509 | if (IS_ERR(node_page)) |
| 510 | continue; |
| 511 | |
| 512 | /* block may become invalid during f2fs_get_node_page */ |
| 513 | if (check_valid_map(sbi, segno, off) == 0) { |
| 514 | f2fs_put_page(node_page, 1); |
| 515 | continue; |
| 516 | } |
| 517 | |
| 518 | if (f2fs_get_node_info(sbi, nid, &ni)) { |
| 519 | f2fs_put_page(node_page, 1); |
| 520 | continue; |
| 521 | } |
| 522 | |
| 523 | if (ni.blk_addr != start_addr + off) { |
| 524 | f2fs_put_page(node_page, 1); |
| 525 | continue; |
| 526 | } |
| 527 | |
| 528 | f2fs_move_node_page(node_page, gc_type); |
| 529 | stat_inc_node_blk_count(sbi, 1, gc_type); |
| 530 | } |
| 531 | |
| 532 | if (++phase < 3) |
| 533 | goto next_step; |
| 534 | |
| 535 | if (fggc) |
| 536 | atomic_dec(&sbi->wb_sync_req[NODE]); |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * Calculate start block index indicating the given node offset. |
| 541 | * Be careful, caller should give this node offset only indicating direct node |
| 542 | * blocks. If any node offsets, which point the other types of node blocks such |
| 543 | * as indirect or double indirect node blocks, are given, it must be a caller's |
| 544 | * bug. |
| 545 | */ |
| 546 | block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) |
| 547 | { |
| 548 | unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; |
| 549 | unsigned int bidx; |
| 550 | |
| 551 | if (node_ofs == 0) |
| 552 | return 0; |
| 553 | |
| 554 | if (node_ofs <= 2) { |
| 555 | bidx = node_ofs - 1; |
| 556 | } else if (node_ofs <= indirect_blks) { |
| 557 | int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); |
| 558 | bidx = node_ofs - 2 - dec; |
| 559 | } else { |
| 560 | int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); |
| 561 | bidx = node_ofs - 5 - dec; |
| 562 | } |
| 563 | return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode); |
| 564 | } |
| 565 | |
| 566 | static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, |
| 567 | struct node_info *dni, block_t blkaddr, unsigned int *nofs) |
| 568 | { |
| 569 | struct page *node_page; |
| 570 | nid_t nid; |
| 571 | unsigned int ofs_in_node; |
| 572 | block_t source_blkaddr; |
| 573 | |
| 574 | nid = le32_to_cpu(sum->nid); |
| 575 | ofs_in_node = le16_to_cpu(sum->ofs_in_node); |
| 576 | |
| 577 | node_page = f2fs_get_node_page(sbi, nid); |
| 578 | if (IS_ERR(node_page)) |
| 579 | return false; |
| 580 | |
| 581 | if (f2fs_get_node_info(sbi, nid, dni)) { |
| 582 | f2fs_put_page(node_page, 1); |
| 583 | return false; |
| 584 | } |
| 585 | |
| 586 | if (sum->version != dni->version) { |
| 587 | f2fs_msg(sbi->sb, KERN_WARNING, |
| 588 | "%s: valid data with mismatched node version.", |
| 589 | __func__); |
| 590 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 591 | } |
| 592 | |
| 593 | *nofs = ofs_of_node(node_page); |
| 594 | source_blkaddr = datablock_addr(NULL, node_page, ofs_in_node); |
| 595 | f2fs_put_page(node_page, 1); |
| 596 | |
| 597 | if (source_blkaddr != blkaddr) |
| 598 | return false; |
| 599 | return true; |
| 600 | } |
| 601 | |
| 602 | static int ra_data_block(struct inode *inode, pgoff_t index) |
| 603 | { |
| 604 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 605 | struct address_space *mapping = inode->i_mapping; |
| 606 | struct dnode_of_data dn; |
| 607 | struct page *page; |
| 608 | struct extent_info ei = {0, 0, 0}; |
| 609 | struct f2fs_io_info fio = { |
| 610 | .sbi = sbi, |
| 611 | .ino = inode->i_ino, |
| 612 | .type = DATA, |
| 613 | .temp = COLD, |
| 614 | .op = REQ_OP_READ, |
| 615 | .op_flags = 0, |
| 616 | .encrypted_page = NULL, |
| 617 | .in_list = false, |
| 618 | .retry = false, |
| 619 | }; |
| 620 | int err; |
| 621 | |
| 622 | page = f2fs_grab_cache_page(mapping, index, true); |
| 623 | if (!page) |
| 624 | return -ENOMEM; |
| 625 | |
| 626 | if (f2fs_lookup_extent_cache(inode, index, &ei)) { |
| 627 | dn.data_blkaddr = ei.blk + index - ei.fofs; |
| 628 | goto got_it; |
| 629 | } |
| 630 | |
| 631 | set_new_dnode(&dn, inode, NULL, NULL, 0); |
| 632 | err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); |
| 633 | if (err) |
| 634 | goto put_page; |
| 635 | f2fs_put_dnode(&dn); |
| 636 | |
| 637 | if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, |
| 638 | DATA_GENERIC))) { |
| 639 | err = -EFAULT; |
| 640 | goto put_page; |
| 641 | } |
| 642 | got_it: |
| 643 | /* read page */ |
| 644 | fio.page = page; |
| 645 | fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; |
| 646 | |
| 647 | fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), |
| 648 | dn.data_blkaddr, |
| 649 | FGP_LOCK | FGP_CREAT, GFP_NOFS); |
| 650 | if (!fio.encrypted_page) { |
| 651 | err = -ENOMEM; |
| 652 | goto put_page; |
| 653 | } |
| 654 | |
| 655 | err = f2fs_submit_page_bio(&fio); |
| 656 | if (err) |
| 657 | goto put_encrypted_page; |
| 658 | f2fs_put_page(fio.encrypted_page, 0); |
| 659 | f2fs_put_page(page, 1); |
| 660 | return 0; |
| 661 | put_encrypted_page: |
| 662 | f2fs_put_page(fio.encrypted_page, 1); |
| 663 | put_page: |
| 664 | f2fs_put_page(page, 1); |
| 665 | return err; |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | * Move data block via META_MAPPING while keeping locked data page. |
| 670 | * This can be used to move blocks, aka LBAs, directly on disk. |
| 671 | */ |
| 672 | static void move_data_block(struct inode *inode, block_t bidx, |
| 673 | int gc_type, unsigned int segno, int off) |
| 674 | { |
| 675 | struct f2fs_io_info fio = { |
| 676 | .sbi = F2FS_I_SB(inode), |
| 677 | .ino = inode->i_ino, |
| 678 | .type = DATA, |
| 679 | .temp = COLD, |
| 680 | .op = REQ_OP_READ, |
| 681 | .op_flags = 0, |
| 682 | .encrypted_page = NULL, |
| 683 | .in_list = false, |
| 684 | .retry = false, |
| 685 | }; |
| 686 | struct dnode_of_data dn; |
| 687 | struct f2fs_summary sum; |
| 688 | struct node_info ni; |
| 689 | struct page *page, *mpage; |
| 690 | block_t newaddr; |
| 691 | int err; |
| 692 | bool lfs_mode = test_opt(fio.sbi, LFS); |
| 693 | |
| 694 | /* do not read out */ |
| 695 | page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); |
| 696 | if (!page) |
| 697 | return; |
| 698 | |
| 699 | if (!check_valid_map(F2FS_I_SB(inode), segno, off)) |
| 700 | goto out; |
| 701 | |
| 702 | if (f2fs_is_atomic_file(inode)) { |
| 703 | F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; |
| 704 | F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; |
| 705 | goto out; |
| 706 | } |
| 707 | |
| 708 | if (f2fs_is_pinned_file(inode)) { |
| 709 | f2fs_pin_file_control(inode, true); |
| 710 | goto out; |
| 711 | } |
| 712 | |
| 713 | set_new_dnode(&dn, inode, NULL, NULL, 0); |
| 714 | err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); |
| 715 | if (err) |
| 716 | goto out; |
| 717 | |
| 718 | if (unlikely(dn.data_blkaddr == NULL_ADDR)) { |
| 719 | ClearPageUptodate(page); |
| 720 | goto put_out; |
| 721 | } |
| 722 | |
| 723 | /* |
| 724 | * don't cache encrypted data into meta inode until previous dirty |
| 725 | * data were writebacked to avoid racing between GC and flush. |
| 726 | */ |
| 727 | f2fs_wait_on_page_writeback(page, DATA, true); |
| 728 | |
| 729 | err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); |
| 730 | if (err) |
| 731 | goto put_out; |
| 732 | |
| 733 | set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); |
| 734 | |
| 735 | /* read page */ |
| 736 | fio.page = page; |
| 737 | fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; |
| 738 | |
| 739 | if (lfs_mode) |
| 740 | down_write(&fio.sbi->io_order_lock); |
| 741 | |
| 742 | f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, |
| 743 | &sum, CURSEG_COLD_DATA, NULL, false); |
| 744 | |
| 745 | fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), |
| 746 | newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); |
| 747 | if (!fio.encrypted_page) { |
| 748 | err = -ENOMEM; |
| 749 | goto recover_block; |
| 750 | } |
| 751 | |
| 752 | mpage = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), |
| 753 | fio.old_blkaddr, FGP_LOCK, GFP_NOFS); |
| 754 | if (mpage) { |
| 755 | bool updated = false; |
| 756 | |
| 757 | if (PageUptodate(mpage)) { |
| 758 | memcpy(page_address(fio.encrypted_page), |
| 759 | page_address(mpage), PAGE_SIZE); |
| 760 | updated = true; |
| 761 | } |
| 762 | f2fs_put_page(mpage, 1); |
| 763 | invalidate_mapping_pages(META_MAPPING(fio.sbi), |
| 764 | fio.old_blkaddr, fio.old_blkaddr); |
| 765 | if (updated) |
| 766 | goto write_page; |
| 767 | } |
| 768 | |
| 769 | err = f2fs_submit_page_bio(&fio); |
| 770 | if (err) |
| 771 | goto put_page_out; |
| 772 | |
| 773 | /* write page */ |
| 774 | lock_page(fio.encrypted_page); |
| 775 | |
| 776 | if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) { |
| 777 | err = -EIO; |
| 778 | goto put_page_out; |
| 779 | } |
| 780 | if (unlikely(!PageUptodate(fio.encrypted_page))) { |
| 781 | err = -EIO; |
| 782 | goto put_page_out; |
| 783 | } |
| 784 | |
| 785 | write_page: |
| 786 | set_page_dirty(fio.encrypted_page); |
| 787 | f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true); |
| 788 | if (clear_page_dirty_for_io(fio.encrypted_page)) |
| 789 | dec_page_count(fio.sbi, F2FS_DIRTY_META); |
| 790 | |
| 791 | set_page_writeback(fio.encrypted_page); |
| 792 | ClearPageError(page); |
| 793 | |
| 794 | /* allocate block address */ |
| 795 | f2fs_wait_on_page_writeback(dn.node_page, NODE, true); |
| 796 | |
| 797 | fio.op = REQ_OP_WRITE; |
| 798 | fio.op_flags = REQ_SYNC; |
| 799 | fio.new_blkaddr = newaddr; |
| 800 | f2fs_submit_page_write(&fio); |
| 801 | if (fio.retry) { |
| 802 | if (PageWriteback(fio.encrypted_page)) |
| 803 | end_page_writeback(fio.encrypted_page); |
| 804 | goto put_page_out; |
| 805 | } |
| 806 | |
| 807 | f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); |
| 808 | |
| 809 | f2fs_update_data_blkaddr(&dn, newaddr); |
| 810 | set_inode_flag(inode, FI_APPEND_WRITE); |
| 811 | if (page->index == 0) |
| 812 | set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); |
| 813 | put_page_out: |
| 814 | f2fs_put_page(fio.encrypted_page, 1); |
| 815 | recover_block: |
| 816 | if (lfs_mode) |
| 817 | up_write(&fio.sbi->io_order_lock); |
| 818 | if (err) |
| 819 | f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, |
| 820 | true, true); |
| 821 | put_out: |
| 822 | f2fs_put_dnode(&dn); |
| 823 | out: |
| 824 | f2fs_put_page(page, 1); |
| 825 | } |
| 826 | |
| 827 | static void move_data_page(struct inode *inode, block_t bidx, int gc_type, |
| 828 | unsigned int segno, int off) |
| 829 | { |
| 830 | struct page *page; |
| 831 | |
| 832 | page = f2fs_get_lock_data_page(inode, bidx, true); |
| 833 | if (IS_ERR(page)) |
| 834 | return; |
| 835 | |
| 836 | if (!check_valid_map(F2FS_I_SB(inode), segno, off)) |
| 837 | goto out; |
| 838 | |
| 839 | if (f2fs_is_atomic_file(inode)) { |
| 840 | F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; |
| 841 | F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; |
| 842 | goto out; |
| 843 | } |
| 844 | if (f2fs_is_pinned_file(inode)) { |
| 845 | if (gc_type == FG_GC) |
| 846 | f2fs_pin_file_control(inode, true); |
| 847 | goto out; |
| 848 | } |
| 849 | |
| 850 | if (gc_type == BG_GC) { |
| 851 | if (PageWriteback(page)) |
| 852 | goto out; |
| 853 | set_page_dirty(page); |
| 854 | set_cold_data(page); |
| 855 | } else { |
| 856 | struct f2fs_io_info fio = { |
| 857 | .sbi = F2FS_I_SB(inode), |
| 858 | .ino = inode->i_ino, |
| 859 | .type = DATA, |
| 860 | .temp = COLD, |
| 861 | .op = REQ_OP_WRITE, |
| 862 | .op_flags = REQ_SYNC, |
| 863 | .old_blkaddr = NULL_ADDR, |
| 864 | .page = page, |
| 865 | .encrypted_page = NULL, |
| 866 | .need_lock = LOCK_REQ, |
| 867 | .io_type = FS_GC_DATA_IO, |
| 868 | }; |
| 869 | bool is_dirty = PageDirty(page); |
| 870 | int err; |
| 871 | |
| 872 | retry: |
| 873 | set_page_dirty(page); |
| 874 | f2fs_wait_on_page_writeback(page, DATA, true); |
| 875 | if (clear_page_dirty_for_io(page)) { |
| 876 | inode_dec_dirty_pages(inode); |
| 877 | f2fs_remove_dirty_inode(inode); |
| 878 | } |
| 879 | |
| 880 | set_cold_data(page); |
| 881 | |
| 882 | err = f2fs_do_write_data_page(&fio); |
| 883 | if (err) { |
| 884 | clear_cold_data(page); |
| 885 | if (err == -ENOMEM) { |
| 886 | congestion_wait(BLK_RW_ASYNC, HZ/50); |
| 887 | goto retry; |
| 888 | } |
| 889 | if (is_dirty) |
| 890 | set_page_dirty(page); |
| 891 | } |
| 892 | } |
| 893 | out: |
| 894 | f2fs_put_page(page, 1); |
| 895 | } |
| 896 | |
| 897 | /* |
| 898 | * This function tries to get parent node of victim data block, and identifies |
| 899 | * data block validity. If the block is valid, copy that with cold status and |
| 900 | * modify parent node. |
| 901 | * If the parent node is not valid or the data block address is different, |
| 902 | * the victim data block is ignored. |
| 903 | */ |
| 904 | static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, |
| 905 | struct gc_inode_list *gc_list, unsigned int segno, int gc_type) |
| 906 | { |
| 907 | struct super_block *sb = sbi->sb; |
| 908 | struct f2fs_summary *entry; |
| 909 | block_t start_addr; |
| 910 | int off; |
| 911 | int phase = 0; |
| 912 | |
| 913 | start_addr = START_BLOCK(sbi, segno); |
| 914 | |
| 915 | next_step: |
| 916 | entry = sum; |
| 917 | |
| 918 | for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { |
| 919 | struct page *data_page; |
| 920 | struct inode *inode; |
| 921 | struct node_info dni; /* dnode info for the data */ |
| 922 | unsigned int ofs_in_node, nofs; |
| 923 | block_t start_bidx; |
| 924 | nid_t nid = le32_to_cpu(entry->nid); |
| 925 | |
| 926 | /* stop BG_GC if there is not enough free sections. */ |
| 927 | if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) |
| 928 | return; |
| 929 | |
| 930 | if (check_valid_map(sbi, segno, off) == 0) |
| 931 | continue; |
| 932 | |
| 933 | if (phase == 0) { |
| 934 | f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, |
| 935 | META_NAT, true); |
| 936 | continue; |
| 937 | } |
| 938 | |
| 939 | if (phase == 1) { |
| 940 | f2fs_ra_node_page(sbi, nid); |
| 941 | continue; |
| 942 | } |
| 943 | |
| 944 | /* Get an inode by ino with checking validity */ |
| 945 | if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) |
| 946 | continue; |
| 947 | |
| 948 | if (phase == 2) { |
| 949 | f2fs_ra_node_page(sbi, dni.ino); |
| 950 | continue; |
| 951 | } |
| 952 | |
| 953 | ofs_in_node = le16_to_cpu(entry->ofs_in_node); |
| 954 | |
| 955 | if (phase == 3) { |
| 956 | inode = f2fs_iget(sb, dni.ino); |
| 957 | if (IS_ERR(inode) || is_bad_inode(inode)) |
| 958 | continue; |
| 959 | |
| 960 | if (!down_write_trylock( |
| 961 | &F2FS_I(inode)->i_gc_rwsem[WRITE])) { |
| 962 | iput(inode); |
| 963 | sbi->skipped_gc_rwsem++; |
| 964 | continue; |
| 965 | } |
| 966 | |
| 967 | start_bidx = f2fs_start_bidx_of_node(nofs, inode) + |
| 968 | ofs_in_node; |
| 969 | |
| 970 | if (f2fs_post_read_required(inode)) { |
| 971 | int err = ra_data_block(inode, start_bidx); |
| 972 | |
| 973 | up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); |
| 974 | if (err) { |
| 975 | iput(inode); |
| 976 | continue; |
| 977 | } |
| 978 | add_gc_inode(gc_list, inode); |
| 979 | continue; |
| 980 | } |
| 981 | |
| 982 | data_page = f2fs_get_read_data_page(inode, |
| 983 | start_bidx, REQ_RAHEAD, true); |
| 984 | up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); |
| 985 | if (IS_ERR(data_page)) { |
| 986 | iput(inode); |
| 987 | continue; |
| 988 | } |
| 989 | |
| 990 | f2fs_put_page(data_page, 0); |
| 991 | add_gc_inode(gc_list, inode); |
| 992 | continue; |
| 993 | } |
| 994 | |
| 995 | /* phase 4 */ |
| 996 | inode = find_gc_inode(gc_list, dni.ino); |
| 997 | if (inode) { |
| 998 | struct f2fs_inode_info *fi = F2FS_I(inode); |
| 999 | bool locked = false; |
| 1000 | |
| 1001 | if (S_ISREG(inode->i_mode)) { |
| 1002 | if (!down_write_trylock(&fi->i_gc_rwsem[READ])) |
| 1003 | continue; |
| 1004 | if (!down_write_trylock( |
| 1005 | &fi->i_gc_rwsem[WRITE])) { |
| 1006 | sbi->skipped_gc_rwsem++; |
| 1007 | up_write(&fi->i_gc_rwsem[READ]); |
| 1008 | continue; |
| 1009 | } |
| 1010 | locked = true; |
| 1011 | |
| 1012 | /* wait for all inflight aio data */ |
| 1013 | inode_dio_wait(inode); |
| 1014 | } |
| 1015 | |
| 1016 | start_bidx = f2fs_start_bidx_of_node(nofs, inode) |
| 1017 | + ofs_in_node; |
| 1018 | if (f2fs_post_read_required(inode)) |
| 1019 | move_data_block(inode, start_bidx, gc_type, |
| 1020 | segno, off); |
| 1021 | else |
| 1022 | move_data_page(inode, start_bidx, gc_type, |
| 1023 | segno, off); |
| 1024 | |
| 1025 | if (locked) { |
| 1026 | up_write(&fi->i_gc_rwsem[WRITE]); |
| 1027 | up_write(&fi->i_gc_rwsem[READ]); |
| 1028 | } |
| 1029 | |
| 1030 | stat_inc_data_blk_count(sbi, 1, gc_type); |
| 1031 | } |
| 1032 | } |
| 1033 | |
| 1034 | if (++phase < 5) |
| 1035 | goto next_step; |
| 1036 | } |
| 1037 | |
| 1038 | static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, |
| 1039 | int gc_type) |
| 1040 | { |
| 1041 | struct sit_info *sit_i = SIT_I(sbi); |
| 1042 | int ret; |
| 1043 | |
| 1044 | down_write(&sit_i->sentry_lock); |
| 1045 | ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, |
| 1046 | NO_CHECK_TYPE, LFS); |
| 1047 | up_write(&sit_i->sentry_lock); |
| 1048 | return ret; |
| 1049 | } |
| 1050 | |
| 1051 | static int do_garbage_collect(struct f2fs_sb_info *sbi, |
| 1052 | unsigned int start_segno, |
| 1053 | struct gc_inode_list *gc_list, int gc_type) |
| 1054 | { |
| 1055 | struct page *sum_page; |
| 1056 | struct f2fs_summary_block *sum; |
| 1057 | struct blk_plug plug; |
| 1058 | unsigned int segno = start_segno; |
| 1059 | unsigned int end_segno = start_segno + sbi->segs_per_sec; |
| 1060 | int seg_freed = 0; |
| 1061 | unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? |
| 1062 | SUM_TYPE_DATA : SUM_TYPE_NODE; |
| 1063 | |
| 1064 | /* readahead multi ssa blocks those have contiguous address */ |
| 1065 | if (sbi->segs_per_sec > 1) |
| 1066 | f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), |
| 1067 | sbi->segs_per_sec, META_SSA, true); |
| 1068 | |
| 1069 | /* reference all summary page */ |
| 1070 | while (segno < end_segno) { |
| 1071 | sum_page = f2fs_get_sum_page(sbi, segno++); |
| 1072 | unlock_page(sum_page); |
| 1073 | } |
| 1074 | |
| 1075 | blk_start_plug(&plug); |
| 1076 | |
| 1077 | for (segno = start_segno; segno < end_segno; segno++) { |
| 1078 | |
| 1079 | /* find segment summary of victim */ |
| 1080 | sum_page = find_get_page(META_MAPPING(sbi), |
| 1081 | GET_SUM_BLOCK(sbi, segno)); |
| 1082 | f2fs_put_page(sum_page, 0); |
| 1083 | |
| 1084 | if (get_valid_blocks(sbi, segno, false) == 0 || |
| 1085 | !PageUptodate(sum_page) || |
| 1086 | unlikely(f2fs_cp_error(sbi))) |
| 1087 | goto next; |
| 1088 | |
| 1089 | sum = page_address(sum_page); |
| 1090 | if (type != GET_SUM_TYPE((&sum->footer))) { |
| 1091 | f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent segment (%u) " |
| 1092 | "type [%d, %d] in SSA and SIT", |
| 1093 | segno, type, GET_SUM_TYPE((&sum->footer))); |
| 1094 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 1095 | goto next; |
| 1096 | } |
| 1097 | |
| 1098 | /* |
| 1099 | * this is to avoid deadlock: |
| 1100 | * - lock_page(sum_page) - f2fs_replace_block |
| 1101 | * - check_valid_map() - down_write(sentry_lock) |
| 1102 | * - down_read(sentry_lock) - change_curseg() |
| 1103 | * - lock_page(sum_page) |
| 1104 | */ |
| 1105 | if (type == SUM_TYPE_NODE) |
| 1106 | gc_node_segment(sbi, sum->entries, segno, gc_type); |
| 1107 | else |
| 1108 | gc_data_segment(sbi, sum->entries, gc_list, segno, |
| 1109 | gc_type); |
| 1110 | |
| 1111 | stat_inc_seg_count(sbi, type, gc_type); |
| 1112 | |
| 1113 | if (gc_type == FG_GC && |
| 1114 | get_valid_blocks(sbi, segno, false) == 0) |
| 1115 | seg_freed++; |
| 1116 | next: |
| 1117 | f2fs_put_page(sum_page, 0); |
| 1118 | } |
| 1119 | |
| 1120 | if (gc_type == FG_GC) |
| 1121 | f2fs_submit_merged_write(sbi, |
| 1122 | (type == SUM_TYPE_NODE) ? NODE : DATA); |
| 1123 | |
| 1124 | blk_finish_plug(&plug); |
| 1125 | |
| 1126 | stat_inc_call_count(sbi->stat_info); |
| 1127 | |
| 1128 | return seg_freed; |
| 1129 | } |
| 1130 | |
| 1131 | int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, |
| 1132 | bool background, unsigned int segno) |
| 1133 | { |
| 1134 | int gc_type = sync ? FG_GC : BG_GC; |
| 1135 | int sec_freed = 0, seg_freed = 0, total_freed = 0; |
| 1136 | int ret = 0; |
| 1137 | struct cp_control cpc; |
| 1138 | unsigned int init_segno = segno; |
| 1139 | struct gc_inode_list gc_list = { |
| 1140 | .ilist = LIST_HEAD_INIT(gc_list.ilist), |
| 1141 | .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), |
| 1142 | }; |
| 1143 | unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC]; |
| 1144 | unsigned long long first_skipped; |
| 1145 | unsigned int skipped_round = 0, round = 0; |
| 1146 | |
| 1147 | trace_f2fs_gc_begin(sbi->sb, sync, background, |
| 1148 | get_pages(sbi, F2FS_DIRTY_NODES), |
| 1149 | get_pages(sbi, F2FS_DIRTY_DENTS), |
| 1150 | get_pages(sbi, F2FS_DIRTY_IMETA), |
| 1151 | free_sections(sbi), |
| 1152 | free_segments(sbi), |
| 1153 | reserved_segments(sbi), |
| 1154 | prefree_segments(sbi)); |
| 1155 | |
| 1156 | cpc.reason = __get_cp_reason(sbi); |
| 1157 | sbi->skipped_gc_rwsem = 0; |
| 1158 | first_skipped = last_skipped; |
| 1159 | gc_more: |
| 1160 | if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { |
| 1161 | ret = -EINVAL; |
| 1162 | goto stop; |
| 1163 | } |
| 1164 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1165 | ret = -EIO; |
| 1166 | goto stop; |
| 1167 | } |
| 1168 | |
| 1169 | if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { |
| 1170 | /* |
| 1171 | * For example, if there are many prefree_segments below given |
| 1172 | * threshold, we can make them free by checkpoint. Then, we |
| 1173 | * secure free segments which doesn't need fggc any more. |
| 1174 | */ |
| 1175 | if (prefree_segments(sbi)) { |
| 1176 | ret = f2fs_write_checkpoint(sbi, &cpc); |
| 1177 | if (ret) |
| 1178 | goto stop; |
| 1179 | } |
| 1180 | if (has_not_enough_free_secs(sbi, 0, 0)) |
| 1181 | gc_type = FG_GC; |
| 1182 | } |
| 1183 | |
| 1184 | /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ |
| 1185 | if (gc_type == BG_GC && !background) { |
| 1186 | ret = -EINVAL; |
| 1187 | goto stop; |
| 1188 | } |
| 1189 | if (!__get_victim(sbi, &segno, gc_type)) { |
| 1190 | ret = -ENODATA; |
| 1191 | goto stop; |
| 1192 | } |
| 1193 | |
| 1194 | seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type); |
| 1195 | if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec) |
| 1196 | sec_freed++; |
| 1197 | total_freed += seg_freed; |
| 1198 | |
| 1199 | if (gc_type == FG_GC) { |
| 1200 | if (sbi->skipped_atomic_files[FG_GC] > last_skipped || |
| 1201 | sbi->skipped_gc_rwsem) |
| 1202 | skipped_round++; |
| 1203 | last_skipped = sbi->skipped_atomic_files[FG_GC]; |
| 1204 | round++; |
| 1205 | } |
| 1206 | |
| 1207 | if (gc_type == FG_GC) |
| 1208 | sbi->cur_victim_sec = NULL_SEGNO; |
| 1209 | |
| 1210 | if (sync) |
| 1211 | goto stop; |
| 1212 | |
| 1213 | if (has_not_enough_free_secs(sbi, sec_freed, 0)) { |
| 1214 | if (skipped_round <= MAX_SKIP_GC_COUNT || |
| 1215 | skipped_round * 2 < round) { |
| 1216 | segno = NULL_SEGNO; |
| 1217 | goto gc_more; |
| 1218 | } |
| 1219 | |
| 1220 | if (first_skipped < last_skipped && |
| 1221 | (last_skipped - first_skipped) > |
| 1222 | sbi->skipped_gc_rwsem) { |
| 1223 | f2fs_drop_inmem_pages_all(sbi, true); |
| 1224 | segno = NULL_SEGNO; |
| 1225 | goto gc_more; |
| 1226 | } |
| 1227 | if (gc_type == FG_GC) |
| 1228 | ret = f2fs_write_checkpoint(sbi, &cpc); |
| 1229 | } |
| 1230 | stop: |
| 1231 | SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; |
| 1232 | SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno; |
| 1233 | |
| 1234 | trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, |
| 1235 | get_pages(sbi, F2FS_DIRTY_NODES), |
| 1236 | get_pages(sbi, F2FS_DIRTY_DENTS), |
| 1237 | get_pages(sbi, F2FS_DIRTY_IMETA), |
| 1238 | free_sections(sbi), |
| 1239 | free_segments(sbi), |
| 1240 | reserved_segments(sbi), |
| 1241 | prefree_segments(sbi)); |
| 1242 | |
| 1243 | mutex_unlock(&sbi->gc_mutex); |
| 1244 | |
| 1245 | put_gc_inode(&gc_list); |
| 1246 | |
| 1247 | if (sync) |
| 1248 | ret = sec_freed ? 0 : -EAGAIN; |
| 1249 | return ret; |
| 1250 | } |
| 1251 | |
| 1252 | void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) |
| 1253 | { |
| 1254 | DIRTY_I(sbi)->v_ops = &default_v_ops; |
| 1255 | |
| 1256 | sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; |
| 1257 | |
| 1258 | /* give warm/cold data area from slower device */ |
| 1259 | if (sbi->s_ndevs && sbi->segs_per_sec == 1) |
| 1260 | SIT_I(sbi)->last_victim[ALLOC_NEXT] = |
| 1261 | GET_SEGNO(sbi, FDEV(0).end_blk) + 1; |
| 1262 | } |