Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2007 Oracle. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/sched.h> |
| 7 | #include <linux/sched/signal.h> |
| 8 | #include <linux/pagemap.h> |
| 9 | #include <linux/writeback.h> |
| 10 | #include <linux/blkdev.h> |
| 11 | #include <linux/sort.h> |
| 12 | #include <linux/rcupdate.h> |
| 13 | #include <linux/kthread.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/ratelimit.h> |
| 16 | #include <linux/percpu_counter.h> |
| 17 | #include <linux/lockdep.h> |
| 18 | #include <linux/crc32c.h> |
| 19 | #include "tree-log.h" |
| 20 | #include "disk-io.h" |
| 21 | #include "print-tree.h" |
| 22 | #include "volumes.h" |
| 23 | #include "raid56.h" |
| 24 | #include "locking.h" |
| 25 | #include "free-space-cache.h" |
| 26 | #include "free-space-tree.h" |
| 27 | #include "math.h" |
| 28 | #include "sysfs.h" |
| 29 | #include "qgroup.h" |
| 30 | #include "ref-verify.h" |
| 31 | |
| 32 | #undef SCRAMBLE_DELAYED_REFS |
| 33 | |
| 34 | /* |
| 35 | * control flags for do_chunk_alloc's force field |
| 36 | * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk |
| 37 | * if we really need one. |
| 38 | * |
| 39 | * CHUNK_ALLOC_LIMITED means to only try and allocate one |
| 40 | * if we have very few chunks already allocated. This is |
| 41 | * used as part of the clustering code to help make sure |
| 42 | * we have a good pool of storage to cluster in, without |
| 43 | * filling the FS with empty chunks |
| 44 | * |
| 45 | * CHUNK_ALLOC_FORCE means it must try to allocate one |
| 46 | * |
| 47 | */ |
| 48 | enum { |
| 49 | CHUNK_ALLOC_NO_FORCE = 0, |
| 50 | CHUNK_ALLOC_LIMITED = 1, |
| 51 | CHUNK_ALLOC_FORCE = 2, |
| 52 | }; |
| 53 | |
| 54 | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| 55 | struct btrfs_delayed_ref_node *node, u64 parent, |
| 56 | u64 root_objectid, u64 owner_objectid, |
| 57 | u64 owner_offset, int refs_to_drop, |
| 58 | struct btrfs_delayed_extent_op *extra_op); |
| 59 | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| 60 | struct extent_buffer *leaf, |
| 61 | struct btrfs_extent_item *ei); |
| 62 | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| 63 | u64 parent, u64 root_objectid, |
| 64 | u64 flags, u64 owner, u64 offset, |
| 65 | struct btrfs_key *ins, int ref_mod); |
| 66 | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| 67 | struct btrfs_delayed_ref_node *node, |
| 68 | struct btrfs_delayed_extent_op *extent_op); |
| 69 | static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, |
| 70 | int force); |
| 71 | static int find_next_key(struct btrfs_path *path, int level, |
| 72 | struct btrfs_key *key); |
| 73 | static void dump_space_info(struct btrfs_fs_info *fs_info, |
| 74 | struct btrfs_space_info *info, u64 bytes, |
| 75 | int dump_block_groups); |
| 76 | static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, |
| 77 | u64 num_bytes); |
| 78 | static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, |
| 79 | struct btrfs_space_info *space_info, |
| 80 | u64 num_bytes); |
| 81 | static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, |
| 82 | struct btrfs_space_info *space_info, |
| 83 | u64 num_bytes); |
| 84 | |
| 85 | static noinline int |
| 86 | block_group_cache_done(struct btrfs_block_group_cache *cache) |
| 87 | { |
| 88 | smp_mb(); |
| 89 | return cache->cached == BTRFS_CACHE_FINISHED || |
| 90 | cache->cached == BTRFS_CACHE_ERROR; |
| 91 | } |
| 92 | |
| 93 | static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) |
| 94 | { |
| 95 | return (cache->flags & bits) == bits; |
| 96 | } |
| 97 | |
| 98 | void btrfs_get_block_group(struct btrfs_block_group_cache *cache) |
| 99 | { |
| 100 | atomic_inc(&cache->count); |
| 101 | } |
| 102 | |
| 103 | void btrfs_put_block_group(struct btrfs_block_group_cache *cache) |
| 104 | { |
| 105 | if (atomic_dec_and_test(&cache->count)) { |
| 106 | WARN_ON(cache->pinned > 0); |
| 107 | WARN_ON(cache->reserved > 0); |
| 108 | |
| 109 | /* |
| 110 | * If not empty, someone is still holding mutex of |
| 111 | * full_stripe_lock, which can only be released by caller. |
| 112 | * And it will definitely cause use-after-free when caller |
| 113 | * tries to release full stripe lock. |
| 114 | * |
| 115 | * No better way to resolve, but only to warn. |
| 116 | */ |
| 117 | WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); |
| 118 | kfree(cache->free_space_ctl); |
| 119 | kfree(cache); |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | /* |
| 124 | * this adds the block group to the fs_info rb tree for the block group |
| 125 | * cache |
| 126 | */ |
| 127 | static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, |
| 128 | struct btrfs_block_group_cache *block_group) |
| 129 | { |
| 130 | struct rb_node **p; |
| 131 | struct rb_node *parent = NULL; |
| 132 | struct btrfs_block_group_cache *cache; |
| 133 | |
| 134 | spin_lock(&info->block_group_cache_lock); |
| 135 | p = &info->block_group_cache_tree.rb_node; |
| 136 | |
| 137 | while (*p) { |
| 138 | parent = *p; |
| 139 | cache = rb_entry(parent, struct btrfs_block_group_cache, |
| 140 | cache_node); |
| 141 | if (block_group->key.objectid < cache->key.objectid) { |
| 142 | p = &(*p)->rb_left; |
| 143 | } else if (block_group->key.objectid > cache->key.objectid) { |
| 144 | p = &(*p)->rb_right; |
| 145 | } else { |
| 146 | spin_unlock(&info->block_group_cache_lock); |
| 147 | return -EEXIST; |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | rb_link_node(&block_group->cache_node, parent, p); |
| 152 | rb_insert_color(&block_group->cache_node, |
| 153 | &info->block_group_cache_tree); |
| 154 | |
| 155 | if (info->first_logical_byte > block_group->key.objectid) |
| 156 | info->first_logical_byte = block_group->key.objectid; |
| 157 | |
| 158 | spin_unlock(&info->block_group_cache_lock); |
| 159 | |
| 160 | return 0; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * This will return the block group at or after bytenr if contains is 0, else |
| 165 | * it will return the block group that contains the bytenr |
| 166 | */ |
| 167 | static struct btrfs_block_group_cache * |
| 168 | block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, |
| 169 | int contains) |
| 170 | { |
| 171 | struct btrfs_block_group_cache *cache, *ret = NULL; |
| 172 | struct rb_node *n; |
| 173 | u64 end, start; |
| 174 | |
| 175 | spin_lock(&info->block_group_cache_lock); |
| 176 | n = info->block_group_cache_tree.rb_node; |
| 177 | |
| 178 | while (n) { |
| 179 | cache = rb_entry(n, struct btrfs_block_group_cache, |
| 180 | cache_node); |
| 181 | end = cache->key.objectid + cache->key.offset - 1; |
| 182 | start = cache->key.objectid; |
| 183 | |
| 184 | if (bytenr < start) { |
| 185 | if (!contains && (!ret || start < ret->key.objectid)) |
| 186 | ret = cache; |
| 187 | n = n->rb_left; |
| 188 | } else if (bytenr > start) { |
| 189 | if (contains && bytenr <= end) { |
| 190 | ret = cache; |
| 191 | break; |
| 192 | } |
| 193 | n = n->rb_right; |
| 194 | } else { |
| 195 | ret = cache; |
| 196 | break; |
| 197 | } |
| 198 | } |
| 199 | if (ret) { |
| 200 | btrfs_get_block_group(ret); |
| 201 | if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) |
| 202 | info->first_logical_byte = ret->key.objectid; |
| 203 | } |
| 204 | spin_unlock(&info->block_group_cache_lock); |
| 205 | |
| 206 | return ret; |
| 207 | } |
| 208 | |
| 209 | static int add_excluded_extent(struct btrfs_fs_info *fs_info, |
| 210 | u64 start, u64 num_bytes) |
| 211 | { |
| 212 | u64 end = start + num_bytes - 1; |
| 213 | set_extent_bits(&fs_info->freed_extents[0], |
| 214 | start, end, EXTENT_UPTODATE); |
| 215 | set_extent_bits(&fs_info->freed_extents[1], |
| 216 | start, end, EXTENT_UPTODATE); |
| 217 | return 0; |
| 218 | } |
| 219 | |
| 220 | static void free_excluded_extents(struct btrfs_block_group_cache *cache) |
| 221 | { |
| 222 | struct btrfs_fs_info *fs_info = cache->fs_info; |
| 223 | u64 start, end; |
| 224 | |
| 225 | start = cache->key.objectid; |
| 226 | end = start + cache->key.offset - 1; |
| 227 | |
| 228 | clear_extent_bits(&fs_info->freed_extents[0], |
| 229 | start, end, EXTENT_UPTODATE); |
| 230 | clear_extent_bits(&fs_info->freed_extents[1], |
| 231 | start, end, EXTENT_UPTODATE); |
| 232 | } |
| 233 | |
| 234 | static int exclude_super_stripes(struct btrfs_block_group_cache *cache) |
| 235 | { |
| 236 | struct btrfs_fs_info *fs_info = cache->fs_info; |
| 237 | u64 bytenr; |
| 238 | u64 *logical; |
| 239 | int stripe_len; |
| 240 | int i, nr, ret; |
| 241 | |
| 242 | if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { |
| 243 | stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; |
| 244 | cache->bytes_super += stripe_len; |
| 245 | ret = add_excluded_extent(fs_info, cache->key.objectid, |
| 246 | stripe_len); |
| 247 | if (ret) |
| 248 | return ret; |
| 249 | } |
| 250 | |
| 251 | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { |
| 252 | bytenr = btrfs_sb_offset(i); |
| 253 | ret = btrfs_rmap_block(fs_info, cache->key.objectid, |
| 254 | bytenr, &logical, &nr, &stripe_len); |
| 255 | if (ret) |
| 256 | return ret; |
| 257 | |
| 258 | while (nr--) { |
| 259 | u64 start, len; |
| 260 | |
| 261 | if (logical[nr] > cache->key.objectid + |
| 262 | cache->key.offset) |
| 263 | continue; |
| 264 | |
| 265 | if (logical[nr] + stripe_len <= cache->key.objectid) |
| 266 | continue; |
| 267 | |
| 268 | start = logical[nr]; |
| 269 | if (start < cache->key.objectid) { |
| 270 | start = cache->key.objectid; |
| 271 | len = (logical[nr] + stripe_len) - start; |
| 272 | } else { |
| 273 | len = min_t(u64, stripe_len, |
| 274 | cache->key.objectid + |
| 275 | cache->key.offset - start); |
| 276 | } |
| 277 | |
| 278 | cache->bytes_super += len; |
| 279 | ret = add_excluded_extent(fs_info, start, len); |
| 280 | if (ret) { |
| 281 | kfree(logical); |
| 282 | return ret; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | kfree(logical); |
| 287 | } |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | static struct btrfs_caching_control * |
| 292 | get_caching_control(struct btrfs_block_group_cache *cache) |
| 293 | { |
| 294 | struct btrfs_caching_control *ctl; |
| 295 | |
| 296 | spin_lock(&cache->lock); |
| 297 | if (!cache->caching_ctl) { |
| 298 | spin_unlock(&cache->lock); |
| 299 | return NULL; |
| 300 | } |
| 301 | |
| 302 | ctl = cache->caching_ctl; |
| 303 | refcount_inc(&ctl->count); |
| 304 | spin_unlock(&cache->lock); |
| 305 | return ctl; |
| 306 | } |
| 307 | |
| 308 | static void put_caching_control(struct btrfs_caching_control *ctl) |
| 309 | { |
| 310 | if (refcount_dec_and_test(&ctl->count)) |
| 311 | kfree(ctl); |
| 312 | } |
| 313 | |
| 314 | #ifdef CONFIG_BTRFS_DEBUG |
| 315 | static void fragment_free_space(struct btrfs_block_group_cache *block_group) |
| 316 | { |
| 317 | struct btrfs_fs_info *fs_info = block_group->fs_info; |
| 318 | u64 start = block_group->key.objectid; |
| 319 | u64 len = block_group->key.offset; |
| 320 | u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? |
| 321 | fs_info->nodesize : fs_info->sectorsize; |
| 322 | u64 step = chunk << 1; |
| 323 | |
| 324 | while (len > chunk) { |
| 325 | btrfs_remove_free_space(block_group, start, chunk); |
| 326 | start += step; |
| 327 | if (len < step) |
| 328 | len = 0; |
| 329 | else |
| 330 | len -= step; |
| 331 | } |
| 332 | } |
| 333 | #endif |
| 334 | |
| 335 | /* |
| 336 | * this is only called by cache_block_group, since we could have freed extents |
| 337 | * we need to check the pinned_extents for any extents that can't be used yet |
| 338 | * since their free space will be released as soon as the transaction commits. |
| 339 | */ |
| 340 | u64 add_new_free_space(struct btrfs_block_group_cache *block_group, |
| 341 | u64 start, u64 end) |
| 342 | { |
| 343 | struct btrfs_fs_info *info = block_group->fs_info; |
| 344 | u64 extent_start, extent_end, size, total_added = 0; |
| 345 | int ret; |
| 346 | |
| 347 | while (start < end) { |
| 348 | ret = find_first_extent_bit(info->pinned_extents, start, |
| 349 | &extent_start, &extent_end, |
| 350 | EXTENT_DIRTY | EXTENT_UPTODATE, |
| 351 | NULL); |
| 352 | if (ret) |
| 353 | break; |
| 354 | |
| 355 | if (extent_start <= start) { |
| 356 | start = extent_end + 1; |
| 357 | } else if (extent_start > start && extent_start < end) { |
| 358 | size = extent_start - start; |
| 359 | total_added += size; |
| 360 | ret = btrfs_add_free_space(block_group, start, |
| 361 | size); |
| 362 | BUG_ON(ret); /* -ENOMEM or logic error */ |
| 363 | start = extent_end + 1; |
| 364 | } else { |
| 365 | break; |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | if (start < end) { |
| 370 | size = end - start; |
| 371 | total_added += size; |
| 372 | ret = btrfs_add_free_space(block_group, start, size); |
| 373 | BUG_ON(ret); /* -ENOMEM or logic error */ |
| 374 | } |
| 375 | |
| 376 | return total_added; |
| 377 | } |
| 378 | |
| 379 | static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) |
| 380 | { |
| 381 | struct btrfs_block_group_cache *block_group = caching_ctl->block_group; |
| 382 | struct btrfs_fs_info *fs_info = block_group->fs_info; |
| 383 | struct btrfs_root *extent_root = fs_info->extent_root; |
| 384 | struct btrfs_path *path; |
| 385 | struct extent_buffer *leaf; |
| 386 | struct btrfs_key key; |
| 387 | u64 total_found = 0; |
| 388 | u64 last = 0; |
| 389 | u32 nritems; |
| 390 | int ret; |
| 391 | bool wakeup = true; |
| 392 | |
| 393 | path = btrfs_alloc_path(); |
| 394 | if (!path) |
| 395 | return -ENOMEM; |
| 396 | |
| 397 | last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); |
| 398 | |
| 399 | #ifdef CONFIG_BTRFS_DEBUG |
| 400 | /* |
| 401 | * If we're fragmenting we don't want to make anybody think we can |
| 402 | * allocate from this block group until we've had a chance to fragment |
| 403 | * the free space. |
| 404 | */ |
| 405 | if (btrfs_should_fragment_free_space(block_group)) |
| 406 | wakeup = false; |
| 407 | #endif |
| 408 | /* |
| 409 | * We don't want to deadlock with somebody trying to allocate a new |
| 410 | * extent for the extent root while also trying to search the extent |
| 411 | * root to add free space. So we skip locking and search the commit |
| 412 | * root, since its read-only |
| 413 | */ |
| 414 | path->skip_locking = 1; |
| 415 | path->search_commit_root = 1; |
| 416 | path->reada = READA_FORWARD; |
| 417 | |
| 418 | key.objectid = last; |
| 419 | key.offset = 0; |
| 420 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 421 | |
| 422 | next: |
| 423 | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| 424 | if (ret < 0) |
| 425 | goto out; |
| 426 | |
| 427 | leaf = path->nodes[0]; |
| 428 | nritems = btrfs_header_nritems(leaf); |
| 429 | |
| 430 | while (1) { |
| 431 | if (btrfs_fs_closing(fs_info) > 1) { |
| 432 | last = (u64)-1; |
| 433 | break; |
| 434 | } |
| 435 | |
| 436 | if (path->slots[0] < nritems) { |
| 437 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 438 | } else { |
| 439 | ret = find_next_key(path, 0, &key); |
| 440 | if (ret) |
| 441 | break; |
| 442 | |
| 443 | if (need_resched() || |
| 444 | rwsem_is_contended(&fs_info->commit_root_sem)) { |
| 445 | if (wakeup) |
| 446 | caching_ctl->progress = last; |
| 447 | btrfs_release_path(path); |
| 448 | up_read(&fs_info->commit_root_sem); |
| 449 | mutex_unlock(&caching_ctl->mutex); |
| 450 | cond_resched(); |
| 451 | mutex_lock(&caching_ctl->mutex); |
| 452 | down_read(&fs_info->commit_root_sem); |
| 453 | goto next; |
| 454 | } |
| 455 | |
| 456 | ret = btrfs_next_leaf(extent_root, path); |
| 457 | if (ret < 0) |
| 458 | goto out; |
| 459 | if (ret) |
| 460 | break; |
| 461 | leaf = path->nodes[0]; |
| 462 | nritems = btrfs_header_nritems(leaf); |
| 463 | continue; |
| 464 | } |
| 465 | |
| 466 | if (key.objectid < last) { |
| 467 | key.objectid = last; |
| 468 | key.offset = 0; |
| 469 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 470 | |
| 471 | if (wakeup) |
| 472 | caching_ctl->progress = last; |
| 473 | btrfs_release_path(path); |
| 474 | goto next; |
| 475 | } |
| 476 | |
| 477 | if (key.objectid < block_group->key.objectid) { |
| 478 | path->slots[0]++; |
| 479 | continue; |
| 480 | } |
| 481 | |
| 482 | if (key.objectid >= block_group->key.objectid + |
| 483 | block_group->key.offset) |
| 484 | break; |
| 485 | |
| 486 | if (key.type == BTRFS_EXTENT_ITEM_KEY || |
| 487 | key.type == BTRFS_METADATA_ITEM_KEY) { |
| 488 | total_found += add_new_free_space(block_group, last, |
| 489 | key.objectid); |
| 490 | if (key.type == BTRFS_METADATA_ITEM_KEY) |
| 491 | last = key.objectid + |
| 492 | fs_info->nodesize; |
| 493 | else |
| 494 | last = key.objectid + key.offset; |
| 495 | |
| 496 | if (total_found > CACHING_CTL_WAKE_UP) { |
| 497 | total_found = 0; |
| 498 | if (wakeup) |
| 499 | wake_up(&caching_ctl->wait); |
| 500 | } |
| 501 | } |
| 502 | path->slots[0]++; |
| 503 | } |
| 504 | ret = 0; |
| 505 | |
| 506 | total_found += add_new_free_space(block_group, last, |
| 507 | block_group->key.objectid + |
| 508 | block_group->key.offset); |
| 509 | caching_ctl->progress = (u64)-1; |
| 510 | |
| 511 | out: |
| 512 | btrfs_free_path(path); |
| 513 | return ret; |
| 514 | } |
| 515 | |
| 516 | static noinline void caching_thread(struct btrfs_work *work) |
| 517 | { |
| 518 | struct btrfs_block_group_cache *block_group; |
| 519 | struct btrfs_fs_info *fs_info; |
| 520 | struct btrfs_caching_control *caching_ctl; |
| 521 | int ret; |
| 522 | |
| 523 | caching_ctl = container_of(work, struct btrfs_caching_control, work); |
| 524 | block_group = caching_ctl->block_group; |
| 525 | fs_info = block_group->fs_info; |
| 526 | |
| 527 | mutex_lock(&caching_ctl->mutex); |
| 528 | down_read(&fs_info->commit_root_sem); |
| 529 | |
| 530 | if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) |
| 531 | ret = load_free_space_tree(caching_ctl); |
| 532 | else |
| 533 | ret = load_extent_tree_free(caching_ctl); |
| 534 | |
| 535 | spin_lock(&block_group->lock); |
| 536 | block_group->caching_ctl = NULL; |
| 537 | block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; |
| 538 | spin_unlock(&block_group->lock); |
| 539 | |
| 540 | #ifdef CONFIG_BTRFS_DEBUG |
| 541 | if (btrfs_should_fragment_free_space(block_group)) { |
| 542 | u64 bytes_used; |
| 543 | |
| 544 | spin_lock(&block_group->space_info->lock); |
| 545 | spin_lock(&block_group->lock); |
| 546 | bytes_used = block_group->key.offset - |
| 547 | btrfs_block_group_used(&block_group->item); |
| 548 | block_group->space_info->bytes_used += bytes_used >> 1; |
| 549 | spin_unlock(&block_group->lock); |
| 550 | spin_unlock(&block_group->space_info->lock); |
| 551 | fragment_free_space(block_group); |
| 552 | } |
| 553 | #endif |
| 554 | |
| 555 | caching_ctl->progress = (u64)-1; |
| 556 | |
| 557 | up_read(&fs_info->commit_root_sem); |
| 558 | free_excluded_extents(block_group); |
| 559 | mutex_unlock(&caching_ctl->mutex); |
| 560 | |
| 561 | wake_up(&caching_ctl->wait); |
| 562 | |
| 563 | put_caching_control(caching_ctl); |
| 564 | btrfs_put_block_group(block_group); |
| 565 | } |
| 566 | |
| 567 | static int cache_block_group(struct btrfs_block_group_cache *cache, |
| 568 | int load_cache_only) |
| 569 | { |
| 570 | DEFINE_WAIT(wait); |
| 571 | struct btrfs_fs_info *fs_info = cache->fs_info; |
| 572 | struct btrfs_caching_control *caching_ctl; |
| 573 | int ret = 0; |
| 574 | |
| 575 | caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); |
| 576 | if (!caching_ctl) |
| 577 | return -ENOMEM; |
| 578 | |
| 579 | INIT_LIST_HEAD(&caching_ctl->list); |
| 580 | mutex_init(&caching_ctl->mutex); |
| 581 | init_waitqueue_head(&caching_ctl->wait); |
| 582 | caching_ctl->block_group = cache; |
| 583 | caching_ctl->progress = cache->key.objectid; |
| 584 | refcount_set(&caching_ctl->count, 1); |
| 585 | btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, |
| 586 | caching_thread, NULL, NULL); |
| 587 | |
| 588 | spin_lock(&cache->lock); |
| 589 | /* |
| 590 | * This should be a rare occasion, but this could happen I think in the |
| 591 | * case where one thread starts to load the space cache info, and then |
| 592 | * some other thread starts a transaction commit which tries to do an |
| 593 | * allocation while the other thread is still loading the space cache |
| 594 | * info. The previous loop should have kept us from choosing this block |
| 595 | * group, but if we've moved to the state where we will wait on caching |
| 596 | * block groups we need to first check if we're doing a fast load here, |
| 597 | * so we can wait for it to finish, otherwise we could end up allocating |
| 598 | * from a block group who's cache gets evicted for one reason or |
| 599 | * another. |
| 600 | */ |
| 601 | while (cache->cached == BTRFS_CACHE_FAST) { |
| 602 | struct btrfs_caching_control *ctl; |
| 603 | |
| 604 | ctl = cache->caching_ctl; |
| 605 | refcount_inc(&ctl->count); |
| 606 | prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); |
| 607 | spin_unlock(&cache->lock); |
| 608 | |
| 609 | schedule(); |
| 610 | |
| 611 | finish_wait(&ctl->wait, &wait); |
| 612 | put_caching_control(ctl); |
| 613 | spin_lock(&cache->lock); |
| 614 | } |
| 615 | |
| 616 | if (cache->cached != BTRFS_CACHE_NO) { |
| 617 | spin_unlock(&cache->lock); |
| 618 | kfree(caching_ctl); |
| 619 | return 0; |
| 620 | } |
| 621 | WARN_ON(cache->caching_ctl); |
| 622 | cache->caching_ctl = caching_ctl; |
| 623 | cache->cached = BTRFS_CACHE_FAST; |
| 624 | spin_unlock(&cache->lock); |
| 625 | |
| 626 | if (btrfs_test_opt(fs_info, SPACE_CACHE)) { |
| 627 | mutex_lock(&caching_ctl->mutex); |
| 628 | ret = load_free_space_cache(fs_info, cache); |
| 629 | |
| 630 | spin_lock(&cache->lock); |
| 631 | if (ret == 1) { |
| 632 | cache->caching_ctl = NULL; |
| 633 | cache->cached = BTRFS_CACHE_FINISHED; |
| 634 | cache->last_byte_to_unpin = (u64)-1; |
| 635 | caching_ctl->progress = (u64)-1; |
| 636 | } else { |
| 637 | if (load_cache_only) { |
| 638 | cache->caching_ctl = NULL; |
| 639 | cache->cached = BTRFS_CACHE_NO; |
| 640 | } else { |
| 641 | cache->cached = BTRFS_CACHE_STARTED; |
| 642 | cache->has_caching_ctl = 1; |
| 643 | } |
| 644 | } |
| 645 | spin_unlock(&cache->lock); |
| 646 | #ifdef CONFIG_BTRFS_DEBUG |
| 647 | if (ret == 1 && |
| 648 | btrfs_should_fragment_free_space(cache)) { |
| 649 | u64 bytes_used; |
| 650 | |
| 651 | spin_lock(&cache->space_info->lock); |
| 652 | spin_lock(&cache->lock); |
| 653 | bytes_used = cache->key.offset - |
| 654 | btrfs_block_group_used(&cache->item); |
| 655 | cache->space_info->bytes_used += bytes_used >> 1; |
| 656 | spin_unlock(&cache->lock); |
| 657 | spin_unlock(&cache->space_info->lock); |
| 658 | fragment_free_space(cache); |
| 659 | } |
| 660 | #endif |
| 661 | mutex_unlock(&caching_ctl->mutex); |
| 662 | |
| 663 | wake_up(&caching_ctl->wait); |
| 664 | if (ret == 1) { |
| 665 | put_caching_control(caching_ctl); |
| 666 | free_excluded_extents(cache); |
| 667 | return 0; |
| 668 | } |
| 669 | } else { |
| 670 | /* |
| 671 | * We're either using the free space tree or no caching at all. |
| 672 | * Set cached to the appropriate value and wakeup any waiters. |
| 673 | */ |
| 674 | spin_lock(&cache->lock); |
| 675 | if (load_cache_only) { |
| 676 | cache->caching_ctl = NULL; |
| 677 | cache->cached = BTRFS_CACHE_NO; |
| 678 | } else { |
| 679 | cache->cached = BTRFS_CACHE_STARTED; |
| 680 | cache->has_caching_ctl = 1; |
| 681 | } |
| 682 | spin_unlock(&cache->lock); |
| 683 | wake_up(&caching_ctl->wait); |
| 684 | } |
| 685 | |
| 686 | if (load_cache_only) { |
| 687 | put_caching_control(caching_ctl); |
| 688 | return 0; |
| 689 | } |
| 690 | |
| 691 | down_write(&fs_info->commit_root_sem); |
| 692 | refcount_inc(&caching_ctl->count); |
| 693 | list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); |
| 694 | up_write(&fs_info->commit_root_sem); |
| 695 | |
| 696 | btrfs_get_block_group(cache); |
| 697 | |
| 698 | btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); |
| 699 | |
| 700 | return ret; |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * return the block group that starts at or after bytenr |
| 705 | */ |
| 706 | static struct btrfs_block_group_cache * |
| 707 | btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) |
| 708 | { |
| 709 | return block_group_cache_tree_search(info, bytenr, 0); |
| 710 | } |
| 711 | |
| 712 | /* |
| 713 | * return the block group that contains the given bytenr |
| 714 | */ |
| 715 | struct btrfs_block_group_cache *btrfs_lookup_block_group( |
| 716 | struct btrfs_fs_info *info, |
| 717 | u64 bytenr) |
| 718 | { |
| 719 | return block_group_cache_tree_search(info, bytenr, 1); |
| 720 | } |
| 721 | |
| 722 | static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, |
| 723 | u64 flags) |
| 724 | { |
| 725 | struct list_head *head = &info->space_info; |
| 726 | struct btrfs_space_info *found; |
| 727 | |
| 728 | flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; |
| 729 | |
| 730 | rcu_read_lock(); |
| 731 | list_for_each_entry_rcu(found, head, list) { |
| 732 | if (found->flags & flags) { |
| 733 | rcu_read_unlock(); |
| 734 | return found; |
| 735 | } |
| 736 | } |
| 737 | rcu_read_unlock(); |
| 738 | return NULL; |
| 739 | } |
| 740 | |
| 741 | static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, |
| 742 | bool metadata, u64 root_objectid) |
| 743 | { |
| 744 | struct btrfs_space_info *space_info; |
| 745 | u64 flags; |
| 746 | |
| 747 | if (metadata) { |
| 748 | if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) |
| 749 | flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| 750 | else |
| 751 | flags = BTRFS_BLOCK_GROUP_METADATA; |
| 752 | } else { |
| 753 | flags = BTRFS_BLOCK_GROUP_DATA; |
| 754 | } |
| 755 | |
| 756 | space_info = __find_space_info(fs_info, flags); |
| 757 | ASSERT(space_info); |
| 758 | percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes, |
| 759 | BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 760 | } |
| 761 | |
| 762 | /* |
| 763 | * after adding space to the filesystem, we need to clear the full flags |
| 764 | * on all the space infos. |
| 765 | */ |
| 766 | void btrfs_clear_space_info_full(struct btrfs_fs_info *info) |
| 767 | { |
| 768 | struct list_head *head = &info->space_info; |
| 769 | struct btrfs_space_info *found; |
| 770 | |
| 771 | rcu_read_lock(); |
| 772 | list_for_each_entry_rcu(found, head, list) |
| 773 | found->full = 0; |
| 774 | rcu_read_unlock(); |
| 775 | } |
| 776 | |
| 777 | /* simple helper to search for an existing data extent at a given offset */ |
| 778 | int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) |
| 779 | { |
| 780 | int ret; |
| 781 | struct btrfs_key key; |
| 782 | struct btrfs_path *path; |
| 783 | |
| 784 | path = btrfs_alloc_path(); |
| 785 | if (!path) |
| 786 | return -ENOMEM; |
| 787 | |
| 788 | key.objectid = start; |
| 789 | key.offset = len; |
| 790 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 791 | ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); |
| 792 | btrfs_free_path(path); |
| 793 | return ret; |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * helper function to lookup reference count and flags of a tree block. |
| 798 | * |
| 799 | * the head node for delayed ref is used to store the sum of all the |
| 800 | * reference count modifications queued up in the rbtree. the head |
| 801 | * node may also store the extent flags to set. This way you can check |
| 802 | * to see what the reference count and extent flags would be if all of |
| 803 | * the delayed refs are not processed. |
| 804 | */ |
| 805 | int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, |
| 806 | struct btrfs_fs_info *fs_info, u64 bytenr, |
| 807 | u64 offset, int metadata, u64 *refs, u64 *flags) |
| 808 | { |
| 809 | struct btrfs_delayed_ref_head *head; |
| 810 | struct btrfs_delayed_ref_root *delayed_refs; |
| 811 | struct btrfs_path *path; |
| 812 | struct btrfs_extent_item *ei; |
| 813 | struct extent_buffer *leaf; |
| 814 | struct btrfs_key key; |
| 815 | u32 item_size; |
| 816 | u64 num_refs; |
| 817 | u64 extent_flags; |
| 818 | int ret; |
| 819 | |
| 820 | /* |
| 821 | * If we don't have skinny metadata, don't bother doing anything |
| 822 | * different |
| 823 | */ |
| 824 | if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { |
| 825 | offset = fs_info->nodesize; |
| 826 | metadata = 0; |
| 827 | } |
| 828 | |
| 829 | path = btrfs_alloc_path(); |
| 830 | if (!path) |
| 831 | return -ENOMEM; |
| 832 | |
| 833 | if (!trans) { |
| 834 | path->skip_locking = 1; |
| 835 | path->search_commit_root = 1; |
| 836 | } |
| 837 | |
| 838 | search_again: |
| 839 | key.objectid = bytenr; |
| 840 | key.offset = offset; |
| 841 | if (metadata) |
| 842 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 843 | else |
| 844 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 845 | |
| 846 | ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); |
| 847 | if (ret < 0) |
| 848 | goto out_free; |
| 849 | |
| 850 | if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { |
| 851 | if (path->slots[0]) { |
| 852 | path->slots[0]--; |
| 853 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 854 | path->slots[0]); |
| 855 | if (key.objectid == bytenr && |
| 856 | key.type == BTRFS_EXTENT_ITEM_KEY && |
| 857 | key.offset == fs_info->nodesize) |
| 858 | ret = 0; |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | if (ret == 0) { |
| 863 | leaf = path->nodes[0]; |
| 864 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| 865 | if (item_size >= sizeof(*ei)) { |
| 866 | ei = btrfs_item_ptr(leaf, path->slots[0], |
| 867 | struct btrfs_extent_item); |
| 868 | num_refs = btrfs_extent_refs(leaf, ei); |
| 869 | extent_flags = btrfs_extent_flags(leaf, ei); |
| 870 | } else { |
| 871 | ret = -EINVAL; |
| 872 | btrfs_print_v0_err(fs_info); |
| 873 | if (trans) |
| 874 | btrfs_abort_transaction(trans, ret); |
| 875 | else |
| 876 | btrfs_handle_fs_error(fs_info, ret, NULL); |
| 877 | |
| 878 | goto out_free; |
| 879 | } |
| 880 | |
| 881 | BUG_ON(num_refs == 0); |
| 882 | } else { |
| 883 | num_refs = 0; |
| 884 | extent_flags = 0; |
| 885 | ret = 0; |
| 886 | } |
| 887 | |
| 888 | if (!trans) |
| 889 | goto out; |
| 890 | |
| 891 | delayed_refs = &trans->transaction->delayed_refs; |
| 892 | spin_lock(&delayed_refs->lock); |
| 893 | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); |
| 894 | if (head) { |
| 895 | if (!mutex_trylock(&head->mutex)) { |
| 896 | refcount_inc(&head->refs); |
| 897 | spin_unlock(&delayed_refs->lock); |
| 898 | |
| 899 | btrfs_release_path(path); |
| 900 | |
| 901 | /* |
| 902 | * Mutex was contended, block until it's released and try |
| 903 | * again |
| 904 | */ |
| 905 | mutex_lock(&head->mutex); |
| 906 | mutex_unlock(&head->mutex); |
| 907 | btrfs_put_delayed_ref_head(head); |
| 908 | goto search_again; |
| 909 | } |
| 910 | spin_lock(&head->lock); |
| 911 | if (head->extent_op && head->extent_op->update_flags) |
| 912 | extent_flags |= head->extent_op->flags_to_set; |
| 913 | else |
| 914 | BUG_ON(num_refs == 0); |
| 915 | |
| 916 | num_refs += head->ref_mod; |
| 917 | spin_unlock(&head->lock); |
| 918 | mutex_unlock(&head->mutex); |
| 919 | } |
| 920 | spin_unlock(&delayed_refs->lock); |
| 921 | out: |
| 922 | WARN_ON(num_refs == 0); |
| 923 | if (refs) |
| 924 | *refs = num_refs; |
| 925 | if (flags) |
| 926 | *flags = extent_flags; |
| 927 | out_free: |
| 928 | btrfs_free_path(path); |
| 929 | return ret; |
| 930 | } |
| 931 | |
| 932 | /* |
| 933 | * Back reference rules. Back refs have three main goals: |
| 934 | * |
| 935 | * 1) differentiate between all holders of references to an extent so that |
| 936 | * when a reference is dropped we can make sure it was a valid reference |
| 937 | * before freeing the extent. |
| 938 | * |
| 939 | * 2) Provide enough information to quickly find the holders of an extent |
| 940 | * if we notice a given block is corrupted or bad. |
| 941 | * |
| 942 | * 3) Make it easy to migrate blocks for FS shrinking or storage pool |
| 943 | * maintenance. This is actually the same as #2, but with a slightly |
| 944 | * different use case. |
| 945 | * |
| 946 | * There are two kinds of back refs. The implicit back refs is optimized |
| 947 | * for pointers in non-shared tree blocks. For a given pointer in a block, |
| 948 | * back refs of this kind provide information about the block's owner tree |
| 949 | * and the pointer's key. These information allow us to find the block by |
| 950 | * b-tree searching. The full back refs is for pointers in tree blocks not |
| 951 | * referenced by their owner trees. The location of tree block is recorded |
| 952 | * in the back refs. Actually the full back refs is generic, and can be |
| 953 | * used in all cases the implicit back refs is used. The major shortcoming |
| 954 | * of the full back refs is its overhead. Every time a tree block gets |
| 955 | * COWed, we have to update back refs entry for all pointers in it. |
| 956 | * |
| 957 | * For a newly allocated tree block, we use implicit back refs for |
| 958 | * pointers in it. This means most tree related operations only involve |
| 959 | * implicit back refs. For a tree block created in old transaction, the |
| 960 | * only way to drop a reference to it is COW it. So we can detect the |
| 961 | * event that tree block loses its owner tree's reference and do the |
| 962 | * back refs conversion. |
| 963 | * |
| 964 | * When a tree block is COWed through a tree, there are four cases: |
| 965 | * |
| 966 | * The reference count of the block is one and the tree is the block's |
| 967 | * owner tree. Nothing to do in this case. |
| 968 | * |
| 969 | * The reference count of the block is one and the tree is not the |
| 970 | * block's owner tree. In this case, full back refs is used for pointers |
| 971 | * in the block. Remove these full back refs, add implicit back refs for |
| 972 | * every pointers in the new block. |
| 973 | * |
| 974 | * The reference count of the block is greater than one and the tree is |
| 975 | * the block's owner tree. In this case, implicit back refs is used for |
| 976 | * pointers in the block. Add full back refs for every pointers in the |
| 977 | * block, increase lower level extents' reference counts. The original |
| 978 | * implicit back refs are entailed to the new block. |
| 979 | * |
| 980 | * The reference count of the block is greater than one and the tree is |
| 981 | * not the block's owner tree. Add implicit back refs for every pointer in |
| 982 | * the new block, increase lower level extents' reference count. |
| 983 | * |
| 984 | * Back Reference Key composing: |
| 985 | * |
| 986 | * The key objectid corresponds to the first byte in the extent, |
| 987 | * The key type is used to differentiate between types of back refs. |
| 988 | * There are different meanings of the key offset for different types |
| 989 | * of back refs. |
| 990 | * |
| 991 | * File extents can be referenced by: |
| 992 | * |
| 993 | * - multiple snapshots, subvolumes, or different generations in one subvol |
| 994 | * - different files inside a single subvolume |
| 995 | * - different offsets inside a file (bookend extents in file.c) |
| 996 | * |
| 997 | * The extent ref structure for the implicit back refs has fields for: |
| 998 | * |
| 999 | * - Objectid of the subvolume root |
| 1000 | * - objectid of the file holding the reference |
| 1001 | * - original offset in the file |
| 1002 | * - how many bookend extents |
| 1003 | * |
| 1004 | * The key offset for the implicit back refs is hash of the first |
| 1005 | * three fields. |
| 1006 | * |
| 1007 | * The extent ref structure for the full back refs has field for: |
| 1008 | * |
| 1009 | * - number of pointers in the tree leaf |
| 1010 | * |
| 1011 | * The key offset for the implicit back refs is the first byte of |
| 1012 | * the tree leaf |
| 1013 | * |
| 1014 | * When a file extent is allocated, The implicit back refs is used. |
| 1015 | * the fields are filled in: |
| 1016 | * |
| 1017 | * (root_key.objectid, inode objectid, offset in file, 1) |
| 1018 | * |
| 1019 | * When a file extent is removed file truncation, we find the |
| 1020 | * corresponding implicit back refs and check the following fields: |
| 1021 | * |
| 1022 | * (btrfs_header_owner(leaf), inode objectid, offset in file) |
| 1023 | * |
| 1024 | * Btree extents can be referenced by: |
| 1025 | * |
| 1026 | * - Different subvolumes |
| 1027 | * |
| 1028 | * Both the implicit back refs and the full back refs for tree blocks |
| 1029 | * only consist of key. The key offset for the implicit back refs is |
| 1030 | * objectid of block's owner tree. The key offset for the full back refs |
| 1031 | * is the first byte of parent block. |
| 1032 | * |
| 1033 | * When implicit back refs is used, information about the lowest key and |
| 1034 | * level of the tree block are required. These information are stored in |
| 1035 | * tree block info structure. |
| 1036 | */ |
| 1037 | |
| 1038 | /* |
| 1039 | * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, |
| 1040 | * is_data == BTRFS_REF_TYPE_DATA, data type is requried, |
| 1041 | * is_data == BTRFS_REF_TYPE_ANY, either type is OK. |
| 1042 | */ |
| 1043 | int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, |
| 1044 | struct btrfs_extent_inline_ref *iref, |
| 1045 | enum btrfs_inline_ref_type is_data) |
| 1046 | { |
| 1047 | int type = btrfs_extent_inline_ref_type(eb, iref); |
| 1048 | u64 offset = btrfs_extent_inline_ref_offset(eb, iref); |
| 1049 | |
| 1050 | if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| 1051 | type == BTRFS_SHARED_BLOCK_REF_KEY || |
| 1052 | type == BTRFS_SHARED_DATA_REF_KEY || |
| 1053 | type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 1054 | if (is_data == BTRFS_REF_TYPE_BLOCK) { |
| 1055 | if (type == BTRFS_TREE_BLOCK_REF_KEY) |
| 1056 | return type; |
| 1057 | if (type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| 1058 | ASSERT(eb->fs_info); |
| 1059 | /* |
| 1060 | * Every shared one has parent tree |
| 1061 | * block, which must be aligned to |
| 1062 | * nodesize. |
| 1063 | */ |
| 1064 | if (offset && |
| 1065 | IS_ALIGNED(offset, eb->fs_info->nodesize)) |
| 1066 | return type; |
| 1067 | } |
| 1068 | } else if (is_data == BTRFS_REF_TYPE_DATA) { |
| 1069 | if (type == BTRFS_EXTENT_DATA_REF_KEY) |
| 1070 | return type; |
| 1071 | if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| 1072 | ASSERT(eb->fs_info); |
| 1073 | /* |
| 1074 | * Every shared one has parent tree |
| 1075 | * block, which must be aligned to |
| 1076 | * nodesize. |
| 1077 | */ |
| 1078 | if (offset && |
| 1079 | IS_ALIGNED(offset, eb->fs_info->nodesize)) |
| 1080 | return type; |
| 1081 | } |
| 1082 | } else { |
| 1083 | ASSERT(is_data == BTRFS_REF_TYPE_ANY); |
| 1084 | return type; |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | btrfs_print_leaf((struct extent_buffer *)eb); |
| 1089 | btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", |
| 1090 | eb->start, type); |
| 1091 | WARN_ON(1); |
| 1092 | |
| 1093 | return BTRFS_REF_TYPE_INVALID; |
| 1094 | } |
| 1095 | |
| 1096 | static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) |
| 1097 | { |
| 1098 | u32 high_crc = ~(u32)0; |
| 1099 | u32 low_crc = ~(u32)0; |
| 1100 | __le64 lenum; |
| 1101 | |
| 1102 | lenum = cpu_to_le64(root_objectid); |
| 1103 | high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); |
| 1104 | lenum = cpu_to_le64(owner); |
| 1105 | low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); |
| 1106 | lenum = cpu_to_le64(offset); |
| 1107 | low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); |
| 1108 | |
| 1109 | return ((u64)high_crc << 31) ^ (u64)low_crc; |
| 1110 | } |
| 1111 | |
| 1112 | static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, |
| 1113 | struct btrfs_extent_data_ref *ref) |
| 1114 | { |
| 1115 | return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), |
| 1116 | btrfs_extent_data_ref_objectid(leaf, ref), |
| 1117 | btrfs_extent_data_ref_offset(leaf, ref)); |
| 1118 | } |
| 1119 | |
| 1120 | static int match_extent_data_ref(struct extent_buffer *leaf, |
| 1121 | struct btrfs_extent_data_ref *ref, |
| 1122 | u64 root_objectid, u64 owner, u64 offset) |
| 1123 | { |
| 1124 | if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || |
| 1125 | btrfs_extent_data_ref_objectid(leaf, ref) != owner || |
| 1126 | btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| 1127 | return 0; |
| 1128 | return 1; |
| 1129 | } |
| 1130 | |
| 1131 | static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, |
| 1132 | struct btrfs_path *path, |
| 1133 | u64 bytenr, u64 parent, |
| 1134 | u64 root_objectid, |
| 1135 | u64 owner, u64 offset) |
| 1136 | { |
| 1137 | struct btrfs_root *root = trans->fs_info->extent_root; |
| 1138 | struct btrfs_key key; |
| 1139 | struct btrfs_extent_data_ref *ref; |
| 1140 | struct extent_buffer *leaf; |
| 1141 | u32 nritems; |
| 1142 | int ret; |
| 1143 | int recow; |
| 1144 | int err = -ENOENT; |
| 1145 | |
| 1146 | key.objectid = bytenr; |
| 1147 | if (parent) { |
| 1148 | key.type = BTRFS_SHARED_DATA_REF_KEY; |
| 1149 | key.offset = parent; |
| 1150 | } else { |
| 1151 | key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| 1152 | key.offset = hash_extent_data_ref(root_objectid, |
| 1153 | owner, offset); |
| 1154 | } |
| 1155 | again: |
| 1156 | recow = 0; |
| 1157 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| 1158 | if (ret < 0) { |
| 1159 | err = ret; |
| 1160 | goto fail; |
| 1161 | } |
| 1162 | |
| 1163 | if (parent) { |
| 1164 | if (!ret) |
| 1165 | return 0; |
| 1166 | goto fail; |
| 1167 | } |
| 1168 | |
| 1169 | leaf = path->nodes[0]; |
| 1170 | nritems = btrfs_header_nritems(leaf); |
| 1171 | while (1) { |
| 1172 | if (path->slots[0] >= nritems) { |
| 1173 | ret = btrfs_next_leaf(root, path); |
| 1174 | if (ret < 0) |
| 1175 | err = ret; |
| 1176 | if (ret) |
| 1177 | goto fail; |
| 1178 | |
| 1179 | leaf = path->nodes[0]; |
| 1180 | nritems = btrfs_header_nritems(leaf); |
| 1181 | recow = 1; |
| 1182 | } |
| 1183 | |
| 1184 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 1185 | if (key.objectid != bytenr || |
| 1186 | key.type != BTRFS_EXTENT_DATA_REF_KEY) |
| 1187 | goto fail; |
| 1188 | |
| 1189 | ref = btrfs_item_ptr(leaf, path->slots[0], |
| 1190 | struct btrfs_extent_data_ref); |
| 1191 | |
| 1192 | if (match_extent_data_ref(leaf, ref, root_objectid, |
| 1193 | owner, offset)) { |
| 1194 | if (recow) { |
| 1195 | btrfs_release_path(path); |
| 1196 | goto again; |
| 1197 | } |
| 1198 | err = 0; |
| 1199 | break; |
| 1200 | } |
| 1201 | path->slots[0]++; |
| 1202 | } |
| 1203 | fail: |
| 1204 | return err; |
| 1205 | } |
| 1206 | |
| 1207 | static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, |
| 1208 | struct btrfs_path *path, |
| 1209 | u64 bytenr, u64 parent, |
| 1210 | u64 root_objectid, u64 owner, |
| 1211 | u64 offset, int refs_to_add) |
| 1212 | { |
| 1213 | struct btrfs_root *root = trans->fs_info->extent_root; |
| 1214 | struct btrfs_key key; |
| 1215 | struct extent_buffer *leaf; |
| 1216 | u32 size; |
| 1217 | u32 num_refs; |
| 1218 | int ret; |
| 1219 | |
| 1220 | key.objectid = bytenr; |
| 1221 | if (parent) { |
| 1222 | key.type = BTRFS_SHARED_DATA_REF_KEY; |
| 1223 | key.offset = parent; |
| 1224 | size = sizeof(struct btrfs_shared_data_ref); |
| 1225 | } else { |
| 1226 | key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| 1227 | key.offset = hash_extent_data_ref(root_objectid, |
| 1228 | owner, offset); |
| 1229 | size = sizeof(struct btrfs_extent_data_ref); |
| 1230 | } |
| 1231 | |
| 1232 | ret = btrfs_insert_empty_item(trans, root, path, &key, size); |
| 1233 | if (ret && ret != -EEXIST) |
| 1234 | goto fail; |
| 1235 | |
| 1236 | leaf = path->nodes[0]; |
| 1237 | if (parent) { |
| 1238 | struct btrfs_shared_data_ref *ref; |
| 1239 | ref = btrfs_item_ptr(leaf, path->slots[0], |
| 1240 | struct btrfs_shared_data_ref); |
| 1241 | if (ret == 0) { |
| 1242 | btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); |
| 1243 | } else { |
| 1244 | num_refs = btrfs_shared_data_ref_count(leaf, ref); |
| 1245 | num_refs += refs_to_add; |
| 1246 | btrfs_set_shared_data_ref_count(leaf, ref, num_refs); |
| 1247 | } |
| 1248 | } else { |
| 1249 | struct btrfs_extent_data_ref *ref; |
| 1250 | while (ret == -EEXIST) { |
| 1251 | ref = btrfs_item_ptr(leaf, path->slots[0], |
| 1252 | struct btrfs_extent_data_ref); |
| 1253 | if (match_extent_data_ref(leaf, ref, root_objectid, |
| 1254 | owner, offset)) |
| 1255 | break; |
| 1256 | btrfs_release_path(path); |
| 1257 | key.offset++; |
| 1258 | ret = btrfs_insert_empty_item(trans, root, path, &key, |
| 1259 | size); |
| 1260 | if (ret && ret != -EEXIST) |
| 1261 | goto fail; |
| 1262 | |
| 1263 | leaf = path->nodes[0]; |
| 1264 | } |
| 1265 | ref = btrfs_item_ptr(leaf, path->slots[0], |
| 1266 | struct btrfs_extent_data_ref); |
| 1267 | if (ret == 0) { |
| 1268 | btrfs_set_extent_data_ref_root(leaf, ref, |
| 1269 | root_objectid); |
| 1270 | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| 1271 | btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| 1272 | btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); |
| 1273 | } else { |
| 1274 | num_refs = btrfs_extent_data_ref_count(leaf, ref); |
| 1275 | num_refs += refs_to_add; |
| 1276 | btrfs_set_extent_data_ref_count(leaf, ref, num_refs); |
| 1277 | } |
| 1278 | } |
| 1279 | btrfs_mark_buffer_dirty(leaf); |
| 1280 | ret = 0; |
| 1281 | fail: |
| 1282 | btrfs_release_path(path); |
| 1283 | return ret; |
| 1284 | } |
| 1285 | |
| 1286 | static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, |
| 1287 | struct btrfs_path *path, |
| 1288 | int refs_to_drop, int *last_ref) |
| 1289 | { |
| 1290 | struct btrfs_key key; |
| 1291 | struct btrfs_extent_data_ref *ref1 = NULL; |
| 1292 | struct btrfs_shared_data_ref *ref2 = NULL; |
| 1293 | struct extent_buffer *leaf; |
| 1294 | u32 num_refs = 0; |
| 1295 | int ret = 0; |
| 1296 | |
| 1297 | leaf = path->nodes[0]; |
| 1298 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 1299 | |
| 1300 | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 1301 | ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| 1302 | struct btrfs_extent_data_ref); |
| 1303 | num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| 1304 | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| 1305 | ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| 1306 | struct btrfs_shared_data_ref); |
| 1307 | num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| 1308 | } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { |
| 1309 | btrfs_print_v0_err(trans->fs_info); |
| 1310 | btrfs_abort_transaction(trans, -EINVAL); |
| 1311 | return -EINVAL; |
| 1312 | } else { |
| 1313 | BUG(); |
| 1314 | } |
| 1315 | |
| 1316 | BUG_ON(num_refs < refs_to_drop); |
| 1317 | num_refs -= refs_to_drop; |
| 1318 | |
| 1319 | if (num_refs == 0) { |
| 1320 | ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); |
| 1321 | *last_ref = 1; |
| 1322 | } else { |
| 1323 | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) |
| 1324 | btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); |
| 1325 | else if (key.type == BTRFS_SHARED_DATA_REF_KEY) |
| 1326 | btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); |
| 1327 | btrfs_mark_buffer_dirty(leaf); |
| 1328 | } |
| 1329 | return ret; |
| 1330 | } |
| 1331 | |
| 1332 | static noinline u32 extent_data_ref_count(struct btrfs_path *path, |
| 1333 | struct btrfs_extent_inline_ref *iref) |
| 1334 | { |
| 1335 | struct btrfs_key key; |
| 1336 | struct extent_buffer *leaf; |
| 1337 | struct btrfs_extent_data_ref *ref1; |
| 1338 | struct btrfs_shared_data_ref *ref2; |
| 1339 | u32 num_refs = 0; |
| 1340 | int type; |
| 1341 | |
| 1342 | leaf = path->nodes[0]; |
| 1343 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 1344 | |
| 1345 | BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); |
| 1346 | if (iref) { |
| 1347 | /* |
| 1348 | * If type is invalid, we should have bailed out earlier than |
| 1349 | * this call. |
| 1350 | */ |
| 1351 | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); |
| 1352 | ASSERT(type != BTRFS_REF_TYPE_INVALID); |
| 1353 | if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 1354 | ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 1355 | num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| 1356 | } else { |
| 1357 | ref2 = (struct btrfs_shared_data_ref *)(iref + 1); |
| 1358 | num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| 1359 | } |
| 1360 | } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 1361 | ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| 1362 | struct btrfs_extent_data_ref); |
| 1363 | num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| 1364 | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| 1365 | ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| 1366 | struct btrfs_shared_data_ref); |
| 1367 | num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| 1368 | } else { |
| 1369 | WARN_ON(1); |
| 1370 | } |
| 1371 | return num_refs; |
| 1372 | } |
| 1373 | |
| 1374 | static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, |
| 1375 | struct btrfs_path *path, |
| 1376 | u64 bytenr, u64 parent, |
| 1377 | u64 root_objectid) |
| 1378 | { |
| 1379 | struct btrfs_root *root = trans->fs_info->extent_root; |
| 1380 | struct btrfs_key key; |
| 1381 | int ret; |
| 1382 | |
| 1383 | key.objectid = bytenr; |
| 1384 | if (parent) { |
| 1385 | key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| 1386 | key.offset = parent; |
| 1387 | } else { |
| 1388 | key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| 1389 | key.offset = root_objectid; |
| 1390 | } |
| 1391 | |
| 1392 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| 1393 | if (ret > 0) |
| 1394 | ret = -ENOENT; |
| 1395 | return ret; |
| 1396 | } |
| 1397 | |
| 1398 | static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, |
| 1399 | struct btrfs_path *path, |
| 1400 | u64 bytenr, u64 parent, |
| 1401 | u64 root_objectid) |
| 1402 | { |
| 1403 | struct btrfs_key key; |
| 1404 | int ret; |
| 1405 | |
| 1406 | key.objectid = bytenr; |
| 1407 | if (parent) { |
| 1408 | key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| 1409 | key.offset = parent; |
| 1410 | } else { |
| 1411 | key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| 1412 | key.offset = root_objectid; |
| 1413 | } |
| 1414 | |
| 1415 | ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, |
| 1416 | path, &key, 0); |
| 1417 | btrfs_release_path(path); |
| 1418 | return ret; |
| 1419 | } |
| 1420 | |
| 1421 | static inline int extent_ref_type(u64 parent, u64 owner) |
| 1422 | { |
| 1423 | int type; |
| 1424 | if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| 1425 | if (parent > 0) |
| 1426 | type = BTRFS_SHARED_BLOCK_REF_KEY; |
| 1427 | else |
| 1428 | type = BTRFS_TREE_BLOCK_REF_KEY; |
| 1429 | } else { |
| 1430 | if (parent > 0) |
| 1431 | type = BTRFS_SHARED_DATA_REF_KEY; |
| 1432 | else |
| 1433 | type = BTRFS_EXTENT_DATA_REF_KEY; |
| 1434 | } |
| 1435 | return type; |
| 1436 | } |
| 1437 | |
| 1438 | static int find_next_key(struct btrfs_path *path, int level, |
| 1439 | struct btrfs_key *key) |
| 1440 | |
| 1441 | { |
| 1442 | for (; level < BTRFS_MAX_LEVEL; level++) { |
| 1443 | if (!path->nodes[level]) |
| 1444 | break; |
| 1445 | if (path->slots[level] + 1 >= |
| 1446 | btrfs_header_nritems(path->nodes[level])) |
| 1447 | continue; |
| 1448 | if (level == 0) |
| 1449 | btrfs_item_key_to_cpu(path->nodes[level], key, |
| 1450 | path->slots[level] + 1); |
| 1451 | else |
| 1452 | btrfs_node_key_to_cpu(path->nodes[level], key, |
| 1453 | path->slots[level] + 1); |
| 1454 | return 0; |
| 1455 | } |
| 1456 | return 1; |
| 1457 | } |
| 1458 | |
| 1459 | /* |
| 1460 | * look for inline back ref. if back ref is found, *ref_ret is set |
| 1461 | * to the address of inline back ref, and 0 is returned. |
| 1462 | * |
| 1463 | * if back ref isn't found, *ref_ret is set to the address where it |
| 1464 | * should be inserted, and -ENOENT is returned. |
| 1465 | * |
| 1466 | * if insert is true and there are too many inline back refs, the path |
| 1467 | * points to the extent item, and -EAGAIN is returned. |
| 1468 | * |
| 1469 | * NOTE: inline back refs are ordered in the same way that back ref |
| 1470 | * items in the tree are ordered. |
| 1471 | */ |
| 1472 | static noinline_for_stack |
| 1473 | int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, |
| 1474 | struct btrfs_path *path, |
| 1475 | struct btrfs_extent_inline_ref **ref_ret, |
| 1476 | u64 bytenr, u64 num_bytes, |
| 1477 | u64 parent, u64 root_objectid, |
| 1478 | u64 owner, u64 offset, int insert) |
| 1479 | { |
| 1480 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 1481 | struct btrfs_root *root = fs_info->extent_root; |
| 1482 | struct btrfs_key key; |
| 1483 | struct extent_buffer *leaf; |
| 1484 | struct btrfs_extent_item *ei; |
| 1485 | struct btrfs_extent_inline_ref *iref; |
| 1486 | u64 flags; |
| 1487 | u64 item_size; |
| 1488 | unsigned long ptr; |
| 1489 | unsigned long end; |
| 1490 | int extra_size; |
| 1491 | int type; |
| 1492 | int want; |
| 1493 | int ret; |
| 1494 | int err = 0; |
| 1495 | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| 1496 | int needed; |
| 1497 | |
| 1498 | key.objectid = bytenr; |
| 1499 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 1500 | key.offset = num_bytes; |
| 1501 | |
| 1502 | want = extent_ref_type(parent, owner); |
| 1503 | if (insert) { |
| 1504 | extra_size = btrfs_extent_inline_ref_size(want); |
| 1505 | path->keep_locks = 1; |
| 1506 | } else |
| 1507 | extra_size = -1; |
| 1508 | |
| 1509 | /* |
| 1510 | * Owner is our level, so we can just add one to get the level for the |
| 1511 | * block we are interested in. |
| 1512 | */ |
| 1513 | if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { |
| 1514 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 1515 | key.offset = owner; |
| 1516 | } |
| 1517 | |
| 1518 | again: |
| 1519 | ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); |
| 1520 | if (ret < 0) { |
| 1521 | err = ret; |
| 1522 | goto out; |
| 1523 | } |
| 1524 | |
| 1525 | /* |
| 1526 | * We may be a newly converted file system which still has the old fat |
| 1527 | * extent entries for metadata, so try and see if we have one of those. |
| 1528 | */ |
| 1529 | if (ret > 0 && skinny_metadata) { |
| 1530 | skinny_metadata = false; |
| 1531 | if (path->slots[0]) { |
| 1532 | path->slots[0]--; |
| 1533 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 1534 | path->slots[0]); |
| 1535 | if (key.objectid == bytenr && |
| 1536 | key.type == BTRFS_EXTENT_ITEM_KEY && |
| 1537 | key.offset == num_bytes) |
| 1538 | ret = 0; |
| 1539 | } |
| 1540 | if (ret) { |
| 1541 | key.objectid = bytenr; |
| 1542 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 1543 | key.offset = num_bytes; |
| 1544 | btrfs_release_path(path); |
| 1545 | goto again; |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | if (ret && !insert) { |
| 1550 | err = -ENOENT; |
| 1551 | goto out; |
| 1552 | } else if (WARN_ON(ret)) { |
| 1553 | err = -EIO; |
| 1554 | goto out; |
| 1555 | } |
| 1556 | |
| 1557 | leaf = path->nodes[0]; |
| 1558 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| 1559 | if (unlikely(item_size < sizeof(*ei))) { |
| 1560 | err = -EINVAL; |
| 1561 | btrfs_print_v0_err(fs_info); |
| 1562 | btrfs_abort_transaction(trans, err); |
| 1563 | goto out; |
| 1564 | } |
| 1565 | |
| 1566 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 1567 | flags = btrfs_extent_flags(leaf, ei); |
| 1568 | |
| 1569 | ptr = (unsigned long)(ei + 1); |
| 1570 | end = (unsigned long)ei + item_size; |
| 1571 | |
| 1572 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { |
| 1573 | ptr += sizeof(struct btrfs_tree_block_info); |
| 1574 | BUG_ON(ptr > end); |
| 1575 | } |
| 1576 | |
| 1577 | if (owner >= BTRFS_FIRST_FREE_OBJECTID) |
| 1578 | needed = BTRFS_REF_TYPE_DATA; |
| 1579 | else |
| 1580 | needed = BTRFS_REF_TYPE_BLOCK; |
| 1581 | |
| 1582 | err = -ENOENT; |
| 1583 | while (1) { |
| 1584 | if (ptr >= end) { |
| 1585 | WARN_ON(ptr > end); |
| 1586 | break; |
| 1587 | } |
| 1588 | iref = (struct btrfs_extent_inline_ref *)ptr; |
| 1589 | type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); |
| 1590 | if (type == BTRFS_REF_TYPE_INVALID) { |
| 1591 | err = -EUCLEAN; |
| 1592 | goto out; |
| 1593 | } |
| 1594 | |
| 1595 | if (want < type) |
| 1596 | break; |
| 1597 | if (want > type) { |
| 1598 | ptr += btrfs_extent_inline_ref_size(type); |
| 1599 | continue; |
| 1600 | } |
| 1601 | |
| 1602 | if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 1603 | struct btrfs_extent_data_ref *dref; |
| 1604 | dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 1605 | if (match_extent_data_ref(leaf, dref, root_objectid, |
| 1606 | owner, offset)) { |
| 1607 | err = 0; |
| 1608 | break; |
| 1609 | } |
| 1610 | if (hash_extent_data_ref_item(leaf, dref) < |
| 1611 | hash_extent_data_ref(root_objectid, owner, offset)) |
| 1612 | break; |
| 1613 | } else { |
| 1614 | u64 ref_offset; |
| 1615 | ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| 1616 | if (parent > 0) { |
| 1617 | if (parent == ref_offset) { |
| 1618 | err = 0; |
| 1619 | break; |
| 1620 | } |
| 1621 | if (ref_offset < parent) |
| 1622 | break; |
| 1623 | } else { |
| 1624 | if (root_objectid == ref_offset) { |
| 1625 | err = 0; |
| 1626 | break; |
| 1627 | } |
| 1628 | if (ref_offset < root_objectid) |
| 1629 | break; |
| 1630 | } |
| 1631 | } |
| 1632 | ptr += btrfs_extent_inline_ref_size(type); |
| 1633 | } |
| 1634 | if (err == -ENOENT && insert) { |
| 1635 | if (item_size + extra_size >= |
| 1636 | BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { |
| 1637 | err = -EAGAIN; |
| 1638 | goto out; |
| 1639 | } |
| 1640 | /* |
| 1641 | * To add new inline back ref, we have to make sure |
| 1642 | * there is no corresponding back ref item. |
| 1643 | * For simplicity, we just do not add new inline back |
| 1644 | * ref if there is any kind of item for this block |
| 1645 | */ |
| 1646 | if (find_next_key(path, 0, &key) == 0 && |
| 1647 | key.objectid == bytenr && |
| 1648 | key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| 1649 | err = -EAGAIN; |
| 1650 | goto out; |
| 1651 | } |
| 1652 | } |
| 1653 | *ref_ret = (struct btrfs_extent_inline_ref *)ptr; |
| 1654 | out: |
| 1655 | if (insert) { |
| 1656 | path->keep_locks = 0; |
| 1657 | btrfs_unlock_up_safe(path, 1); |
| 1658 | } |
| 1659 | return err; |
| 1660 | } |
| 1661 | |
| 1662 | /* |
| 1663 | * helper to add new inline back ref |
| 1664 | */ |
| 1665 | static noinline_for_stack |
| 1666 | void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, |
| 1667 | struct btrfs_path *path, |
| 1668 | struct btrfs_extent_inline_ref *iref, |
| 1669 | u64 parent, u64 root_objectid, |
| 1670 | u64 owner, u64 offset, int refs_to_add, |
| 1671 | struct btrfs_delayed_extent_op *extent_op) |
| 1672 | { |
| 1673 | struct extent_buffer *leaf; |
| 1674 | struct btrfs_extent_item *ei; |
| 1675 | unsigned long ptr; |
| 1676 | unsigned long end; |
| 1677 | unsigned long item_offset; |
| 1678 | u64 refs; |
| 1679 | int size; |
| 1680 | int type; |
| 1681 | |
| 1682 | leaf = path->nodes[0]; |
| 1683 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 1684 | item_offset = (unsigned long)iref - (unsigned long)ei; |
| 1685 | |
| 1686 | type = extent_ref_type(parent, owner); |
| 1687 | size = btrfs_extent_inline_ref_size(type); |
| 1688 | |
| 1689 | btrfs_extend_item(fs_info, path, size); |
| 1690 | |
| 1691 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 1692 | refs = btrfs_extent_refs(leaf, ei); |
| 1693 | refs += refs_to_add; |
| 1694 | btrfs_set_extent_refs(leaf, ei, refs); |
| 1695 | if (extent_op) |
| 1696 | __run_delayed_extent_op(extent_op, leaf, ei); |
| 1697 | |
| 1698 | ptr = (unsigned long)ei + item_offset; |
| 1699 | end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); |
| 1700 | if (ptr < end - size) |
| 1701 | memmove_extent_buffer(leaf, ptr + size, ptr, |
| 1702 | end - size - ptr); |
| 1703 | |
| 1704 | iref = (struct btrfs_extent_inline_ref *)ptr; |
| 1705 | btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| 1706 | if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 1707 | struct btrfs_extent_data_ref *dref; |
| 1708 | dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 1709 | btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); |
| 1710 | btrfs_set_extent_data_ref_objectid(leaf, dref, owner); |
| 1711 | btrfs_set_extent_data_ref_offset(leaf, dref, offset); |
| 1712 | btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); |
| 1713 | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| 1714 | struct btrfs_shared_data_ref *sref; |
| 1715 | sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| 1716 | btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); |
| 1717 | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| 1718 | } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| 1719 | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| 1720 | } else { |
| 1721 | btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); |
| 1722 | } |
| 1723 | btrfs_mark_buffer_dirty(leaf); |
| 1724 | } |
| 1725 | |
| 1726 | static int lookup_extent_backref(struct btrfs_trans_handle *trans, |
| 1727 | struct btrfs_path *path, |
| 1728 | struct btrfs_extent_inline_ref **ref_ret, |
| 1729 | u64 bytenr, u64 num_bytes, u64 parent, |
| 1730 | u64 root_objectid, u64 owner, u64 offset) |
| 1731 | { |
| 1732 | int ret; |
| 1733 | |
| 1734 | ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, |
| 1735 | num_bytes, parent, root_objectid, |
| 1736 | owner, offset, 0); |
| 1737 | if (ret != -ENOENT) |
| 1738 | return ret; |
| 1739 | |
| 1740 | btrfs_release_path(path); |
| 1741 | *ref_ret = NULL; |
| 1742 | |
| 1743 | if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| 1744 | ret = lookup_tree_block_ref(trans, path, bytenr, parent, |
| 1745 | root_objectid); |
| 1746 | } else { |
| 1747 | ret = lookup_extent_data_ref(trans, path, bytenr, parent, |
| 1748 | root_objectid, owner, offset); |
| 1749 | } |
| 1750 | return ret; |
| 1751 | } |
| 1752 | |
| 1753 | /* |
| 1754 | * helper to update/remove inline back ref |
| 1755 | */ |
| 1756 | static noinline_for_stack |
| 1757 | void update_inline_extent_backref(struct btrfs_path *path, |
| 1758 | struct btrfs_extent_inline_ref *iref, |
| 1759 | int refs_to_mod, |
| 1760 | struct btrfs_delayed_extent_op *extent_op, |
| 1761 | int *last_ref) |
| 1762 | { |
| 1763 | struct extent_buffer *leaf = path->nodes[0]; |
| 1764 | struct btrfs_fs_info *fs_info = leaf->fs_info; |
| 1765 | struct btrfs_extent_item *ei; |
| 1766 | struct btrfs_extent_data_ref *dref = NULL; |
| 1767 | struct btrfs_shared_data_ref *sref = NULL; |
| 1768 | unsigned long ptr; |
| 1769 | unsigned long end; |
| 1770 | u32 item_size; |
| 1771 | int size; |
| 1772 | int type; |
| 1773 | u64 refs; |
| 1774 | |
| 1775 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 1776 | refs = btrfs_extent_refs(leaf, ei); |
| 1777 | WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); |
| 1778 | refs += refs_to_mod; |
| 1779 | btrfs_set_extent_refs(leaf, ei, refs); |
| 1780 | if (extent_op) |
| 1781 | __run_delayed_extent_op(extent_op, leaf, ei); |
| 1782 | |
| 1783 | /* |
| 1784 | * If type is invalid, we should have bailed out after |
| 1785 | * lookup_inline_extent_backref(). |
| 1786 | */ |
| 1787 | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); |
| 1788 | ASSERT(type != BTRFS_REF_TYPE_INVALID); |
| 1789 | |
| 1790 | if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 1791 | dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 1792 | refs = btrfs_extent_data_ref_count(leaf, dref); |
| 1793 | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| 1794 | sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| 1795 | refs = btrfs_shared_data_ref_count(leaf, sref); |
| 1796 | } else { |
| 1797 | refs = 1; |
| 1798 | BUG_ON(refs_to_mod != -1); |
| 1799 | } |
| 1800 | |
| 1801 | BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); |
| 1802 | refs += refs_to_mod; |
| 1803 | |
| 1804 | if (refs > 0) { |
| 1805 | if (type == BTRFS_EXTENT_DATA_REF_KEY) |
| 1806 | btrfs_set_extent_data_ref_count(leaf, dref, refs); |
| 1807 | else |
| 1808 | btrfs_set_shared_data_ref_count(leaf, sref, refs); |
| 1809 | } else { |
| 1810 | *last_ref = 1; |
| 1811 | size = btrfs_extent_inline_ref_size(type); |
| 1812 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| 1813 | ptr = (unsigned long)iref; |
| 1814 | end = (unsigned long)ei + item_size; |
| 1815 | if (ptr + size < end) |
| 1816 | memmove_extent_buffer(leaf, ptr, ptr + size, |
| 1817 | end - ptr - size); |
| 1818 | item_size -= size; |
| 1819 | btrfs_truncate_item(fs_info, path, item_size, 1); |
| 1820 | } |
| 1821 | btrfs_mark_buffer_dirty(leaf); |
| 1822 | } |
| 1823 | |
| 1824 | static noinline_for_stack |
| 1825 | int insert_inline_extent_backref(struct btrfs_trans_handle *trans, |
| 1826 | struct btrfs_path *path, |
| 1827 | u64 bytenr, u64 num_bytes, u64 parent, |
| 1828 | u64 root_objectid, u64 owner, |
| 1829 | u64 offset, int refs_to_add, |
| 1830 | struct btrfs_delayed_extent_op *extent_op) |
| 1831 | { |
| 1832 | struct btrfs_extent_inline_ref *iref; |
| 1833 | int ret; |
| 1834 | |
| 1835 | ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, |
| 1836 | num_bytes, parent, root_objectid, |
| 1837 | owner, offset, 1); |
| 1838 | if (ret == 0) { |
| 1839 | BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); |
| 1840 | update_inline_extent_backref(path, iref, refs_to_add, |
| 1841 | extent_op, NULL); |
| 1842 | } else if (ret == -ENOENT) { |
| 1843 | setup_inline_extent_backref(trans->fs_info, path, iref, parent, |
| 1844 | root_objectid, owner, offset, |
| 1845 | refs_to_add, extent_op); |
| 1846 | ret = 0; |
| 1847 | } |
| 1848 | return ret; |
| 1849 | } |
| 1850 | |
| 1851 | static int insert_extent_backref(struct btrfs_trans_handle *trans, |
| 1852 | struct btrfs_path *path, |
| 1853 | u64 bytenr, u64 parent, u64 root_objectid, |
| 1854 | u64 owner, u64 offset, int refs_to_add) |
| 1855 | { |
| 1856 | int ret; |
| 1857 | if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| 1858 | BUG_ON(refs_to_add != 1); |
| 1859 | ret = insert_tree_block_ref(trans, path, bytenr, parent, |
| 1860 | root_objectid); |
| 1861 | } else { |
| 1862 | ret = insert_extent_data_ref(trans, path, bytenr, parent, |
| 1863 | root_objectid, owner, offset, |
| 1864 | refs_to_add); |
| 1865 | } |
| 1866 | return ret; |
| 1867 | } |
| 1868 | |
| 1869 | static int remove_extent_backref(struct btrfs_trans_handle *trans, |
| 1870 | struct btrfs_path *path, |
| 1871 | struct btrfs_extent_inline_ref *iref, |
| 1872 | int refs_to_drop, int is_data, int *last_ref) |
| 1873 | { |
| 1874 | int ret = 0; |
| 1875 | |
| 1876 | BUG_ON(!is_data && refs_to_drop != 1); |
| 1877 | if (iref) { |
| 1878 | update_inline_extent_backref(path, iref, -refs_to_drop, NULL, |
| 1879 | last_ref); |
| 1880 | } else if (is_data) { |
| 1881 | ret = remove_extent_data_ref(trans, path, refs_to_drop, |
| 1882 | last_ref); |
| 1883 | } else { |
| 1884 | *last_ref = 1; |
| 1885 | ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); |
| 1886 | } |
| 1887 | return ret; |
| 1888 | } |
| 1889 | |
| 1890 | #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) |
| 1891 | static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, |
| 1892 | u64 *discarded_bytes) |
| 1893 | { |
| 1894 | int j, ret = 0; |
| 1895 | u64 bytes_left, end; |
| 1896 | u64 aligned_start = ALIGN(start, 1 << 9); |
| 1897 | |
| 1898 | if (WARN_ON(start != aligned_start)) { |
| 1899 | len -= aligned_start - start; |
| 1900 | len = round_down(len, 1 << 9); |
| 1901 | start = aligned_start; |
| 1902 | } |
| 1903 | |
| 1904 | *discarded_bytes = 0; |
| 1905 | |
| 1906 | if (!len) |
| 1907 | return 0; |
| 1908 | |
| 1909 | end = start + len; |
| 1910 | bytes_left = len; |
| 1911 | |
| 1912 | /* Skip any superblocks on this device. */ |
| 1913 | for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { |
| 1914 | u64 sb_start = btrfs_sb_offset(j); |
| 1915 | u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; |
| 1916 | u64 size = sb_start - start; |
| 1917 | |
| 1918 | if (!in_range(sb_start, start, bytes_left) && |
| 1919 | !in_range(sb_end, start, bytes_left) && |
| 1920 | !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) |
| 1921 | continue; |
| 1922 | |
| 1923 | /* |
| 1924 | * Superblock spans beginning of range. Adjust start and |
| 1925 | * try again. |
| 1926 | */ |
| 1927 | if (sb_start <= start) { |
| 1928 | start += sb_end - start; |
| 1929 | if (start > end) { |
| 1930 | bytes_left = 0; |
| 1931 | break; |
| 1932 | } |
| 1933 | bytes_left = end - start; |
| 1934 | continue; |
| 1935 | } |
| 1936 | |
| 1937 | if (size) { |
| 1938 | ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, |
| 1939 | GFP_NOFS, 0); |
| 1940 | if (!ret) |
| 1941 | *discarded_bytes += size; |
| 1942 | else if (ret != -EOPNOTSUPP) |
| 1943 | return ret; |
| 1944 | } |
| 1945 | |
| 1946 | start = sb_end; |
| 1947 | if (start > end) { |
| 1948 | bytes_left = 0; |
| 1949 | break; |
| 1950 | } |
| 1951 | bytes_left = end - start; |
| 1952 | } |
| 1953 | |
| 1954 | if (bytes_left) { |
| 1955 | ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, |
| 1956 | GFP_NOFS, 0); |
| 1957 | if (!ret) |
| 1958 | *discarded_bytes += bytes_left; |
| 1959 | } |
| 1960 | return ret; |
| 1961 | } |
| 1962 | |
| 1963 | int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, |
| 1964 | u64 num_bytes, u64 *actual_bytes) |
| 1965 | { |
| 1966 | int ret; |
| 1967 | u64 discarded_bytes = 0; |
| 1968 | struct btrfs_bio *bbio = NULL; |
| 1969 | |
| 1970 | |
| 1971 | /* |
| 1972 | * Avoid races with device replace and make sure our bbio has devices |
| 1973 | * associated to its stripes that don't go away while we are discarding. |
| 1974 | */ |
| 1975 | btrfs_bio_counter_inc_blocked(fs_info); |
| 1976 | /* Tell the block device(s) that the sectors can be discarded */ |
| 1977 | ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, |
| 1978 | &bbio, 0); |
| 1979 | /* Error condition is -ENOMEM */ |
| 1980 | if (!ret) { |
| 1981 | struct btrfs_bio_stripe *stripe = bbio->stripes; |
| 1982 | int i; |
| 1983 | |
| 1984 | |
| 1985 | for (i = 0; i < bbio->num_stripes; i++, stripe++) { |
| 1986 | u64 bytes; |
| 1987 | struct request_queue *req_q; |
| 1988 | |
| 1989 | if (!stripe->dev->bdev) { |
| 1990 | ASSERT(btrfs_test_opt(fs_info, DEGRADED)); |
| 1991 | continue; |
| 1992 | } |
| 1993 | req_q = bdev_get_queue(stripe->dev->bdev); |
| 1994 | if (!blk_queue_discard(req_q)) |
| 1995 | continue; |
| 1996 | |
| 1997 | ret = btrfs_issue_discard(stripe->dev->bdev, |
| 1998 | stripe->physical, |
| 1999 | stripe->length, |
| 2000 | &bytes); |
| 2001 | if (!ret) |
| 2002 | discarded_bytes += bytes; |
| 2003 | else if (ret != -EOPNOTSUPP) |
| 2004 | break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ |
| 2005 | |
| 2006 | /* |
| 2007 | * Just in case we get back EOPNOTSUPP for some reason, |
| 2008 | * just ignore the return value so we don't screw up |
| 2009 | * people calling discard_extent. |
| 2010 | */ |
| 2011 | ret = 0; |
| 2012 | } |
| 2013 | btrfs_put_bbio(bbio); |
| 2014 | } |
| 2015 | btrfs_bio_counter_dec(fs_info); |
| 2016 | |
| 2017 | if (actual_bytes) |
| 2018 | *actual_bytes = discarded_bytes; |
| 2019 | |
| 2020 | |
| 2021 | if (ret == -EOPNOTSUPP) |
| 2022 | ret = 0; |
| 2023 | return ret; |
| 2024 | } |
| 2025 | |
| 2026 | /* Can return -ENOMEM */ |
| 2027 | int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| 2028 | struct btrfs_root *root, |
| 2029 | u64 bytenr, u64 num_bytes, u64 parent, |
| 2030 | u64 root_objectid, u64 owner, u64 offset) |
| 2031 | { |
| 2032 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 2033 | int old_ref_mod, new_ref_mod; |
| 2034 | int ret; |
| 2035 | |
| 2036 | BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && |
| 2037 | root_objectid == BTRFS_TREE_LOG_OBJECTID); |
| 2038 | |
| 2039 | btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, |
| 2040 | owner, offset, BTRFS_ADD_DELAYED_REF); |
| 2041 | |
| 2042 | if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| 2043 | ret = btrfs_add_delayed_tree_ref(trans, bytenr, |
| 2044 | num_bytes, parent, |
| 2045 | root_objectid, (int)owner, |
| 2046 | BTRFS_ADD_DELAYED_REF, NULL, |
| 2047 | &old_ref_mod, &new_ref_mod); |
| 2048 | } else { |
| 2049 | ret = btrfs_add_delayed_data_ref(trans, bytenr, |
| 2050 | num_bytes, parent, |
| 2051 | root_objectid, owner, offset, |
| 2052 | 0, BTRFS_ADD_DELAYED_REF, |
| 2053 | &old_ref_mod, &new_ref_mod); |
| 2054 | } |
| 2055 | |
| 2056 | if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) { |
| 2057 | bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID; |
| 2058 | |
| 2059 | add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid); |
| 2060 | } |
| 2061 | |
| 2062 | return ret; |
| 2063 | } |
| 2064 | |
| 2065 | /* |
| 2066 | * __btrfs_inc_extent_ref - insert backreference for a given extent |
| 2067 | * |
| 2068 | * @trans: Handle of transaction |
| 2069 | * |
| 2070 | * @node: The delayed ref node used to get the bytenr/length for |
| 2071 | * extent whose references are incremented. |
| 2072 | * |
| 2073 | * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ |
| 2074 | * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical |
| 2075 | * bytenr of the parent block. Since new extents are always |
| 2076 | * created with indirect references, this will only be the case |
| 2077 | * when relocating a shared extent. In that case, root_objectid |
| 2078 | * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must |
| 2079 | * be 0 |
| 2080 | * |
| 2081 | * @root_objectid: The id of the root where this modification has originated, |
| 2082 | * this can be either one of the well-known metadata trees or |
| 2083 | * the subvolume id which references this extent. |
| 2084 | * |
| 2085 | * @owner: For data extents it is the inode number of the owning file. |
| 2086 | * For metadata extents this parameter holds the level in the |
| 2087 | * tree of the extent. |
| 2088 | * |
| 2089 | * @offset: For metadata extents the offset is ignored and is currently |
| 2090 | * always passed as 0. For data extents it is the fileoffset |
| 2091 | * this extent belongs to. |
| 2092 | * |
| 2093 | * @refs_to_add Number of references to add |
| 2094 | * |
| 2095 | * @extent_op Pointer to a structure, holding information necessary when |
| 2096 | * updating a tree block's flags |
| 2097 | * |
| 2098 | */ |
| 2099 | static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| 2100 | struct btrfs_delayed_ref_node *node, |
| 2101 | u64 parent, u64 root_objectid, |
| 2102 | u64 owner, u64 offset, int refs_to_add, |
| 2103 | struct btrfs_delayed_extent_op *extent_op) |
| 2104 | { |
| 2105 | struct btrfs_path *path; |
| 2106 | struct extent_buffer *leaf; |
| 2107 | struct btrfs_extent_item *item; |
| 2108 | struct btrfs_key key; |
| 2109 | u64 bytenr = node->bytenr; |
| 2110 | u64 num_bytes = node->num_bytes; |
| 2111 | u64 refs; |
| 2112 | int ret; |
| 2113 | |
| 2114 | path = btrfs_alloc_path(); |
| 2115 | if (!path) |
| 2116 | return -ENOMEM; |
| 2117 | |
| 2118 | path->reada = READA_FORWARD; |
| 2119 | path->leave_spinning = 1; |
| 2120 | /* this will setup the path even if it fails to insert the back ref */ |
| 2121 | ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, |
| 2122 | parent, root_objectid, owner, |
| 2123 | offset, refs_to_add, extent_op); |
| 2124 | if ((ret < 0 && ret != -EAGAIN) || !ret) |
| 2125 | goto out; |
| 2126 | |
| 2127 | /* |
| 2128 | * Ok we had -EAGAIN which means we didn't have space to insert and |
| 2129 | * inline extent ref, so just update the reference count and add a |
| 2130 | * normal backref. |
| 2131 | */ |
| 2132 | leaf = path->nodes[0]; |
| 2133 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 2134 | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 2135 | refs = btrfs_extent_refs(leaf, item); |
| 2136 | btrfs_set_extent_refs(leaf, item, refs + refs_to_add); |
| 2137 | if (extent_op) |
| 2138 | __run_delayed_extent_op(extent_op, leaf, item); |
| 2139 | |
| 2140 | btrfs_mark_buffer_dirty(leaf); |
| 2141 | btrfs_release_path(path); |
| 2142 | |
| 2143 | path->reada = READA_FORWARD; |
| 2144 | path->leave_spinning = 1; |
| 2145 | /* now insert the actual backref */ |
| 2146 | ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid, |
| 2147 | owner, offset, refs_to_add); |
| 2148 | if (ret) |
| 2149 | btrfs_abort_transaction(trans, ret); |
| 2150 | out: |
| 2151 | btrfs_free_path(path); |
| 2152 | return ret; |
| 2153 | } |
| 2154 | |
| 2155 | static int run_delayed_data_ref(struct btrfs_trans_handle *trans, |
| 2156 | struct btrfs_delayed_ref_node *node, |
| 2157 | struct btrfs_delayed_extent_op *extent_op, |
| 2158 | int insert_reserved) |
| 2159 | { |
| 2160 | int ret = 0; |
| 2161 | struct btrfs_delayed_data_ref *ref; |
| 2162 | struct btrfs_key ins; |
| 2163 | u64 parent = 0; |
| 2164 | u64 ref_root = 0; |
| 2165 | u64 flags = 0; |
| 2166 | |
| 2167 | ins.objectid = node->bytenr; |
| 2168 | ins.offset = node->num_bytes; |
| 2169 | ins.type = BTRFS_EXTENT_ITEM_KEY; |
| 2170 | |
| 2171 | ref = btrfs_delayed_node_to_data_ref(node); |
| 2172 | trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); |
| 2173 | |
| 2174 | if (node->type == BTRFS_SHARED_DATA_REF_KEY) |
| 2175 | parent = ref->parent; |
| 2176 | ref_root = ref->root; |
| 2177 | |
| 2178 | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| 2179 | if (extent_op) |
| 2180 | flags |= extent_op->flags_to_set; |
| 2181 | ret = alloc_reserved_file_extent(trans, parent, ref_root, |
| 2182 | flags, ref->objectid, |
| 2183 | ref->offset, &ins, |
| 2184 | node->ref_mod); |
| 2185 | } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| 2186 | ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, |
| 2187 | ref->objectid, ref->offset, |
| 2188 | node->ref_mod, extent_op); |
| 2189 | } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| 2190 | ret = __btrfs_free_extent(trans, node, parent, |
| 2191 | ref_root, ref->objectid, |
| 2192 | ref->offset, node->ref_mod, |
| 2193 | extent_op); |
| 2194 | } else { |
| 2195 | BUG(); |
| 2196 | } |
| 2197 | return ret; |
| 2198 | } |
| 2199 | |
| 2200 | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| 2201 | struct extent_buffer *leaf, |
| 2202 | struct btrfs_extent_item *ei) |
| 2203 | { |
| 2204 | u64 flags = btrfs_extent_flags(leaf, ei); |
| 2205 | if (extent_op->update_flags) { |
| 2206 | flags |= extent_op->flags_to_set; |
| 2207 | btrfs_set_extent_flags(leaf, ei, flags); |
| 2208 | } |
| 2209 | |
| 2210 | if (extent_op->update_key) { |
| 2211 | struct btrfs_tree_block_info *bi; |
| 2212 | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); |
| 2213 | bi = (struct btrfs_tree_block_info *)(ei + 1); |
| 2214 | btrfs_set_tree_block_key(leaf, bi, &extent_op->key); |
| 2215 | } |
| 2216 | } |
| 2217 | |
| 2218 | static int run_delayed_extent_op(struct btrfs_trans_handle *trans, |
| 2219 | struct btrfs_delayed_ref_head *head, |
| 2220 | struct btrfs_delayed_extent_op *extent_op) |
| 2221 | { |
| 2222 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 2223 | struct btrfs_key key; |
| 2224 | struct btrfs_path *path; |
| 2225 | struct btrfs_extent_item *ei; |
| 2226 | struct extent_buffer *leaf; |
| 2227 | u32 item_size; |
| 2228 | int ret; |
| 2229 | int err = 0; |
| 2230 | int metadata = !extent_op->is_data; |
| 2231 | |
| 2232 | if (trans->aborted) |
| 2233 | return 0; |
| 2234 | |
| 2235 | if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| 2236 | metadata = 0; |
| 2237 | |
| 2238 | path = btrfs_alloc_path(); |
| 2239 | if (!path) |
| 2240 | return -ENOMEM; |
| 2241 | |
| 2242 | key.objectid = head->bytenr; |
| 2243 | |
| 2244 | if (metadata) { |
| 2245 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 2246 | key.offset = extent_op->level; |
| 2247 | } else { |
| 2248 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 2249 | key.offset = head->num_bytes; |
| 2250 | } |
| 2251 | |
| 2252 | again: |
| 2253 | path->reada = READA_FORWARD; |
| 2254 | path->leave_spinning = 1; |
| 2255 | ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); |
| 2256 | if (ret < 0) { |
| 2257 | err = ret; |
| 2258 | goto out; |
| 2259 | } |
| 2260 | if (ret > 0) { |
| 2261 | if (metadata) { |
| 2262 | if (path->slots[0] > 0) { |
| 2263 | path->slots[0]--; |
| 2264 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 2265 | path->slots[0]); |
| 2266 | if (key.objectid == head->bytenr && |
| 2267 | key.type == BTRFS_EXTENT_ITEM_KEY && |
| 2268 | key.offset == head->num_bytes) |
| 2269 | ret = 0; |
| 2270 | } |
| 2271 | if (ret > 0) { |
| 2272 | btrfs_release_path(path); |
| 2273 | metadata = 0; |
| 2274 | |
| 2275 | key.objectid = head->bytenr; |
| 2276 | key.offset = head->num_bytes; |
| 2277 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 2278 | goto again; |
| 2279 | } |
| 2280 | } else { |
| 2281 | err = -EIO; |
| 2282 | goto out; |
| 2283 | } |
| 2284 | } |
| 2285 | |
| 2286 | leaf = path->nodes[0]; |
| 2287 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| 2288 | |
| 2289 | if (unlikely(item_size < sizeof(*ei))) { |
| 2290 | err = -EINVAL; |
| 2291 | btrfs_print_v0_err(fs_info); |
| 2292 | btrfs_abort_transaction(trans, err); |
| 2293 | goto out; |
| 2294 | } |
| 2295 | |
| 2296 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 2297 | __run_delayed_extent_op(extent_op, leaf, ei); |
| 2298 | |
| 2299 | btrfs_mark_buffer_dirty(leaf); |
| 2300 | out: |
| 2301 | btrfs_free_path(path); |
| 2302 | return err; |
| 2303 | } |
| 2304 | |
| 2305 | static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, |
| 2306 | struct btrfs_delayed_ref_node *node, |
| 2307 | struct btrfs_delayed_extent_op *extent_op, |
| 2308 | int insert_reserved) |
| 2309 | { |
| 2310 | int ret = 0; |
| 2311 | struct btrfs_delayed_tree_ref *ref; |
| 2312 | u64 parent = 0; |
| 2313 | u64 ref_root = 0; |
| 2314 | |
| 2315 | ref = btrfs_delayed_node_to_tree_ref(node); |
| 2316 | trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); |
| 2317 | |
| 2318 | if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| 2319 | parent = ref->parent; |
| 2320 | ref_root = ref->root; |
| 2321 | |
| 2322 | if (node->ref_mod != 1) { |
| 2323 | btrfs_err(trans->fs_info, |
| 2324 | "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", |
| 2325 | node->bytenr, node->ref_mod, node->action, ref_root, |
| 2326 | parent); |
| 2327 | return -EIO; |
| 2328 | } |
| 2329 | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| 2330 | BUG_ON(!extent_op || !extent_op->update_flags); |
| 2331 | ret = alloc_reserved_tree_block(trans, node, extent_op); |
| 2332 | } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| 2333 | ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, |
| 2334 | ref->level, 0, 1, extent_op); |
| 2335 | } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| 2336 | ret = __btrfs_free_extent(trans, node, parent, ref_root, |
| 2337 | ref->level, 0, 1, extent_op); |
| 2338 | } else { |
| 2339 | BUG(); |
| 2340 | } |
| 2341 | return ret; |
| 2342 | } |
| 2343 | |
| 2344 | /* helper function to actually process a single delayed ref entry */ |
| 2345 | static int run_one_delayed_ref(struct btrfs_trans_handle *trans, |
| 2346 | struct btrfs_delayed_ref_node *node, |
| 2347 | struct btrfs_delayed_extent_op *extent_op, |
| 2348 | int insert_reserved) |
| 2349 | { |
| 2350 | int ret = 0; |
| 2351 | |
| 2352 | if (trans->aborted) { |
| 2353 | if (insert_reserved) |
| 2354 | btrfs_pin_extent(trans->fs_info, node->bytenr, |
| 2355 | node->num_bytes, 1); |
| 2356 | return 0; |
| 2357 | } |
| 2358 | |
| 2359 | if (node->type == BTRFS_TREE_BLOCK_REF_KEY || |
| 2360 | node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| 2361 | ret = run_delayed_tree_ref(trans, node, extent_op, |
| 2362 | insert_reserved); |
| 2363 | else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || |
| 2364 | node->type == BTRFS_SHARED_DATA_REF_KEY) |
| 2365 | ret = run_delayed_data_ref(trans, node, extent_op, |
| 2366 | insert_reserved); |
| 2367 | else |
| 2368 | BUG(); |
| 2369 | if (ret && insert_reserved) |
| 2370 | btrfs_pin_extent(trans->fs_info, node->bytenr, |
| 2371 | node->num_bytes, 1); |
| 2372 | return ret; |
| 2373 | } |
| 2374 | |
| 2375 | static inline struct btrfs_delayed_ref_node * |
| 2376 | select_delayed_ref(struct btrfs_delayed_ref_head *head) |
| 2377 | { |
| 2378 | struct btrfs_delayed_ref_node *ref; |
| 2379 | |
| 2380 | if (RB_EMPTY_ROOT(&head->ref_tree)) |
| 2381 | return NULL; |
| 2382 | |
| 2383 | /* |
| 2384 | * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. |
| 2385 | * This is to prevent a ref count from going down to zero, which deletes |
| 2386 | * the extent item from the extent tree, when there still are references |
| 2387 | * to add, which would fail because they would not find the extent item. |
| 2388 | */ |
| 2389 | if (!list_empty(&head->ref_add_list)) |
| 2390 | return list_first_entry(&head->ref_add_list, |
| 2391 | struct btrfs_delayed_ref_node, add_list); |
| 2392 | |
| 2393 | ref = rb_entry(rb_first(&head->ref_tree), |
| 2394 | struct btrfs_delayed_ref_node, ref_node); |
| 2395 | ASSERT(list_empty(&ref->add_list)); |
| 2396 | return ref; |
| 2397 | } |
| 2398 | |
| 2399 | static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, |
| 2400 | struct btrfs_delayed_ref_head *head) |
| 2401 | { |
| 2402 | spin_lock(&delayed_refs->lock); |
| 2403 | head->processing = 0; |
| 2404 | delayed_refs->num_heads_ready++; |
| 2405 | spin_unlock(&delayed_refs->lock); |
| 2406 | btrfs_delayed_ref_unlock(head); |
| 2407 | } |
| 2408 | |
| 2409 | static int cleanup_extent_op(struct btrfs_trans_handle *trans, |
| 2410 | struct btrfs_delayed_ref_head *head) |
| 2411 | { |
| 2412 | struct btrfs_delayed_extent_op *extent_op = head->extent_op; |
| 2413 | int ret; |
| 2414 | |
| 2415 | if (!extent_op) |
| 2416 | return 0; |
| 2417 | head->extent_op = NULL; |
| 2418 | if (head->must_insert_reserved) { |
| 2419 | btrfs_free_delayed_extent_op(extent_op); |
| 2420 | return 0; |
| 2421 | } |
| 2422 | spin_unlock(&head->lock); |
| 2423 | ret = run_delayed_extent_op(trans, head, extent_op); |
| 2424 | btrfs_free_delayed_extent_op(extent_op); |
| 2425 | return ret ? ret : 1; |
| 2426 | } |
| 2427 | |
| 2428 | static int cleanup_ref_head(struct btrfs_trans_handle *trans, |
| 2429 | struct btrfs_delayed_ref_head *head) |
| 2430 | { |
| 2431 | |
| 2432 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 2433 | struct btrfs_delayed_ref_root *delayed_refs; |
| 2434 | int ret; |
| 2435 | |
| 2436 | delayed_refs = &trans->transaction->delayed_refs; |
| 2437 | |
| 2438 | ret = cleanup_extent_op(trans, head); |
| 2439 | if (ret < 0) { |
| 2440 | unselect_delayed_ref_head(delayed_refs, head); |
| 2441 | btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); |
| 2442 | return ret; |
| 2443 | } else if (ret) { |
| 2444 | return ret; |
| 2445 | } |
| 2446 | |
| 2447 | /* |
| 2448 | * Need to drop our head ref lock and re-acquire the delayed ref lock |
| 2449 | * and then re-check to make sure nobody got added. |
| 2450 | */ |
| 2451 | spin_unlock(&head->lock); |
| 2452 | spin_lock(&delayed_refs->lock); |
| 2453 | spin_lock(&head->lock); |
| 2454 | if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) { |
| 2455 | spin_unlock(&head->lock); |
| 2456 | spin_unlock(&delayed_refs->lock); |
| 2457 | return 1; |
| 2458 | } |
| 2459 | delayed_refs->num_heads--; |
| 2460 | rb_erase(&head->href_node, &delayed_refs->href_root); |
| 2461 | RB_CLEAR_NODE(&head->href_node); |
| 2462 | spin_unlock(&head->lock); |
| 2463 | spin_unlock(&delayed_refs->lock); |
| 2464 | atomic_dec(&delayed_refs->num_entries); |
| 2465 | |
| 2466 | trace_run_delayed_ref_head(fs_info, head, 0); |
| 2467 | |
| 2468 | if (head->total_ref_mod < 0) { |
| 2469 | struct btrfs_space_info *space_info; |
| 2470 | u64 flags; |
| 2471 | |
| 2472 | if (head->is_data) |
| 2473 | flags = BTRFS_BLOCK_GROUP_DATA; |
| 2474 | else if (head->is_system) |
| 2475 | flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| 2476 | else |
| 2477 | flags = BTRFS_BLOCK_GROUP_METADATA; |
| 2478 | space_info = __find_space_info(fs_info, flags); |
| 2479 | ASSERT(space_info); |
| 2480 | percpu_counter_add_batch(&space_info->total_bytes_pinned, |
| 2481 | -head->num_bytes, |
| 2482 | BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 2483 | |
| 2484 | if (head->is_data) { |
| 2485 | spin_lock(&delayed_refs->lock); |
| 2486 | delayed_refs->pending_csums -= head->num_bytes; |
| 2487 | spin_unlock(&delayed_refs->lock); |
| 2488 | } |
| 2489 | } |
| 2490 | |
| 2491 | if (head->must_insert_reserved) { |
| 2492 | btrfs_pin_extent(fs_info, head->bytenr, |
| 2493 | head->num_bytes, 1); |
| 2494 | if (head->is_data) { |
| 2495 | ret = btrfs_del_csums(trans, fs_info, head->bytenr, |
| 2496 | head->num_bytes); |
| 2497 | } |
| 2498 | } |
| 2499 | |
| 2500 | /* Also free its reserved qgroup space */ |
| 2501 | btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, |
| 2502 | head->qgroup_reserved); |
| 2503 | btrfs_delayed_ref_unlock(head); |
| 2504 | btrfs_put_delayed_ref_head(head); |
| 2505 | return 0; |
| 2506 | } |
| 2507 | |
| 2508 | /* |
| 2509 | * Returns 0 on success or if called with an already aborted transaction. |
| 2510 | * Returns -ENOMEM or -EIO on failure and will abort the transaction. |
| 2511 | */ |
| 2512 | static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, |
| 2513 | unsigned long nr) |
| 2514 | { |
| 2515 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 2516 | struct btrfs_delayed_ref_root *delayed_refs; |
| 2517 | struct btrfs_delayed_ref_node *ref; |
| 2518 | struct btrfs_delayed_ref_head *locked_ref = NULL; |
| 2519 | struct btrfs_delayed_extent_op *extent_op; |
| 2520 | ktime_t start = ktime_get(); |
| 2521 | int ret; |
| 2522 | unsigned long count = 0; |
| 2523 | unsigned long actual_count = 0; |
| 2524 | int must_insert_reserved = 0; |
| 2525 | |
| 2526 | delayed_refs = &trans->transaction->delayed_refs; |
| 2527 | while (1) { |
| 2528 | if (!locked_ref) { |
| 2529 | if (count >= nr) |
| 2530 | break; |
| 2531 | |
| 2532 | spin_lock(&delayed_refs->lock); |
| 2533 | locked_ref = btrfs_select_ref_head(trans); |
| 2534 | if (!locked_ref) { |
| 2535 | spin_unlock(&delayed_refs->lock); |
| 2536 | break; |
| 2537 | } |
| 2538 | |
| 2539 | /* grab the lock that says we are going to process |
| 2540 | * all the refs for this head */ |
| 2541 | ret = btrfs_delayed_ref_lock(trans, locked_ref); |
| 2542 | spin_unlock(&delayed_refs->lock); |
| 2543 | /* |
| 2544 | * we may have dropped the spin lock to get the head |
| 2545 | * mutex lock, and that might have given someone else |
| 2546 | * time to free the head. If that's true, it has been |
| 2547 | * removed from our list and we can move on. |
| 2548 | */ |
| 2549 | if (ret == -EAGAIN) { |
| 2550 | locked_ref = NULL; |
| 2551 | count++; |
| 2552 | continue; |
| 2553 | } |
| 2554 | } |
| 2555 | |
| 2556 | /* |
| 2557 | * We need to try and merge add/drops of the same ref since we |
| 2558 | * can run into issues with relocate dropping the implicit ref |
| 2559 | * and then it being added back again before the drop can |
| 2560 | * finish. If we merged anything we need to re-loop so we can |
| 2561 | * get a good ref. |
| 2562 | * Or we can get node references of the same type that weren't |
| 2563 | * merged when created due to bumps in the tree mod seq, and |
| 2564 | * we need to merge them to prevent adding an inline extent |
| 2565 | * backref before dropping it (triggering a BUG_ON at |
| 2566 | * insert_inline_extent_backref()). |
| 2567 | */ |
| 2568 | spin_lock(&locked_ref->lock); |
| 2569 | btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); |
| 2570 | |
| 2571 | ref = select_delayed_ref(locked_ref); |
| 2572 | |
| 2573 | if (ref && ref->seq && |
| 2574 | btrfs_check_delayed_seq(fs_info, ref->seq)) { |
| 2575 | spin_unlock(&locked_ref->lock); |
| 2576 | unselect_delayed_ref_head(delayed_refs, locked_ref); |
| 2577 | locked_ref = NULL; |
| 2578 | cond_resched(); |
| 2579 | count++; |
| 2580 | continue; |
| 2581 | } |
| 2582 | |
| 2583 | /* |
| 2584 | * We're done processing refs in this ref_head, clean everything |
| 2585 | * up and move on to the next ref_head. |
| 2586 | */ |
| 2587 | if (!ref) { |
| 2588 | ret = cleanup_ref_head(trans, locked_ref); |
| 2589 | if (ret > 0 ) { |
| 2590 | /* We dropped our lock, we need to loop. */ |
| 2591 | ret = 0; |
| 2592 | continue; |
| 2593 | } else if (ret) { |
| 2594 | return ret; |
| 2595 | } |
| 2596 | locked_ref = NULL; |
| 2597 | count++; |
| 2598 | continue; |
| 2599 | } |
| 2600 | |
| 2601 | actual_count++; |
| 2602 | ref->in_tree = 0; |
| 2603 | rb_erase(&ref->ref_node, &locked_ref->ref_tree); |
| 2604 | RB_CLEAR_NODE(&ref->ref_node); |
| 2605 | if (!list_empty(&ref->add_list)) |
| 2606 | list_del(&ref->add_list); |
| 2607 | /* |
| 2608 | * When we play the delayed ref, also correct the ref_mod on |
| 2609 | * head |
| 2610 | */ |
| 2611 | switch (ref->action) { |
| 2612 | case BTRFS_ADD_DELAYED_REF: |
| 2613 | case BTRFS_ADD_DELAYED_EXTENT: |
| 2614 | locked_ref->ref_mod -= ref->ref_mod; |
| 2615 | break; |
| 2616 | case BTRFS_DROP_DELAYED_REF: |
| 2617 | locked_ref->ref_mod += ref->ref_mod; |
| 2618 | break; |
| 2619 | default: |
| 2620 | WARN_ON(1); |
| 2621 | } |
| 2622 | atomic_dec(&delayed_refs->num_entries); |
| 2623 | |
| 2624 | /* |
| 2625 | * Record the must-insert_reserved flag before we drop the spin |
| 2626 | * lock. |
| 2627 | */ |
| 2628 | must_insert_reserved = locked_ref->must_insert_reserved; |
| 2629 | locked_ref->must_insert_reserved = 0; |
| 2630 | |
| 2631 | extent_op = locked_ref->extent_op; |
| 2632 | locked_ref->extent_op = NULL; |
| 2633 | spin_unlock(&locked_ref->lock); |
| 2634 | |
| 2635 | ret = run_one_delayed_ref(trans, ref, extent_op, |
| 2636 | must_insert_reserved); |
| 2637 | |
| 2638 | btrfs_free_delayed_extent_op(extent_op); |
| 2639 | if (ret) { |
| 2640 | unselect_delayed_ref_head(delayed_refs, locked_ref); |
| 2641 | btrfs_put_delayed_ref(ref); |
| 2642 | btrfs_debug(fs_info, "run_one_delayed_ref returned %d", |
| 2643 | ret); |
| 2644 | return ret; |
| 2645 | } |
| 2646 | |
| 2647 | btrfs_put_delayed_ref(ref); |
| 2648 | count++; |
| 2649 | cond_resched(); |
| 2650 | } |
| 2651 | |
| 2652 | /* |
| 2653 | * We don't want to include ref heads since we can have empty ref heads |
| 2654 | * and those will drastically skew our runtime down since we just do |
| 2655 | * accounting, no actual extent tree updates. |
| 2656 | */ |
| 2657 | if (actual_count > 0) { |
| 2658 | u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); |
| 2659 | u64 avg; |
| 2660 | |
| 2661 | /* |
| 2662 | * We weigh the current average higher than our current runtime |
| 2663 | * to avoid large swings in the average. |
| 2664 | */ |
| 2665 | spin_lock(&delayed_refs->lock); |
| 2666 | avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; |
| 2667 | fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ |
| 2668 | spin_unlock(&delayed_refs->lock); |
| 2669 | } |
| 2670 | return 0; |
| 2671 | } |
| 2672 | |
| 2673 | #ifdef SCRAMBLE_DELAYED_REFS |
| 2674 | /* |
| 2675 | * Normally delayed refs get processed in ascending bytenr order. This |
| 2676 | * correlates in most cases to the order added. To expose dependencies on this |
| 2677 | * order, we start to process the tree in the middle instead of the beginning |
| 2678 | */ |
| 2679 | static u64 find_middle(struct rb_root *root) |
| 2680 | { |
| 2681 | struct rb_node *n = root->rb_node; |
| 2682 | struct btrfs_delayed_ref_node *entry; |
| 2683 | int alt = 1; |
| 2684 | u64 middle; |
| 2685 | u64 first = 0, last = 0; |
| 2686 | |
| 2687 | n = rb_first(root); |
| 2688 | if (n) { |
| 2689 | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| 2690 | first = entry->bytenr; |
| 2691 | } |
| 2692 | n = rb_last(root); |
| 2693 | if (n) { |
| 2694 | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| 2695 | last = entry->bytenr; |
| 2696 | } |
| 2697 | n = root->rb_node; |
| 2698 | |
| 2699 | while (n) { |
| 2700 | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| 2701 | WARN_ON(!entry->in_tree); |
| 2702 | |
| 2703 | middle = entry->bytenr; |
| 2704 | |
| 2705 | if (alt) |
| 2706 | n = n->rb_left; |
| 2707 | else |
| 2708 | n = n->rb_right; |
| 2709 | |
| 2710 | alt = 1 - alt; |
| 2711 | } |
| 2712 | return middle; |
| 2713 | } |
| 2714 | #endif |
| 2715 | |
| 2716 | static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) |
| 2717 | { |
| 2718 | u64 num_bytes; |
| 2719 | |
| 2720 | num_bytes = heads * (sizeof(struct btrfs_extent_item) + |
| 2721 | sizeof(struct btrfs_extent_inline_ref)); |
| 2722 | if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| 2723 | num_bytes += heads * sizeof(struct btrfs_tree_block_info); |
| 2724 | |
| 2725 | /* |
| 2726 | * We don't ever fill up leaves all the way so multiply by 2 just to be |
| 2727 | * closer to what we're really going to want to use. |
| 2728 | */ |
| 2729 | return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); |
| 2730 | } |
| 2731 | |
| 2732 | /* |
| 2733 | * Takes the number of bytes to be csumm'ed and figures out how many leaves it |
| 2734 | * would require to store the csums for that many bytes. |
| 2735 | */ |
| 2736 | u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) |
| 2737 | { |
| 2738 | u64 csum_size; |
| 2739 | u64 num_csums_per_leaf; |
| 2740 | u64 num_csums; |
| 2741 | |
| 2742 | csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); |
| 2743 | num_csums_per_leaf = div64_u64(csum_size, |
| 2744 | (u64)btrfs_super_csum_size(fs_info->super_copy)); |
| 2745 | num_csums = div64_u64(csum_bytes, fs_info->sectorsize); |
| 2746 | num_csums += num_csums_per_leaf - 1; |
| 2747 | num_csums = div64_u64(num_csums, num_csums_per_leaf); |
| 2748 | return num_csums; |
| 2749 | } |
| 2750 | |
| 2751 | int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, |
| 2752 | struct btrfs_fs_info *fs_info) |
| 2753 | { |
| 2754 | struct btrfs_block_rsv *global_rsv; |
| 2755 | u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; |
| 2756 | u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; |
| 2757 | unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs; |
| 2758 | u64 num_bytes, num_dirty_bgs_bytes; |
| 2759 | int ret = 0; |
| 2760 | |
| 2761 | num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); |
| 2762 | num_heads = heads_to_leaves(fs_info, num_heads); |
| 2763 | if (num_heads > 1) |
| 2764 | num_bytes += (num_heads - 1) * fs_info->nodesize; |
| 2765 | num_bytes <<= 1; |
| 2766 | num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * |
| 2767 | fs_info->nodesize; |
| 2768 | num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, |
| 2769 | num_dirty_bgs); |
| 2770 | global_rsv = &fs_info->global_block_rsv; |
| 2771 | |
| 2772 | /* |
| 2773 | * If we can't allocate any more chunks lets make sure we have _lots_ of |
| 2774 | * wiggle room since running delayed refs can create more delayed refs. |
| 2775 | */ |
| 2776 | if (global_rsv->space_info->full) { |
| 2777 | num_dirty_bgs_bytes <<= 1; |
| 2778 | num_bytes <<= 1; |
| 2779 | } |
| 2780 | |
| 2781 | spin_lock(&global_rsv->lock); |
| 2782 | if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) |
| 2783 | ret = 1; |
| 2784 | spin_unlock(&global_rsv->lock); |
| 2785 | return ret; |
| 2786 | } |
| 2787 | |
| 2788 | int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, |
| 2789 | struct btrfs_fs_info *fs_info) |
| 2790 | { |
| 2791 | u64 num_entries = |
| 2792 | atomic_read(&trans->transaction->delayed_refs.num_entries); |
| 2793 | u64 avg_runtime; |
| 2794 | u64 val; |
| 2795 | |
| 2796 | smp_mb(); |
| 2797 | avg_runtime = fs_info->avg_delayed_ref_runtime; |
| 2798 | val = num_entries * avg_runtime; |
| 2799 | if (val >= NSEC_PER_SEC) |
| 2800 | return 1; |
| 2801 | if (val >= NSEC_PER_SEC / 2) |
| 2802 | return 2; |
| 2803 | |
| 2804 | return btrfs_check_space_for_delayed_refs(trans, fs_info); |
| 2805 | } |
| 2806 | |
| 2807 | struct async_delayed_refs { |
| 2808 | struct btrfs_root *root; |
| 2809 | u64 transid; |
| 2810 | int count; |
| 2811 | int error; |
| 2812 | int sync; |
| 2813 | struct completion wait; |
| 2814 | struct btrfs_work work; |
| 2815 | }; |
| 2816 | |
| 2817 | static inline struct async_delayed_refs * |
| 2818 | to_async_delayed_refs(struct btrfs_work *work) |
| 2819 | { |
| 2820 | return container_of(work, struct async_delayed_refs, work); |
| 2821 | } |
| 2822 | |
| 2823 | static void delayed_ref_async_start(struct btrfs_work *work) |
| 2824 | { |
| 2825 | struct async_delayed_refs *async = to_async_delayed_refs(work); |
| 2826 | struct btrfs_trans_handle *trans; |
| 2827 | struct btrfs_fs_info *fs_info = async->root->fs_info; |
| 2828 | int ret; |
| 2829 | |
| 2830 | /* if the commit is already started, we don't need to wait here */ |
| 2831 | if (btrfs_transaction_blocked(fs_info)) |
| 2832 | goto done; |
| 2833 | |
| 2834 | trans = btrfs_join_transaction(async->root); |
| 2835 | if (IS_ERR(trans)) { |
| 2836 | async->error = PTR_ERR(trans); |
| 2837 | goto done; |
| 2838 | } |
| 2839 | |
| 2840 | /* |
| 2841 | * trans->sync means that when we call end_transaction, we won't |
| 2842 | * wait on delayed refs |
| 2843 | */ |
| 2844 | trans->sync = true; |
| 2845 | |
| 2846 | /* Don't bother flushing if we got into a different transaction */ |
| 2847 | if (trans->transid > async->transid) |
| 2848 | goto end; |
| 2849 | |
| 2850 | ret = btrfs_run_delayed_refs(trans, async->count); |
| 2851 | if (ret) |
| 2852 | async->error = ret; |
| 2853 | end: |
| 2854 | ret = btrfs_end_transaction(trans); |
| 2855 | if (ret && !async->error) |
| 2856 | async->error = ret; |
| 2857 | done: |
| 2858 | if (async->sync) |
| 2859 | complete(&async->wait); |
| 2860 | else |
| 2861 | kfree(async); |
| 2862 | } |
| 2863 | |
| 2864 | int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, |
| 2865 | unsigned long count, u64 transid, int wait) |
| 2866 | { |
| 2867 | struct async_delayed_refs *async; |
| 2868 | int ret; |
| 2869 | |
| 2870 | async = kmalloc(sizeof(*async), GFP_NOFS); |
| 2871 | if (!async) |
| 2872 | return -ENOMEM; |
| 2873 | |
| 2874 | async->root = fs_info->tree_root; |
| 2875 | async->count = count; |
| 2876 | async->error = 0; |
| 2877 | async->transid = transid; |
| 2878 | if (wait) |
| 2879 | async->sync = 1; |
| 2880 | else |
| 2881 | async->sync = 0; |
| 2882 | init_completion(&async->wait); |
| 2883 | |
| 2884 | btrfs_init_work(&async->work, btrfs_extent_refs_helper, |
| 2885 | delayed_ref_async_start, NULL, NULL); |
| 2886 | |
| 2887 | btrfs_queue_work(fs_info->extent_workers, &async->work); |
| 2888 | |
| 2889 | if (wait) { |
| 2890 | wait_for_completion(&async->wait); |
| 2891 | ret = async->error; |
| 2892 | kfree(async); |
| 2893 | return ret; |
| 2894 | } |
| 2895 | return 0; |
| 2896 | } |
| 2897 | |
| 2898 | /* |
| 2899 | * this starts processing the delayed reference count updates and |
| 2900 | * extent insertions we have queued up so far. count can be |
| 2901 | * 0, which means to process everything in the tree at the start |
| 2902 | * of the run (but not newly added entries), or it can be some target |
| 2903 | * number you'd like to process. |
| 2904 | * |
| 2905 | * Returns 0 on success or if called with an aborted transaction |
| 2906 | * Returns <0 on error and aborts the transaction |
| 2907 | */ |
| 2908 | int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, |
| 2909 | unsigned long count) |
| 2910 | { |
| 2911 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 2912 | struct rb_node *node; |
| 2913 | struct btrfs_delayed_ref_root *delayed_refs; |
| 2914 | struct btrfs_delayed_ref_head *head; |
| 2915 | int ret; |
| 2916 | int run_all = count == (unsigned long)-1; |
| 2917 | |
| 2918 | /* We'll clean this up in btrfs_cleanup_transaction */ |
| 2919 | if (trans->aborted) |
| 2920 | return 0; |
| 2921 | |
| 2922 | if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) |
| 2923 | return 0; |
| 2924 | |
| 2925 | delayed_refs = &trans->transaction->delayed_refs; |
| 2926 | if (count == 0) |
| 2927 | count = atomic_read(&delayed_refs->num_entries) * 2; |
| 2928 | |
| 2929 | again: |
| 2930 | #ifdef SCRAMBLE_DELAYED_REFS |
| 2931 | delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); |
| 2932 | #endif |
| 2933 | ret = __btrfs_run_delayed_refs(trans, count); |
| 2934 | if (ret < 0) { |
| 2935 | btrfs_abort_transaction(trans, ret); |
| 2936 | return ret; |
| 2937 | } |
| 2938 | |
| 2939 | if (run_all) { |
| 2940 | if (!list_empty(&trans->new_bgs)) |
| 2941 | btrfs_create_pending_block_groups(trans); |
| 2942 | |
| 2943 | spin_lock(&delayed_refs->lock); |
| 2944 | node = rb_first(&delayed_refs->href_root); |
| 2945 | if (!node) { |
| 2946 | spin_unlock(&delayed_refs->lock); |
| 2947 | goto out; |
| 2948 | } |
| 2949 | head = rb_entry(node, struct btrfs_delayed_ref_head, |
| 2950 | href_node); |
| 2951 | refcount_inc(&head->refs); |
| 2952 | spin_unlock(&delayed_refs->lock); |
| 2953 | |
| 2954 | /* Mutex was contended, block until it's released and retry. */ |
| 2955 | mutex_lock(&head->mutex); |
| 2956 | mutex_unlock(&head->mutex); |
| 2957 | |
| 2958 | btrfs_put_delayed_ref_head(head); |
| 2959 | cond_resched(); |
| 2960 | goto again; |
| 2961 | } |
| 2962 | out: |
| 2963 | return 0; |
| 2964 | } |
| 2965 | |
| 2966 | int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, |
| 2967 | struct btrfs_fs_info *fs_info, |
| 2968 | u64 bytenr, u64 num_bytes, u64 flags, |
| 2969 | int level, int is_data) |
| 2970 | { |
| 2971 | struct btrfs_delayed_extent_op *extent_op; |
| 2972 | int ret; |
| 2973 | |
| 2974 | extent_op = btrfs_alloc_delayed_extent_op(); |
| 2975 | if (!extent_op) |
| 2976 | return -ENOMEM; |
| 2977 | |
| 2978 | extent_op->flags_to_set = flags; |
| 2979 | extent_op->update_flags = true; |
| 2980 | extent_op->update_key = false; |
| 2981 | extent_op->is_data = is_data ? true : false; |
| 2982 | extent_op->level = level; |
| 2983 | |
| 2984 | ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, |
| 2985 | num_bytes, extent_op); |
| 2986 | if (ret) |
| 2987 | btrfs_free_delayed_extent_op(extent_op); |
| 2988 | return ret; |
| 2989 | } |
| 2990 | |
| 2991 | static noinline int check_delayed_ref(struct btrfs_root *root, |
| 2992 | struct btrfs_path *path, |
| 2993 | u64 objectid, u64 offset, u64 bytenr) |
| 2994 | { |
| 2995 | struct btrfs_delayed_ref_head *head; |
| 2996 | struct btrfs_delayed_ref_node *ref; |
| 2997 | struct btrfs_delayed_data_ref *data_ref; |
| 2998 | struct btrfs_delayed_ref_root *delayed_refs; |
| 2999 | struct btrfs_transaction *cur_trans; |
| 3000 | struct rb_node *node; |
| 3001 | int ret = 0; |
| 3002 | |
| 3003 | spin_lock(&root->fs_info->trans_lock); |
| 3004 | cur_trans = root->fs_info->running_transaction; |
| 3005 | if (cur_trans) |
| 3006 | refcount_inc(&cur_trans->use_count); |
| 3007 | spin_unlock(&root->fs_info->trans_lock); |
| 3008 | if (!cur_trans) |
| 3009 | return 0; |
| 3010 | |
| 3011 | delayed_refs = &cur_trans->delayed_refs; |
| 3012 | spin_lock(&delayed_refs->lock); |
| 3013 | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); |
| 3014 | if (!head) { |
| 3015 | spin_unlock(&delayed_refs->lock); |
| 3016 | btrfs_put_transaction(cur_trans); |
| 3017 | return 0; |
| 3018 | } |
| 3019 | |
| 3020 | if (!mutex_trylock(&head->mutex)) { |
| 3021 | refcount_inc(&head->refs); |
| 3022 | spin_unlock(&delayed_refs->lock); |
| 3023 | |
| 3024 | btrfs_release_path(path); |
| 3025 | |
| 3026 | /* |
| 3027 | * Mutex was contended, block until it's released and let |
| 3028 | * caller try again |
| 3029 | */ |
| 3030 | mutex_lock(&head->mutex); |
| 3031 | mutex_unlock(&head->mutex); |
| 3032 | btrfs_put_delayed_ref_head(head); |
| 3033 | btrfs_put_transaction(cur_trans); |
| 3034 | return -EAGAIN; |
| 3035 | } |
| 3036 | spin_unlock(&delayed_refs->lock); |
| 3037 | |
| 3038 | spin_lock(&head->lock); |
| 3039 | /* |
| 3040 | * XXX: We should replace this with a proper search function in the |
| 3041 | * future. |
| 3042 | */ |
| 3043 | for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) { |
| 3044 | ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); |
| 3045 | /* If it's a shared ref we know a cross reference exists */ |
| 3046 | if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { |
| 3047 | ret = 1; |
| 3048 | break; |
| 3049 | } |
| 3050 | |
| 3051 | data_ref = btrfs_delayed_node_to_data_ref(ref); |
| 3052 | |
| 3053 | /* |
| 3054 | * If our ref doesn't match the one we're currently looking at |
| 3055 | * then we have a cross reference. |
| 3056 | */ |
| 3057 | if (data_ref->root != root->root_key.objectid || |
| 3058 | data_ref->objectid != objectid || |
| 3059 | data_ref->offset != offset) { |
| 3060 | ret = 1; |
| 3061 | break; |
| 3062 | } |
| 3063 | } |
| 3064 | spin_unlock(&head->lock); |
| 3065 | mutex_unlock(&head->mutex); |
| 3066 | btrfs_put_transaction(cur_trans); |
| 3067 | return ret; |
| 3068 | } |
| 3069 | |
| 3070 | static noinline int check_committed_ref(struct btrfs_root *root, |
| 3071 | struct btrfs_path *path, |
| 3072 | u64 objectid, u64 offset, u64 bytenr) |
| 3073 | { |
| 3074 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 3075 | struct btrfs_root *extent_root = fs_info->extent_root; |
| 3076 | struct extent_buffer *leaf; |
| 3077 | struct btrfs_extent_data_ref *ref; |
| 3078 | struct btrfs_extent_inline_ref *iref; |
| 3079 | struct btrfs_extent_item *ei; |
| 3080 | struct btrfs_key key; |
| 3081 | u32 item_size; |
| 3082 | int type; |
| 3083 | int ret; |
| 3084 | |
| 3085 | key.objectid = bytenr; |
| 3086 | key.offset = (u64)-1; |
| 3087 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 3088 | |
| 3089 | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| 3090 | if (ret < 0) |
| 3091 | goto out; |
| 3092 | BUG_ON(ret == 0); /* Corruption */ |
| 3093 | |
| 3094 | ret = -ENOENT; |
| 3095 | if (path->slots[0] == 0) |
| 3096 | goto out; |
| 3097 | |
| 3098 | path->slots[0]--; |
| 3099 | leaf = path->nodes[0]; |
| 3100 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 3101 | |
| 3102 | if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) |
| 3103 | goto out; |
| 3104 | |
| 3105 | ret = 1; |
| 3106 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| 3107 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 3108 | |
| 3109 | if (item_size != sizeof(*ei) + |
| 3110 | btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) |
| 3111 | goto out; |
| 3112 | |
| 3113 | if (btrfs_extent_generation(leaf, ei) <= |
| 3114 | btrfs_root_last_snapshot(&root->root_item)) |
| 3115 | goto out; |
| 3116 | |
| 3117 | iref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| 3118 | |
| 3119 | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); |
| 3120 | if (type != BTRFS_EXTENT_DATA_REF_KEY) |
| 3121 | goto out; |
| 3122 | |
| 3123 | ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 3124 | if (btrfs_extent_refs(leaf, ei) != |
| 3125 | btrfs_extent_data_ref_count(leaf, ref) || |
| 3126 | btrfs_extent_data_ref_root(leaf, ref) != |
| 3127 | root->root_key.objectid || |
| 3128 | btrfs_extent_data_ref_objectid(leaf, ref) != objectid || |
| 3129 | btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| 3130 | goto out; |
| 3131 | |
| 3132 | ret = 0; |
| 3133 | out: |
| 3134 | return ret; |
| 3135 | } |
| 3136 | |
| 3137 | int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, |
| 3138 | u64 bytenr) |
| 3139 | { |
| 3140 | struct btrfs_path *path; |
| 3141 | int ret; |
| 3142 | int ret2; |
| 3143 | |
| 3144 | path = btrfs_alloc_path(); |
| 3145 | if (!path) |
| 3146 | return -ENOMEM; |
| 3147 | |
| 3148 | do { |
| 3149 | ret = check_committed_ref(root, path, objectid, |
| 3150 | offset, bytenr); |
| 3151 | if (ret && ret != -ENOENT) |
| 3152 | goto out; |
| 3153 | |
| 3154 | ret2 = check_delayed_ref(root, path, objectid, |
| 3155 | offset, bytenr); |
| 3156 | } while (ret2 == -EAGAIN); |
| 3157 | |
| 3158 | if (ret2 && ret2 != -ENOENT) { |
| 3159 | ret = ret2; |
| 3160 | goto out; |
| 3161 | } |
| 3162 | |
| 3163 | if (ret != -ENOENT || ret2 != -ENOENT) |
| 3164 | ret = 0; |
| 3165 | out: |
| 3166 | btrfs_free_path(path); |
| 3167 | if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) |
| 3168 | WARN_ON(ret > 0); |
| 3169 | return ret; |
| 3170 | } |
| 3171 | |
| 3172 | static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, |
| 3173 | struct btrfs_root *root, |
| 3174 | struct extent_buffer *buf, |
| 3175 | int full_backref, int inc) |
| 3176 | { |
| 3177 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 3178 | u64 bytenr; |
| 3179 | u64 num_bytes; |
| 3180 | u64 parent; |
| 3181 | u64 ref_root; |
| 3182 | u32 nritems; |
| 3183 | struct btrfs_key key; |
| 3184 | struct btrfs_file_extent_item *fi; |
| 3185 | int i; |
| 3186 | int level; |
| 3187 | int ret = 0; |
| 3188 | int (*process_func)(struct btrfs_trans_handle *, |
| 3189 | struct btrfs_root *, |
| 3190 | u64, u64, u64, u64, u64, u64); |
| 3191 | |
| 3192 | |
| 3193 | if (btrfs_is_testing(fs_info)) |
| 3194 | return 0; |
| 3195 | |
| 3196 | ref_root = btrfs_header_owner(buf); |
| 3197 | nritems = btrfs_header_nritems(buf); |
| 3198 | level = btrfs_header_level(buf); |
| 3199 | |
| 3200 | if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) |
| 3201 | return 0; |
| 3202 | |
| 3203 | if (inc) |
| 3204 | process_func = btrfs_inc_extent_ref; |
| 3205 | else |
| 3206 | process_func = btrfs_free_extent; |
| 3207 | |
| 3208 | if (full_backref) |
| 3209 | parent = buf->start; |
| 3210 | else |
| 3211 | parent = 0; |
| 3212 | |
| 3213 | for (i = 0; i < nritems; i++) { |
| 3214 | if (level == 0) { |
| 3215 | btrfs_item_key_to_cpu(buf, &key, i); |
| 3216 | if (key.type != BTRFS_EXTENT_DATA_KEY) |
| 3217 | continue; |
| 3218 | fi = btrfs_item_ptr(buf, i, |
| 3219 | struct btrfs_file_extent_item); |
| 3220 | if (btrfs_file_extent_type(buf, fi) == |
| 3221 | BTRFS_FILE_EXTENT_INLINE) |
| 3222 | continue; |
| 3223 | bytenr = btrfs_file_extent_disk_bytenr(buf, fi); |
| 3224 | if (bytenr == 0) |
| 3225 | continue; |
| 3226 | |
| 3227 | num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); |
| 3228 | key.offset -= btrfs_file_extent_offset(buf, fi); |
| 3229 | ret = process_func(trans, root, bytenr, num_bytes, |
| 3230 | parent, ref_root, key.objectid, |
| 3231 | key.offset); |
| 3232 | if (ret) |
| 3233 | goto fail; |
| 3234 | } else { |
| 3235 | bytenr = btrfs_node_blockptr(buf, i); |
| 3236 | num_bytes = fs_info->nodesize; |
| 3237 | ret = process_func(trans, root, bytenr, num_bytes, |
| 3238 | parent, ref_root, level - 1, 0); |
| 3239 | if (ret) |
| 3240 | goto fail; |
| 3241 | } |
| 3242 | } |
| 3243 | return 0; |
| 3244 | fail: |
| 3245 | return ret; |
| 3246 | } |
| 3247 | |
| 3248 | int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| 3249 | struct extent_buffer *buf, int full_backref) |
| 3250 | { |
| 3251 | return __btrfs_mod_ref(trans, root, buf, full_backref, 1); |
| 3252 | } |
| 3253 | |
| 3254 | int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| 3255 | struct extent_buffer *buf, int full_backref) |
| 3256 | { |
| 3257 | return __btrfs_mod_ref(trans, root, buf, full_backref, 0); |
| 3258 | } |
| 3259 | |
| 3260 | static int write_one_cache_group(struct btrfs_trans_handle *trans, |
| 3261 | struct btrfs_fs_info *fs_info, |
| 3262 | struct btrfs_path *path, |
| 3263 | struct btrfs_block_group_cache *cache) |
| 3264 | { |
| 3265 | int ret; |
| 3266 | struct btrfs_root *extent_root = fs_info->extent_root; |
| 3267 | unsigned long bi; |
| 3268 | struct extent_buffer *leaf; |
| 3269 | |
| 3270 | ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); |
| 3271 | if (ret) { |
| 3272 | if (ret > 0) |
| 3273 | ret = -ENOENT; |
| 3274 | goto fail; |
| 3275 | } |
| 3276 | |
| 3277 | leaf = path->nodes[0]; |
| 3278 | bi = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| 3279 | write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); |
| 3280 | btrfs_mark_buffer_dirty(leaf); |
| 3281 | fail: |
| 3282 | btrfs_release_path(path); |
| 3283 | return ret; |
| 3284 | |
| 3285 | } |
| 3286 | |
| 3287 | static struct btrfs_block_group_cache * |
| 3288 | next_block_group(struct btrfs_fs_info *fs_info, |
| 3289 | struct btrfs_block_group_cache *cache) |
| 3290 | { |
| 3291 | struct rb_node *node; |
| 3292 | |
| 3293 | spin_lock(&fs_info->block_group_cache_lock); |
| 3294 | |
| 3295 | /* If our block group was removed, we need a full search. */ |
| 3296 | if (RB_EMPTY_NODE(&cache->cache_node)) { |
| 3297 | const u64 next_bytenr = cache->key.objectid + cache->key.offset; |
| 3298 | |
| 3299 | spin_unlock(&fs_info->block_group_cache_lock); |
| 3300 | btrfs_put_block_group(cache); |
| 3301 | cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; |
| 3302 | } |
| 3303 | node = rb_next(&cache->cache_node); |
| 3304 | btrfs_put_block_group(cache); |
| 3305 | if (node) { |
| 3306 | cache = rb_entry(node, struct btrfs_block_group_cache, |
| 3307 | cache_node); |
| 3308 | btrfs_get_block_group(cache); |
| 3309 | } else |
| 3310 | cache = NULL; |
| 3311 | spin_unlock(&fs_info->block_group_cache_lock); |
| 3312 | return cache; |
| 3313 | } |
| 3314 | |
| 3315 | static int cache_save_setup(struct btrfs_block_group_cache *block_group, |
| 3316 | struct btrfs_trans_handle *trans, |
| 3317 | struct btrfs_path *path) |
| 3318 | { |
| 3319 | struct btrfs_fs_info *fs_info = block_group->fs_info; |
| 3320 | struct btrfs_root *root = fs_info->tree_root; |
| 3321 | struct inode *inode = NULL; |
| 3322 | struct extent_changeset *data_reserved = NULL; |
| 3323 | u64 alloc_hint = 0; |
| 3324 | int dcs = BTRFS_DC_ERROR; |
| 3325 | u64 num_pages = 0; |
| 3326 | int retries = 0; |
| 3327 | int ret = 0; |
| 3328 | |
| 3329 | /* |
| 3330 | * If this block group is smaller than 100 megs don't bother caching the |
| 3331 | * block group. |
| 3332 | */ |
| 3333 | if (block_group->key.offset < (100 * SZ_1M)) { |
| 3334 | spin_lock(&block_group->lock); |
| 3335 | block_group->disk_cache_state = BTRFS_DC_WRITTEN; |
| 3336 | spin_unlock(&block_group->lock); |
| 3337 | return 0; |
| 3338 | } |
| 3339 | |
| 3340 | if (trans->aborted) |
| 3341 | return 0; |
| 3342 | again: |
| 3343 | inode = lookup_free_space_inode(fs_info, block_group, path); |
| 3344 | if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { |
| 3345 | ret = PTR_ERR(inode); |
| 3346 | btrfs_release_path(path); |
| 3347 | goto out; |
| 3348 | } |
| 3349 | |
| 3350 | if (IS_ERR(inode)) { |
| 3351 | BUG_ON(retries); |
| 3352 | retries++; |
| 3353 | |
| 3354 | if (block_group->ro) |
| 3355 | goto out_free; |
| 3356 | |
| 3357 | ret = create_free_space_inode(fs_info, trans, block_group, |
| 3358 | path); |
| 3359 | if (ret) |
| 3360 | goto out_free; |
| 3361 | goto again; |
| 3362 | } |
| 3363 | |
| 3364 | /* |
| 3365 | * We want to set the generation to 0, that way if anything goes wrong |
| 3366 | * from here on out we know not to trust this cache when we load up next |
| 3367 | * time. |
| 3368 | */ |
| 3369 | BTRFS_I(inode)->generation = 0; |
| 3370 | ret = btrfs_update_inode(trans, root, inode); |
| 3371 | if (ret) { |
| 3372 | /* |
| 3373 | * So theoretically we could recover from this, simply set the |
| 3374 | * super cache generation to 0 so we know to invalidate the |
| 3375 | * cache, but then we'd have to keep track of the block groups |
| 3376 | * that fail this way so we know we _have_ to reset this cache |
| 3377 | * before the next commit or risk reading stale cache. So to |
| 3378 | * limit our exposure to horrible edge cases lets just abort the |
| 3379 | * transaction, this only happens in really bad situations |
| 3380 | * anyway. |
| 3381 | */ |
| 3382 | btrfs_abort_transaction(trans, ret); |
| 3383 | goto out_put; |
| 3384 | } |
| 3385 | WARN_ON(ret); |
| 3386 | |
| 3387 | /* We've already setup this transaction, go ahead and exit */ |
| 3388 | if (block_group->cache_generation == trans->transid && |
| 3389 | i_size_read(inode)) { |
| 3390 | dcs = BTRFS_DC_SETUP; |
| 3391 | goto out_put; |
| 3392 | } |
| 3393 | |
| 3394 | if (i_size_read(inode) > 0) { |
| 3395 | ret = btrfs_check_trunc_cache_free_space(fs_info, |
| 3396 | &fs_info->global_block_rsv); |
| 3397 | if (ret) |
| 3398 | goto out_put; |
| 3399 | |
| 3400 | ret = btrfs_truncate_free_space_cache(trans, NULL, inode); |
| 3401 | if (ret) |
| 3402 | goto out_put; |
| 3403 | } |
| 3404 | |
| 3405 | spin_lock(&block_group->lock); |
| 3406 | if (block_group->cached != BTRFS_CACHE_FINISHED || |
| 3407 | !btrfs_test_opt(fs_info, SPACE_CACHE)) { |
| 3408 | /* |
| 3409 | * don't bother trying to write stuff out _if_ |
| 3410 | * a) we're not cached, |
| 3411 | * b) we're with nospace_cache mount option, |
| 3412 | * c) we're with v2 space_cache (FREE_SPACE_TREE). |
| 3413 | */ |
| 3414 | dcs = BTRFS_DC_WRITTEN; |
| 3415 | spin_unlock(&block_group->lock); |
| 3416 | goto out_put; |
| 3417 | } |
| 3418 | spin_unlock(&block_group->lock); |
| 3419 | |
| 3420 | /* |
| 3421 | * We hit an ENOSPC when setting up the cache in this transaction, just |
| 3422 | * skip doing the setup, we've already cleared the cache so we're safe. |
| 3423 | */ |
| 3424 | if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { |
| 3425 | ret = -ENOSPC; |
| 3426 | goto out_put; |
| 3427 | } |
| 3428 | |
| 3429 | /* |
| 3430 | * Try to preallocate enough space based on how big the block group is. |
| 3431 | * Keep in mind this has to include any pinned space which could end up |
| 3432 | * taking up quite a bit since it's not folded into the other space |
| 3433 | * cache. |
| 3434 | */ |
| 3435 | num_pages = div_u64(block_group->key.offset, SZ_256M); |
| 3436 | if (!num_pages) |
| 3437 | num_pages = 1; |
| 3438 | |
| 3439 | num_pages *= 16; |
| 3440 | num_pages *= PAGE_SIZE; |
| 3441 | |
| 3442 | ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); |
| 3443 | if (ret) |
| 3444 | goto out_put; |
| 3445 | |
| 3446 | ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, |
| 3447 | num_pages, num_pages, |
| 3448 | &alloc_hint); |
| 3449 | /* |
| 3450 | * Our cache requires contiguous chunks so that we don't modify a bunch |
| 3451 | * of metadata or split extents when writing the cache out, which means |
| 3452 | * we can enospc if we are heavily fragmented in addition to just normal |
| 3453 | * out of space conditions. So if we hit this just skip setting up any |
| 3454 | * other block groups for this transaction, maybe we'll unpin enough |
| 3455 | * space the next time around. |
| 3456 | */ |
| 3457 | if (!ret) |
| 3458 | dcs = BTRFS_DC_SETUP; |
| 3459 | else if (ret == -ENOSPC) |
| 3460 | set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); |
| 3461 | |
| 3462 | out_put: |
| 3463 | iput(inode); |
| 3464 | out_free: |
| 3465 | btrfs_release_path(path); |
| 3466 | out: |
| 3467 | spin_lock(&block_group->lock); |
| 3468 | if (!ret && dcs == BTRFS_DC_SETUP) |
| 3469 | block_group->cache_generation = trans->transid; |
| 3470 | block_group->disk_cache_state = dcs; |
| 3471 | spin_unlock(&block_group->lock); |
| 3472 | |
| 3473 | extent_changeset_free(data_reserved); |
| 3474 | return ret; |
| 3475 | } |
| 3476 | |
| 3477 | int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, |
| 3478 | struct btrfs_fs_info *fs_info) |
| 3479 | { |
| 3480 | struct btrfs_block_group_cache *cache, *tmp; |
| 3481 | struct btrfs_transaction *cur_trans = trans->transaction; |
| 3482 | struct btrfs_path *path; |
| 3483 | |
| 3484 | if (list_empty(&cur_trans->dirty_bgs) || |
| 3485 | !btrfs_test_opt(fs_info, SPACE_CACHE)) |
| 3486 | return 0; |
| 3487 | |
| 3488 | path = btrfs_alloc_path(); |
| 3489 | if (!path) |
| 3490 | return -ENOMEM; |
| 3491 | |
| 3492 | /* Could add new block groups, use _safe just in case */ |
| 3493 | list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, |
| 3494 | dirty_list) { |
| 3495 | if (cache->disk_cache_state == BTRFS_DC_CLEAR) |
| 3496 | cache_save_setup(cache, trans, path); |
| 3497 | } |
| 3498 | |
| 3499 | btrfs_free_path(path); |
| 3500 | return 0; |
| 3501 | } |
| 3502 | |
| 3503 | /* |
| 3504 | * transaction commit does final block group cache writeback during a |
| 3505 | * critical section where nothing is allowed to change the FS. This is |
| 3506 | * required in order for the cache to actually match the block group, |
| 3507 | * but can introduce a lot of latency into the commit. |
| 3508 | * |
| 3509 | * So, btrfs_start_dirty_block_groups is here to kick off block group |
| 3510 | * cache IO. There's a chance we'll have to redo some of it if the |
| 3511 | * block group changes again during the commit, but it greatly reduces |
| 3512 | * the commit latency by getting rid of the easy block groups while |
| 3513 | * we're still allowing others to join the commit. |
| 3514 | */ |
| 3515 | int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) |
| 3516 | { |
| 3517 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 3518 | struct btrfs_block_group_cache *cache; |
| 3519 | struct btrfs_transaction *cur_trans = trans->transaction; |
| 3520 | int ret = 0; |
| 3521 | int should_put; |
| 3522 | struct btrfs_path *path = NULL; |
| 3523 | LIST_HEAD(dirty); |
| 3524 | struct list_head *io = &cur_trans->io_bgs; |
| 3525 | int num_started = 0; |
| 3526 | int loops = 0; |
| 3527 | |
| 3528 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 3529 | if (list_empty(&cur_trans->dirty_bgs)) { |
| 3530 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 3531 | return 0; |
| 3532 | } |
| 3533 | list_splice_init(&cur_trans->dirty_bgs, &dirty); |
| 3534 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 3535 | |
| 3536 | again: |
| 3537 | /* |
| 3538 | * make sure all the block groups on our dirty list actually |
| 3539 | * exist |
| 3540 | */ |
| 3541 | btrfs_create_pending_block_groups(trans); |
| 3542 | |
| 3543 | if (!path) { |
| 3544 | path = btrfs_alloc_path(); |
| 3545 | if (!path) |
| 3546 | return -ENOMEM; |
| 3547 | } |
| 3548 | |
| 3549 | /* |
| 3550 | * cache_write_mutex is here only to save us from balance or automatic |
| 3551 | * removal of empty block groups deleting this block group while we are |
| 3552 | * writing out the cache |
| 3553 | */ |
| 3554 | mutex_lock(&trans->transaction->cache_write_mutex); |
| 3555 | while (!list_empty(&dirty)) { |
| 3556 | cache = list_first_entry(&dirty, |
| 3557 | struct btrfs_block_group_cache, |
| 3558 | dirty_list); |
| 3559 | /* |
| 3560 | * this can happen if something re-dirties a block |
| 3561 | * group that is already under IO. Just wait for it to |
| 3562 | * finish and then do it all again |
| 3563 | */ |
| 3564 | if (!list_empty(&cache->io_list)) { |
| 3565 | list_del_init(&cache->io_list); |
| 3566 | btrfs_wait_cache_io(trans, cache, path); |
| 3567 | btrfs_put_block_group(cache); |
| 3568 | } |
| 3569 | |
| 3570 | |
| 3571 | /* |
| 3572 | * btrfs_wait_cache_io uses the cache->dirty_list to decide |
| 3573 | * if it should update the cache_state. Don't delete |
| 3574 | * until after we wait. |
| 3575 | * |
| 3576 | * Since we're not running in the commit critical section |
| 3577 | * we need the dirty_bgs_lock to protect from update_block_group |
| 3578 | */ |
| 3579 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 3580 | list_del_init(&cache->dirty_list); |
| 3581 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 3582 | |
| 3583 | should_put = 1; |
| 3584 | |
| 3585 | cache_save_setup(cache, trans, path); |
| 3586 | |
| 3587 | if (cache->disk_cache_state == BTRFS_DC_SETUP) { |
| 3588 | cache->io_ctl.inode = NULL; |
| 3589 | ret = btrfs_write_out_cache(fs_info, trans, |
| 3590 | cache, path); |
| 3591 | if (ret == 0 && cache->io_ctl.inode) { |
| 3592 | num_started++; |
| 3593 | should_put = 0; |
| 3594 | |
| 3595 | /* |
| 3596 | * The cache_write_mutex is protecting the |
| 3597 | * io_list, also refer to the definition of |
| 3598 | * btrfs_transaction::io_bgs for more details |
| 3599 | */ |
| 3600 | list_add_tail(&cache->io_list, io); |
| 3601 | } else { |
| 3602 | /* |
| 3603 | * if we failed to write the cache, the |
| 3604 | * generation will be bad and life goes on |
| 3605 | */ |
| 3606 | ret = 0; |
| 3607 | } |
| 3608 | } |
| 3609 | if (!ret) { |
| 3610 | ret = write_one_cache_group(trans, fs_info, |
| 3611 | path, cache); |
| 3612 | /* |
| 3613 | * Our block group might still be attached to the list |
| 3614 | * of new block groups in the transaction handle of some |
| 3615 | * other task (struct btrfs_trans_handle->new_bgs). This |
| 3616 | * means its block group item isn't yet in the extent |
| 3617 | * tree. If this happens ignore the error, as we will |
| 3618 | * try again later in the critical section of the |
| 3619 | * transaction commit. |
| 3620 | */ |
| 3621 | if (ret == -ENOENT) { |
| 3622 | ret = 0; |
| 3623 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 3624 | if (list_empty(&cache->dirty_list)) { |
| 3625 | list_add_tail(&cache->dirty_list, |
| 3626 | &cur_trans->dirty_bgs); |
| 3627 | btrfs_get_block_group(cache); |
| 3628 | } |
| 3629 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 3630 | } else if (ret) { |
| 3631 | btrfs_abort_transaction(trans, ret); |
| 3632 | } |
| 3633 | } |
| 3634 | |
| 3635 | /* if its not on the io list, we need to put the block group */ |
| 3636 | if (should_put) |
| 3637 | btrfs_put_block_group(cache); |
| 3638 | |
| 3639 | if (ret) |
| 3640 | break; |
| 3641 | |
| 3642 | /* |
| 3643 | * Avoid blocking other tasks for too long. It might even save |
| 3644 | * us from writing caches for block groups that are going to be |
| 3645 | * removed. |
| 3646 | */ |
| 3647 | mutex_unlock(&trans->transaction->cache_write_mutex); |
| 3648 | mutex_lock(&trans->transaction->cache_write_mutex); |
| 3649 | } |
| 3650 | mutex_unlock(&trans->transaction->cache_write_mutex); |
| 3651 | |
| 3652 | /* |
| 3653 | * go through delayed refs for all the stuff we've just kicked off |
| 3654 | * and then loop back (just once) |
| 3655 | */ |
| 3656 | ret = btrfs_run_delayed_refs(trans, 0); |
| 3657 | if (!ret && loops == 0) { |
| 3658 | loops++; |
| 3659 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 3660 | list_splice_init(&cur_trans->dirty_bgs, &dirty); |
| 3661 | /* |
| 3662 | * dirty_bgs_lock protects us from concurrent block group |
| 3663 | * deletes too (not just cache_write_mutex). |
| 3664 | */ |
| 3665 | if (!list_empty(&dirty)) { |
| 3666 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 3667 | goto again; |
| 3668 | } |
| 3669 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 3670 | } else if (ret < 0) { |
| 3671 | btrfs_cleanup_dirty_bgs(cur_trans, fs_info); |
| 3672 | } |
| 3673 | |
| 3674 | btrfs_free_path(path); |
| 3675 | return ret; |
| 3676 | } |
| 3677 | |
| 3678 | int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, |
| 3679 | struct btrfs_fs_info *fs_info) |
| 3680 | { |
| 3681 | struct btrfs_block_group_cache *cache; |
| 3682 | struct btrfs_transaction *cur_trans = trans->transaction; |
| 3683 | int ret = 0; |
| 3684 | int should_put; |
| 3685 | struct btrfs_path *path; |
| 3686 | struct list_head *io = &cur_trans->io_bgs; |
| 3687 | int num_started = 0; |
| 3688 | |
| 3689 | path = btrfs_alloc_path(); |
| 3690 | if (!path) |
| 3691 | return -ENOMEM; |
| 3692 | |
| 3693 | /* |
| 3694 | * Even though we are in the critical section of the transaction commit, |
| 3695 | * we can still have concurrent tasks adding elements to this |
| 3696 | * transaction's list of dirty block groups. These tasks correspond to |
| 3697 | * endio free space workers started when writeback finishes for a |
| 3698 | * space cache, which run inode.c:btrfs_finish_ordered_io(), and can |
| 3699 | * allocate new block groups as a result of COWing nodes of the root |
| 3700 | * tree when updating the free space inode. The writeback for the space |
| 3701 | * caches is triggered by an earlier call to |
| 3702 | * btrfs_start_dirty_block_groups() and iterations of the following |
| 3703 | * loop. |
| 3704 | * Also we want to do the cache_save_setup first and then run the |
| 3705 | * delayed refs to make sure we have the best chance at doing this all |
| 3706 | * in one shot. |
| 3707 | */ |
| 3708 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 3709 | while (!list_empty(&cur_trans->dirty_bgs)) { |
| 3710 | cache = list_first_entry(&cur_trans->dirty_bgs, |
| 3711 | struct btrfs_block_group_cache, |
| 3712 | dirty_list); |
| 3713 | |
| 3714 | /* |
| 3715 | * this can happen if cache_save_setup re-dirties a block |
| 3716 | * group that is already under IO. Just wait for it to |
| 3717 | * finish and then do it all again |
| 3718 | */ |
| 3719 | if (!list_empty(&cache->io_list)) { |
| 3720 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 3721 | list_del_init(&cache->io_list); |
| 3722 | btrfs_wait_cache_io(trans, cache, path); |
| 3723 | btrfs_put_block_group(cache); |
| 3724 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 3725 | } |
| 3726 | |
| 3727 | /* |
| 3728 | * don't remove from the dirty list until after we've waited |
| 3729 | * on any pending IO |
| 3730 | */ |
| 3731 | list_del_init(&cache->dirty_list); |
| 3732 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 3733 | should_put = 1; |
| 3734 | |
| 3735 | cache_save_setup(cache, trans, path); |
| 3736 | |
| 3737 | if (!ret) |
| 3738 | ret = btrfs_run_delayed_refs(trans, |
| 3739 | (unsigned long) -1); |
| 3740 | |
| 3741 | if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { |
| 3742 | cache->io_ctl.inode = NULL; |
| 3743 | ret = btrfs_write_out_cache(fs_info, trans, |
| 3744 | cache, path); |
| 3745 | if (ret == 0 && cache->io_ctl.inode) { |
| 3746 | num_started++; |
| 3747 | should_put = 0; |
| 3748 | list_add_tail(&cache->io_list, io); |
| 3749 | } else { |
| 3750 | /* |
| 3751 | * if we failed to write the cache, the |
| 3752 | * generation will be bad and life goes on |
| 3753 | */ |
| 3754 | ret = 0; |
| 3755 | } |
| 3756 | } |
| 3757 | if (!ret) { |
| 3758 | ret = write_one_cache_group(trans, fs_info, |
| 3759 | path, cache); |
| 3760 | /* |
| 3761 | * One of the free space endio workers might have |
| 3762 | * created a new block group while updating a free space |
| 3763 | * cache's inode (at inode.c:btrfs_finish_ordered_io()) |
| 3764 | * and hasn't released its transaction handle yet, in |
| 3765 | * which case the new block group is still attached to |
| 3766 | * its transaction handle and its creation has not |
| 3767 | * finished yet (no block group item in the extent tree |
| 3768 | * yet, etc). If this is the case, wait for all free |
| 3769 | * space endio workers to finish and retry. This is a |
| 3770 | * a very rare case so no need for a more efficient and |
| 3771 | * complex approach. |
| 3772 | */ |
| 3773 | if (ret == -ENOENT) { |
| 3774 | wait_event(cur_trans->writer_wait, |
| 3775 | atomic_read(&cur_trans->num_writers) == 1); |
| 3776 | ret = write_one_cache_group(trans, fs_info, |
| 3777 | path, cache); |
| 3778 | } |
| 3779 | if (ret) |
| 3780 | btrfs_abort_transaction(trans, ret); |
| 3781 | } |
| 3782 | |
| 3783 | /* if its not on the io list, we need to put the block group */ |
| 3784 | if (should_put) |
| 3785 | btrfs_put_block_group(cache); |
| 3786 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 3787 | } |
| 3788 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 3789 | |
| 3790 | /* |
| 3791 | * Refer to the definition of io_bgs member for details why it's safe |
| 3792 | * to use it without any locking |
| 3793 | */ |
| 3794 | while (!list_empty(io)) { |
| 3795 | cache = list_first_entry(io, struct btrfs_block_group_cache, |
| 3796 | io_list); |
| 3797 | list_del_init(&cache->io_list); |
| 3798 | btrfs_wait_cache_io(trans, cache, path); |
| 3799 | btrfs_put_block_group(cache); |
| 3800 | } |
| 3801 | |
| 3802 | btrfs_free_path(path); |
| 3803 | return ret; |
| 3804 | } |
| 3805 | |
| 3806 | int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) |
| 3807 | { |
| 3808 | struct btrfs_block_group_cache *block_group; |
| 3809 | int readonly = 0; |
| 3810 | |
| 3811 | block_group = btrfs_lookup_block_group(fs_info, bytenr); |
| 3812 | if (!block_group || block_group->ro) |
| 3813 | readonly = 1; |
| 3814 | if (block_group) |
| 3815 | btrfs_put_block_group(block_group); |
| 3816 | return readonly; |
| 3817 | } |
| 3818 | |
| 3819 | bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) |
| 3820 | { |
| 3821 | struct btrfs_block_group_cache *bg; |
| 3822 | bool ret = true; |
| 3823 | |
| 3824 | bg = btrfs_lookup_block_group(fs_info, bytenr); |
| 3825 | if (!bg) |
| 3826 | return false; |
| 3827 | |
| 3828 | spin_lock(&bg->lock); |
| 3829 | if (bg->ro) |
| 3830 | ret = false; |
| 3831 | else |
| 3832 | atomic_inc(&bg->nocow_writers); |
| 3833 | spin_unlock(&bg->lock); |
| 3834 | |
| 3835 | /* no put on block group, done by btrfs_dec_nocow_writers */ |
| 3836 | if (!ret) |
| 3837 | btrfs_put_block_group(bg); |
| 3838 | |
| 3839 | return ret; |
| 3840 | |
| 3841 | } |
| 3842 | |
| 3843 | void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) |
| 3844 | { |
| 3845 | struct btrfs_block_group_cache *bg; |
| 3846 | |
| 3847 | bg = btrfs_lookup_block_group(fs_info, bytenr); |
| 3848 | ASSERT(bg); |
| 3849 | if (atomic_dec_and_test(&bg->nocow_writers)) |
| 3850 | wake_up_var(&bg->nocow_writers); |
| 3851 | /* |
| 3852 | * Once for our lookup and once for the lookup done by a previous call |
| 3853 | * to btrfs_inc_nocow_writers() |
| 3854 | */ |
| 3855 | btrfs_put_block_group(bg); |
| 3856 | btrfs_put_block_group(bg); |
| 3857 | } |
| 3858 | |
| 3859 | void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) |
| 3860 | { |
| 3861 | wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); |
| 3862 | } |
| 3863 | |
| 3864 | static const char *alloc_name(u64 flags) |
| 3865 | { |
| 3866 | switch (flags) { |
| 3867 | case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: |
| 3868 | return "mixed"; |
| 3869 | case BTRFS_BLOCK_GROUP_METADATA: |
| 3870 | return "metadata"; |
| 3871 | case BTRFS_BLOCK_GROUP_DATA: |
| 3872 | return "data"; |
| 3873 | case BTRFS_BLOCK_GROUP_SYSTEM: |
| 3874 | return "system"; |
| 3875 | default: |
| 3876 | WARN_ON(1); |
| 3877 | return "invalid-combination"; |
| 3878 | }; |
| 3879 | } |
| 3880 | |
| 3881 | static int create_space_info(struct btrfs_fs_info *info, u64 flags) |
| 3882 | { |
| 3883 | |
| 3884 | struct btrfs_space_info *space_info; |
| 3885 | int i; |
| 3886 | int ret; |
| 3887 | |
| 3888 | space_info = kzalloc(sizeof(*space_info), GFP_NOFS); |
| 3889 | if (!space_info) |
| 3890 | return -ENOMEM; |
| 3891 | |
| 3892 | ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, |
| 3893 | GFP_KERNEL); |
| 3894 | if (ret) { |
| 3895 | kfree(space_info); |
| 3896 | return ret; |
| 3897 | } |
| 3898 | |
| 3899 | for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) |
| 3900 | INIT_LIST_HEAD(&space_info->block_groups[i]); |
| 3901 | init_rwsem(&space_info->groups_sem); |
| 3902 | spin_lock_init(&space_info->lock); |
| 3903 | space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; |
| 3904 | space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; |
| 3905 | init_waitqueue_head(&space_info->wait); |
| 3906 | INIT_LIST_HEAD(&space_info->ro_bgs); |
| 3907 | INIT_LIST_HEAD(&space_info->tickets); |
| 3908 | INIT_LIST_HEAD(&space_info->priority_tickets); |
| 3909 | |
| 3910 | ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, |
| 3911 | info->space_info_kobj, "%s", |
| 3912 | alloc_name(space_info->flags)); |
| 3913 | if (ret) { |
| 3914 | percpu_counter_destroy(&space_info->total_bytes_pinned); |
| 3915 | kfree(space_info); |
| 3916 | return ret; |
| 3917 | } |
| 3918 | |
| 3919 | list_add_rcu(&space_info->list, &info->space_info); |
| 3920 | if (flags & BTRFS_BLOCK_GROUP_DATA) |
| 3921 | info->data_sinfo = space_info; |
| 3922 | |
| 3923 | return ret; |
| 3924 | } |
| 3925 | |
| 3926 | static void update_space_info(struct btrfs_fs_info *info, u64 flags, |
| 3927 | u64 total_bytes, u64 bytes_used, |
| 3928 | u64 bytes_readonly, |
| 3929 | struct btrfs_space_info **space_info) |
| 3930 | { |
| 3931 | struct btrfs_space_info *found; |
| 3932 | int factor; |
| 3933 | |
| 3934 | factor = btrfs_bg_type_to_factor(flags); |
| 3935 | |
| 3936 | found = __find_space_info(info, flags); |
| 3937 | ASSERT(found); |
| 3938 | spin_lock(&found->lock); |
| 3939 | found->total_bytes += total_bytes; |
| 3940 | found->disk_total += total_bytes * factor; |
| 3941 | found->bytes_used += bytes_used; |
| 3942 | found->disk_used += bytes_used * factor; |
| 3943 | found->bytes_readonly += bytes_readonly; |
| 3944 | if (total_bytes > 0) |
| 3945 | found->full = 0; |
| 3946 | space_info_add_new_bytes(info, found, total_bytes - |
| 3947 | bytes_used - bytes_readonly); |
| 3948 | spin_unlock(&found->lock); |
| 3949 | *space_info = found; |
| 3950 | } |
| 3951 | |
| 3952 | static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) |
| 3953 | { |
| 3954 | u64 extra_flags = chunk_to_extended(flags) & |
| 3955 | BTRFS_EXTENDED_PROFILE_MASK; |
| 3956 | |
| 3957 | write_seqlock(&fs_info->profiles_lock); |
| 3958 | if (flags & BTRFS_BLOCK_GROUP_DATA) |
| 3959 | fs_info->avail_data_alloc_bits |= extra_flags; |
| 3960 | if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| 3961 | fs_info->avail_metadata_alloc_bits |= extra_flags; |
| 3962 | if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| 3963 | fs_info->avail_system_alloc_bits |= extra_flags; |
| 3964 | write_sequnlock(&fs_info->profiles_lock); |
| 3965 | } |
| 3966 | |
| 3967 | /* |
| 3968 | * returns target flags in extended format or 0 if restripe for this |
| 3969 | * chunk_type is not in progress |
| 3970 | * |
| 3971 | * should be called with balance_lock held |
| 3972 | */ |
| 3973 | static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) |
| 3974 | { |
| 3975 | struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| 3976 | u64 target = 0; |
| 3977 | |
| 3978 | if (!bctl) |
| 3979 | return 0; |
| 3980 | |
| 3981 | if (flags & BTRFS_BLOCK_GROUP_DATA && |
| 3982 | bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| 3983 | target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; |
| 3984 | } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && |
| 3985 | bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| 3986 | target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; |
| 3987 | } else if (flags & BTRFS_BLOCK_GROUP_METADATA && |
| 3988 | bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| 3989 | target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; |
| 3990 | } |
| 3991 | |
| 3992 | return target; |
| 3993 | } |
| 3994 | |
| 3995 | /* |
| 3996 | * @flags: available profiles in extended format (see ctree.h) |
| 3997 | * |
| 3998 | * Returns reduced profile in chunk format. If profile changing is in |
| 3999 | * progress (either running or paused) picks the target profile (if it's |
| 4000 | * already available), otherwise falls back to plain reducing. |
| 4001 | */ |
| 4002 | static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) |
| 4003 | { |
| 4004 | u64 num_devices = fs_info->fs_devices->rw_devices; |
| 4005 | u64 target; |
| 4006 | u64 raid_type; |
| 4007 | u64 allowed = 0; |
| 4008 | |
| 4009 | /* |
| 4010 | * see if restripe for this chunk_type is in progress, if so |
| 4011 | * try to reduce to the target profile |
| 4012 | */ |
| 4013 | spin_lock(&fs_info->balance_lock); |
| 4014 | target = get_restripe_target(fs_info, flags); |
| 4015 | if (target) { |
| 4016 | /* pick target profile only if it's already available */ |
| 4017 | if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { |
| 4018 | spin_unlock(&fs_info->balance_lock); |
| 4019 | return extended_to_chunk(target); |
| 4020 | } |
| 4021 | } |
| 4022 | spin_unlock(&fs_info->balance_lock); |
| 4023 | |
| 4024 | /* First, mask out the RAID levels which aren't possible */ |
| 4025 | for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { |
| 4026 | if (num_devices >= btrfs_raid_array[raid_type].devs_min) |
| 4027 | allowed |= btrfs_raid_array[raid_type].bg_flag; |
| 4028 | } |
| 4029 | allowed &= flags; |
| 4030 | |
| 4031 | if (allowed & BTRFS_BLOCK_GROUP_RAID6) |
| 4032 | allowed = BTRFS_BLOCK_GROUP_RAID6; |
| 4033 | else if (allowed & BTRFS_BLOCK_GROUP_RAID5) |
| 4034 | allowed = BTRFS_BLOCK_GROUP_RAID5; |
| 4035 | else if (allowed & BTRFS_BLOCK_GROUP_RAID10) |
| 4036 | allowed = BTRFS_BLOCK_GROUP_RAID10; |
| 4037 | else if (allowed & BTRFS_BLOCK_GROUP_RAID1) |
| 4038 | allowed = BTRFS_BLOCK_GROUP_RAID1; |
| 4039 | else if (allowed & BTRFS_BLOCK_GROUP_RAID0) |
| 4040 | allowed = BTRFS_BLOCK_GROUP_RAID0; |
| 4041 | |
| 4042 | flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; |
| 4043 | |
| 4044 | return extended_to_chunk(flags | allowed); |
| 4045 | } |
| 4046 | |
| 4047 | static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) |
| 4048 | { |
| 4049 | unsigned seq; |
| 4050 | u64 flags; |
| 4051 | |
| 4052 | do { |
| 4053 | flags = orig_flags; |
| 4054 | seq = read_seqbegin(&fs_info->profiles_lock); |
| 4055 | |
| 4056 | if (flags & BTRFS_BLOCK_GROUP_DATA) |
| 4057 | flags |= fs_info->avail_data_alloc_bits; |
| 4058 | else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| 4059 | flags |= fs_info->avail_system_alloc_bits; |
| 4060 | else if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| 4061 | flags |= fs_info->avail_metadata_alloc_bits; |
| 4062 | } while (read_seqretry(&fs_info->profiles_lock, seq)); |
| 4063 | |
| 4064 | return btrfs_reduce_alloc_profile(fs_info, flags); |
| 4065 | } |
| 4066 | |
| 4067 | static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) |
| 4068 | { |
| 4069 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 4070 | u64 flags; |
| 4071 | u64 ret; |
| 4072 | |
| 4073 | if (data) |
| 4074 | flags = BTRFS_BLOCK_GROUP_DATA; |
| 4075 | else if (root == fs_info->chunk_root) |
| 4076 | flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| 4077 | else |
| 4078 | flags = BTRFS_BLOCK_GROUP_METADATA; |
| 4079 | |
| 4080 | ret = get_alloc_profile(fs_info, flags); |
| 4081 | return ret; |
| 4082 | } |
| 4083 | |
| 4084 | u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) |
| 4085 | { |
| 4086 | return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); |
| 4087 | } |
| 4088 | |
| 4089 | u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) |
| 4090 | { |
| 4091 | return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); |
| 4092 | } |
| 4093 | |
| 4094 | u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) |
| 4095 | { |
| 4096 | return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); |
| 4097 | } |
| 4098 | |
| 4099 | static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, |
| 4100 | bool may_use_included) |
| 4101 | { |
| 4102 | ASSERT(s_info); |
| 4103 | return s_info->bytes_used + s_info->bytes_reserved + |
| 4104 | s_info->bytes_pinned + s_info->bytes_readonly + |
| 4105 | (may_use_included ? s_info->bytes_may_use : 0); |
| 4106 | } |
| 4107 | |
| 4108 | int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) |
| 4109 | { |
| 4110 | struct btrfs_root *root = inode->root; |
| 4111 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 4112 | struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; |
| 4113 | u64 used; |
| 4114 | int ret = 0; |
| 4115 | int need_commit = 2; |
| 4116 | int have_pinned_space; |
| 4117 | |
| 4118 | /* make sure bytes are sectorsize aligned */ |
| 4119 | bytes = ALIGN(bytes, fs_info->sectorsize); |
| 4120 | |
| 4121 | if (btrfs_is_free_space_inode(inode)) { |
| 4122 | need_commit = 0; |
| 4123 | ASSERT(current->journal_info); |
| 4124 | } |
| 4125 | |
| 4126 | again: |
| 4127 | /* make sure we have enough space to handle the data first */ |
| 4128 | spin_lock(&data_sinfo->lock); |
| 4129 | used = btrfs_space_info_used(data_sinfo, true); |
| 4130 | |
| 4131 | if (used + bytes > data_sinfo->total_bytes) { |
| 4132 | struct btrfs_trans_handle *trans; |
| 4133 | |
| 4134 | /* |
| 4135 | * if we don't have enough free bytes in this space then we need |
| 4136 | * to alloc a new chunk. |
| 4137 | */ |
| 4138 | if (!data_sinfo->full) { |
| 4139 | u64 alloc_target; |
| 4140 | |
| 4141 | data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; |
| 4142 | spin_unlock(&data_sinfo->lock); |
| 4143 | |
| 4144 | alloc_target = btrfs_data_alloc_profile(fs_info); |
| 4145 | /* |
| 4146 | * It is ugly that we don't call nolock join |
| 4147 | * transaction for the free space inode case here. |
| 4148 | * But it is safe because we only do the data space |
| 4149 | * reservation for the free space cache in the |
| 4150 | * transaction context, the common join transaction |
| 4151 | * just increase the counter of the current transaction |
| 4152 | * handler, doesn't try to acquire the trans_lock of |
| 4153 | * the fs. |
| 4154 | */ |
| 4155 | trans = btrfs_join_transaction(root); |
| 4156 | if (IS_ERR(trans)) |
| 4157 | return PTR_ERR(trans); |
| 4158 | |
| 4159 | ret = do_chunk_alloc(trans, alloc_target, |
| 4160 | CHUNK_ALLOC_NO_FORCE); |
| 4161 | btrfs_end_transaction(trans); |
| 4162 | if (ret < 0) { |
| 4163 | if (ret != -ENOSPC) |
| 4164 | return ret; |
| 4165 | else { |
| 4166 | have_pinned_space = 1; |
| 4167 | goto commit_trans; |
| 4168 | } |
| 4169 | } |
| 4170 | |
| 4171 | goto again; |
| 4172 | } |
| 4173 | |
| 4174 | /* |
| 4175 | * If we don't have enough pinned space to deal with this |
| 4176 | * allocation, and no removed chunk in current transaction, |
| 4177 | * don't bother committing the transaction. |
| 4178 | */ |
| 4179 | have_pinned_space = __percpu_counter_compare( |
| 4180 | &data_sinfo->total_bytes_pinned, |
| 4181 | used + bytes - data_sinfo->total_bytes, |
| 4182 | BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 4183 | spin_unlock(&data_sinfo->lock); |
| 4184 | |
| 4185 | /* commit the current transaction and try again */ |
| 4186 | commit_trans: |
| 4187 | if (need_commit) { |
| 4188 | need_commit--; |
| 4189 | |
| 4190 | if (need_commit > 0) { |
| 4191 | btrfs_start_delalloc_roots(fs_info, -1); |
| 4192 | btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, |
| 4193 | (u64)-1); |
| 4194 | } |
| 4195 | |
| 4196 | trans = btrfs_join_transaction(root); |
| 4197 | if (IS_ERR(trans)) |
| 4198 | return PTR_ERR(trans); |
| 4199 | if (have_pinned_space >= 0 || |
| 4200 | test_bit(BTRFS_TRANS_HAVE_FREE_BGS, |
| 4201 | &trans->transaction->flags) || |
| 4202 | need_commit > 0) { |
| 4203 | ret = btrfs_commit_transaction(trans); |
| 4204 | if (ret) |
| 4205 | return ret; |
| 4206 | /* |
| 4207 | * The cleaner kthread might still be doing iput |
| 4208 | * operations. Wait for it to finish so that |
| 4209 | * more space is released. |
| 4210 | */ |
| 4211 | mutex_lock(&fs_info->cleaner_delayed_iput_mutex); |
| 4212 | mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); |
| 4213 | goto again; |
| 4214 | } else { |
| 4215 | btrfs_end_transaction(trans); |
| 4216 | } |
| 4217 | } |
| 4218 | |
| 4219 | trace_btrfs_space_reservation(fs_info, |
| 4220 | "space_info:enospc", |
| 4221 | data_sinfo->flags, bytes, 1); |
| 4222 | return -ENOSPC; |
| 4223 | } |
| 4224 | data_sinfo->bytes_may_use += bytes; |
| 4225 | trace_btrfs_space_reservation(fs_info, "space_info", |
| 4226 | data_sinfo->flags, bytes, 1); |
| 4227 | spin_unlock(&data_sinfo->lock); |
| 4228 | |
| 4229 | return 0; |
| 4230 | } |
| 4231 | |
| 4232 | int btrfs_check_data_free_space(struct inode *inode, |
| 4233 | struct extent_changeset **reserved, u64 start, u64 len) |
| 4234 | { |
| 4235 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 4236 | int ret; |
| 4237 | |
| 4238 | /* align the range */ |
| 4239 | len = round_up(start + len, fs_info->sectorsize) - |
| 4240 | round_down(start, fs_info->sectorsize); |
| 4241 | start = round_down(start, fs_info->sectorsize); |
| 4242 | |
| 4243 | ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); |
| 4244 | if (ret < 0) |
| 4245 | return ret; |
| 4246 | |
| 4247 | /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ |
| 4248 | ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); |
| 4249 | if (ret < 0) |
| 4250 | btrfs_free_reserved_data_space_noquota(inode, start, len); |
| 4251 | else |
| 4252 | ret = 0; |
| 4253 | return ret; |
| 4254 | } |
| 4255 | |
| 4256 | /* |
| 4257 | * Called if we need to clear a data reservation for this inode |
| 4258 | * Normally in a error case. |
| 4259 | * |
| 4260 | * This one will *NOT* use accurate qgroup reserved space API, just for case |
| 4261 | * which we can't sleep and is sure it won't affect qgroup reserved space. |
| 4262 | * Like clear_bit_hook(). |
| 4263 | */ |
| 4264 | void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, |
| 4265 | u64 len) |
| 4266 | { |
| 4267 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 4268 | struct btrfs_space_info *data_sinfo; |
| 4269 | |
| 4270 | /* Make sure the range is aligned to sectorsize */ |
| 4271 | len = round_up(start + len, fs_info->sectorsize) - |
| 4272 | round_down(start, fs_info->sectorsize); |
| 4273 | start = round_down(start, fs_info->sectorsize); |
| 4274 | |
| 4275 | data_sinfo = fs_info->data_sinfo; |
| 4276 | spin_lock(&data_sinfo->lock); |
| 4277 | if (WARN_ON(data_sinfo->bytes_may_use < len)) |
| 4278 | data_sinfo->bytes_may_use = 0; |
| 4279 | else |
| 4280 | data_sinfo->bytes_may_use -= len; |
| 4281 | trace_btrfs_space_reservation(fs_info, "space_info", |
| 4282 | data_sinfo->flags, len, 0); |
| 4283 | spin_unlock(&data_sinfo->lock); |
| 4284 | } |
| 4285 | |
| 4286 | /* |
| 4287 | * Called if we need to clear a data reservation for this inode |
| 4288 | * Normally in a error case. |
| 4289 | * |
| 4290 | * This one will handle the per-inode data rsv map for accurate reserved |
| 4291 | * space framework. |
| 4292 | */ |
| 4293 | void btrfs_free_reserved_data_space(struct inode *inode, |
| 4294 | struct extent_changeset *reserved, u64 start, u64 len) |
| 4295 | { |
| 4296 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 4297 | |
| 4298 | /* Make sure the range is aligned to sectorsize */ |
| 4299 | len = round_up(start + len, root->fs_info->sectorsize) - |
| 4300 | round_down(start, root->fs_info->sectorsize); |
| 4301 | start = round_down(start, root->fs_info->sectorsize); |
| 4302 | |
| 4303 | btrfs_free_reserved_data_space_noquota(inode, start, len); |
| 4304 | btrfs_qgroup_free_data(inode, reserved, start, len); |
| 4305 | } |
| 4306 | |
| 4307 | static void force_metadata_allocation(struct btrfs_fs_info *info) |
| 4308 | { |
| 4309 | struct list_head *head = &info->space_info; |
| 4310 | struct btrfs_space_info *found; |
| 4311 | |
| 4312 | rcu_read_lock(); |
| 4313 | list_for_each_entry_rcu(found, head, list) { |
| 4314 | if (found->flags & BTRFS_BLOCK_GROUP_METADATA) |
| 4315 | found->force_alloc = CHUNK_ALLOC_FORCE; |
| 4316 | } |
| 4317 | rcu_read_unlock(); |
| 4318 | } |
| 4319 | |
| 4320 | static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) |
| 4321 | { |
| 4322 | return (global->size << 1); |
| 4323 | } |
| 4324 | |
| 4325 | static int should_alloc_chunk(struct btrfs_fs_info *fs_info, |
| 4326 | struct btrfs_space_info *sinfo, int force) |
| 4327 | { |
| 4328 | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| 4329 | u64 bytes_used = btrfs_space_info_used(sinfo, false); |
| 4330 | u64 thresh; |
| 4331 | |
| 4332 | if (force == CHUNK_ALLOC_FORCE) |
| 4333 | return 1; |
| 4334 | |
| 4335 | /* |
| 4336 | * We need to take into account the global rsv because for all intents |
| 4337 | * and purposes it's used space. Don't worry about locking the |
| 4338 | * global_rsv, it doesn't change except when the transaction commits. |
| 4339 | */ |
| 4340 | if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) |
| 4341 | bytes_used += calc_global_rsv_need_space(global_rsv); |
| 4342 | |
| 4343 | /* |
| 4344 | * in limited mode, we want to have some free space up to |
| 4345 | * about 1% of the FS size. |
| 4346 | */ |
| 4347 | if (force == CHUNK_ALLOC_LIMITED) { |
| 4348 | thresh = btrfs_super_total_bytes(fs_info->super_copy); |
| 4349 | thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); |
| 4350 | |
| 4351 | if (sinfo->total_bytes - bytes_used < thresh) |
| 4352 | return 1; |
| 4353 | } |
| 4354 | |
| 4355 | if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) |
| 4356 | return 0; |
| 4357 | return 1; |
| 4358 | } |
| 4359 | |
| 4360 | static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) |
| 4361 | { |
| 4362 | u64 num_dev; |
| 4363 | |
| 4364 | if (type & (BTRFS_BLOCK_GROUP_RAID10 | |
| 4365 | BTRFS_BLOCK_GROUP_RAID0 | |
| 4366 | BTRFS_BLOCK_GROUP_RAID5 | |
| 4367 | BTRFS_BLOCK_GROUP_RAID6)) |
| 4368 | num_dev = fs_info->fs_devices->rw_devices; |
| 4369 | else if (type & BTRFS_BLOCK_GROUP_RAID1) |
| 4370 | num_dev = 2; |
| 4371 | else |
| 4372 | num_dev = 1; /* DUP or single */ |
| 4373 | |
| 4374 | return num_dev; |
| 4375 | } |
| 4376 | |
| 4377 | /* |
| 4378 | * If @is_allocation is true, reserve space in the system space info necessary |
| 4379 | * for allocating a chunk, otherwise if it's false, reserve space necessary for |
| 4380 | * removing a chunk. |
| 4381 | */ |
| 4382 | void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) |
| 4383 | { |
| 4384 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 4385 | struct btrfs_space_info *info; |
| 4386 | u64 left; |
| 4387 | u64 thresh; |
| 4388 | int ret = 0; |
| 4389 | u64 num_devs; |
| 4390 | |
| 4391 | /* |
| 4392 | * Needed because we can end up allocating a system chunk and for an |
| 4393 | * atomic and race free space reservation in the chunk block reserve. |
| 4394 | */ |
| 4395 | lockdep_assert_held(&fs_info->chunk_mutex); |
| 4396 | |
| 4397 | info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); |
| 4398 | spin_lock(&info->lock); |
| 4399 | left = info->total_bytes - btrfs_space_info_used(info, true); |
| 4400 | spin_unlock(&info->lock); |
| 4401 | |
| 4402 | num_devs = get_profile_num_devs(fs_info, type); |
| 4403 | |
| 4404 | /* num_devs device items to update and 1 chunk item to add or remove */ |
| 4405 | thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + |
| 4406 | btrfs_calc_trans_metadata_size(fs_info, 1); |
| 4407 | |
| 4408 | if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| 4409 | btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", |
| 4410 | left, thresh, type); |
| 4411 | dump_space_info(fs_info, info, 0, 0); |
| 4412 | } |
| 4413 | |
| 4414 | if (left < thresh) { |
| 4415 | u64 flags = btrfs_system_alloc_profile(fs_info); |
| 4416 | |
| 4417 | /* |
| 4418 | * Ignore failure to create system chunk. We might end up not |
| 4419 | * needing it, as we might not need to COW all nodes/leafs from |
| 4420 | * the paths we visit in the chunk tree (they were already COWed |
| 4421 | * or created in the current transaction for example). |
| 4422 | */ |
| 4423 | ret = btrfs_alloc_chunk(trans, flags); |
| 4424 | } |
| 4425 | |
| 4426 | if (!ret) { |
| 4427 | ret = btrfs_block_rsv_add(fs_info->chunk_root, |
| 4428 | &fs_info->chunk_block_rsv, |
| 4429 | thresh, BTRFS_RESERVE_NO_FLUSH); |
| 4430 | if (!ret) |
| 4431 | trans->chunk_bytes_reserved += thresh; |
| 4432 | } |
| 4433 | } |
| 4434 | |
| 4435 | /* |
| 4436 | * If force is CHUNK_ALLOC_FORCE: |
| 4437 | * - return 1 if it successfully allocates a chunk, |
| 4438 | * - return errors including -ENOSPC otherwise. |
| 4439 | * If force is NOT CHUNK_ALLOC_FORCE: |
| 4440 | * - return 0 if it doesn't need to allocate a new chunk, |
| 4441 | * - return 1 if it successfully allocates a chunk, |
| 4442 | * - return errors including -ENOSPC otherwise. |
| 4443 | */ |
| 4444 | static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, |
| 4445 | int force) |
| 4446 | { |
| 4447 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 4448 | struct btrfs_space_info *space_info; |
| 4449 | bool wait_for_alloc = false; |
| 4450 | bool should_alloc = false; |
| 4451 | int ret = 0; |
| 4452 | |
| 4453 | /* Don't re-enter if we're already allocating a chunk */ |
| 4454 | if (trans->allocating_chunk) |
| 4455 | return -ENOSPC; |
| 4456 | |
| 4457 | space_info = __find_space_info(fs_info, flags); |
| 4458 | ASSERT(space_info); |
| 4459 | |
| 4460 | do { |
| 4461 | spin_lock(&space_info->lock); |
| 4462 | if (force < space_info->force_alloc) |
| 4463 | force = space_info->force_alloc; |
| 4464 | should_alloc = should_alloc_chunk(fs_info, space_info, force); |
| 4465 | if (space_info->full) { |
| 4466 | /* No more free physical space */ |
| 4467 | if (should_alloc) |
| 4468 | ret = -ENOSPC; |
| 4469 | else |
| 4470 | ret = 0; |
| 4471 | spin_unlock(&space_info->lock); |
| 4472 | return ret; |
| 4473 | } else if (!should_alloc) { |
| 4474 | spin_unlock(&space_info->lock); |
| 4475 | return 0; |
| 4476 | } else if (space_info->chunk_alloc) { |
| 4477 | /* |
| 4478 | * Someone is already allocating, so we need to block |
| 4479 | * until this someone is finished and then loop to |
| 4480 | * recheck if we should continue with our allocation |
| 4481 | * attempt. |
| 4482 | */ |
| 4483 | wait_for_alloc = true; |
| 4484 | spin_unlock(&space_info->lock); |
| 4485 | mutex_lock(&fs_info->chunk_mutex); |
| 4486 | mutex_unlock(&fs_info->chunk_mutex); |
| 4487 | } else { |
| 4488 | /* Proceed with allocation */ |
| 4489 | space_info->chunk_alloc = 1; |
| 4490 | wait_for_alloc = false; |
| 4491 | spin_unlock(&space_info->lock); |
| 4492 | } |
| 4493 | |
| 4494 | cond_resched(); |
| 4495 | } while (wait_for_alloc); |
| 4496 | |
| 4497 | mutex_lock(&fs_info->chunk_mutex); |
| 4498 | trans->allocating_chunk = true; |
| 4499 | |
| 4500 | /* |
| 4501 | * If we have mixed data/metadata chunks we want to make sure we keep |
| 4502 | * allocating mixed chunks instead of individual chunks. |
| 4503 | */ |
| 4504 | if (btrfs_mixed_space_info(space_info)) |
| 4505 | flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); |
| 4506 | |
| 4507 | /* |
| 4508 | * if we're doing a data chunk, go ahead and make sure that |
| 4509 | * we keep a reasonable number of metadata chunks allocated in the |
| 4510 | * FS as well. |
| 4511 | */ |
| 4512 | if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { |
| 4513 | fs_info->data_chunk_allocations++; |
| 4514 | if (!(fs_info->data_chunk_allocations % |
| 4515 | fs_info->metadata_ratio)) |
| 4516 | force_metadata_allocation(fs_info); |
| 4517 | } |
| 4518 | |
| 4519 | /* |
| 4520 | * Check if we have enough space in SYSTEM chunk because we may need |
| 4521 | * to update devices. |
| 4522 | */ |
| 4523 | check_system_chunk(trans, flags); |
| 4524 | |
| 4525 | ret = btrfs_alloc_chunk(trans, flags); |
| 4526 | trans->allocating_chunk = false; |
| 4527 | |
| 4528 | spin_lock(&space_info->lock); |
| 4529 | if (ret < 0) { |
| 4530 | if (ret == -ENOSPC) |
| 4531 | space_info->full = 1; |
| 4532 | else |
| 4533 | goto out; |
| 4534 | } else { |
| 4535 | ret = 1; |
| 4536 | space_info->max_extent_size = 0; |
| 4537 | } |
| 4538 | |
| 4539 | space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; |
| 4540 | out: |
| 4541 | space_info->chunk_alloc = 0; |
| 4542 | spin_unlock(&space_info->lock); |
| 4543 | mutex_unlock(&fs_info->chunk_mutex); |
| 4544 | /* |
| 4545 | * When we allocate a new chunk we reserve space in the chunk block |
| 4546 | * reserve to make sure we can COW nodes/leafs in the chunk tree or |
| 4547 | * add new nodes/leafs to it if we end up needing to do it when |
| 4548 | * inserting the chunk item and updating device items as part of the |
| 4549 | * second phase of chunk allocation, performed by |
| 4550 | * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a |
| 4551 | * large number of new block groups to create in our transaction |
| 4552 | * handle's new_bgs list to avoid exhausting the chunk block reserve |
| 4553 | * in extreme cases - like having a single transaction create many new |
| 4554 | * block groups when starting to write out the free space caches of all |
| 4555 | * the block groups that were made dirty during the lifetime of the |
| 4556 | * transaction. |
| 4557 | */ |
| 4558 | if (trans->chunk_bytes_reserved >= (u64)SZ_2M) |
| 4559 | btrfs_create_pending_block_groups(trans); |
| 4560 | |
| 4561 | return ret; |
| 4562 | } |
| 4563 | |
| 4564 | static int can_overcommit(struct btrfs_fs_info *fs_info, |
| 4565 | struct btrfs_space_info *space_info, u64 bytes, |
| 4566 | enum btrfs_reserve_flush_enum flush, |
| 4567 | bool system_chunk) |
| 4568 | { |
| 4569 | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| 4570 | u64 profile; |
| 4571 | u64 space_size; |
| 4572 | u64 avail; |
| 4573 | u64 used; |
| 4574 | int factor; |
| 4575 | |
| 4576 | /* Don't overcommit when in mixed mode. */ |
| 4577 | if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) |
| 4578 | return 0; |
| 4579 | |
| 4580 | if (system_chunk) |
| 4581 | profile = btrfs_system_alloc_profile(fs_info); |
| 4582 | else |
| 4583 | profile = btrfs_metadata_alloc_profile(fs_info); |
| 4584 | |
| 4585 | used = btrfs_space_info_used(space_info, false); |
| 4586 | |
| 4587 | /* |
| 4588 | * We only want to allow over committing if we have lots of actual space |
| 4589 | * free, but if we don't have enough space to handle the global reserve |
| 4590 | * space then we could end up having a real enospc problem when trying |
| 4591 | * to allocate a chunk or some other such important allocation. |
| 4592 | */ |
| 4593 | spin_lock(&global_rsv->lock); |
| 4594 | space_size = calc_global_rsv_need_space(global_rsv); |
| 4595 | spin_unlock(&global_rsv->lock); |
| 4596 | if (used + space_size >= space_info->total_bytes) |
| 4597 | return 0; |
| 4598 | |
| 4599 | used += space_info->bytes_may_use; |
| 4600 | |
| 4601 | avail = atomic64_read(&fs_info->free_chunk_space); |
| 4602 | |
| 4603 | /* |
| 4604 | * If we have dup, raid1 or raid10 then only half of the free |
| 4605 | * space is actually useable. For raid56, the space info used |
| 4606 | * doesn't include the parity drive, so we don't have to |
| 4607 | * change the math |
| 4608 | */ |
| 4609 | factor = btrfs_bg_type_to_factor(profile); |
| 4610 | avail = div_u64(avail, factor); |
| 4611 | |
| 4612 | /* |
| 4613 | * If we aren't flushing all things, let us overcommit up to |
| 4614 | * 1/2th of the space. If we can flush, don't let us overcommit |
| 4615 | * too much, let it overcommit up to 1/8 of the space. |
| 4616 | */ |
| 4617 | if (flush == BTRFS_RESERVE_FLUSH_ALL) |
| 4618 | avail >>= 3; |
| 4619 | else |
| 4620 | avail >>= 1; |
| 4621 | |
| 4622 | if (used + bytes < space_info->total_bytes + avail) |
| 4623 | return 1; |
| 4624 | return 0; |
| 4625 | } |
| 4626 | |
| 4627 | static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, |
| 4628 | unsigned long nr_pages, int nr_items) |
| 4629 | { |
| 4630 | struct super_block *sb = fs_info->sb; |
| 4631 | |
| 4632 | if (down_read_trylock(&sb->s_umount)) { |
| 4633 | writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); |
| 4634 | up_read(&sb->s_umount); |
| 4635 | } else { |
| 4636 | /* |
| 4637 | * We needn't worry the filesystem going from r/w to r/o though |
| 4638 | * we don't acquire ->s_umount mutex, because the filesystem |
| 4639 | * should guarantee the delalloc inodes list be empty after |
| 4640 | * the filesystem is readonly(all dirty pages are written to |
| 4641 | * the disk). |
| 4642 | */ |
| 4643 | btrfs_start_delalloc_roots(fs_info, nr_items); |
| 4644 | if (!current->journal_info) |
| 4645 | btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); |
| 4646 | } |
| 4647 | } |
| 4648 | |
| 4649 | static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, |
| 4650 | u64 to_reclaim) |
| 4651 | { |
| 4652 | u64 bytes; |
| 4653 | u64 nr; |
| 4654 | |
| 4655 | bytes = btrfs_calc_trans_metadata_size(fs_info, 1); |
| 4656 | nr = div64_u64(to_reclaim, bytes); |
| 4657 | if (!nr) |
| 4658 | nr = 1; |
| 4659 | return nr; |
| 4660 | } |
| 4661 | |
| 4662 | #define EXTENT_SIZE_PER_ITEM SZ_256K |
| 4663 | |
| 4664 | /* |
| 4665 | * shrink metadata reservation for delalloc |
| 4666 | */ |
| 4667 | static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, |
| 4668 | u64 orig, bool wait_ordered) |
| 4669 | { |
| 4670 | struct btrfs_space_info *space_info; |
| 4671 | struct btrfs_trans_handle *trans; |
| 4672 | u64 delalloc_bytes; |
| 4673 | u64 max_reclaim; |
| 4674 | u64 items; |
| 4675 | long time_left; |
| 4676 | unsigned long nr_pages; |
| 4677 | int loops; |
| 4678 | |
| 4679 | /* Calc the number of the pages we need flush for space reservation */ |
| 4680 | items = calc_reclaim_items_nr(fs_info, to_reclaim); |
| 4681 | to_reclaim = items * EXTENT_SIZE_PER_ITEM; |
| 4682 | |
| 4683 | trans = (struct btrfs_trans_handle *)current->journal_info; |
| 4684 | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); |
| 4685 | |
| 4686 | delalloc_bytes = percpu_counter_sum_positive( |
| 4687 | &fs_info->delalloc_bytes); |
| 4688 | if (delalloc_bytes == 0) { |
| 4689 | if (trans) |
| 4690 | return; |
| 4691 | if (wait_ordered) |
| 4692 | btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); |
| 4693 | return; |
| 4694 | } |
| 4695 | |
| 4696 | loops = 0; |
| 4697 | while (delalloc_bytes && loops < 3) { |
| 4698 | max_reclaim = min(delalloc_bytes, to_reclaim); |
| 4699 | nr_pages = max_reclaim >> PAGE_SHIFT; |
| 4700 | btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); |
| 4701 | /* |
| 4702 | * We need to wait for the async pages to actually start before |
| 4703 | * we do anything. |
| 4704 | */ |
| 4705 | max_reclaim = atomic_read(&fs_info->async_delalloc_pages); |
| 4706 | if (!max_reclaim) |
| 4707 | goto skip_async; |
| 4708 | |
| 4709 | if (max_reclaim <= nr_pages) |
| 4710 | max_reclaim = 0; |
| 4711 | else |
| 4712 | max_reclaim -= nr_pages; |
| 4713 | |
| 4714 | wait_event(fs_info->async_submit_wait, |
| 4715 | atomic_read(&fs_info->async_delalloc_pages) <= |
| 4716 | (int)max_reclaim); |
| 4717 | skip_async: |
| 4718 | spin_lock(&space_info->lock); |
| 4719 | if (list_empty(&space_info->tickets) && |
| 4720 | list_empty(&space_info->priority_tickets)) { |
| 4721 | spin_unlock(&space_info->lock); |
| 4722 | break; |
| 4723 | } |
| 4724 | spin_unlock(&space_info->lock); |
| 4725 | |
| 4726 | loops++; |
| 4727 | if (wait_ordered && !trans) { |
| 4728 | btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); |
| 4729 | } else { |
| 4730 | time_left = schedule_timeout_killable(1); |
| 4731 | if (time_left) |
| 4732 | break; |
| 4733 | } |
| 4734 | delalloc_bytes = percpu_counter_sum_positive( |
| 4735 | &fs_info->delalloc_bytes); |
| 4736 | } |
| 4737 | } |
| 4738 | |
| 4739 | struct reserve_ticket { |
| 4740 | u64 bytes; |
| 4741 | int error; |
| 4742 | struct list_head list; |
| 4743 | wait_queue_head_t wait; |
| 4744 | }; |
| 4745 | |
| 4746 | /** |
| 4747 | * maybe_commit_transaction - possibly commit the transaction if its ok to |
| 4748 | * @root - the root we're allocating for |
| 4749 | * @bytes - the number of bytes we want to reserve |
| 4750 | * @force - force the commit |
| 4751 | * |
| 4752 | * This will check to make sure that committing the transaction will actually |
| 4753 | * get us somewhere and then commit the transaction if it does. Otherwise it |
| 4754 | * will return -ENOSPC. |
| 4755 | */ |
| 4756 | static int may_commit_transaction(struct btrfs_fs_info *fs_info, |
| 4757 | struct btrfs_space_info *space_info) |
| 4758 | { |
| 4759 | struct reserve_ticket *ticket = NULL; |
| 4760 | struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; |
| 4761 | struct btrfs_trans_handle *trans; |
| 4762 | u64 bytes; |
| 4763 | |
| 4764 | trans = (struct btrfs_trans_handle *)current->journal_info; |
| 4765 | if (trans) |
| 4766 | return -EAGAIN; |
| 4767 | |
| 4768 | spin_lock(&space_info->lock); |
| 4769 | if (!list_empty(&space_info->priority_tickets)) |
| 4770 | ticket = list_first_entry(&space_info->priority_tickets, |
| 4771 | struct reserve_ticket, list); |
| 4772 | else if (!list_empty(&space_info->tickets)) |
| 4773 | ticket = list_first_entry(&space_info->tickets, |
| 4774 | struct reserve_ticket, list); |
| 4775 | bytes = (ticket) ? ticket->bytes : 0; |
| 4776 | spin_unlock(&space_info->lock); |
| 4777 | |
| 4778 | if (!bytes) |
| 4779 | return 0; |
| 4780 | |
| 4781 | /* See if there is enough pinned space to make this reservation */ |
| 4782 | if (__percpu_counter_compare(&space_info->total_bytes_pinned, |
| 4783 | bytes, |
| 4784 | BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0) |
| 4785 | goto commit; |
| 4786 | |
| 4787 | /* |
| 4788 | * See if there is some space in the delayed insertion reservation for |
| 4789 | * this reservation. |
| 4790 | */ |
| 4791 | if (space_info != delayed_rsv->space_info) |
| 4792 | return -ENOSPC; |
| 4793 | |
| 4794 | spin_lock(&delayed_rsv->lock); |
| 4795 | if (delayed_rsv->size > bytes) |
| 4796 | bytes = 0; |
| 4797 | else |
| 4798 | bytes -= delayed_rsv->size; |
| 4799 | spin_unlock(&delayed_rsv->lock); |
| 4800 | |
| 4801 | if (__percpu_counter_compare(&space_info->total_bytes_pinned, |
| 4802 | bytes, |
| 4803 | BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) { |
| 4804 | return -ENOSPC; |
| 4805 | } |
| 4806 | |
| 4807 | commit: |
| 4808 | trans = btrfs_join_transaction(fs_info->extent_root); |
| 4809 | if (IS_ERR(trans)) |
| 4810 | return -ENOSPC; |
| 4811 | |
| 4812 | return btrfs_commit_transaction(trans); |
| 4813 | } |
| 4814 | |
| 4815 | /* |
| 4816 | * Try to flush some data based on policy set by @state. This is only advisory |
| 4817 | * and may fail for various reasons. The caller is supposed to examine the |
| 4818 | * state of @space_info to detect the outcome. |
| 4819 | */ |
| 4820 | static void flush_space(struct btrfs_fs_info *fs_info, |
| 4821 | struct btrfs_space_info *space_info, u64 num_bytes, |
| 4822 | int state) |
| 4823 | { |
| 4824 | struct btrfs_root *root = fs_info->extent_root; |
| 4825 | struct btrfs_trans_handle *trans; |
| 4826 | int nr; |
| 4827 | int ret = 0; |
| 4828 | |
| 4829 | switch (state) { |
| 4830 | case FLUSH_DELAYED_ITEMS_NR: |
| 4831 | case FLUSH_DELAYED_ITEMS: |
| 4832 | if (state == FLUSH_DELAYED_ITEMS_NR) |
| 4833 | nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; |
| 4834 | else |
| 4835 | nr = -1; |
| 4836 | |
| 4837 | trans = btrfs_join_transaction(root); |
| 4838 | if (IS_ERR(trans)) { |
| 4839 | ret = PTR_ERR(trans); |
| 4840 | break; |
| 4841 | } |
| 4842 | ret = btrfs_run_delayed_items_nr(trans, nr); |
| 4843 | btrfs_end_transaction(trans); |
| 4844 | break; |
| 4845 | case FLUSH_DELALLOC: |
| 4846 | case FLUSH_DELALLOC_WAIT: |
| 4847 | shrink_delalloc(fs_info, num_bytes * 2, num_bytes, |
| 4848 | state == FLUSH_DELALLOC_WAIT); |
| 4849 | break; |
| 4850 | case ALLOC_CHUNK: |
| 4851 | trans = btrfs_join_transaction(root); |
| 4852 | if (IS_ERR(trans)) { |
| 4853 | ret = PTR_ERR(trans); |
| 4854 | break; |
| 4855 | } |
| 4856 | ret = do_chunk_alloc(trans, |
| 4857 | btrfs_metadata_alloc_profile(fs_info), |
| 4858 | CHUNK_ALLOC_NO_FORCE); |
| 4859 | btrfs_end_transaction(trans); |
| 4860 | if (ret > 0 || ret == -ENOSPC) |
| 4861 | ret = 0; |
| 4862 | break; |
| 4863 | case COMMIT_TRANS: |
| 4864 | ret = may_commit_transaction(fs_info, space_info); |
| 4865 | break; |
| 4866 | default: |
| 4867 | ret = -ENOSPC; |
| 4868 | break; |
| 4869 | } |
| 4870 | |
| 4871 | trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, |
| 4872 | ret); |
| 4873 | return; |
| 4874 | } |
| 4875 | |
| 4876 | static inline u64 |
| 4877 | btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, |
| 4878 | struct btrfs_space_info *space_info, |
| 4879 | bool system_chunk) |
| 4880 | { |
| 4881 | struct reserve_ticket *ticket; |
| 4882 | u64 used; |
| 4883 | u64 expected; |
| 4884 | u64 to_reclaim = 0; |
| 4885 | |
| 4886 | list_for_each_entry(ticket, &space_info->tickets, list) |
| 4887 | to_reclaim += ticket->bytes; |
| 4888 | list_for_each_entry(ticket, &space_info->priority_tickets, list) |
| 4889 | to_reclaim += ticket->bytes; |
| 4890 | if (to_reclaim) |
| 4891 | return to_reclaim; |
| 4892 | |
| 4893 | to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); |
| 4894 | if (can_overcommit(fs_info, space_info, to_reclaim, |
| 4895 | BTRFS_RESERVE_FLUSH_ALL, system_chunk)) |
| 4896 | return 0; |
| 4897 | |
| 4898 | used = btrfs_space_info_used(space_info, true); |
| 4899 | |
| 4900 | if (can_overcommit(fs_info, space_info, SZ_1M, |
| 4901 | BTRFS_RESERVE_FLUSH_ALL, system_chunk)) |
| 4902 | expected = div_factor_fine(space_info->total_bytes, 95); |
| 4903 | else |
| 4904 | expected = div_factor_fine(space_info->total_bytes, 90); |
| 4905 | |
| 4906 | if (used > expected) |
| 4907 | to_reclaim = used - expected; |
| 4908 | else |
| 4909 | to_reclaim = 0; |
| 4910 | to_reclaim = min(to_reclaim, space_info->bytes_may_use + |
| 4911 | space_info->bytes_reserved); |
| 4912 | return to_reclaim; |
| 4913 | } |
| 4914 | |
| 4915 | static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, |
| 4916 | struct btrfs_space_info *space_info, |
| 4917 | u64 used, bool system_chunk) |
| 4918 | { |
| 4919 | u64 thresh = div_factor_fine(space_info->total_bytes, 98); |
| 4920 | |
| 4921 | /* If we're just plain full then async reclaim just slows us down. */ |
| 4922 | if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) |
| 4923 | return 0; |
| 4924 | |
| 4925 | if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, |
| 4926 | system_chunk)) |
| 4927 | return 0; |
| 4928 | |
| 4929 | return (used >= thresh && !btrfs_fs_closing(fs_info) && |
| 4930 | !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); |
| 4931 | } |
| 4932 | |
| 4933 | static void wake_all_tickets(struct list_head *head) |
| 4934 | { |
| 4935 | struct reserve_ticket *ticket; |
| 4936 | |
| 4937 | while (!list_empty(head)) { |
| 4938 | ticket = list_first_entry(head, struct reserve_ticket, list); |
| 4939 | list_del_init(&ticket->list); |
| 4940 | ticket->error = -ENOSPC; |
| 4941 | wake_up(&ticket->wait); |
| 4942 | } |
| 4943 | } |
| 4944 | |
| 4945 | /* |
| 4946 | * This is for normal flushers, we can wait all goddamned day if we want to. We |
| 4947 | * will loop and continuously try to flush as long as we are making progress. |
| 4948 | * We count progress as clearing off tickets each time we have to loop. |
| 4949 | */ |
| 4950 | static void btrfs_async_reclaim_metadata_space(struct work_struct *work) |
| 4951 | { |
| 4952 | struct btrfs_fs_info *fs_info; |
| 4953 | struct btrfs_space_info *space_info; |
| 4954 | u64 to_reclaim; |
| 4955 | int flush_state; |
| 4956 | int commit_cycles = 0; |
| 4957 | u64 last_tickets_id; |
| 4958 | |
| 4959 | fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); |
| 4960 | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); |
| 4961 | |
| 4962 | spin_lock(&space_info->lock); |
| 4963 | to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, |
| 4964 | false); |
| 4965 | if (!to_reclaim) { |
| 4966 | space_info->flush = 0; |
| 4967 | spin_unlock(&space_info->lock); |
| 4968 | return; |
| 4969 | } |
| 4970 | last_tickets_id = space_info->tickets_id; |
| 4971 | spin_unlock(&space_info->lock); |
| 4972 | |
| 4973 | flush_state = FLUSH_DELAYED_ITEMS_NR; |
| 4974 | do { |
| 4975 | flush_space(fs_info, space_info, to_reclaim, flush_state); |
| 4976 | spin_lock(&space_info->lock); |
| 4977 | if (list_empty(&space_info->tickets)) { |
| 4978 | space_info->flush = 0; |
| 4979 | spin_unlock(&space_info->lock); |
| 4980 | return; |
| 4981 | } |
| 4982 | to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, |
| 4983 | space_info, |
| 4984 | false); |
| 4985 | if (last_tickets_id == space_info->tickets_id) { |
| 4986 | flush_state++; |
| 4987 | } else { |
| 4988 | last_tickets_id = space_info->tickets_id; |
| 4989 | flush_state = FLUSH_DELAYED_ITEMS_NR; |
| 4990 | if (commit_cycles) |
| 4991 | commit_cycles--; |
| 4992 | } |
| 4993 | |
| 4994 | if (flush_state > COMMIT_TRANS) { |
| 4995 | commit_cycles++; |
| 4996 | if (commit_cycles > 2) { |
| 4997 | wake_all_tickets(&space_info->tickets); |
| 4998 | space_info->flush = 0; |
| 4999 | } else { |
| 5000 | flush_state = FLUSH_DELAYED_ITEMS_NR; |
| 5001 | } |
| 5002 | } |
| 5003 | spin_unlock(&space_info->lock); |
| 5004 | } while (flush_state <= COMMIT_TRANS); |
| 5005 | } |
| 5006 | |
| 5007 | void btrfs_init_async_reclaim_work(struct work_struct *work) |
| 5008 | { |
| 5009 | INIT_WORK(work, btrfs_async_reclaim_metadata_space); |
| 5010 | } |
| 5011 | |
| 5012 | static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, |
| 5013 | struct btrfs_space_info *space_info, |
| 5014 | struct reserve_ticket *ticket) |
| 5015 | { |
| 5016 | u64 to_reclaim; |
| 5017 | int flush_state = FLUSH_DELAYED_ITEMS_NR; |
| 5018 | |
| 5019 | spin_lock(&space_info->lock); |
| 5020 | to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, |
| 5021 | false); |
| 5022 | if (!to_reclaim) { |
| 5023 | spin_unlock(&space_info->lock); |
| 5024 | return; |
| 5025 | } |
| 5026 | spin_unlock(&space_info->lock); |
| 5027 | |
| 5028 | do { |
| 5029 | flush_space(fs_info, space_info, to_reclaim, flush_state); |
| 5030 | flush_state++; |
| 5031 | spin_lock(&space_info->lock); |
| 5032 | if (ticket->bytes == 0) { |
| 5033 | spin_unlock(&space_info->lock); |
| 5034 | return; |
| 5035 | } |
| 5036 | spin_unlock(&space_info->lock); |
| 5037 | |
| 5038 | /* |
| 5039 | * Priority flushers can't wait on delalloc without |
| 5040 | * deadlocking. |
| 5041 | */ |
| 5042 | if (flush_state == FLUSH_DELALLOC || |
| 5043 | flush_state == FLUSH_DELALLOC_WAIT) |
| 5044 | flush_state = ALLOC_CHUNK; |
| 5045 | } while (flush_state < COMMIT_TRANS); |
| 5046 | } |
| 5047 | |
| 5048 | static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, |
| 5049 | struct btrfs_space_info *space_info, |
| 5050 | struct reserve_ticket *ticket, u64 orig_bytes) |
| 5051 | |
| 5052 | { |
| 5053 | DEFINE_WAIT(wait); |
| 5054 | int ret = 0; |
| 5055 | |
| 5056 | spin_lock(&space_info->lock); |
| 5057 | while (ticket->bytes > 0 && ticket->error == 0) { |
| 5058 | ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); |
| 5059 | if (ret) { |
| 5060 | ret = -EINTR; |
| 5061 | break; |
| 5062 | } |
| 5063 | spin_unlock(&space_info->lock); |
| 5064 | |
| 5065 | schedule(); |
| 5066 | |
| 5067 | finish_wait(&ticket->wait, &wait); |
| 5068 | spin_lock(&space_info->lock); |
| 5069 | } |
| 5070 | if (!ret) |
| 5071 | ret = ticket->error; |
| 5072 | if (!list_empty(&ticket->list)) |
| 5073 | list_del_init(&ticket->list); |
| 5074 | if (ticket->bytes && ticket->bytes < orig_bytes) { |
| 5075 | u64 num_bytes = orig_bytes - ticket->bytes; |
| 5076 | space_info->bytes_may_use -= num_bytes; |
| 5077 | trace_btrfs_space_reservation(fs_info, "space_info", |
| 5078 | space_info->flags, num_bytes, 0); |
| 5079 | } |
| 5080 | spin_unlock(&space_info->lock); |
| 5081 | |
| 5082 | return ret; |
| 5083 | } |
| 5084 | |
| 5085 | /** |
| 5086 | * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space |
| 5087 | * @root - the root we're allocating for |
| 5088 | * @space_info - the space info we want to allocate from |
| 5089 | * @orig_bytes - the number of bytes we want |
| 5090 | * @flush - whether or not we can flush to make our reservation |
| 5091 | * |
| 5092 | * This will reserve orig_bytes number of bytes from the space info associated |
| 5093 | * with the block_rsv. If there is not enough space it will make an attempt to |
| 5094 | * flush out space to make room. It will do this by flushing delalloc if |
| 5095 | * possible or committing the transaction. If flush is 0 then no attempts to |
| 5096 | * regain reservations will be made and this will fail if there is not enough |
| 5097 | * space already. |
| 5098 | */ |
| 5099 | static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, |
| 5100 | struct btrfs_space_info *space_info, |
| 5101 | u64 orig_bytes, |
| 5102 | enum btrfs_reserve_flush_enum flush, |
| 5103 | bool system_chunk) |
| 5104 | { |
| 5105 | struct reserve_ticket ticket; |
| 5106 | u64 used; |
| 5107 | int ret = 0; |
| 5108 | |
| 5109 | ASSERT(orig_bytes); |
| 5110 | ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); |
| 5111 | |
| 5112 | spin_lock(&space_info->lock); |
| 5113 | ret = -ENOSPC; |
| 5114 | used = btrfs_space_info_used(space_info, true); |
| 5115 | |
| 5116 | /* |
| 5117 | * If we have enough space then hooray, make our reservation and carry |
| 5118 | * on. If not see if we can overcommit, and if we can, hooray carry on. |
| 5119 | * If not things get more complicated. |
| 5120 | */ |
| 5121 | if (used + orig_bytes <= space_info->total_bytes) { |
| 5122 | space_info->bytes_may_use += orig_bytes; |
| 5123 | trace_btrfs_space_reservation(fs_info, "space_info", |
| 5124 | space_info->flags, orig_bytes, 1); |
| 5125 | ret = 0; |
| 5126 | } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, |
| 5127 | system_chunk)) { |
| 5128 | space_info->bytes_may_use += orig_bytes; |
| 5129 | trace_btrfs_space_reservation(fs_info, "space_info", |
| 5130 | space_info->flags, orig_bytes, 1); |
| 5131 | ret = 0; |
| 5132 | } |
| 5133 | |
| 5134 | /* |
| 5135 | * If we couldn't make a reservation then setup our reservation ticket |
| 5136 | * and kick the async worker if it's not already running. |
| 5137 | * |
| 5138 | * If we are a priority flusher then we just need to add our ticket to |
| 5139 | * the list and we will do our own flushing further down. |
| 5140 | */ |
| 5141 | if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { |
| 5142 | ticket.bytes = orig_bytes; |
| 5143 | ticket.error = 0; |
| 5144 | init_waitqueue_head(&ticket.wait); |
| 5145 | if (flush == BTRFS_RESERVE_FLUSH_ALL) { |
| 5146 | list_add_tail(&ticket.list, &space_info->tickets); |
| 5147 | if (!space_info->flush) { |
| 5148 | space_info->flush = 1; |
| 5149 | trace_btrfs_trigger_flush(fs_info, |
| 5150 | space_info->flags, |
| 5151 | orig_bytes, flush, |
| 5152 | "enospc"); |
| 5153 | queue_work(system_unbound_wq, |
| 5154 | &fs_info->async_reclaim_work); |
| 5155 | } |
| 5156 | } else { |
| 5157 | list_add_tail(&ticket.list, |
| 5158 | &space_info->priority_tickets); |
| 5159 | } |
| 5160 | } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { |
| 5161 | used += orig_bytes; |
| 5162 | /* |
| 5163 | * We will do the space reservation dance during log replay, |
| 5164 | * which means we won't have fs_info->fs_root set, so don't do |
| 5165 | * the async reclaim as we will panic. |
| 5166 | */ |
| 5167 | if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && |
| 5168 | need_do_async_reclaim(fs_info, space_info, |
| 5169 | used, system_chunk) && |
| 5170 | !work_busy(&fs_info->async_reclaim_work)) { |
| 5171 | trace_btrfs_trigger_flush(fs_info, space_info->flags, |
| 5172 | orig_bytes, flush, "preempt"); |
| 5173 | queue_work(system_unbound_wq, |
| 5174 | &fs_info->async_reclaim_work); |
| 5175 | } |
| 5176 | } |
| 5177 | spin_unlock(&space_info->lock); |
| 5178 | if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) |
| 5179 | return ret; |
| 5180 | |
| 5181 | if (flush == BTRFS_RESERVE_FLUSH_ALL) |
| 5182 | return wait_reserve_ticket(fs_info, space_info, &ticket, |
| 5183 | orig_bytes); |
| 5184 | |
| 5185 | ret = 0; |
| 5186 | priority_reclaim_metadata_space(fs_info, space_info, &ticket); |
| 5187 | spin_lock(&space_info->lock); |
| 5188 | if (ticket.bytes) { |
| 5189 | if (ticket.bytes < orig_bytes) { |
| 5190 | u64 num_bytes = orig_bytes - ticket.bytes; |
| 5191 | space_info->bytes_may_use -= num_bytes; |
| 5192 | trace_btrfs_space_reservation(fs_info, "space_info", |
| 5193 | space_info->flags, |
| 5194 | num_bytes, 0); |
| 5195 | |
| 5196 | } |
| 5197 | list_del_init(&ticket.list); |
| 5198 | ret = -ENOSPC; |
| 5199 | } |
| 5200 | spin_unlock(&space_info->lock); |
| 5201 | ASSERT(list_empty(&ticket.list)); |
| 5202 | return ret; |
| 5203 | } |
| 5204 | |
| 5205 | /** |
| 5206 | * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space |
| 5207 | * @root - the root we're allocating for |
| 5208 | * @block_rsv - the block_rsv we're allocating for |
| 5209 | * @orig_bytes - the number of bytes we want |
| 5210 | * @flush - whether or not we can flush to make our reservation |
| 5211 | * |
| 5212 | * This will reserve orgi_bytes number of bytes from the space info associated |
| 5213 | * with the block_rsv. If there is not enough space it will make an attempt to |
| 5214 | * flush out space to make room. It will do this by flushing delalloc if |
| 5215 | * possible or committing the transaction. If flush is 0 then no attempts to |
| 5216 | * regain reservations will be made and this will fail if there is not enough |
| 5217 | * space already. |
| 5218 | */ |
| 5219 | static int reserve_metadata_bytes(struct btrfs_root *root, |
| 5220 | struct btrfs_block_rsv *block_rsv, |
| 5221 | u64 orig_bytes, |
| 5222 | enum btrfs_reserve_flush_enum flush) |
| 5223 | { |
| 5224 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 5225 | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| 5226 | int ret; |
| 5227 | bool system_chunk = (root == fs_info->chunk_root); |
| 5228 | |
| 5229 | ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, |
| 5230 | orig_bytes, flush, system_chunk); |
| 5231 | if (ret == -ENOSPC && |
| 5232 | unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { |
| 5233 | if (block_rsv != global_rsv && |
| 5234 | !block_rsv_use_bytes(global_rsv, orig_bytes)) |
| 5235 | ret = 0; |
| 5236 | } |
| 5237 | if (ret == -ENOSPC) { |
| 5238 | trace_btrfs_space_reservation(fs_info, "space_info:enospc", |
| 5239 | block_rsv->space_info->flags, |
| 5240 | orig_bytes, 1); |
| 5241 | |
| 5242 | if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) |
| 5243 | dump_space_info(fs_info, block_rsv->space_info, |
| 5244 | orig_bytes, 0); |
| 5245 | } |
| 5246 | return ret; |
| 5247 | } |
| 5248 | |
| 5249 | static struct btrfs_block_rsv *get_block_rsv( |
| 5250 | const struct btrfs_trans_handle *trans, |
| 5251 | const struct btrfs_root *root) |
| 5252 | { |
| 5253 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 5254 | struct btrfs_block_rsv *block_rsv = NULL; |
| 5255 | |
| 5256 | if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || |
| 5257 | (root == fs_info->csum_root && trans->adding_csums) || |
| 5258 | (root == fs_info->uuid_root)) |
| 5259 | block_rsv = trans->block_rsv; |
| 5260 | |
| 5261 | if (!block_rsv) |
| 5262 | block_rsv = root->block_rsv; |
| 5263 | |
| 5264 | if (!block_rsv) |
| 5265 | block_rsv = &fs_info->empty_block_rsv; |
| 5266 | |
| 5267 | return block_rsv; |
| 5268 | } |
| 5269 | |
| 5270 | static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, |
| 5271 | u64 num_bytes) |
| 5272 | { |
| 5273 | int ret = -ENOSPC; |
| 5274 | spin_lock(&block_rsv->lock); |
| 5275 | if (block_rsv->reserved >= num_bytes) { |
| 5276 | block_rsv->reserved -= num_bytes; |
| 5277 | if (block_rsv->reserved < block_rsv->size) |
| 5278 | block_rsv->full = 0; |
| 5279 | ret = 0; |
| 5280 | } |
| 5281 | spin_unlock(&block_rsv->lock); |
| 5282 | return ret; |
| 5283 | } |
| 5284 | |
| 5285 | static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, |
| 5286 | u64 num_bytes, int update_size) |
| 5287 | { |
| 5288 | spin_lock(&block_rsv->lock); |
| 5289 | block_rsv->reserved += num_bytes; |
| 5290 | if (update_size) |
| 5291 | block_rsv->size += num_bytes; |
| 5292 | else if (block_rsv->reserved >= block_rsv->size) |
| 5293 | block_rsv->full = 1; |
| 5294 | spin_unlock(&block_rsv->lock); |
| 5295 | } |
| 5296 | |
| 5297 | int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, |
| 5298 | struct btrfs_block_rsv *dest, u64 num_bytes, |
| 5299 | int min_factor) |
| 5300 | { |
| 5301 | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| 5302 | u64 min_bytes; |
| 5303 | |
| 5304 | if (global_rsv->space_info != dest->space_info) |
| 5305 | return -ENOSPC; |
| 5306 | |
| 5307 | spin_lock(&global_rsv->lock); |
| 5308 | min_bytes = div_factor(global_rsv->size, min_factor); |
| 5309 | if (global_rsv->reserved < min_bytes + num_bytes) { |
| 5310 | spin_unlock(&global_rsv->lock); |
| 5311 | return -ENOSPC; |
| 5312 | } |
| 5313 | global_rsv->reserved -= num_bytes; |
| 5314 | if (global_rsv->reserved < global_rsv->size) |
| 5315 | global_rsv->full = 0; |
| 5316 | spin_unlock(&global_rsv->lock); |
| 5317 | |
| 5318 | block_rsv_add_bytes(dest, num_bytes, 1); |
| 5319 | return 0; |
| 5320 | } |
| 5321 | |
| 5322 | /* |
| 5323 | * This is for space we already have accounted in space_info->bytes_may_use, so |
| 5324 | * basically when we're returning space from block_rsv's. |
| 5325 | */ |
| 5326 | static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, |
| 5327 | struct btrfs_space_info *space_info, |
| 5328 | u64 num_bytes) |
| 5329 | { |
| 5330 | struct reserve_ticket *ticket; |
| 5331 | struct list_head *head; |
| 5332 | u64 used; |
| 5333 | enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; |
| 5334 | bool check_overcommit = false; |
| 5335 | |
| 5336 | spin_lock(&space_info->lock); |
| 5337 | head = &space_info->priority_tickets; |
| 5338 | |
| 5339 | /* |
| 5340 | * If we are over our limit then we need to check and see if we can |
| 5341 | * overcommit, and if we can't then we just need to free up our space |
| 5342 | * and not satisfy any requests. |
| 5343 | */ |
| 5344 | used = btrfs_space_info_used(space_info, true); |
| 5345 | if (used - num_bytes >= space_info->total_bytes) |
| 5346 | check_overcommit = true; |
| 5347 | again: |
| 5348 | while (!list_empty(head) && num_bytes) { |
| 5349 | ticket = list_first_entry(head, struct reserve_ticket, |
| 5350 | list); |
| 5351 | /* |
| 5352 | * We use 0 bytes because this space is already reserved, so |
| 5353 | * adding the ticket space would be a double count. |
| 5354 | */ |
| 5355 | if (check_overcommit && |
| 5356 | !can_overcommit(fs_info, space_info, 0, flush, false)) |
| 5357 | break; |
| 5358 | if (num_bytes >= ticket->bytes) { |
| 5359 | list_del_init(&ticket->list); |
| 5360 | num_bytes -= ticket->bytes; |
| 5361 | ticket->bytes = 0; |
| 5362 | space_info->tickets_id++; |
| 5363 | wake_up(&ticket->wait); |
| 5364 | } else { |
| 5365 | ticket->bytes -= num_bytes; |
| 5366 | num_bytes = 0; |
| 5367 | } |
| 5368 | } |
| 5369 | |
| 5370 | if (num_bytes && head == &space_info->priority_tickets) { |
| 5371 | head = &space_info->tickets; |
| 5372 | flush = BTRFS_RESERVE_FLUSH_ALL; |
| 5373 | goto again; |
| 5374 | } |
| 5375 | space_info->bytes_may_use -= num_bytes; |
| 5376 | trace_btrfs_space_reservation(fs_info, "space_info", |
| 5377 | space_info->flags, num_bytes, 0); |
| 5378 | spin_unlock(&space_info->lock); |
| 5379 | } |
| 5380 | |
| 5381 | /* |
| 5382 | * This is for newly allocated space that isn't accounted in |
| 5383 | * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent |
| 5384 | * we use this helper. |
| 5385 | */ |
| 5386 | static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, |
| 5387 | struct btrfs_space_info *space_info, |
| 5388 | u64 num_bytes) |
| 5389 | { |
| 5390 | struct reserve_ticket *ticket; |
| 5391 | struct list_head *head = &space_info->priority_tickets; |
| 5392 | |
| 5393 | again: |
| 5394 | while (!list_empty(head) && num_bytes) { |
| 5395 | ticket = list_first_entry(head, struct reserve_ticket, |
| 5396 | list); |
| 5397 | if (num_bytes >= ticket->bytes) { |
| 5398 | trace_btrfs_space_reservation(fs_info, "space_info", |
| 5399 | space_info->flags, |
| 5400 | ticket->bytes, 1); |
| 5401 | list_del_init(&ticket->list); |
| 5402 | num_bytes -= ticket->bytes; |
| 5403 | space_info->bytes_may_use += ticket->bytes; |
| 5404 | ticket->bytes = 0; |
| 5405 | space_info->tickets_id++; |
| 5406 | wake_up(&ticket->wait); |
| 5407 | } else { |
| 5408 | trace_btrfs_space_reservation(fs_info, "space_info", |
| 5409 | space_info->flags, |
| 5410 | num_bytes, 1); |
| 5411 | space_info->bytes_may_use += num_bytes; |
| 5412 | ticket->bytes -= num_bytes; |
| 5413 | num_bytes = 0; |
| 5414 | } |
| 5415 | } |
| 5416 | |
| 5417 | if (num_bytes && head == &space_info->priority_tickets) { |
| 5418 | head = &space_info->tickets; |
| 5419 | goto again; |
| 5420 | } |
| 5421 | } |
| 5422 | |
| 5423 | static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, |
| 5424 | struct btrfs_block_rsv *block_rsv, |
| 5425 | struct btrfs_block_rsv *dest, u64 num_bytes, |
| 5426 | u64 *qgroup_to_release_ret) |
| 5427 | { |
| 5428 | struct btrfs_space_info *space_info = block_rsv->space_info; |
| 5429 | u64 qgroup_to_release = 0; |
| 5430 | u64 ret; |
| 5431 | |
| 5432 | spin_lock(&block_rsv->lock); |
| 5433 | if (num_bytes == (u64)-1) { |
| 5434 | num_bytes = block_rsv->size; |
| 5435 | qgroup_to_release = block_rsv->qgroup_rsv_size; |
| 5436 | } |
| 5437 | block_rsv->size -= num_bytes; |
| 5438 | if (block_rsv->reserved >= block_rsv->size) { |
| 5439 | num_bytes = block_rsv->reserved - block_rsv->size; |
| 5440 | block_rsv->reserved = block_rsv->size; |
| 5441 | block_rsv->full = 1; |
| 5442 | } else { |
| 5443 | num_bytes = 0; |
| 5444 | } |
| 5445 | if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { |
| 5446 | qgroup_to_release = block_rsv->qgroup_rsv_reserved - |
| 5447 | block_rsv->qgroup_rsv_size; |
| 5448 | block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; |
| 5449 | } else { |
| 5450 | qgroup_to_release = 0; |
| 5451 | } |
| 5452 | spin_unlock(&block_rsv->lock); |
| 5453 | |
| 5454 | ret = num_bytes; |
| 5455 | if (num_bytes > 0) { |
| 5456 | if (dest) { |
| 5457 | spin_lock(&dest->lock); |
| 5458 | if (!dest->full) { |
| 5459 | u64 bytes_to_add; |
| 5460 | |
| 5461 | bytes_to_add = dest->size - dest->reserved; |
| 5462 | bytes_to_add = min(num_bytes, bytes_to_add); |
| 5463 | dest->reserved += bytes_to_add; |
| 5464 | if (dest->reserved >= dest->size) |
| 5465 | dest->full = 1; |
| 5466 | num_bytes -= bytes_to_add; |
| 5467 | } |
| 5468 | spin_unlock(&dest->lock); |
| 5469 | } |
| 5470 | if (num_bytes) |
| 5471 | space_info_add_old_bytes(fs_info, space_info, |
| 5472 | num_bytes); |
| 5473 | } |
| 5474 | if (qgroup_to_release_ret) |
| 5475 | *qgroup_to_release_ret = qgroup_to_release; |
| 5476 | return ret; |
| 5477 | } |
| 5478 | |
| 5479 | int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, |
| 5480 | struct btrfs_block_rsv *dst, u64 num_bytes, |
| 5481 | int update_size) |
| 5482 | { |
| 5483 | int ret; |
| 5484 | |
| 5485 | ret = block_rsv_use_bytes(src, num_bytes); |
| 5486 | if (ret) |
| 5487 | return ret; |
| 5488 | |
| 5489 | block_rsv_add_bytes(dst, num_bytes, update_size); |
| 5490 | return 0; |
| 5491 | } |
| 5492 | |
| 5493 | void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) |
| 5494 | { |
| 5495 | memset(rsv, 0, sizeof(*rsv)); |
| 5496 | spin_lock_init(&rsv->lock); |
| 5497 | rsv->type = type; |
| 5498 | } |
| 5499 | |
| 5500 | void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, |
| 5501 | struct btrfs_block_rsv *rsv, |
| 5502 | unsigned short type) |
| 5503 | { |
| 5504 | btrfs_init_block_rsv(rsv, type); |
| 5505 | rsv->space_info = __find_space_info(fs_info, |
| 5506 | BTRFS_BLOCK_GROUP_METADATA); |
| 5507 | } |
| 5508 | |
| 5509 | struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, |
| 5510 | unsigned short type) |
| 5511 | { |
| 5512 | struct btrfs_block_rsv *block_rsv; |
| 5513 | |
| 5514 | block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); |
| 5515 | if (!block_rsv) |
| 5516 | return NULL; |
| 5517 | |
| 5518 | btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); |
| 5519 | return block_rsv; |
| 5520 | } |
| 5521 | |
| 5522 | void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, |
| 5523 | struct btrfs_block_rsv *rsv) |
| 5524 | { |
| 5525 | if (!rsv) |
| 5526 | return; |
| 5527 | btrfs_block_rsv_release(fs_info, rsv, (u64)-1); |
| 5528 | kfree(rsv); |
| 5529 | } |
| 5530 | |
| 5531 | int btrfs_block_rsv_add(struct btrfs_root *root, |
| 5532 | struct btrfs_block_rsv *block_rsv, u64 num_bytes, |
| 5533 | enum btrfs_reserve_flush_enum flush) |
| 5534 | { |
| 5535 | int ret; |
| 5536 | |
| 5537 | if (num_bytes == 0) |
| 5538 | return 0; |
| 5539 | |
| 5540 | ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); |
| 5541 | if (!ret) { |
| 5542 | block_rsv_add_bytes(block_rsv, num_bytes, 1); |
| 5543 | return 0; |
| 5544 | } |
| 5545 | |
| 5546 | return ret; |
| 5547 | } |
| 5548 | |
| 5549 | int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) |
| 5550 | { |
| 5551 | u64 num_bytes = 0; |
| 5552 | int ret = -ENOSPC; |
| 5553 | |
| 5554 | if (!block_rsv) |
| 5555 | return 0; |
| 5556 | |
| 5557 | spin_lock(&block_rsv->lock); |
| 5558 | num_bytes = div_factor(block_rsv->size, min_factor); |
| 5559 | if (block_rsv->reserved >= num_bytes) |
| 5560 | ret = 0; |
| 5561 | spin_unlock(&block_rsv->lock); |
| 5562 | |
| 5563 | return ret; |
| 5564 | } |
| 5565 | |
| 5566 | int btrfs_block_rsv_refill(struct btrfs_root *root, |
| 5567 | struct btrfs_block_rsv *block_rsv, u64 min_reserved, |
| 5568 | enum btrfs_reserve_flush_enum flush) |
| 5569 | { |
| 5570 | u64 num_bytes = 0; |
| 5571 | int ret = -ENOSPC; |
| 5572 | |
| 5573 | if (!block_rsv) |
| 5574 | return 0; |
| 5575 | |
| 5576 | spin_lock(&block_rsv->lock); |
| 5577 | num_bytes = min_reserved; |
| 5578 | if (block_rsv->reserved >= num_bytes) |
| 5579 | ret = 0; |
| 5580 | else |
| 5581 | num_bytes -= block_rsv->reserved; |
| 5582 | spin_unlock(&block_rsv->lock); |
| 5583 | |
| 5584 | if (!ret) |
| 5585 | return 0; |
| 5586 | |
| 5587 | ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); |
| 5588 | if (!ret) { |
| 5589 | block_rsv_add_bytes(block_rsv, num_bytes, 0); |
| 5590 | return 0; |
| 5591 | } |
| 5592 | |
| 5593 | return ret; |
| 5594 | } |
| 5595 | |
| 5596 | /** |
| 5597 | * btrfs_inode_rsv_refill - refill the inode block rsv. |
| 5598 | * @inode - the inode we are refilling. |
| 5599 | * @flush - the flusing restriction. |
| 5600 | * |
| 5601 | * Essentially the same as btrfs_block_rsv_refill, except it uses the |
| 5602 | * block_rsv->size as the minimum size. We'll either refill the missing amount |
| 5603 | * or return if we already have enough space. This will also handle the resreve |
| 5604 | * tracepoint for the reserved amount. |
| 5605 | */ |
| 5606 | static int btrfs_inode_rsv_refill(struct btrfs_inode *inode, |
| 5607 | enum btrfs_reserve_flush_enum flush) |
| 5608 | { |
| 5609 | struct btrfs_root *root = inode->root; |
| 5610 | struct btrfs_block_rsv *block_rsv = &inode->block_rsv; |
| 5611 | u64 num_bytes = 0; |
| 5612 | u64 qgroup_num_bytes = 0; |
| 5613 | int ret = -ENOSPC; |
| 5614 | |
| 5615 | spin_lock(&block_rsv->lock); |
| 5616 | if (block_rsv->reserved < block_rsv->size) |
| 5617 | num_bytes = block_rsv->size - block_rsv->reserved; |
| 5618 | if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size) |
| 5619 | qgroup_num_bytes = block_rsv->qgroup_rsv_size - |
| 5620 | block_rsv->qgroup_rsv_reserved; |
| 5621 | spin_unlock(&block_rsv->lock); |
| 5622 | |
| 5623 | if (num_bytes == 0) |
| 5624 | return 0; |
| 5625 | |
| 5626 | ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true); |
| 5627 | if (ret) |
| 5628 | return ret; |
| 5629 | ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); |
| 5630 | if (!ret) { |
| 5631 | block_rsv_add_bytes(block_rsv, num_bytes, 0); |
| 5632 | trace_btrfs_space_reservation(root->fs_info, "delalloc", |
| 5633 | btrfs_ino(inode), num_bytes, 1); |
| 5634 | |
| 5635 | /* Don't forget to increase qgroup_rsv_reserved */ |
| 5636 | spin_lock(&block_rsv->lock); |
| 5637 | block_rsv->qgroup_rsv_reserved += qgroup_num_bytes; |
| 5638 | spin_unlock(&block_rsv->lock); |
| 5639 | } else |
| 5640 | btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); |
| 5641 | return ret; |
| 5642 | } |
| 5643 | |
| 5644 | /** |
| 5645 | * btrfs_inode_rsv_release - release any excessive reservation. |
| 5646 | * @inode - the inode we need to release from. |
| 5647 | * @qgroup_free - free or convert qgroup meta. |
| 5648 | * Unlike normal operation, qgroup meta reservation needs to know if we are |
| 5649 | * freeing qgroup reservation or just converting it into per-trans. Normally |
| 5650 | * @qgroup_free is true for error handling, and false for normal release. |
| 5651 | * |
| 5652 | * This is the same as btrfs_block_rsv_release, except that it handles the |
| 5653 | * tracepoint for the reservation. |
| 5654 | */ |
| 5655 | static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) |
| 5656 | { |
| 5657 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 5658 | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| 5659 | struct btrfs_block_rsv *block_rsv = &inode->block_rsv; |
| 5660 | u64 released = 0; |
| 5661 | u64 qgroup_to_release = 0; |
| 5662 | |
| 5663 | /* |
| 5664 | * Since we statically set the block_rsv->size we just want to say we |
| 5665 | * are releasing 0 bytes, and then we'll just get the reservation over |
| 5666 | * the size free'd. |
| 5667 | */ |
| 5668 | released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0, |
| 5669 | &qgroup_to_release); |
| 5670 | if (released > 0) |
| 5671 | trace_btrfs_space_reservation(fs_info, "delalloc", |
| 5672 | btrfs_ino(inode), released, 0); |
| 5673 | if (qgroup_free) |
| 5674 | btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); |
| 5675 | else |
| 5676 | btrfs_qgroup_convert_reserved_meta(inode->root, |
| 5677 | qgroup_to_release); |
| 5678 | } |
| 5679 | |
| 5680 | void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, |
| 5681 | struct btrfs_block_rsv *block_rsv, |
| 5682 | u64 num_bytes) |
| 5683 | { |
| 5684 | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| 5685 | |
| 5686 | if (global_rsv == block_rsv || |
| 5687 | block_rsv->space_info != global_rsv->space_info) |
| 5688 | global_rsv = NULL; |
| 5689 | block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL); |
| 5690 | } |
| 5691 | |
| 5692 | static void update_global_block_rsv(struct btrfs_fs_info *fs_info) |
| 5693 | { |
| 5694 | struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; |
| 5695 | struct btrfs_space_info *sinfo = block_rsv->space_info; |
| 5696 | u64 num_bytes; |
| 5697 | |
| 5698 | /* |
| 5699 | * The global block rsv is based on the size of the extent tree, the |
| 5700 | * checksum tree and the root tree. If the fs is empty we want to set |
| 5701 | * it to a minimal amount for safety. |
| 5702 | */ |
| 5703 | num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + |
| 5704 | btrfs_root_used(&fs_info->csum_root->root_item) + |
| 5705 | btrfs_root_used(&fs_info->tree_root->root_item); |
| 5706 | num_bytes = max_t(u64, num_bytes, SZ_16M); |
| 5707 | |
| 5708 | spin_lock(&sinfo->lock); |
| 5709 | spin_lock(&block_rsv->lock); |
| 5710 | |
| 5711 | block_rsv->size = min_t(u64, num_bytes, SZ_512M); |
| 5712 | |
| 5713 | if (block_rsv->reserved < block_rsv->size) { |
| 5714 | num_bytes = btrfs_space_info_used(sinfo, true); |
| 5715 | if (sinfo->total_bytes > num_bytes) { |
| 5716 | num_bytes = sinfo->total_bytes - num_bytes; |
| 5717 | num_bytes = min(num_bytes, |
| 5718 | block_rsv->size - block_rsv->reserved); |
| 5719 | block_rsv->reserved += num_bytes; |
| 5720 | sinfo->bytes_may_use += num_bytes; |
| 5721 | trace_btrfs_space_reservation(fs_info, "space_info", |
| 5722 | sinfo->flags, num_bytes, |
| 5723 | 1); |
| 5724 | } |
| 5725 | } else if (block_rsv->reserved > block_rsv->size) { |
| 5726 | num_bytes = block_rsv->reserved - block_rsv->size; |
| 5727 | sinfo->bytes_may_use -= num_bytes; |
| 5728 | trace_btrfs_space_reservation(fs_info, "space_info", |
| 5729 | sinfo->flags, num_bytes, 0); |
| 5730 | block_rsv->reserved = block_rsv->size; |
| 5731 | } |
| 5732 | |
| 5733 | if (block_rsv->reserved == block_rsv->size) |
| 5734 | block_rsv->full = 1; |
| 5735 | else |
| 5736 | block_rsv->full = 0; |
| 5737 | |
| 5738 | spin_unlock(&block_rsv->lock); |
| 5739 | spin_unlock(&sinfo->lock); |
| 5740 | } |
| 5741 | |
| 5742 | static void init_global_block_rsv(struct btrfs_fs_info *fs_info) |
| 5743 | { |
| 5744 | struct btrfs_space_info *space_info; |
| 5745 | |
| 5746 | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); |
| 5747 | fs_info->chunk_block_rsv.space_info = space_info; |
| 5748 | |
| 5749 | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); |
| 5750 | fs_info->global_block_rsv.space_info = space_info; |
| 5751 | fs_info->trans_block_rsv.space_info = space_info; |
| 5752 | fs_info->empty_block_rsv.space_info = space_info; |
| 5753 | fs_info->delayed_block_rsv.space_info = space_info; |
| 5754 | |
| 5755 | fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; |
| 5756 | fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; |
| 5757 | fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; |
| 5758 | fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; |
| 5759 | if (fs_info->quota_root) |
| 5760 | fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; |
| 5761 | fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; |
| 5762 | |
| 5763 | update_global_block_rsv(fs_info); |
| 5764 | } |
| 5765 | |
| 5766 | static void release_global_block_rsv(struct btrfs_fs_info *fs_info) |
| 5767 | { |
| 5768 | block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, |
| 5769 | (u64)-1, NULL); |
| 5770 | WARN_ON(fs_info->trans_block_rsv.size > 0); |
| 5771 | WARN_ON(fs_info->trans_block_rsv.reserved > 0); |
| 5772 | WARN_ON(fs_info->chunk_block_rsv.size > 0); |
| 5773 | WARN_ON(fs_info->chunk_block_rsv.reserved > 0); |
| 5774 | WARN_ON(fs_info->delayed_block_rsv.size > 0); |
| 5775 | WARN_ON(fs_info->delayed_block_rsv.reserved > 0); |
| 5776 | } |
| 5777 | |
| 5778 | |
| 5779 | /* |
| 5780 | * To be called after all the new block groups attached to the transaction |
| 5781 | * handle have been created (btrfs_create_pending_block_groups()). |
| 5782 | */ |
| 5783 | void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) |
| 5784 | { |
| 5785 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 5786 | |
| 5787 | if (!trans->chunk_bytes_reserved) |
| 5788 | return; |
| 5789 | |
| 5790 | WARN_ON_ONCE(!list_empty(&trans->new_bgs)); |
| 5791 | |
| 5792 | block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, |
| 5793 | trans->chunk_bytes_reserved, NULL); |
| 5794 | trans->chunk_bytes_reserved = 0; |
| 5795 | } |
| 5796 | |
| 5797 | /* |
| 5798 | * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation |
| 5799 | * root: the root of the parent directory |
| 5800 | * rsv: block reservation |
| 5801 | * items: the number of items that we need do reservation |
| 5802 | * use_global_rsv: allow fallback to the global block reservation |
| 5803 | * |
| 5804 | * This function is used to reserve the space for snapshot/subvolume |
| 5805 | * creation and deletion. Those operations are different with the |
| 5806 | * common file/directory operations, they change two fs/file trees |
| 5807 | * and root tree, the number of items that the qgroup reserves is |
| 5808 | * different with the free space reservation. So we can not use |
| 5809 | * the space reservation mechanism in start_transaction(). |
| 5810 | */ |
| 5811 | int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, |
| 5812 | struct btrfs_block_rsv *rsv, int items, |
| 5813 | bool use_global_rsv) |
| 5814 | { |
| 5815 | u64 qgroup_num_bytes = 0; |
| 5816 | u64 num_bytes; |
| 5817 | int ret; |
| 5818 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 5819 | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| 5820 | |
| 5821 | if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { |
| 5822 | /* One for parent inode, two for dir entries */ |
| 5823 | qgroup_num_bytes = 3 * fs_info->nodesize; |
| 5824 | ret = btrfs_qgroup_reserve_meta_prealloc(root, |
| 5825 | qgroup_num_bytes, true); |
| 5826 | if (ret) |
| 5827 | return ret; |
| 5828 | } |
| 5829 | |
| 5830 | num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); |
| 5831 | rsv->space_info = __find_space_info(fs_info, |
| 5832 | BTRFS_BLOCK_GROUP_METADATA); |
| 5833 | ret = btrfs_block_rsv_add(root, rsv, num_bytes, |
| 5834 | BTRFS_RESERVE_FLUSH_ALL); |
| 5835 | |
| 5836 | if (ret == -ENOSPC && use_global_rsv) |
| 5837 | ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); |
| 5838 | |
| 5839 | if (ret && qgroup_num_bytes) |
| 5840 | btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); |
| 5841 | |
| 5842 | return ret; |
| 5843 | } |
| 5844 | |
| 5845 | void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, |
| 5846 | struct btrfs_block_rsv *rsv) |
| 5847 | { |
| 5848 | btrfs_block_rsv_release(fs_info, rsv, (u64)-1); |
| 5849 | } |
| 5850 | |
| 5851 | static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, |
| 5852 | struct btrfs_inode *inode) |
| 5853 | { |
| 5854 | struct btrfs_block_rsv *block_rsv = &inode->block_rsv; |
| 5855 | u64 reserve_size = 0; |
| 5856 | u64 qgroup_rsv_size = 0; |
| 5857 | u64 csum_leaves; |
| 5858 | unsigned outstanding_extents; |
| 5859 | |
| 5860 | lockdep_assert_held(&inode->lock); |
| 5861 | outstanding_extents = inode->outstanding_extents; |
| 5862 | if (outstanding_extents) |
| 5863 | reserve_size = btrfs_calc_trans_metadata_size(fs_info, |
| 5864 | outstanding_extents + 1); |
| 5865 | csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, |
| 5866 | inode->csum_bytes); |
| 5867 | reserve_size += btrfs_calc_trans_metadata_size(fs_info, |
| 5868 | csum_leaves); |
| 5869 | /* |
| 5870 | * For qgroup rsv, the calculation is very simple: |
| 5871 | * account one nodesize for each outstanding extent |
| 5872 | * |
| 5873 | * This is overestimating in most cases. |
| 5874 | */ |
| 5875 | qgroup_rsv_size = outstanding_extents * fs_info->nodesize; |
| 5876 | |
| 5877 | spin_lock(&block_rsv->lock); |
| 5878 | block_rsv->size = reserve_size; |
| 5879 | block_rsv->qgroup_rsv_size = qgroup_rsv_size; |
| 5880 | spin_unlock(&block_rsv->lock); |
| 5881 | } |
| 5882 | |
| 5883 | int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) |
| 5884 | { |
| 5885 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 5886 | unsigned nr_extents; |
| 5887 | enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; |
| 5888 | int ret = 0; |
| 5889 | bool delalloc_lock = true; |
| 5890 | |
| 5891 | /* If we are a free space inode we need to not flush since we will be in |
| 5892 | * the middle of a transaction commit. We also don't need the delalloc |
| 5893 | * mutex since we won't race with anybody. We need this mostly to make |
| 5894 | * lockdep shut its filthy mouth. |
| 5895 | * |
| 5896 | * If we have a transaction open (can happen if we call truncate_block |
| 5897 | * from truncate), then we need FLUSH_LIMIT so we don't deadlock. |
| 5898 | */ |
| 5899 | if (btrfs_is_free_space_inode(inode)) { |
| 5900 | flush = BTRFS_RESERVE_NO_FLUSH; |
| 5901 | delalloc_lock = false; |
| 5902 | } else { |
| 5903 | if (current->journal_info) |
| 5904 | flush = BTRFS_RESERVE_FLUSH_LIMIT; |
| 5905 | |
| 5906 | if (btrfs_transaction_in_commit(fs_info)) |
| 5907 | schedule_timeout(1); |
| 5908 | } |
| 5909 | |
| 5910 | if (delalloc_lock) |
| 5911 | mutex_lock(&inode->delalloc_mutex); |
| 5912 | |
| 5913 | num_bytes = ALIGN(num_bytes, fs_info->sectorsize); |
| 5914 | |
| 5915 | /* Add our new extents and calculate the new rsv size. */ |
| 5916 | spin_lock(&inode->lock); |
| 5917 | nr_extents = count_max_extents(num_bytes); |
| 5918 | btrfs_mod_outstanding_extents(inode, nr_extents); |
| 5919 | inode->csum_bytes += num_bytes; |
| 5920 | btrfs_calculate_inode_block_rsv_size(fs_info, inode); |
| 5921 | spin_unlock(&inode->lock); |
| 5922 | |
| 5923 | ret = btrfs_inode_rsv_refill(inode, flush); |
| 5924 | if (unlikely(ret)) |
| 5925 | goto out_fail; |
| 5926 | |
| 5927 | if (delalloc_lock) |
| 5928 | mutex_unlock(&inode->delalloc_mutex); |
| 5929 | return 0; |
| 5930 | |
| 5931 | out_fail: |
| 5932 | spin_lock(&inode->lock); |
| 5933 | nr_extents = count_max_extents(num_bytes); |
| 5934 | btrfs_mod_outstanding_extents(inode, -nr_extents); |
| 5935 | inode->csum_bytes -= num_bytes; |
| 5936 | btrfs_calculate_inode_block_rsv_size(fs_info, inode); |
| 5937 | spin_unlock(&inode->lock); |
| 5938 | |
| 5939 | btrfs_inode_rsv_release(inode, true); |
| 5940 | if (delalloc_lock) |
| 5941 | mutex_unlock(&inode->delalloc_mutex); |
| 5942 | return ret; |
| 5943 | } |
| 5944 | |
| 5945 | /** |
| 5946 | * btrfs_delalloc_release_metadata - release a metadata reservation for an inode |
| 5947 | * @inode: the inode to release the reservation for. |
| 5948 | * @num_bytes: the number of bytes we are releasing. |
| 5949 | * @qgroup_free: free qgroup reservation or convert it to per-trans reservation |
| 5950 | * |
| 5951 | * This will release the metadata reservation for an inode. This can be called |
| 5952 | * once we complete IO for a given set of bytes to release their metadata |
| 5953 | * reservations, or on error for the same reason. |
| 5954 | */ |
| 5955 | void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, |
| 5956 | bool qgroup_free) |
| 5957 | { |
| 5958 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 5959 | |
| 5960 | num_bytes = ALIGN(num_bytes, fs_info->sectorsize); |
| 5961 | spin_lock(&inode->lock); |
| 5962 | inode->csum_bytes -= num_bytes; |
| 5963 | btrfs_calculate_inode_block_rsv_size(fs_info, inode); |
| 5964 | spin_unlock(&inode->lock); |
| 5965 | |
| 5966 | if (btrfs_is_testing(fs_info)) |
| 5967 | return; |
| 5968 | |
| 5969 | btrfs_inode_rsv_release(inode, qgroup_free); |
| 5970 | } |
| 5971 | |
| 5972 | /** |
| 5973 | * btrfs_delalloc_release_extents - release our outstanding_extents |
| 5974 | * @inode: the inode to balance the reservation for. |
| 5975 | * @num_bytes: the number of bytes we originally reserved with |
| 5976 | * @qgroup_free: do we need to free qgroup meta reservation or convert them. |
| 5977 | * |
| 5978 | * When we reserve space we increase outstanding_extents for the extents we may |
| 5979 | * add. Once we've set the range as delalloc or created our ordered extents we |
| 5980 | * have outstanding_extents to track the real usage, so we use this to free our |
| 5981 | * temporarily tracked outstanding_extents. This _must_ be used in conjunction |
| 5982 | * with btrfs_delalloc_reserve_metadata. |
| 5983 | */ |
| 5984 | void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes, |
| 5985 | bool qgroup_free) |
| 5986 | { |
| 5987 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 5988 | unsigned num_extents; |
| 5989 | |
| 5990 | spin_lock(&inode->lock); |
| 5991 | num_extents = count_max_extents(num_bytes); |
| 5992 | btrfs_mod_outstanding_extents(inode, -num_extents); |
| 5993 | btrfs_calculate_inode_block_rsv_size(fs_info, inode); |
| 5994 | spin_unlock(&inode->lock); |
| 5995 | |
| 5996 | if (btrfs_is_testing(fs_info)) |
| 5997 | return; |
| 5998 | |
| 5999 | btrfs_inode_rsv_release(inode, qgroup_free); |
| 6000 | } |
| 6001 | |
| 6002 | /** |
| 6003 | * btrfs_delalloc_reserve_space - reserve data and metadata space for |
| 6004 | * delalloc |
| 6005 | * @inode: inode we're writing to |
| 6006 | * @start: start range we are writing to |
| 6007 | * @len: how long the range we are writing to |
| 6008 | * @reserved: mandatory parameter, record actually reserved qgroup ranges of |
| 6009 | * current reservation. |
| 6010 | * |
| 6011 | * This will do the following things |
| 6012 | * |
| 6013 | * o reserve space in data space info for num bytes |
| 6014 | * and reserve precious corresponding qgroup space |
| 6015 | * (Done in check_data_free_space) |
| 6016 | * |
| 6017 | * o reserve space for metadata space, based on the number of outstanding |
| 6018 | * extents and how much csums will be needed |
| 6019 | * also reserve metadata space in a per root over-reserve method. |
| 6020 | * o add to the inodes->delalloc_bytes |
| 6021 | * o add it to the fs_info's delalloc inodes list. |
| 6022 | * (Above 3 all done in delalloc_reserve_metadata) |
| 6023 | * |
| 6024 | * Return 0 for success |
| 6025 | * Return <0 for error(-ENOSPC or -EQUOT) |
| 6026 | */ |
| 6027 | int btrfs_delalloc_reserve_space(struct inode *inode, |
| 6028 | struct extent_changeset **reserved, u64 start, u64 len) |
| 6029 | { |
| 6030 | int ret; |
| 6031 | |
| 6032 | ret = btrfs_check_data_free_space(inode, reserved, start, len); |
| 6033 | if (ret < 0) |
| 6034 | return ret; |
| 6035 | ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); |
| 6036 | if (ret < 0) |
| 6037 | btrfs_free_reserved_data_space(inode, *reserved, start, len); |
| 6038 | return ret; |
| 6039 | } |
| 6040 | |
| 6041 | /** |
| 6042 | * btrfs_delalloc_release_space - release data and metadata space for delalloc |
| 6043 | * @inode: inode we're releasing space for |
| 6044 | * @start: start position of the space already reserved |
| 6045 | * @len: the len of the space already reserved |
| 6046 | * @release_bytes: the len of the space we consumed or didn't use |
| 6047 | * |
| 6048 | * This function will release the metadata space that was not used and will |
| 6049 | * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes |
| 6050 | * list if there are no delalloc bytes left. |
| 6051 | * Also it will handle the qgroup reserved space. |
| 6052 | */ |
| 6053 | void btrfs_delalloc_release_space(struct inode *inode, |
| 6054 | struct extent_changeset *reserved, |
| 6055 | u64 start, u64 len, bool qgroup_free) |
| 6056 | { |
| 6057 | btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free); |
| 6058 | btrfs_free_reserved_data_space(inode, reserved, start, len); |
| 6059 | } |
| 6060 | |
| 6061 | static int update_block_group(struct btrfs_trans_handle *trans, |
| 6062 | struct btrfs_fs_info *info, u64 bytenr, |
| 6063 | u64 num_bytes, int alloc) |
| 6064 | { |
| 6065 | struct btrfs_block_group_cache *cache = NULL; |
| 6066 | u64 total = num_bytes; |
| 6067 | u64 old_val; |
| 6068 | u64 byte_in_group; |
| 6069 | int factor; |
| 6070 | |
| 6071 | /* block accounting for super block */ |
| 6072 | spin_lock(&info->delalloc_root_lock); |
| 6073 | old_val = btrfs_super_bytes_used(info->super_copy); |
| 6074 | if (alloc) |
| 6075 | old_val += num_bytes; |
| 6076 | else |
| 6077 | old_val -= num_bytes; |
| 6078 | btrfs_set_super_bytes_used(info->super_copy, old_val); |
| 6079 | spin_unlock(&info->delalloc_root_lock); |
| 6080 | |
| 6081 | while (total) { |
| 6082 | cache = btrfs_lookup_block_group(info, bytenr); |
| 6083 | if (!cache) |
| 6084 | return -ENOENT; |
| 6085 | factor = btrfs_bg_type_to_factor(cache->flags); |
| 6086 | |
| 6087 | /* |
| 6088 | * If this block group has free space cache written out, we |
| 6089 | * need to make sure to load it if we are removing space. This |
| 6090 | * is because we need the unpinning stage to actually add the |
| 6091 | * space back to the block group, otherwise we will leak space. |
| 6092 | */ |
| 6093 | if (!alloc && cache->cached == BTRFS_CACHE_NO) |
| 6094 | cache_block_group(cache, 1); |
| 6095 | |
| 6096 | byte_in_group = bytenr - cache->key.objectid; |
| 6097 | WARN_ON(byte_in_group > cache->key.offset); |
| 6098 | |
| 6099 | spin_lock(&cache->space_info->lock); |
| 6100 | spin_lock(&cache->lock); |
| 6101 | |
| 6102 | if (btrfs_test_opt(info, SPACE_CACHE) && |
| 6103 | cache->disk_cache_state < BTRFS_DC_CLEAR) |
| 6104 | cache->disk_cache_state = BTRFS_DC_CLEAR; |
| 6105 | |
| 6106 | old_val = btrfs_block_group_used(&cache->item); |
| 6107 | num_bytes = min(total, cache->key.offset - byte_in_group); |
| 6108 | if (alloc) { |
| 6109 | old_val += num_bytes; |
| 6110 | btrfs_set_block_group_used(&cache->item, old_val); |
| 6111 | cache->reserved -= num_bytes; |
| 6112 | cache->space_info->bytes_reserved -= num_bytes; |
| 6113 | cache->space_info->bytes_used += num_bytes; |
| 6114 | cache->space_info->disk_used += num_bytes * factor; |
| 6115 | spin_unlock(&cache->lock); |
| 6116 | spin_unlock(&cache->space_info->lock); |
| 6117 | } else { |
| 6118 | old_val -= num_bytes; |
| 6119 | btrfs_set_block_group_used(&cache->item, old_val); |
| 6120 | cache->pinned += num_bytes; |
| 6121 | cache->space_info->bytes_pinned += num_bytes; |
| 6122 | cache->space_info->bytes_used -= num_bytes; |
| 6123 | cache->space_info->disk_used -= num_bytes * factor; |
| 6124 | spin_unlock(&cache->lock); |
| 6125 | spin_unlock(&cache->space_info->lock); |
| 6126 | |
| 6127 | trace_btrfs_space_reservation(info, "pinned", |
| 6128 | cache->space_info->flags, |
| 6129 | num_bytes, 1); |
| 6130 | percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, |
| 6131 | num_bytes, |
| 6132 | BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 6133 | set_extent_dirty(info->pinned_extents, |
| 6134 | bytenr, bytenr + num_bytes - 1, |
| 6135 | GFP_NOFS | __GFP_NOFAIL); |
| 6136 | } |
| 6137 | |
| 6138 | spin_lock(&trans->transaction->dirty_bgs_lock); |
| 6139 | if (list_empty(&cache->dirty_list)) { |
| 6140 | list_add_tail(&cache->dirty_list, |
| 6141 | &trans->transaction->dirty_bgs); |
| 6142 | trans->transaction->num_dirty_bgs++; |
| 6143 | btrfs_get_block_group(cache); |
| 6144 | } |
| 6145 | spin_unlock(&trans->transaction->dirty_bgs_lock); |
| 6146 | |
| 6147 | /* |
| 6148 | * No longer have used bytes in this block group, queue it for |
| 6149 | * deletion. We do this after adding the block group to the |
| 6150 | * dirty list to avoid races between cleaner kthread and space |
| 6151 | * cache writeout. |
| 6152 | */ |
| 6153 | if (!alloc && old_val == 0) |
| 6154 | btrfs_mark_bg_unused(cache); |
| 6155 | |
| 6156 | btrfs_put_block_group(cache); |
| 6157 | total -= num_bytes; |
| 6158 | bytenr += num_bytes; |
| 6159 | } |
| 6160 | return 0; |
| 6161 | } |
| 6162 | |
| 6163 | static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) |
| 6164 | { |
| 6165 | struct btrfs_block_group_cache *cache; |
| 6166 | u64 bytenr; |
| 6167 | |
| 6168 | spin_lock(&fs_info->block_group_cache_lock); |
| 6169 | bytenr = fs_info->first_logical_byte; |
| 6170 | spin_unlock(&fs_info->block_group_cache_lock); |
| 6171 | |
| 6172 | if (bytenr < (u64)-1) |
| 6173 | return bytenr; |
| 6174 | |
| 6175 | cache = btrfs_lookup_first_block_group(fs_info, search_start); |
| 6176 | if (!cache) |
| 6177 | return 0; |
| 6178 | |
| 6179 | bytenr = cache->key.objectid; |
| 6180 | btrfs_put_block_group(cache); |
| 6181 | |
| 6182 | return bytenr; |
| 6183 | } |
| 6184 | |
| 6185 | static int pin_down_extent(struct btrfs_fs_info *fs_info, |
| 6186 | struct btrfs_block_group_cache *cache, |
| 6187 | u64 bytenr, u64 num_bytes, int reserved) |
| 6188 | { |
| 6189 | spin_lock(&cache->space_info->lock); |
| 6190 | spin_lock(&cache->lock); |
| 6191 | cache->pinned += num_bytes; |
| 6192 | cache->space_info->bytes_pinned += num_bytes; |
| 6193 | if (reserved) { |
| 6194 | cache->reserved -= num_bytes; |
| 6195 | cache->space_info->bytes_reserved -= num_bytes; |
| 6196 | } |
| 6197 | spin_unlock(&cache->lock); |
| 6198 | spin_unlock(&cache->space_info->lock); |
| 6199 | |
| 6200 | trace_btrfs_space_reservation(fs_info, "pinned", |
| 6201 | cache->space_info->flags, num_bytes, 1); |
| 6202 | percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, |
| 6203 | num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 6204 | set_extent_dirty(fs_info->pinned_extents, bytenr, |
| 6205 | bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); |
| 6206 | return 0; |
| 6207 | } |
| 6208 | |
| 6209 | /* |
| 6210 | * this function must be called within transaction |
| 6211 | */ |
| 6212 | int btrfs_pin_extent(struct btrfs_fs_info *fs_info, |
| 6213 | u64 bytenr, u64 num_bytes, int reserved) |
| 6214 | { |
| 6215 | struct btrfs_block_group_cache *cache; |
| 6216 | |
| 6217 | cache = btrfs_lookup_block_group(fs_info, bytenr); |
| 6218 | BUG_ON(!cache); /* Logic error */ |
| 6219 | |
| 6220 | pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); |
| 6221 | |
| 6222 | btrfs_put_block_group(cache); |
| 6223 | return 0; |
| 6224 | } |
| 6225 | |
| 6226 | /* |
| 6227 | * this function must be called within transaction |
| 6228 | */ |
| 6229 | int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, |
| 6230 | u64 bytenr, u64 num_bytes) |
| 6231 | { |
| 6232 | struct btrfs_block_group_cache *cache; |
| 6233 | int ret; |
| 6234 | |
| 6235 | cache = btrfs_lookup_block_group(fs_info, bytenr); |
| 6236 | if (!cache) |
| 6237 | return -EINVAL; |
| 6238 | |
| 6239 | /* |
| 6240 | * pull in the free space cache (if any) so that our pin |
| 6241 | * removes the free space from the cache. We have load_only set |
| 6242 | * to one because the slow code to read in the free extents does check |
| 6243 | * the pinned extents. |
| 6244 | */ |
| 6245 | cache_block_group(cache, 1); |
| 6246 | |
| 6247 | pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); |
| 6248 | |
| 6249 | /* remove us from the free space cache (if we're there at all) */ |
| 6250 | ret = btrfs_remove_free_space(cache, bytenr, num_bytes); |
| 6251 | btrfs_put_block_group(cache); |
| 6252 | return ret; |
| 6253 | } |
| 6254 | |
| 6255 | static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, |
| 6256 | u64 start, u64 num_bytes) |
| 6257 | { |
| 6258 | int ret; |
| 6259 | struct btrfs_block_group_cache *block_group; |
| 6260 | struct btrfs_caching_control *caching_ctl; |
| 6261 | |
| 6262 | block_group = btrfs_lookup_block_group(fs_info, start); |
| 6263 | if (!block_group) |
| 6264 | return -EINVAL; |
| 6265 | |
| 6266 | cache_block_group(block_group, 0); |
| 6267 | caching_ctl = get_caching_control(block_group); |
| 6268 | |
| 6269 | if (!caching_ctl) { |
| 6270 | /* Logic error */ |
| 6271 | BUG_ON(!block_group_cache_done(block_group)); |
| 6272 | ret = btrfs_remove_free_space(block_group, start, num_bytes); |
| 6273 | } else { |
| 6274 | mutex_lock(&caching_ctl->mutex); |
| 6275 | |
| 6276 | if (start >= caching_ctl->progress) { |
| 6277 | ret = add_excluded_extent(fs_info, start, num_bytes); |
| 6278 | } else if (start + num_bytes <= caching_ctl->progress) { |
| 6279 | ret = btrfs_remove_free_space(block_group, |
| 6280 | start, num_bytes); |
| 6281 | } else { |
| 6282 | num_bytes = caching_ctl->progress - start; |
| 6283 | ret = btrfs_remove_free_space(block_group, |
| 6284 | start, num_bytes); |
| 6285 | if (ret) |
| 6286 | goto out_lock; |
| 6287 | |
| 6288 | num_bytes = (start + num_bytes) - |
| 6289 | caching_ctl->progress; |
| 6290 | start = caching_ctl->progress; |
| 6291 | ret = add_excluded_extent(fs_info, start, num_bytes); |
| 6292 | } |
| 6293 | out_lock: |
| 6294 | mutex_unlock(&caching_ctl->mutex); |
| 6295 | put_caching_control(caching_ctl); |
| 6296 | } |
| 6297 | btrfs_put_block_group(block_group); |
| 6298 | return ret; |
| 6299 | } |
| 6300 | |
| 6301 | int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, |
| 6302 | struct extent_buffer *eb) |
| 6303 | { |
| 6304 | struct btrfs_file_extent_item *item; |
| 6305 | struct btrfs_key key; |
| 6306 | int found_type; |
| 6307 | int i; |
| 6308 | int ret = 0; |
| 6309 | |
| 6310 | if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) |
| 6311 | return 0; |
| 6312 | |
| 6313 | for (i = 0; i < btrfs_header_nritems(eb); i++) { |
| 6314 | btrfs_item_key_to_cpu(eb, &key, i); |
| 6315 | if (key.type != BTRFS_EXTENT_DATA_KEY) |
| 6316 | continue; |
| 6317 | item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); |
| 6318 | found_type = btrfs_file_extent_type(eb, item); |
| 6319 | if (found_type == BTRFS_FILE_EXTENT_INLINE) |
| 6320 | continue; |
| 6321 | if (btrfs_file_extent_disk_bytenr(eb, item) == 0) |
| 6322 | continue; |
| 6323 | key.objectid = btrfs_file_extent_disk_bytenr(eb, item); |
| 6324 | key.offset = btrfs_file_extent_disk_num_bytes(eb, item); |
| 6325 | ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); |
| 6326 | if (ret) |
| 6327 | break; |
| 6328 | } |
| 6329 | |
| 6330 | return ret; |
| 6331 | } |
| 6332 | |
| 6333 | static void |
| 6334 | btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) |
| 6335 | { |
| 6336 | atomic_inc(&bg->reservations); |
| 6337 | } |
| 6338 | |
| 6339 | void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, |
| 6340 | const u64 start) |
| 6341 | { |
| 6342 | struct btrfs_block_group_cache *bg; |
| 6343 | |
| 6344 | bg = btrfs_lookup_block_group(fs_info, start); |
| 6345 | ASSERT(bg); |
| 6346 | if (atomic_dec_and_test(&bg->reservations)) |
| 6347 | wake_up_var(&bg->reservations); |
| 6348 | btrfs_put_block_group(bg); |
| 6349 | } |
| 6350 | |
| 6351 | void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) |
| 6352 | { |
| 6353 | struct btrfs_space_info *space_info = bg->space_info; |
| 6354 | |
| 6355 | ASSERT(bg->ro); |
| 6356 | |
| 6357 | if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) |
| 6358 | return; |
| 6359 | |
| 6360 | /* |
| 6361 | * Our block group is read only but before we set it to read only, |
| 6362 | * some task might have had allocated an extent from it already, but it |
| 6363 | * has not yet created a respective ordered extent (and added it to a |
| 6364 | * root's list of ordered extents). |
| 6365 | * Therefore wait for any task currently allocating extents, since the |
| 6366 | * block group's reservations counter is incremented while a read lock |
| 6367 | * on the groups' semaphore is held and decremented after releasing |
| 6368 | * the read access on that semaphore and creating the ordered extent. |
| 6369 | */ |
| 6370 | down_write(&space_info->groups_sem); |
| 6371 | up_write(&space_info->groups_sem); |
| 6372 | |
| 6373 | wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); |
| 6374 | } |
| 6375 | |
| 6376 | /** |
| 6377 | * btrfs_add_reserved_bytes - update the block_group and space info counters |
| 6378 | * @cache: The cache we are manipulating |
| 6379 | * @ram_bytes: The number of bytes of file content, and will be same to |
| 6380 | * @num_bytes except for the compress path. |
| 6381 | * @num_bytes: The number of bytes in question |
| 6382 | * @delalloc: The blocks are allocated for the delalloc write |
| 6383 | * |
| 6384 | * This is called by the allocator when it reserves space. If this is a |
| 6385 | * reservation and the block group has become read only we cannot make the |
| 6386 | * reservation and return -EAGAIN, otherwise this function always succeeds. |
| 6387 | */ |
| 6388 | static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, |
| 6389 | u64 ram_bytes, u64 num_bytes, int delalloc) |
| 6390 | { |
| 6391 | struct btrfs_space_info *space_info = cache->space_info; |
| 6392 | int ret = 0; |
| 6393 | |
| 6394 | spin_lock(&space_info->lock); |
| 6395 | spin_lock(&cache->lock); |
| 6396 | if (cache->ro) { |
| 6397 | ret = -EAGAIN; |
| 6398 | } else { |
| 6399 | cache->reserved += num_bytes; |
| 6400 | space_info->bytes_reserved += num_bytes; |
| 6401 | |
| 6402 | trace_btrfs_space_reservation(cache->fs_info, |
| 6403 | "space_info", space_info->flags, |
| 6404 | ram_bytes, 0); |
| 6405 | space_info->bytes_may_use -= ram_bytes; |
| 6406 | if (delalloc) |
| 6407 | cache->delalloc_bytes += num_bytes; |
| 6408 | } |
| 6409 | spin_unlock(&cache->lock); |
| 6410 | spin_unlock(&space_info->lock); |
| 6411 | return ret; |
| 6412 | } |
| 6413 | |
| 6414 | /** |
| 6415 | * btrfs_free_reserved_bytes - update the block_group and space info counters |
| 6416 | * @cache: The cache we are manipulating |
| 6417 | * @num_bytes: The number of bytes in question |
| 6418 | * @delalloc: The blocks are allocated for the delalloc write |
| 6419 | * |
| 6420 | * This is called by somebody who is freeing space that was never actually used |
| 6421 | * on disk. For example if you reserve some space for a new leaf in transaction |
| 6422 | * A and before transaction A commits you free that leaf, you call this with |
| 6423 | * reserve set to 0 in order to clear the reservation. |
| 6424 | */ |
| 6425 | |
| 6426 | static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, |
| 6427 | u64 num_bytes, int delalloc) |
| 6428 | { |
| 6429 | struct btrfs_space_info *space_info = cache->space_info; |
| 6430 | int ret = 0; |
| 6431 | |
| 6432 | spin_lock(&space_info->lock); |
| 6433 | spin_lock(&cache->lock); |
| 6434 | if (cache->ro) |
| 6435 | space_info->bytes_readonly += num_bytes; |
| 6436 | cache->reserved -= num_bytes; |
| 6437 | space_info->bytes_reserved -= num_bytes; |
| 6438 | space_info->max_extent_size = 0; |
| 6439 | |
| 6440 | if (delalloc) |
| 6441 | cache->delalloc_bytes -= num_bytes; |
| 6442 | spin_unlock(&cache->lock); |
| 6443 | spin_unlock(&space_info->lock); |
| 6444 | return ret; |
| 6445 | } |
| 6446 | void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) |
| 6447 | { |
| 6448 | struct btrfs_caching_control *next; |
| 6449 | struct btrfs_caching_control *caching_ctl; |
| 6450 | struct btrfs_block_group_cache *cache; |
| 6451 | |
| 6452 | down_write(&fs_info->commit_root_sem); |
| 6453 | |
| 6454 | list_for_each_entry_safe(caching_ctl, next, |
| 6455 | &fs_info->caching_block_groups, list) { |
| 6456 | cache = caching_ctl->block_group; |
| 6457 | if (block_group_cache_done(cache)) { |
| 6458 | cache->last_byte_to_unpin = (u64)-1; |
| 6459 | list_del_init(&caching_ctl->list); |
| 6460 | put_caching_control(caching_ctl); |
| 6461 | } else { |
| 6462 | cache->last_byte_to_unpin = caching_ctl->progress; |
| 6463 | } |
| 6464 | } |
| 6465 | |
| 6466 | if (fs_info->pinned_extents == &fs_info->freed_extents[0]) |
| 6467 | fs_info->pinned_extents = &fs_info->freed_extents[1]; |
| 6468 | else |
| 6469 | fs_info->pinned_extents = &fs_info->freed_extents[0]; |
| 6470 | |
| 6471 | up_write(&fs_info->commit_root_sem); |
| 6472 | |
| 6473 | update_global_block_rsv(fs_info); |
| 6474 | } |
| 6475 | |
| 6476 | /* |
| 6477 | * Returns the free cluster for the given space info and sets empty_cluster to |
| 6478 | * what it should be based on the mount options. |
| 6479 | */ |
| 6480 | static struct btrfs_free_cluster * |
| 6481 | fetch_cluster_info(struct btrfs_fs_info *fs_info, |
| 6482 | struct btrfs_space_info *space_info, u64 *empty_cluster) |
| 6483 | { |
| 6484 | struct btrfs_free_cluster *ret = NULL; |
| 6485 | |
| 6486 | *empty_cluster = 0; |
| 6487 | if (btrfs_mixed_space_info(space_info)) |
| 6488 | return ret; |
| 6489 | |
| 6490 | if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { |
| 6491 | ret = &fs_info->meta_alloc_cluster; |
| 6492 | if (btrfs_test_opt(fs_info, SSD)) |
| 6493 | *empty_cluster = SZ_2M; |
| 6494 | else |
| 6495 | *empty_cluster = SZ_64K; |
| 6496 | } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && |
| 6497 | btrfs_test_opt(fs_info, SSD_SPREAD)) { |
| 6498 | *empty_cluster = SZ_2M; |
| 6499 | ret = &fs_info->data_alloc_cluster; |
| 6500 | } |
| 6501 | |
| 6502 | return ret; |
| 6503 | } |
| 6504 | |
| 6505 | static int unpin_extent_range(struct btrfs_fs_info *fs_info, |
| 6506 | u64 start, u64 end, |
| 6507 | const bool return_free_space) |
| 6508 | { |
| 6509 | struct btrfs_block_group_cache *cache = NULL; |
| 6510 | struct btrfs_space_info *space_info; |
| 6511 | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| 6512 | struct btrfs_free_cluster *cluster = NULL; |
| 6513 | u64 len; |
| 6514 | u64 total_unpinned = 0; |
| 6515 | u64 empty_cluster = 0; |
| 6516 | bool readonly; |
| 6517 | |
| 6518 | while (start <= end) { |
| 6519 | readonly = false; |
| 6520 | if (!cache || |
| 6521 | start >= cache->key.objectid + cache->key.offset) { |
| 6522 | if (cache) |
| 6523 | btrfs_put_block_group(cache); |
| 6524 | total_unpinned = 0; |
| 6525 | cache = btrfs_lookup_block_group(fs_info, start); |
| 6526 | BUG_ON(!cache); /* Logic error */ |
| 6527 | |
| 6528 | cluster = fetch_cluster_info(fs_info, |
| 6529 | cache->space_info, |
| 6530 | &empty_cluster); |
| 6531 | empty_cluster <<= 1; |
| 6532 | } |
| 6533 | |
| 6534 | len = cache->key.objectid + cache->key.offset - start; |
| 6535 | len = min(len, end + 1 - start); |
| 6536 | |
| 6537 | if (start < cache->last_byte_to_unpin) { |
| 6538 | len = min(len, cache->last_byte_to_unpin - start); |
| 6539 | if (return_free_space) |
| 6540 | btrfs_add_free_space(cache, start, len); |
| 6541 | } |
| 6542 | |
| 6543 | start += len; |
| 6544 | total_unpinned += len; |
| 6545 | space_info = cache->space_info; |
| 6546 | |
| 6547 | /* |
| 6548 | * If this space cluster has been marked as fragmented and we've |
| 6549 | * unpinned enough in this block group to potentially allow a |
| 6550 | * cluster to be created inside of it go ahead and clear the |
| 6551 | * fragmented check. |
| 6552 | */ |
| 6553 | if (cluster && cluster->fragmented && |
| 6554 | total_unpinned > empty_cluster) { |
| 6555 | spin_lock(&cluster->lock); |
| 6556 | cluster->fragmented = 0; |
| 6557 | spin_unlock(&cluster->lock); |
| 6558 | } |
| 6559 | |
| 6560 | spin_lock(&space_info->lock); |
| 6561 | spin_lock(&cache->lock); |
| 6562 | cache->pinned -= len; |
| 6563 | space_info->bytes_pinned -= len; |
| 6564 | |
| 6565 | trace_btrfs_space_reservation(fs_info, "pinned", |
| 6566 | space_info->flags, len, 0); |
| 6567 | space_info->max_extent_size = 0; |
| 6568 | percpu_counter_add_batch(&space_info->total_bytes_pinned, |
| 6569 | -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 6570 | if (cache->ro) { |
| 6571 | space_info->bytes_readonly += len; |
| 6572 | readonly = true; |
| 6573 | } |
| 6574 | spin_unlock(&cache->lock); |
| 6575 | if (!readonly && return_free_space && |
| 6576 | global_rsv->space_info == space_info) { |
| 6577 | u64 to_add = len; |
| 6578 | |
| 6579 | spin_lock(&global_rsv->lock); |
| 6580 | if (!global_rsv->full) { |
| 6581 | to_add = min(len, global_rsv->size - |
| 6582 | global_rsv->reserved); |
| 6583 | global_rsv->reserved += to_add; |
| 6584 | space_info->bytes_may_use += to_add; |
| 6585 | if (global_rsv->reserved >= global_rsv->size) |
| 6586 | global_rsv->full = 1; |
| 6587 | trace_btrfs_space_reservation(fs_info, |
| 6588 | "space_info", |
| 6589 | space_info->flags, |
| 6590 | to_add, 1); |
| 6591 | len -= to_add; |
| 6592 | } |
| 6593 | spin_unlock(&global_rsv->lock); |
| 6594 | /* Add to any tickets we may have */ |
| 6595 | if (len) |
| 6596 | space_info_add_new_bytes(fs_info, space_info, |
| 6597 | len); |
| 6598 | } |
| 6599 | spin_unlock(&space_info->lock); |
| 6600 | } |
| 6601 | |
| 6602 | if (cache) |
| 6603 | btrfs_put_block_group(cache); |
| 6604 | return 0; |
| 6605 | } |
| 6606 | |
| 6607 | int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) |
| 6608 | { |
| 6609 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 6610 | struct btrfs_block_group_cache *block_group, *tmp; |
| 6611 | struct list_head *deleted_bgs; |
| 6612 | struct extent_io_tree *unpin; |
| 6613 | u64 start; |
| 6614 | u64 end; |
| 6615 | int ret; |
| 6616 | |
| 6617 | if (fs_info->pinned_extents == &fs_info->freed_extents[0]) |
| 6618 | unpin = &fs_info->freed_extents[1]; |
| 6619 | else |
| 6620 | unpin = &fs_info->freed_extents[0]; |
| 6621 | |
| 6622 | while (!trans->aborted) { |
| 6623 | mutex_lock(&fs_info->unused_bg_unpin_mutex); |
| 6624 | ret = find_first_extent_bit(unpin, 0, &start, &end, |
| 6625 | EXTENT_DIRTY, NULL); |
| 6626 | if (ret) { |
| 6627 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| 6628 | break; |
| 6629 | } |
| 6630 | |
| 6631 | if (btrfs_test_opt(fs_info, DISCARD)) |
| 6632 | ret = btrfs_discard_extent(fs_info, start, |
| 6633 | end + 1 - start, NULL); |
| 6634 | |
| 6635 | clear_extent_dirty(unpin, start, end); |
| 6636 | unpin_extent_range(fs_info, start, end, true); |
| 6637 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| 6638 | cond_resched(); |
| 6639 | } |
| 6640 | |
| 6641 | /* |
| 6642 | * Transaction is finished. We don't need the lock anymore. We |
| 6643 | * do need to clean up the block groups in case of a transaction |
| 6644 | * abort. |
| 6645 | */ |
| 6646 | deleted_bgs = &trans->transaction->deleted_bgs; |
| 6647 | list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { |
| 6648 | u64 trimmed = 0; |
| 6649 | |
| 6650 | ret = -EROFS; |
| 6651 | if (!trans->aborted) |
| 6652 | ret = btrfs_discard_extent(fs_info, |
| 6653 | block_group->key.objectid, |
| 6654 | block_group->key.offset, |
| 6655 | &trimmed); |
| 6656 | |
| 6657 | list_del_init(&block_group->bg_list); |
| 6658 | btrfs_put_block_group_trimming(block_group); |
| 6659 | btrfs_put_block_group(block_group); |
| 6660 | |
| 6661 | if (ret) { |
| 6662 | const char *errstr = btrfs_decode_error(ret); |
| 6663 | btrfs_warn(fs_info, |
| 6664 | "discard failed while removing blockgroup: errno=%d %s", |
| 6665 | ret, errstr); |
| 6666 | } |
| 6667 | } |
| 6668 | |
| 6669 | return 0; |
| 6670 | } |
| 6671 | |
| 6672 | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| 6673 | struct btrfs_delayed_ref_node *node, u64 parent, |
| 6674 | u64 root_objectid, u64 owner_objectid, |
| 6675 | u64 owner_offset, int refs_to_drop, |
| 6676 | struct btrfs_delayed_extent_op *extent_op) |
| 6677 | { |
| 6678 | struct btrfs_fs_info *info = trans->fs_info; |
| 6679 | struct btrfs_key key; |
| 6680 | struct btrfs_path *path; |
| 6681 | struct btrfs_root *extent_root = info->extent_root; |
| 6682 | struct extent_buffer *leaf; |
| 6683 | struct btrfs_extent_item *ei; |
| 6684 | struct btrfs_extent_inline_ref *iref; |
| 6685 | int ret; |
| 6686 | int is_data; |
| 6687 | int extent_slot = 0; |
| 6688 | int found_extent = 0; |
| 6689 | int num_to_del = 1; |
| 6690 | u32 item_size; |
| 6691 | u64 refs; |
| 6692 | u64 bytenr = node->bytenr; |
| 6693 | u64 num_bytes = node->num_bytes; |
| 6694 | int last_ref = 0; |
| 6695 | bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); |
| 6696 | |
| 6697 | path = btrfs_alloc_path(); |
| 6698 | if (!path) |
| 6699 | return -ENOMEM; |
| 6700 | |
| 6701 | path->reada = READA_FORWARD; |
| 6702 | path->leave_spinning = 1; |
| 6703 | |
| 6704 | is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; |
| 6705 | BUG_ON(!is_data && refs_to_drop != 1); |
| 6706 | |
| 6707 | if (is_data) |
| 6708 | skinny_metadata = false; |
| 6709 | |
| 6710 | ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, |
| 6711 | parent, root_objectid, owner_objectid, |
| 6712 | owner_offset); |
| 6713 | if (ret == 0) { |
| 6714 | extent_slot = path->slots[0]; |
| 6715 | while (extent_slot >= 0) { |
| 6716 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 6717 | extent_slot); |
| 6718 | if (key.objectid != bytenr) |
| 6719 | break; |
| 6720 | if (key.type == BTRFS_EXTENT_ITEM_KEY && |
| 6721 | key.offset == num_bytes) { |
| 6722 | found_extent = 1; |
| 6723 | break; |
| 6724 | } |
| 6725 | if (key.type == BTRFS_METADATA_ITEM_KEY && |
| 6726 | key.offset == owner_objectid) { |
| 6727 | found_extent = 1; |
| 6728 | break; |
| 6729 | } |
| 6730 | if (path->slots[0] - extent_slot > 5) |
| 6731 | break; |
| 6732 | extent_slot--; |
| 6733 | } |
| 6734 | |
| 6735 | if (!found_extent) { |
| 6736 | BUG_ON(iref); |
| 6737 | ret = remove_extent_backref(trans, path, NULL, |
| 6738 | refs_to_drop, |
| 6739 | is_data, &last_ref); |
| 6740 | if (ret) { |
| 6741 | btrfs_abort_transaction(trans, ret); |
| 6742 | goto out; |
| 6743 | } |
| 6744 | btrfs_release_path(path); |
| 6745 | path->leave_spinning = 1; |
| 6746 | |
| 6747 | key.objectid = bytenr; |
| 6748 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 6749 | key.offset = num_bytes; |
| 6750 | |
| 6751 | if (!is_data && skinny_metadata) { |
| 6752 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 6753 | key.offset = owner_objectid; |
| 6754 | } |
| 6755 | |
| 6756 | ret = btrfs_search_slot(trans, extent_root, |
| 6757 | &key, path, -1, 1); |
| 6758 | if (ret > 0 && skinny_metadata && path->slots[0]) { |
| 6759 | /* |
| 6760 | * Couldn't find our skinny metadata item, |
| 6761 | * see if we have ye olde extent item. |
| 6762 | */ |
| 6763 | path->slots[0]--; |
| 6764 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 6765 | path->slots[0]); |
| 6766 | if (key.objectid == bytenr && |
| 6767 | key.type == BTRFS_EXTENT_ITEM_KEY && |
| 6768 | key.offset == num_bytes) |
| 6769 | ret = 0; |
| 6770 | } |
| 6771 | |
| 6772 | if (ret > 0 && skinny_metadata) { |
| 6773 | skinny_metadata = false; |
| 6774 | key.objectid = bytenr; |
| 6775 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 6776 | key.offset = num_bytes; |
| 6777 | btrfs_release_path(path); |
| 6778 | ret = btrfs_search_slot(trans, extent_root, |
| 6779 | &key, path, -1, 1); |
| 6780 | } |
| 6781 | |
| 6782 | if (ret) { |
| 6783 | btrfs_err(info, |
| 6784 | "umm, got %d back from search, was looking for %llu", |
| 6785 | ret, bytenr); |
| 6786 | if (ret > 0) |
| 6787 | btrfs_print_leaf(path->nodes[0]); |
| 6788 | } |
| 6789 | if (ret < 0) { |
| 6790 | btrfs_abort_transaction(trans, ret); |
| 6791 | goto out; |
| 6792 | } |
| 6793 | extent_slot = path->slots[0]; |
| 6794 | } |
| 6795 | } else if (WARN_ON(ret == -ENOENT)) { |
| 6796 | btrfs_print_leaf(path->nodes[0]); |
| 6797 | btrfs_err(info, |
| 6798 | "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", |
| 6799 | bytenr, parent, root_objectid, owner_objectid, |
| 6800 | owner_offset); |
| 6801 | btrfs_abort_transaction(trans, ret); |
| 6802 | goto out; |
| 6803 | } else { |
| 6804 | btrfs_abort_transaction(trans, ret); |
| 6805 | goto out; |
| 6806 | } |
| 6807 | |
| 6808 | leaf = path->nodes[0]; |
| 6809 | item_size = btrfs_item_size_nr(leaf, extent_slot); |
| 6810 | if (unlikely(item_size < sizeof(*ei))) { |
| 6811 | ret = -EINVAL; |
| 6812 | btrfs_print_v0_err(info); |
| 6813 | btrfs_abort_transaction(trans, ret); |
| 6814 | goto out; |
| 6815 | } |
| 6816 | ei = btrfs_item_ptr(leaf, extent_slot, |
| 6817 | struct btrfs_extent_item); |
| 6818 | if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && |
| 6819 | key.type == BTRFS_EXTENT_ITEM_KEY) { |
| 6820 | struct btrfs_tree_block_info *bi; |
| 6821 | BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); |
| 6822 | bi = (struct btrfs_tree_block_info *)(ei + 1); |
| 6823 | WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); |
| 6824 | } |
| 6825 | |
| 6826 | refs = btrfs_extent_refs(leaf, ei); |
| 6827 | if (refs < refs_to_drop) { |
| 6828 | btrfs_err(info, |
| 6829 | "trying to drop %d refs but we only have %Lu for bytenr %Lu", |
| 6830 | refs_to_drop, refs, bytenr); |
| 6831 | ret = -EINVAL; |
| 6832 | btrfs_abort_transaction(trans, ret); |
| 6833 | goto out; |
| 6834 | } |
| 6835 | refs -= refs_to_drop; |
| 6836 | |
| 6837 | if (refs > 0) { |
| 6838 | if (extent_op) |
| 6839 | __run_delayed_extent_op(extent_op, leaf, ei); |
| 6840 | /* |
| 6841 | * In the case of inline back ref, reference count will |
| 6842 | * be updated by remove_extent_backref |
| 6843 | */ |
| 6844 | if (iref) { |
| 6845 | BUG_ON(!found_extent); |
| 6846 | } else { |
| 6847 | btrfs_set_extent_refs(leaf, ei, refs); |
| 6848 | btrfs_mark_buffer_dirty(leaf); |
| 6849 | } |
| 6850 | if (found_extent) { |
| 6851 | ret = remove_extent_backref(trans, path, iref, |
| 6852 | refs_to_drop, is_data, |
| 6853 | &last_ref); |
| 6854 | if (ret) { |
| 6855 | btrfs_abort_transaction(trans, ret); |
| 6856 | goto out; |
| 6857 | } |
| 6858 | } |
| 6859 | } else { |
| 6860 | if (found_extent) { |
| 6861 | BUG_ON(is_data && refs_to_drop != |
| 6862 | extent_data_ref_count(path, iref)); |
| 6863 | if (iref) { |
| 6864 | BUG_ON(path->slots[0] != extent_slot); |
| 6865 | } else { |
| 6866 | BUG_ON(path->slots[0] != extent_slot + 1); |
| 6867 | path->slots[0] = extent_slot; |
| 6868 | num_to_del = 2; |
| 6869 | } |
| 6870 | } |
| 6871 | |
| 6872 | last_ref = 1; |
| 6873 | ret = btrfs_del_items(trans, extent_root, path, path->slots[0], |
| 6874 | num_to_del); |
| 6875 | if (ret) { |
| 6876 | btrfs_abort_transaction(trans, ret); |
| 6877 | goto out; |
| 6878 | } |
| 6879 | btrfs_release_path(path); |
| 6880 | |
| 6881 | if (is_data) { |
| 6882 | ret = btrfs_del_csums(trans, info, bytenr, num_bytes); |
| 6883 | if (ret) { |
| 6884 | btrfs_abort_transaction(trans, ret); |
| 6885 | goto out; |
| 6886 | } |
| 6887 | } |
| 6888 | |
| 6889 | ret = add_to_free_space_tree(trans, bytenr, num_bytes); |
| 6890 | if (ret) { |
| 6891 | btrfs_abort_transaction(trans, ret); |
| 6892 | goto out; |
| 6893 | } |
| 6894 | |
| 6895 | ret = update_block_group(trans, info, bytenr, num_bytes, 0); |
| 6896 | if (ret) { |
| 6897 | btrfs_abort_transaction(trans, ret); |
| 6898 | goto out; |
| 6899 | } |
| 6900 | } |
| 6901 | btrfs_release_path(path); |
| 6902 | |
| 6903 | out: |
| 6904 | btrfs_free_path(path); |
| 6905 | return ret; |
| 6906 | } |
| 6907 | |
| 6908 | /* |
| 6909 | * when we free an block, it is possible (and likely) that we free the last |
| 6910 | * delayed ref for that extent as well. This searches the delayed ref tree for |
| 6911 | * a given extent, and if there are no other delayed refs to be processed, it |
| 6912 | * removes it from the tree. |
| 6913 | */ |
| 6914 | static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, |
| 6915 | u64 bytenr) |
| 6916 | { |
| 6917 | struct btrfs_delayed_ref_head *head; |
| 6918 | struct btrfs_delayed_ref_root *delayed_refs; |
| 6919 | int ret = 0; |
| 6920 | |
| 6921 | delayed_refs = &trans->transaction->delayed_refs; |
| 6922 | spin_lock(&delayed_refs->lock); |
| 6923 | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); |
| 6924 | if (!head) |
| 6925 | goto out_delayed_unlock; |
| 6926 | |
| 6927 | spin_lock(&head->lock); |
| 6928 | if (!RB_EMPTY_ROOT(&head->ref_tree)) |
| 6929 | goto out; |
| 6930 | |
| 6931 | if (head->extent_op) { |
| 6932 | if (!head->must_insert_reserved) |
| 6933 | goto out; |
| 6934 | btrfs_free_delayed_extent_op(head->extent_op); |
| 6935 | head->extent_op = NULL; |
| 6936 | } |
| 6937 | |
| 6938 | /* |
| 6939 | * waiting for the lock here would deadlock. If someone else has it |
| 6940 | * locked they are already in the process of dropping it anyway |
| 6941 | */ |
| 6942 | if (!mutex_trylock(&head->mutex)) |
| 6943 | goto out; |
| 6944 | |
| 6945 | /* |
| 6946 | * at this point we have a head with no other entries. Go |
| 6947 | * ahead and process it. |
| 6948 | */ |
| 6949 | rb_erase(&head->href_node, &delayed_refs->href_root); |
| 6950 | RB_CLEAR_NODE(&head->href_node); |
| 6951 | atomic_dec(&delayed_refs->num_entries); |
| 6952 | |
| 6953 | /* |
| 6954 | * we don't take a ref on the node because we're removing it from the |
| 6955 | * tree, so we just steal the ref the tree was holding. |
| 6956 | */ |
| 6957 | delayed_refs->num_heads--; |
| 6958 | if (head->processing == 0) |
| 6959 | delayed_refs->num_heads_ready--; |
| 6960 | head->processing = 0; |
| 6961 | spin_unlock(&head->lock); |
| 6962 | spin_unlock(&delayed_refs->lock); |
| 6963 | |
| 6964 | BUG_ON(head->extent_op); |
| 6965 | if (head->must_insert_reserved) |
| 6966 | ret = 1; |
| 6967 | |
| 6968 | mutex_unlock(&head->mutex); |
| 6969 | btrfs_put_delayed_ref_head(head); |
| 6970 | return ret; |
| 6971 | out: |
| 6972 | spin_unlock(&head->lock); |
| 6973 | |
| 6974 | out_delayed_unlock: |
| 6975 | spin_unlock(&delayed_refs->lock); |
| 6976 | return 0; |
| 6977 | } |
| 6978 | |
| 6979 | void btrfs_free_tree_block(struct btrfs_trans_handle *trans, |
| 6980 | struct btrfs_root *root, |
| 6981 | struct extent_buffer *buf, |
| 6982 | u64 parent, int last_ref) |
| 6983 | { |
| 6984 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 6985 | int pin = 1; |
| 6986 | int ret; |
| 6987 | |
| 6988 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| 6989 | int old_ref_mod, new_ref_mod; |
| 6990 | |
| 6991 | btrfs_ref_tree_mod(root, buf->start, buf->len, parent, |
| 6992 | root->root_key.objectid, |
| 6993 | btrfs_header_level(buf), 0, |
| 6994 | BTRFS_DROP_DELAYED_REF); |
| 6995 | ret = btrfs_add_delayed_tree_ref(trans, buf->start, |
| 6996 | buf->len, parent, |
| 6997 | root->root_key.objectid, |
| 6998 | btrfs_header_level(buf), |
| 6999 | BTRFS_DROP_DELAYED_REF, NULL, |
| 7000 | &old_ref_mod, &new_ref_mod); |
| 7001 | BUG_ON(ret); /* -ENOMEM */ |
| 7002 | pin = old_ref_mod >= 0 && new_ref_mod < 0; |
| 7003 | } |
| 7004 | |
| 7005 | if (last_ref && btrfs_header_generation(buf) == trans->transid) { |
| 7006 | struct btrfs_block_group_cache *cache; |
| 7007 | |
| 7008 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| 7009 | ret = check_ref_cleanup(trans, buf->start); |
| 7010 | if (!ret) |
| 7011 | goto out; |
| 7012 | } |
| 7013 | |
| 7014 | pin = 0; |
| 7015 | cache = btrfs_lookup_block_group(fs_info, buf->start); |
| 7016 | |
| 7017 | if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { |
| 7018 | pin_down_extent(fs_info, cache, buf->start, |
| 7019 | buf->len, 1); |
| 7020 | btrfs_put_block_group(cache); |
| 7021 | goto out; |
| 7022 | } |
| 7023 | |
| 7024 | WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); |
| 7025 | |
| 7026 | btrfs_add_free_space(cache, buf->start, buf->len); |
| 7027 | btrfs_free_reserved_bytes(cache, buf->len, 0); |
| 7028 | btrfs_put_block_group(cache); |
| 7029 | trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); |
| 7030 | } |
| 7031 | out: |
| 7032 | if (pin) |
| 7033 | add_pinned_bytes(fs_info, buf->len, true, |
| 7034 | root->root_key.objectid); |
| 7035 | |
| 7036 | if (last_ref) { |
| 7037 | /* |
| 7038 | * Deleting the buffer, clear the corrupt flag since it doesn't |
| 7039 | * matter anymore. |
| 7040 | */ |
| 7041 | clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); |
| 7042 | } |
| 7043 | } |
| 7044 | |
| 7045 | /* Can return -ENOMEM */ |
| 7046 | int btrfs_free_extent(struct btrfs_trans_handle *trans, |
| 7047 | struct btrfs_root *root, |
| 7048 | u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, |
| 7049 | u64 owner, u64 offset) |
| 7050 | { |
| 7051 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 7052 | int old_ref_mod, new_ref_mod; |
| 7053 | int ret; |
| 7054 | |
| 7055 | if (btrfs_is_testing(fs_info)) |
| 7056 | return 0; |
| 7057 | |
| 7058 | if (root_objectid != BTRFS_TREE_LOG_OBJECTID) |
| 7059 | btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, |
| 7060 | root_objectid, owner, offset, |
| 7061 | BTRFS_DROP_DELAYED_REF); |
| 7062 | |
| 7063 | /* |
| 7064 | * tree log blocks never actually go into the extent allocation |
| 7065 | * tree, just update pinning info and exit early. |
| 7066 | */ |
| 7067 | if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { |
| 7068 | WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); |
| 7069 | /* unlocks the pinned mutex */ |
| 7070 | btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); |
| 7071 | old_ref_mod = new_ref_mod = 0; |
| 7072 | ret = 0; |
| 7073 | } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| 7074 | ret = btrfs_add_delayed_tree_ref(trans, bytenr, |
| 7075 | num_bytes, parent, |
| 7076 | root_objectid, (int)owner, |
| 7077 | BTRFS_DROP_DELAYED_REF, NULL, |
| 7078 | &old_ref_mod, &new_ref_mod); |
| 7079 | } else { |
| 7080 | ret = btrfs_add_delayed_data_ref(trans, bytenr, |
| 7081 | num_bytes, parent, |
| 7082 | root_objectid, owner, offset, |
| 7083 | 0, BTRFS_DROP_DELAYED_REF, |
| 7084 | &old_ref_mod, &new_ref_mod); |
| 7085 | } |
| 7086 | |
| 7087 | if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) { |
| 7088 | bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID; |
| 7089 | |
| 7090 | add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid); |
| 7091 | } |
| 7092 | |
| 7093 | return ret; |
| 7094 | } |
| 7095 | |
| 7096 | /* |
| 7097 | * when we wait for progress in the block group caching, its because |
| 7098 | * our allocation attempt failed at least once. So, we must sleep |
| 7099 | * and let some progress happen before we try again. |
| 7100 | * |
| 7101 | * This function will sleep at least once waiting for new free space to |
| 7102 | * show up, and then it will check the block group free space numbers |
| 7103 | * for our min num_bytes. Another option is to have it go ahead |
| 7104 | * and look in the rbtree for a free extent of a given size, but this |
| 7105 | * is a good start. |
| 7106 | * |
| 7107 | * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using |
| 7108 | * any of the information in this block group. |
| 7109 | */ |
| 7110 | static noinline void |
| 7111 | wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, |
| 7112 | u64 num_bytes) |
| 7113 | { |
| 7114 | struct btrfs_caching_control *caching_ctl; |
| 7115 | |
| 7116 | caching_ctl = get_caching_control(cache); |
| 7117 | if (!caching_ctl) |
| 7118 | return; |
| 7119 | |
| 7120 | wait_event(caching_ctl->wait, block_group_cache_done(cache) || |
| 7121 | (cache->free_space_ctl->free_space >= num_bytes)); |
| 7122 | |
| 7123 | put_caching_control(caching_ctl); |
| 7124 | } |
| 7125 | |
| 7126 | static noinline int |
| 7127 | wait_block_group_cache_done(struct btrfs_block_group_cache *cache) |
| 7128 | { |
| 7129 | struct btrfs_caching_control *caching_ctl; |
| 7130 | int ret = 0; |
| 7131 | |
| 7132 | caching_ctl = get_caching_control(cache); |
| 7133 | if (!caching_ctl) |
| 7134 | return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; |
| 7135 | |
| 7136 | wait_event(caching_ctl->wait, block_group_cache_done(cache)); |
| 7137 | if (cache->cached == BTRFS_CACHE_ERROR) |
| 7138 | ret = -EIO; |
| 7139 | put_caching_control(caching_ctl); |
| 7140 | return ret; |
| 7141 | } |
| 7142 | |
| 7143 | enum btrfs_loop_type { |
| 7144 | LOOP_CACHING_NOWAIT = 0, |
| 7145 | LOOP_CACHING_WAIT = 1, |
| 7146 | LOOP_ALLOC_CHUNK = 2, |
| 7147 | LOOP_NO_EMPTY_SIZE = 3, |
| 7148 | }; |
| 7149 | |
| 7150 | static inline void |
| 7151 | btrfs_lock_block_group(struct btrfs_block_group_cache *cache, |
| 7152 | int delalloc) |
| 7153 | { |
| 7154 | if (delalloc) |
| 7155 | down_read(&cache->data_rwsem); |
| 7156 | } |
| 7157 | |
| 7158 | static inline void |
| 7159 | btrfs_grab_block_group(struct btrfs_block_group_cache *cache, |
| 7160 | int delalloc) |
| 7161 | { |
| 7162 | btrfs_get_block_group(cache); |
| 7163 | if (delalloc) |
| 7164 | down_read(&cache->data_rwsem); |
| 7165 | } |
| 7166 | |
| 7167 | static struct btrfs_block_group_cache * |
| 7168 | btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, |
| 7169 | struct btrfs_free_cluster *cluster, |
| 7170 | int delalloc) |
| 7171 | { |
| 7172 | struct btrfs_block_group_cache *used_bg = NULL; |
| 7173 | |
| 7174 | spin_lock(&cluster->refill_lock); |
| 7175 | while (1) { |
| 7176 | used_bg = cluster->block_group; |
| 7177 | if (!used_bg) |
| 7178 | return NULL; |
| 7179 | |
| 7180 | if (used_bg == block_group) |
| 7181 | return used_bg; |
| 7182 | |
| 7183 | btrfs_get_block_group(used_bg); |
| 7184 | |
| 7185 | if (!delalloc) |
| 7186 | return used_bg; |
| 7187 | |
| 7188 | if (down_read_trylock(&used_bg->data_rwsem)) |
| 7189 | return used_bg; |
| 7190 | |
| 7191 | spin_unlock(&cluster->refill_lock); |
| 7192 | |
| 7193 | /* We should only have one-level nested. */ |
| 7194 | down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); |
| 7195 | |
| 7196 | spin_lock(&cluster->refill_lock); |
| 7197 | if (used_bg == cluster->block_group) |
| 7198 | return used_bg; |
| 7199 | |
| 7200 | up_read(&used_bg->data_rwsem); |
| 7201 | btrfs_put_block_group(used_bg); |
| 7202 | } |
| 7203 | } |
| 7204 | |
| 7205 | static inline void |
| 7206 | btrfs_release_block_group(struct btrfs_block_group_cache *cache, |
| 7207 | int delalloc) |
| 7208 | { |
| 7209 | if (delalloc) |
| 7210 | up_read(&cache->data_rwsem); |
| 7211 | btrfs_put_block_group(cache); |
| 7212 | } |
| 7213 | |
| 7214 | /* |
| 7215 | * walks the btree of allocated extents and find a hole of a given size. |
| 7216 | * The key ins is changed to record the hole: |
| 7217 | * ins->objectid == start position |
| 7218 | * ins->flags = BTRFS_EXTENT_ITEM_KEY |
| 7219 | * ins->offset == the size of the hole. |
| 7220 | * Any available blocks before search_start are skipped. |
| 7221 | * |
| 7222 | * If there is no suitable free space, we will record the max size of |
| 7223 | * the free space extent currently. |
| 7224 | */ |
| 7225 | static noinline int find_free_extent(struct btrfs_fs_info *fs_info, |
| 7226 | u64 ram_bytes, u64 num_bytes, u64 empty_size, |
| 7227 | u64 hint_byte, struct btrfs_key *ins, |
| 7228 | u64 flags, int delalloc) |
| 7229 | { |
| 7230 | int ret = 0; |
| 7231 | struct btrfs_root *root = fs_info->extent_root; |
| 7232 | struct btrfs_free_cluster *last_ptr = NULL; |
| 7233 | struct btrfs_block_group_cache *block_group = NULL; |
| 7234 | u64 search_start = 0; |
| 7235 | u64 max_extent_size = 0; |
| 7236 | u64 max_free_space = 0; |
| 7237 | u64 empty_cluster = 0; |
| 7238 | struct btrfs_space_info *space_info; |
| 7239 | int loop = 0; |
| 7240 | int index = btrfs_bg_flags_to_raid_index(flags); |
| 7241 | bool failed_cluster_refill = false; |
| 7242 | bool failed_alloc = false; |
| 7243 | bool use_cluster = true; |
| 7244 | bool have_caching_bg = false; |
| 7245 | bool orig_have_caching_bg = false; |
| 7246 | bool full_search = false; |
| 7247 | |
| 7248 | WARN_ON(num_bytes < fs_info->sectorsize); |
| 7249 | ins->type = BTRFS_EXTENT_ITEM_KEY; |
| 7250 | ins->objectid = 0; |
| 7251 | ins->offset = 0; |
| 7252 | |
| 7253 | trace_find_free_extent(fs_info, num_bytes, empty_size, flags); |
| 7254 | |
| 7255 | space_info = __find_space_info(fs_info, flags); |
| 7256 | if (!space_info) { |
| 7257 | btrfs_err(fs_info, "No space info for %llu", flags); |
| 7258 | return -ENOSPC; |
| 7259 | } |
| 7260 | |
| 7261 | /* |
| 7262 | * If our free space is heavily fragmented we may not be able to make |
| 7263 | * big contiguous allocations, so instead of doing the expensive search |
| 7264 | * for free space, simply return ENOSPC with our max_extent_size so we |
| 7265 | * can go ahead and search for a more manageable chunk. |
| 7266 | * |
| 7267 | * If our max_extent_size is large enough for our allocation simply |
| 7268 | * disable clustering since we will likely not be able to find enough |
| 7269 | * space to create a cluster and induce latency trying. |
| 7270 | */ |
| 7271 | if (unlikely(space_info->max_extent_size)) { |
| 7272 | spin_lock(&space_info->lock); |
| 7273 | if (space_info->max_extent_size && |
| 7274 | num_bytes > space_info->max_extent_size) { |
| 7275 | ins->offset = space_info->max_extent_size; |
| 7276 | spin_unlock(&space_info->lock); |
| 7277 | return -ENOSPC; |
| 7278 | } else if (space_info->max_extent_size) { |
| 7279 | use_cluster = false; |
| 7280 | } |
| 7281 | spin_unlock(&space_info->lock); |
| 7282 | } |
| 7283 | |
| 7284 | last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); |
| 7285 | if (last_ptr) { |
| 7286 | spin_lock(&last_ptr->lock); |
| 7287 | if (last_ptr->block_group) |
| 7288 | hint_byte = last_ptr->window_start; |
| 7289 | if (last_ptr->fragmented) { |
| 7290 | /* |
| 7291 | * We still set window_start so we can keep track of the |
| 7292 | * last place we found an allocation to try and save |
| 7293 | * some time. |
| 7294 | */ |
| 7295 | hint_byte = last_ptr->window_start; |
| 7296 | use_cluster = false; |
| 7297 | } |
| 7298 | spin_unlock(&last_ptr->lock); |
| 7299 | } |
| 7300 | |
| 7301 | search_start = max(search_start, first_logical_byte(fs_info, 0)); |
| 7302 | search_start = max(search_start, hint_byte); |
| 7303 | if (search_start == hint_byte) { |
| 7304 | block_group = btrfs_lookup_block_group(fs_info, search_start); |
| 7305 | /* |
| 7306 | * we don't want to use the block group if it doesn't match our |
| 7307 | * allocation bits, or if its not cached. |
| 7308 | * |
| 7309 | * However if we are re-searching with an ideal block group |
| 7310 | * picked out then we don't care that the block group is cached. |
| 7311 | */ |
| 7312 | if (block_group && block_group_bits(block_group, flags) && |
| 7313 | block_group->cached != BTRFS_CACHE_NO) { |
| 7314 | down_read(&space_info->groups_sem); |
| 7315 | if (list_empty(&block_group->list) || |
| 7316 | block_group->ro) { |
| 7317 | /* |
| 7318 | * someone is removing this block group, |
| 7319 | * we can't jump into the have_block_group |
| 7320 | * target because our list pointers are not |
| 7321 | * valid |
| 7322 | */ |
| 7323 | btrfs_put_block_group(block_group); |
| 7324 | up_read(&space_info->groups_sem); |
| 7325 | } else { |
| 7326 | index = btrfs_bg_flags_to_raid_index( |
| 7327 | block_group->flags); |
| 7328 | btrfs_lock_block_group(block_group, delalloc); |
| 7329 | goto have_block_group; |
| 7330 | } |
| 7331 | } else if (block_group) { |
| 7332 | btrfs_put_block_group(block_group); |
| 7333 | } |
| 7334 | } |
| 7335 | search: |
| 7336 | have_caching_bg = false; |
| 7337 | if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags)) |
| 7338 | full_search = true; |
| 7339 | down_read(&space_info->groups_sem); |
| 7340 | list_for_each_entry(block_group, &space_info->block_groups[index], |
| 7341 | list) { |
| 7342 | u64 offset; |
| 7343 | int cached; |
| 7344 | |
| 7345 | /* If the block group is read-only, we can skip it entirely. */ |
| 7346 | if (unlikely(block_group->ro)) |
| 7347 | continue; |
| 7348 | |
| 7349 | btrfs_grab_block_group(block_group, delalloc); |
| 7350 | search_start = block_group->key.objectid; |
| 7351 | |
| 7352 | /* |
| 7353 | * this can happen if we end up cycling through all the |
| 7354 | * raid types, but we want to make sure we only allocate |
| 7355 | * for the proper type. |
| 7356 | */ |
| 7357 | if (!block_group_bits(block_group, flags)) { |
| 7358 | u64 extra = BTRFS_BLOCK_GROUP_DUP | |
| 7359 | BTRFS_BLOCK_GROUP_RAID1 | |
| 7360 | BTRFS_BLOCK_GROUP_RAID5 | |
| 7361 | BTRFS_BLOCK_GROUP_RAID6 | |
| 7362 | BTRFS_BLOCK_GROUP_RAID10; |
| 7363 | |
| 7364 | /* |
| 7365 | * if they asked for extra copies and this block group |
| 7366 | * doesn't provide them, bail. This does allow us to |
| 7367 | * fill raid0 from raid1. |
| 7368 | */ |
| 7369 | if ((flags & extra) && !(block_group->flags & extra)) |
| 7370 | goto loop; |
| 7371 | } |
| 7372 | |
| 7373 | have_block_group: |
| 7374 | cached = block_group_cache_done(block_group); |
| 7375 | if (unlikely(!cached)) { |
| 7376 | have_caching_bg = true; |
| 7377 | ret = cache_block_group(block_group, 0); |
| 7378 | BUG_ON(ret < 0); |
| 7379 | ret = 0; |
| 7380 | } |
| 7381 | |
| 7382 | if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) |
| 7383 | goto loop; |
| 7384 | |
| 7385 | /* |
| 7386 | * Ok we want to try and use the cluster allocator, so |
| 7387 | * lets look there |
| 7388 | */ |
| 7389 | if (last_ptr && use_cluster) { |
| 7390 | struct btrfs_block_group_cache *used_block_group; |
| 7391 | unsigned long aligned_cluster; |
| 7392 | /* |
| 7393 | * the refill lock keeps out other |
| 7394 | * people trying to start a new cluster |
| 7395 | */ |
| 7396 | used_block_group = btrfs_lock_cluster(block_group, |
| 7397 | last_ptr, |
| 7398 | delalloc); |
| 7399 | if (!used_block_group) |
| 7400 | goto refill_cluster; |
| 7401 | |
| 7402 | if (used_block_group != block_group && |
| 7403 | (used_block_group->ro || |
| 7404 | !block_group_bits(used_block_group, flags))) |
| 7405 | goto release_cluster; |
| 7406 | |
| 7407 | offset = btrfs_alloc_from_cluster(used_block_group, |
| 7408 | last_ptr, |
| 7409 | num_bytes, |
| 7410 | used_block_group->key.objectid, |
| 7411 | &max_extent_size); |
| 7412 | if (offset) { |
| 7413 | /* we have a block, we're done */ |
| 7414 | spin_unlock(&last_ptr->refill_lock); |
| 7415 | trace_btrfs_reserve_extent_cluster( |
| 7416 | used_block_group, |
| 7417 | search_start, num_bytes); |
| 7418 | if (used_block_group != block_group) { |
| 7419 | btrfs_release_block_group(block_group, |
| 7420 | delalloc); |
| 7421 | block_group = used_block_group; |
| 7422 | } |
| 7423 | goto checks; |
| 7424 | } |
| 7425 | |
| 7426 | WARN_ON(last_ptr->block_group != used_block_group); |
| 7427 | release_cluster: |
| 7428 | /* If we are on LOOP_NO_EMPTY_SIZE, we can't |
| 7429 | * set up a new clusters, so lets just skip it |
| 7430 | * and let the allocator find whatever block |
| 7431 | * it can find. If we reach this point, we |
| 7432 | * will have tried the cluster allocator |
| 7433 | * plenty of times and not have found |
| 7434 | * anything, so we are likely way too |
| 7435 | * fragmented for the clustering stuff to find |
| 7436 | * anything. |
| 7437 | * |
| 7438 | * However, if the cluster is taken from the |
| 7439 | * current block group, release the cluster |
| 7440 | * first, so that we stand a better chance of |
| 7441 | * succeeding in the unclustered |
| 7442 | * allocation. */ |
| 7443 | if (loop >= LOOP_NO_EMPTY_SIZE && |
| 7444 | used_block_group != block_group) { |
| 7445 | spin_unlock(&last_ptr->refill_lock); |
| 7446 | btrfs_release_block_group(used_block_group, |
| 7447 | delalloc); |
| 7448 | goto unclustered_alloc; |
| 7449 | } |
| 7450 | |
| 7451 | /* |
| 7452 | * this cluster didn't work out, free it and |
| 7453 | * start over |
| 7454 | */ |
| 7455 | btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| 7456 | |
| 7457 | if (used_block_group != block_group) |
| 7458 | btrfs_release_block_group(used_block_group, |
| 7459 | delalloc); |
| 7460 | refill_cluster: |
| 7461 | if (loop >= LOOP_NO_EMPTY_SIZE) { |
| 7462 | spin_unlock(&last_ptr->refill_lock); |
| 7463 | goto unclustered_alloc; |
| 7464 | } |
| 7465 | |
| 7466 | aligned_cluster = max_t(unsigned long, |
| 7467 | empty_cluster + empty_size, |
| 7468 | block_group->full_stripe_len); |
| 7469 | |
| 7470 | /* allocate a cluster in this block group */ |
| 7471 | ret = btrfs_find_space_cluster(fs_info, block_group, |
| 7472 | last_ptr, search_start, |
| 7473 | num_bytes, |
| 7474 | aligned_cluster); |
| 7475 | if (ret == 0) { |
| 7476 | /* |
| 7477 | * now pull our allocation out of this |
| 7478 | * cluster |
| 7479 | */ |
| 7480 | offset = btrfs_alloc_from_cluster(block_group, |
| 7481 | last_ptr, |
| 7482 | num_bytes, |
| 7483 | search_start, |
| 7484 | &max_extent_size); |
| 7485 | if (offset) { |
| 7486 | /* we found one, proceed */ |
| 7487 | spin_unlock(&last_ptr->refill_lock); |
| 7488 | trace_btrfs_reserve_extent_cluster( |
| 7489 | block_group, search_start, |
| 7490 | num_bytes); |
| 7491 | goto checks; |
| 7492 | } |
| 7493 | } else if (!cached && loop > LOOP_CACHING_NOWAIT |
| 7494 | && !failed_cluster_refill) { |
| 7495 | spin_unlock(&last_ptr->refill_lock); |
| 7496 | |
| 7497 | failed_cluster_refill = true; |
| 7498 | wait_block_group_cache_progress(block_group, |
| 7499 | num_bytes + empty_cluster + empty_size); |
| 7500 | goto have_block_group; |
| 7501 | } |
| 7502 | |
| 7503 | /* |
| 7504 | * at this point we either didn't find a cluster |
| 7505 | * or we weren't able to allocate a block from our |
| 7506 | * cluster. Free the cluster we've been trying |
| 7507 | * to use, and go to the next block group |
| 7508 | */ |
| 7509 | btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| 7510 | spin_unlock(&last_ptr->refill_lock); |
| 7511 | goto loop; |
| 7512 | } |
| 7513 | |
| 7514 | unclustered_alloc: |
| 7515 | /* |
| 7516 | * We are doing an unclustered alloc, set the fragmented flag so |
| 7517 | * we don't bother trying to setup a cluster again until we get |
| 7518 | * more space. |
| 7519 | */ |
| 7520 | if (unlikely(last_ptr)) { |
| 7521 | spin_lock(&last_ptr->lock); |
| 7522 | last_ptr->fragmented = 1; |
| 7523 | spin_unlock(&last_ptr->lock); |
| 7524 | } |
| 7525 | if (cached) { |
| 7526 | struct btrfs_free_space_ctl *ctl = |
| 7527 | block_group->free_space_ctl; |
| 7528 | |
| 7529 | spin_lock(&ctl->tree_lock); |
| 7530 | if (ctl->free_space < |
| 7531 | num_bytes + empty_cluster + empty_size) { |
| 7532 | max_free_space = max(max_free_space, |
| 7533 | ctl->free_space); |
| 7534 | spin_unlock(&ctl->tree_lock); |
| 7535 | goto loop; |
| 7536 | } |
| 7537 | spin_unlock(&ctl->tree_lock); |
| 7538 | } |
| 7539 | |
| 7540 | offset = btrfs_find_space_for_alloc(block_group, search_start, |
| 7541 | num_bytes, empty_size, |
| 7542 | &max_extent_size); |
| 7543 | /* |
| 7544 | * If we didn't find a chunk, and we haven't failed on this |
| 7545 | * block group before, and this block group is in the middle of |
| 7546 | * caching and we are ok with waiting, then go ahead and wait |
| 7547 | * for progress to be made, and set failed_alloc to true. |
| 7548 | * |
| 7549 | * If failed_alloc is true then we've already waited on this |
| 7550 | * block group once and should move on to the next block group. |
| 7551 | */ |
| 7552 | if (!offset && !failed_alloc && !cached && |
| 7553 | loop > LOOP_CACHING_NOWAIT) { |
| 7554 | wait_block_group_cache_progress(block_group, |
| 7555 | num_bytes + empty_size); |
| 7556 | failed_alloc = true; |
| 7557 | goto have_block_group; |
| 7558 | } else if (!offset) { |
| 7559 | goto loop; |
| 7560 | } |
| 7561 | checks: |
| 7562 | search_start = round_up(offset, fs_info->stripesize); |
| 7563 | |
| 7564 | /* move on to the next group */ |
| 7565 | if (search_start + num_bytes > |
| 7566 | block_group->key.objectid + block_group->key.offset) { |
| 7567 | btrfs_add_free_space(block_group, offset, num_bytes); |
| 7568 | goto loop; |
| 7569 | } |
| 7570 | |
| 7571 | if (offset < search_start) |
| 7572 | btrfs_add_free_space(block_group, offset, |
| 7573 | search_start - offset); |
| 7574 | |
| 7575 | ret = btrfs_add_reserved_bytes(block_group, ram_bytes, |
| 7576 | num_bytes, delalloc); |
| 7577 | if (ret == -EAGAIN) { |
| 7578 | btrfs_add_free_space(block_group, offset, num_bytes); |
| 7579 | goto loop; |
| 7580 | } |
| 7581 | btrfs_inc_block_group_reservations(block_group); |
| 7582 | |
| 7583 | /* we are all good, lets return */ |
| 7584 | ins->objectid = search_start; |
| 7585 | ins->offset = num_bytes; |
| 7586 | |
| 7587 | trace_btrfs_reserve_extent(block_group, search_start, num_bytes); |
| 7588 | btrfs_release_block_group(block_group, delalloc); |
| 7589 | break; |
| 7590 | loop: |
| 7591 | failed_cluster_refill = false; |
| 7592 | failed_alloc = false; |
| 7593 | BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != |
| 7594 | index); |
| 7595 | btrfs_release_block_group(block_group, delalloc); |
| 7596 | cond_resched(); |
| 7597 | } |
| 7598 | up_read(&space_info->groups_sem); |
| 7599 | |
| 7600 | if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg |
| 7601 | && !orig_have_caching_bg) |
| 7602 | orig_have_caching_bg = true; |
| 7603 | |
| 7604 | if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) |
| 7605 | goto search; |
| 7606 | |
| 7607 | if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) |
| 7608 | goto search; |
| 7609 | |
| 7610 | /* |
| 7611 | * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking |
| 7612 | * caching kthreads as we move along |
| 7613 | * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching |
| 7614 | * LOOP_ALLOC_CHUNK, force a chunk allocation and try again |
| 7615 | * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try |
| 7616 | * again |
| 7617 | */ |
| 7618 | if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { |
| 7619 | index = 0; |
| 7620 | if (loop == LOOP_CACHING_NOWAIT) { |
| 7621 | /* |
| 7622 | * We want to skip the LOOP_CACHING_WAIT step if we |
| 7623 | * don't have any uncached bgs and we've already done a |
| 7624 | * full search through. |
| 7625 | */ |
| 7626 | if (orig_have_caching_bg || !full_search) |
| 7627 | loop = LOOP_CACHING_WAIT; |
| 7628 | else |
| 7629 | loop = LOOP_ALLOC_CHUNK; |
| 7630 | } else { |
| 7631 | loop++; |
| 7632 | } |
| 7633 | |
| 7634 | if (loop == LOOP_ALLOC_CHUNK) { |
| 7635 | struct btrfs_trans_handle *trans; |
| 7636 | int exist = 0; |
| 7637 | |
| 7638 | trans = current->journal_info; |
| 7639 | if (trans) |
| 7640 | exist = 1; |
| 7641 | else |
| 7642 | trans = btrfs_join_transaction(root); |
| 7643 | |
| 7644 | if (IS_ERR(trans)) { |
| 7645 | ret = PTR_ERR(trans); |
| 7646 | goto out; |
| 7647 | } |
| 7648 | |
| 7649 | ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE); |
| 7650 | |
| 7651 | /* |
| 7652 | * If we can't allocate a new chunk we've already looped |
| 7653 | * through at least once, move on to the NO_EMPTY_SIZE |
| 7654 | * case. |
| 7655 | */ |
| 7656 | if (ret == -ENOSPC) |
| 7657 | loop = LOOP_NO_EMPTY_SIZE; |
| 7658 | |
| 7659 | /* |
| 7660 | * Do not bail out on ENOSPC since we |
| 7661 | * can do more things. |
| 7662 | */ |
| 7663 | if (ret < 0 && ret != -ENOSPC) |
| 7664 | btrfs_abort_transaction(trans, ret); |
| 7665 | else |
| 7666 | ret = 0; |
| 7667 | if (!exist) |
| 7668 | btrfs_end_transaction(trans); |
| 7669 | if (ret) |
| 7670 | goto out; |
| 7671 | } |
| 7672 | |
| 7673 | if (loop == LOOP_NO_EMPTY_SIZE) { |
| 7674 | /* |
| 7675 | * Don't loop again if we already have no empty_size and |
| 7676 | * no empty_cluster. |
| 7677 | */ |
| 7678 | if (empty_size == 0 && |
| 7679 | empty_cluster == 0) { |
| 7680 | ret = -ENOSPC; |
| 7681 | goto out; |
| 7682 | } |
| 7683 | empty_size = 0; |
| 7684 | empty_cluster = 0; |
| 7685 | } |
| 7686 | |
| 7687 | goto search; |
| 7688 | } else if (!ins->objectid) { |
| 7689 | ret = -ENOSPC; |
| 7690 | } else if (ins->objectid) { |
| 7691 | if (!use_cluster && last_ptr) { |
| 7692 | spin_lock(&last_ptr->lock); |
| 7693 | last_ptr->window_start = ins->objectid; |
| 7694 | spin_unlock(&last_ptr->lock); |
| 7695 | } |
| 7696 | ret = 0; |
| 7697 | } |
| 7698 | out: |
| 7699 | if (ret == -ENOSPC) { |
| 7700 | if (!max_extent_size) |
| 7701 | max_extent_size = max_free_space; |
| 7702 | spin_lock(&space_info->lock); |
| 7703 | space_info->max_extent_size = max_extent_size; |
| 7704 | spin_unlock(&space_info->lock); |
| 7705 | ins->offset = max_extent_size; |
| 7706 | } |
| 7707 | return ret; |
| 7708 | } |
| 7709 | |
| 7710 | static void dump_space_info(struct btrfs_fs_info *fs_info, |
| 7711 | struct btrfs_space_info *info, u64 bytes, |
| 7712 | int dump_block_groups) |
| 7713 | { |
| 7714 | struct btrfs_block_group_cache *cache; |
| 7715 | int index = 0; |
| 7716 | |
| 7717 | spin_lock(&info->lock); |
| 7718 | btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", |
| 7719 | info->flags, |
| 7720 | info->total_bytes - btrfs_space_info_used(info, true), |
| 7721 | info->full ? "" : "not "); |
| 7722 | btrfs_info(fs_info, |
| 7723 | "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", |
| 7724 | info->total_bytes, info->bytes_used, info->bytes_pinned, |
| 7725 | info->bytes_reserved, info->bytes_may_use, |
| 7726 | info->bytes_readonly); |
| 7727 | spin_unlock(&info->lock); |
| 7728 | |
| 7729 | if (!dump_block_groups) |
| 7730 | return; |
| 7731 | |
| 7732 | down_read(&info->groups_sem); |
| 7733 | again: |
| 7734 | list_for_each_entry(cache, &info->block_groups[index], list) { |
| 7735 | spin_lock(&cache->lock); |
| 7736 | btrfs_info(fs_info, |
| 7737 | "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", |
| 7738 | cache->key.objectid, cache->key.offset, |
| 7739 | btrfs_block_group_used(&cache->item), cache->pinned, |
| 7740 | cache->reserved, cache->ro ? "[readonly]" : ""); |
| 7741 | btrfs_dump_free_space(cache, bytes); |
| 7742 | spin_unlock(&cache->lock); |
| 7743 | } |
| 7744 | if (++index < BTRFS_NR_RAID_TYPES) |
| 7745 | goto again; |
| 7746 | up_read(&info->groups_sem); |
| 7747 | } |
| 7748 | |
| 7749 | /* |
| 7750 | * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a |
| 7751 | * hole that is at least as big as @num_bytes. |
| 7752 | * |
| 7753 | * @root - The root that will contain this extent |
| 7754 | * |
| 7755 | * @ram_bytes - The amount of space in ram that @num_bytes take. This |
| 7756 | * is used for accounting purposes. This value differs |
| 7757 | * from @num_bytes only in the case of compressed extents. |
| 7758 | * |
| 7759 | * @num_bytes - Number of bytes to allocate on-disk. |
| 7760 | * |
| 7761 | * @min_alloc_size - Indicates the minimum amount of space that the |
| 7762 | * allocator should try to satisfy. In some cases |
| 7763 | * @num_bytes may be larger than what is required and if |
| 7764 | * the filesystem is fragmented then allocation fails. |
| 7765 | * However, the presence of @min_alloc_size gives a |
| 7766 | * chance to try and satisfy the smaller allocation. |
| 7767 | * |
| 7768 | * @empty_size - A hint that you plan on doing more COW. This is the |
| 7769 | * size in bytes the allocator should try to find free |
| 7770 | * next to the block it returns. This is just a hint and |
| 7771 | * may be ignored by the allocator. |
| 7772 | * |
| 7773 | * @hint_byte - Hint to the allocator to start searching above the byte |
| 7774 | * address passed. It might be ignored. |
| 7775 | * |
| 7776 | * @ins - This key is modified to record the found hole. It will |
| 7777 | * have the following values: |
| 7778 | * ins->objectid == start position |
| 7779 | * ins->flags = BTRFS_EXTENT_ITEM_KEY |
| 7780 | * ins->offset == the size of the hole. |
| 7781 | * |
| 7782 | * @is_data - Boolean flag indicating whether an extent is |
| 7783 | * allocated for data (true) or metadata (false) |
| 7784 | * |
| 7785 | * @delalloc - Boolean flag indicating whether this allocation is for |
| 7786 | * delalloc or not. If 'true' data_rwsem of block groups |
| 7787 | * is going to be acquired. |
| 7788 | * |
| 7789 | * |
| 7790 | * Returns 0 when an allocation succeeded or < 0 when an error occurred. In |
| 7791 | * case -ENOSPC is returned then @ins->offset will contain the size of the |
| 7792 | * largest available hole the allocator managed to find. |
| 7793 | */ |
| 7794 | int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, |
| 7795 | u64 num_bytes, u64 min_alloc_size, |
| 7796 | u64 empty_size, u64 hint_byte, |
| 7797 | struct btrfs_key *ins, int is_data, int delalloc) |
| 7798 | { |
| 7799 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 7800 | bool final_tried = num_bytes == min_alloc_size; |
| 7801 | u64 flags; |
| 7802 | int ret; |
| 7803 | |
| 7804 | flags = get_alloc_profile_by_root(root, is_data); |
| 7805 | again: |
| 7806 | WARN_ON(num_bytes < fs_info->sectorsize); |
| 7807 | ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, |
| 7808 | hint_byte, ins, flags, delalloc); |
| 7809 | if (!ret && !is_data) { |
| 7810 | btrfs_dec_block_group_reservations(fs_info, ins->objectid); |
| 7811 | } else if (ret == -ENOSPC) { |
| 7812 | if (!final_tried && ins->offset) { |
| 7813 | num_bytes = min(num_bytes >> 1, ins->offset); |
| 7814 | num_bytes = round_down(num_bytes, |
| 7815 | fs_info->sectorsize); |
| 7816 | num_bytes = max(num_bytes, min_alloc_size); |
| 7817 | ram_bytes = num_bytes; |
| 7818 | if (num_bytes == min_alloc_size) |
| 7819 | final_tried = true; |
| 7820 | goto again; |
| 7821 | } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| 7822 | struct btrfs_space_info *sinfo; |
| 7823 | |
| 7824 | sinfo = __find_space_info(fs_info, flags); |
| 7825 | btrfs_err(fs_info, |
| 7826 | "allocation failed flags %llu, wanted %llu", |
| 7827 | flags, num_bytes); |
| 7828 | if (sinfo) |
| 7829 | dump_space_info(fs_info, sinfo, num_bytes, 1); |
| 7830 | } |
| 7831 | } |
| 7832 | |
| 7833 | return ret; |
| 7834 | } |
| 7835 | |
| 7836 | static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, |
| 7837 | u64 start, u64 len, |
| 7838 | int pin, int delalloc) |
| 7839 | { |
| 7840 | struct btrfs_block_group_cache *cache; |
| 7841 | int ret = 0; |
| 7842 | |
| 7843 | cache = btrfs_lookup_block_group(fs_info, start); |
| 7844 | if (!cache) { |
| 7845 | btrfs_err(fs_info, "Unable to find block group for %llu", |
| 7846 | start); |
| 7847 | return -ENOSPC; |
| 7848 | } |
| 7849 | |
| 7850 | if (pin) |
| 7851 | pin_down_extent(fs_info, cache, start, len, 1); |
| 7852 | else { |
| 7853 | if (btrfs_test_opt(fs_info, DISCARD)) |
| 7854 | ret = btrfs_discard_extent(fs_info, start, len, NULL); |
| 7855 | btrfs_add_free_space(cache, start, len); |
| 7856 | btrfs_free_reserved_bytes(cache, len, delalloc); |
| 7857 | trace_btrfs_reserved_extent_free(fs_info, start, len); |
| 7858 | } |
| 7859 | |
| 7860 | btrfs_put_block_group(cache); |
| 7861 | return ret; |
| 7862 | } |
| 7863 | |
| 7864 | int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, |
| 7865 | u64 start, u64 len, int delalloc) |
| 7866 | { |
| 7867 | return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); |
| 7868 | } |
| 7869 | |
| 7870 | int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, |
| 7871 | u64 start, u64 len) |
| 7872 | { |
| 7873 | return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); |
| 7874 | } |
| 7875 | |
| 7876 | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| 7877 | u64 parent, u64 root_objectid, |
| 7878 | u64 flags, u64 owner, u64 offset, |
| 7879 | struct btrfs_key *ins, int ref_mod) |
| 7880 | { |
| 7881 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 7882 | int ret; |
| 7883 | struct btrfs_extent_item *extent_item; |
| 7884 | struct btrfs_extent_inline_ref *iref; |
| 7885 | struct btrfs_path *path; |
| 7886 | struct extent_buffer *leaf; |
| 7887 | int type; |
| 7888 | u32 size; |
| 7889 | |
| 7890 | if (parent > 0) |
| 7891 | type = BTRFS_SHARED_DATA_REF_KEY; |
| 7892 | else |
| 7893 | type = BTRFS_EXTENT_DATA_REF_KEY; |
| 7894 | |
| 7895 | size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); |
| 7896 | |
| 7897 | path = btrfs_alloc_path(); |
| 7898 | if (!path) |
| 7899 | return -ENOMEM; |
| 7900 | |
| 7901 | path->leave_spinning = 1; |
| 7902 | ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, |
| 7903 | ins, size); |
| 7904 | if (ret) { |
| 7905 | btrfs_free_path(path); |
| 7906 | return ret; |
| 7907 | } |
| 7908 | |
| 7909 | leaf = path->nodes[0]; |
| 7910 | extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| 7911 | struct btrfs_extent_item); |
| 7912 | btrfs_set_extent_refs(leaf, extent_item, ref_mod); |
| 7913 | btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| 7914 | btrfs_set_extent_flags(leaf, extent_item, |
| 7915 | flags | BTRFS_EXTENT_FLAG_DATA); |
| 7916 | |
| 7917 | iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); |
| 7918 | btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| 7919 | if (parent > 0) { |
| 7920 | struct btrfs_shared_data_ref *ref; |
| 7921 | ref = (struct btrfs_shared_data_ref *)(iref + 1); |
| 7922 | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| 7923 | btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); |
| 7924 | } else { |
| 7925 | struct btrfs_extent_data_ref *ref; |
| 7926 | ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 7927 | btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); |
| 7928 | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| 7929 | btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| 7930 | btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); |
| 7931 | } |
| 7932 | |
| 7933 | btrfs_mark_buffer_dirty(path->nodes[0]); |
| 7934 | btrfs_free_path(path); |
| 7935 | |
| 7936 | ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); |
| 7937 | if (ret) |
| 7938 | return ret; |
| 7939 | |
| 7940 | ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); |
| 7941 | if (ret) { /* -ENOENT, logic error */ |
| 7942 | btrfs_err(fs_info, "update block group failed for %llu %llu", |
| 7943 | ins->objectid, ins->offset); |
| 7944 | BUG(); |
| 7945 | } |
| 7946 | trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); |
| 7947 | return ret; |
| 7948 | } |
| 7949 | |
| 7950 | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| 7951 | struct btrfs_delayed_ref_node *node, |
| 7952 | struct btrfs_delayed_extent_op *extent_op) |
| 7953 | { |
| 7954 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 7955 | int ret; |
| 7956 | struct btrfs_extent_item *extent_item; |
| 7957 | struct btrfs_key extent_key; |
| 7958 | struct btrfs_tree_block_info *block_info; |
| 7959 | struct btrfs_extent_inline_ref *iref; |
| 7960 | struct btrfs_path *path; |
| 7961 | struct extent_buffer *leaf; |
| 7962 | struct btrfs_delayed_tree_ref *ref; |
| 7963 | u32 size = sizeof(*extent_item) + sizeof(*iref); |
| 7964 | u64 num_bytes; |
| 7965 | u64 flags = extent_op->flags_to_set; |
| 7966 | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| 7967 | |
| 7968 | ref = btrfs_delayed_node_to_tree_ref(node); |
| 7969 | |
| 7970 | extent_key.objectid = node->bytenr; |
| 7971 | if (skinny_metadata) { |
| 7972 | extent_key.offset = ref->level; |
| 7973 | extent_key.type = BTRFS_METADATA_ITEM_KEY; |
| 7974 | num_bytes = fs_info->nodesize; |
| 7975 | } else { |
| 7976 | extent_key.offset = node->num_bytes; |
| 7977 | extent_key.type = BTRFS_EXTENT_ITEM_KEY; |
| 7978 | size += sizeof(*block_info); |
| 7979 | num_bytes = node->num_bytes; |
| 7980 | } |
| 7981 | |
| 7982 | path = btrfs_alloc_path(); |
| 7983 | if (!path) |
| 7984 | return -ENOMEM; |
| 7985 | |
| 7986 | path->leave_spinning = 1; |
| 7987 | ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, |
| 7988 | &extent_key, size); |
| 7989 | if (ret) { |
| 7990 | btrfs_free_path(path); |
| 7991 | return ret; |
| 7992 | } |
| 7993 | |
| 7994 | leaf = path->nodes[0]; |
| 7995 | extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| 7996 | struct btrfs_extent_item); |
| 7997 | btrfs_set_extent_refs(leaf, extent_item, 1); |
| 7998 | btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| 7999 | btrfs_set_extent_flags(leaf, extent_item, |
| 8000 | flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); |
| 8001 | |
| 8002 | if (skinny_metadata) { |
| 8003 | iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); |
| 8004 | } else { |
| 8005 | block_info = (struct btrfs_tree_block_info *)(extent_item + 1); |
| 8006 | btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); |
| 8007 | btrfs_set_tree_block_level(leaf, block_info, ref->level); |
| 8008 | iref = (struct btrfs_extent_inline_ref *)(block_info + 1); |
| 8009 | } |
| 8010 | |
| 8011 | if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| 8012 | BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); |
| 8013 | btrfs_set_extent_inline_ref_type(leaf, iref, |
| 8014 | BTRFS_SHARED_BLOCK_REF_KEY); |
| 8015 | btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); |
| 8016 | } else { |
| 8017 | btrfs_set_extent_inline_ref_type(leaf, iref, |
| 8018 | BTRFS_TREE_BLOCK_REF_KEY); |
| 8019 | btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); |
| 8020 | } |
| 8021 | |
| 8022 | btrfs_mark_buffer_dirty(leaf); |
| 8023 | btrfs_free_path(path); |
| 8024 | |
| 8025 | ret = remove_from_free_space_tree(trans, extent_key.objectid, |
| 8026 | num_bytes); |
| 8027 | if (ret) |
| 8028 | return ret; |
| 8029 | |
| 8030 | ret = update_block_group(trans, fs_info, extent_key.objectid, |
| 8031 | fs_info->nodesize, 1); |
| 8032 | if (ret) { /* -ENOENT, logic error */ |
| 8033 | btrfs_err(fs_info, "update block group failed for %llu %llu", |
| 8034 | extent_key.objectid, extent_key.offset); |
| 8035 | BUG(); |
| 8036 | } |
| 8037 | |
| 8038 | trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, |
| 8039 | fs_info->nodesize); |
| 8040 | return ret; |
| 8041 | } |
| 8042 | |
| 8043 | int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| 8044 | struct btrfs_root *root, u64 owner, |
| 8045 | u64 offset, u64 ram_bytes, |
| 8046 | struct btrfs_key *ins) |
| 8047 | { |
| 8048 | int ret; |
| 8049 | |
| 8050 | BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); |
| 8051 | |
| 8052 | btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, |
| 8053 | root->root_key.objectid, owner, offset, |
| 8054 | BTRFS_ADD_DELAYED_EXTENT); |
| 8055 | |
| 8056 | ret = btrfs_add_delayed_data_ref(trans, ins->objectid, |
| 8057 | ins->offset, 0, |
| 8058 | root->root_key.objectid, owner, |
| 8059 | offset, ram_bytes, |
| 8060 | BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); |
| 8061 | return ret; |
| 8062 | } |
| 8063 | |
| 8064 | /* |
| 8065 | * this is used by the tree logging recovery code. It records that |
| 8066 | * an extent has been allocated and makes sure to clear the free |
| 8067 | * space cache bits as well |
| 8068 | */ |
| 8069 | int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, |
| 8070 | u64 root_objectid, u64 owner, u64 offset, |
| 8071 | struct btrfs_key *ins) |
| 8072 | { |
| 8073 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 8074 | int ret; |
| 8075 | struct btrfs_block_group_cache *block_group; |
| 8076 | struct btrfs_space_info *space_info; |
| 8077 | |
| 8078 | /* |
| 8079 | * Mixed block groups will exclude before processing the log so we only |
| 8080 | * need to do the exclude dance if this fs isn't mixed. |
| 8081 | */ |
| 8082 | if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { |
| 8083 | ret = __exclude_logged_extent(fs_info, ins->objectid, |
| 8084 | ins->offset); |
| 8085 | if (ret) |
| 8086 | return ret; |
| 8087 | } |
| 8088 | |
| 8089 | block_group = btrfs_lookup_block_group(fs_info, ins->objectid); |
| 8090 | if (!block_group) |
| 8091 | return -EINVAL; |
| 8092 | |
| 8093 | space_info = block_group->space_info; |
| 8094 | spin_lock(&space_info->lock); |
| 8095 | spin_lock(&block_group->lock); |
| 8096 | space_info->bytes_reserved += ins->offset; |
| 8097 | block_group->reserved += ins->offset; |
| 8098 | spin_unlock(&block_group->lock); |
| 8099 | spin_unlock(&space_info->lock); |
| 8100 | |
| 8101 | ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, |
| 8102 | offset, ins, 1); |
| 8103 | btrfs_put_block_group(block_group); |
| 8104 | return ret; |
| 8105 | } |
| 8106 | |
| 8107 | static struct extent_buffer * |
| 8108 | btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| 8109 | u64 bytenr, int level, u64 owner) |
| 8110 | { |
| 8111 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 8112 | struct extent_buffer *buf; |
| 8113 | |
| 8114 | buf = btrfs_find_create_tree_block(fs_info, bytenr); |
| 8115 | if (IS_ERR(buf)) |
| 8116 | return buf; |
| 8117 | |
| 8118 | /* |
| 8119 | * Extra safety check in case the extent tree is corrupted and extent |
| 8120 | * allocator chooses to use a tree block which is already used and |
| 8121 | * locked. |
| 8122 | */ |
| 8123 | if (buf->lock_owner == current->pid) { |
| 8124 | btrfs_err_rl(fs_info, |
| 8125 | "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", |
| 8126 | buf->start, btrfs_header_owner(buf), current->pid); |
| 8127 | free_extent_buffer(buf); |
| 8128 | return ERR_PTR(-EUCLEAN); |
| 8129 | } |
| 8130 | |
| 8131 | btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); |
| 8132 | btrfs_tree_lock(buf); |
| 8133 | clean_tree_block(fs_info, buf); |
| 8134 | clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); |
| 8135 | |
| 8136 | btrfs_set_lock_blocking(buf); |
| 8137 | set_extent_buffer_uptodate(buf); |
| 8138 | |
| 8139 | memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); |
| 8140 | btrfs_set_header_level(buf, level); |
| 8141 | btrfs_set_header_bytenr(buf, buf->start); |
| 8142 | btrfs_set_header_generation(buf, trans->transid); |
| 8143 | btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); |
| 8144 | btrfs_set_header_owner(buf, owner); |
| 8145 | write_extent_buffer_fsid(buf, fs_info->fsid); |
| 8146 | write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); |
| 8147 | if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { |
| 8148 | buf->log_index = root->log_transid % 2; |
| 8149 | /* |
| 8150 | * we allow two log transactions at a time, use different |
| 8151 | * EXENT bit to differentiate dirty pages. |
| 8152 | */ |
| 8153 | if (buf->log_index == 0) |
| 8154 | set_extent_dirty(&root->dirty_log_pages, buf->start, |
| 8155 | buf->start + buf->len - 1, GFP_NOFS); |
| 8156 | else |
| 8157 | set_extent_new(&root->dirty_log_pages, buf->start, |
| 8158 | buf->start + buf->len - 1); |
| 8159 | } else { |
| 8160 | buf->log_index = -1; |
| 8161 | set_extent_dirty(&trans->transaction->dirty_pages, buf->start, |
| 8162 | buf->start + buf->len - 1, GFP_NOFS); |
| 8163 | } |
| 8164 | trans->dirty = true; |
| 8165 | /* this returns a buffer locked for blocking */ |
| 8166 | return buf; |
| 8167 | } |
| 8168 | |
| 8169 | static struct btrfs_block_rsv * |
| 8170 | use_block_rsv(struct btrfs_trans_handle *trans, |
| 8171 | struct btrfs_root *root, u32 blocksize) |
| 8172 | { |
| 8173 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 8174 | struct btrfs_block_rsv *block_rsv; |
| 8175 | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| 8176 | int ret; |
| 8177 | bool global_updated = false; |
| 8178 | |
| 8179 | block_rsv = get_block_rsv(trans, root); |
| 8180 | |
| 8181 | if (unlikely(block_rsv->size == 0)) |
| 8182 | goto try_reserve; |
| 8183 | again: |
| 8184 | ret = block_rsv_use_bytes(block_rsv, blocksize); |
| 8185 | if (!ret) |
| 8186 | return block_rsv; |
| 8187 | |
| 8188 | if (block_rsv->failfast) |
| 8189 | return ERR_PTR(ret); |
| 8190 | |
| 8191 | if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { |
| 8192 | global_updated = true; |
| 8193 | update_global_block_rsv(fs_info); |
| 8194 | goto again; |
| 8195 | } |
| 8196 | |
| 8197 | if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| 8198 | static DEFINE_RATELIMIT_STATE(_rs, |
| 8199 | DEFAULT_RATELIMIT_INTERVAL * 10, |
| 8200 | /*DEFAULT_RATELIMIT_BURST*/ 1); |
| 8201 | if (__ratelimit(&_rs)) |
| 8202 | WARN(1, KERN_DEBUG |
| 8203 | "BTRFS: block rsv returned %d\n", ret); |
| 8204 | } |
| 8205 | try_reserve: |
| 8206 | ret = reserve_metadata_bytes(root, block_rsv, blocksize, |
| 8207 | BTRFS_RESERVE_NO_FLUSH); |
| 8208 | if (!ret) |
| 8209 | return block_rsv; |
| 8210 | /* |
| 8211 | * If we couldn't reserve metadata bytes try and use some from |
| 8212 | * the global reserve if its space type is the same as the global |
| 8213 | * reservation. |
| 8214 | */ |
| 8215 | if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && |
| 8216 | block_rsv->space_info == global_rsv->space_info) { |
| 8217 | ret = block_rsv_use_bytes(global_rsv, blocksize); |
| 8218 | if (!ret) |
| 8219 | return global_rsv; |
| 8220 | } |
| 8221 | return ERR_PTR(ret); |
| 8222 | } |
| 8223 | |
| 8224 | static void unuse_block_rsv(struct btrfs_fs_info *fs_info, |
| 8225 | struct btrfs_block_rsv *block_rsv, u32 blocksize) |
| 8226 | { |
| 8227 | block_rsv_add_bytes(block_rsv, blocksize, 0); |
| 8228 | block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL); |
| 8229 | } |
| 8230 | |
| 8231 | /* |
| 8232 | * finds a free extent and does all the dirty work required for allocation |
| 8233 | * returns the tree buffer or an ERR_PTR on error. |
| 8234 | */ |
| 8235 | struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, |
| 8236 | struct btrfs_root *root, |
| 8237 | u64 parent, u64 root_objectid, |
| 8238 | const struct btrfs_disk_key *key, |
| 8239 | int level, u64 hint, |
| 8240 | u64 empty_size) |
| 8241 | { |
| 8242 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 8243 | struct btrfs_key ins; |
| 8244 | struct btrfs_block_rsv *block_rsv; |
| 8245 | struct extent_buffer *buf; |
| 8246 | struct btrfs_delayed_extent_op *extent_op; |
| 8247 | u64 flags = 0; |
| 8248 | int ret; |
| 8249 | u32 blocksize = fs_info->nodesize; |
| 8250 | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| 8251 | |
| 8252 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| 8253 | if (btrfs_is_testing(fs_info)) { |
| 8254 | buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, |
| 8255 | level, root_objectid); |
| 8256 | if (!IS_ERR(buf)) |
| 8257 | root->alloc_bytenr += blocksize; |
| 8258 | return buf; |
| 8259 | } |
| 8260 | #endif |
| 8261 | |
| 8262 | block_rsv = use_block_rsv(trans, root, blocksize); |
| 8263 | if (IS_ERR(block_rsv)) |
| 8264 | return ERR_CAST(block_rsv); |
| 8265 | |
| 8266 | ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, |
| 8267 | empty_size, hint, &ins, 0, 0); |
| 8268 | if (ret) |
| 8269 | goto out_unuse; |
| 8270 | |
| 8271 | buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, |
| 8272 | root_objectid); |
| 8273 | if (IS_ERR(buf)) { |
| 8274 | ret = PTR_ERR(buf); |
| 8275 | goto out_free_reserved; |
| 8276 | } |
| 8277 | |
| 8278 | if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { |
| 8279 | if (parent == 0) |
| 8280 | parent = ins.objectid; |
| 8281 | flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| 8282 | } else |
| 8283 | BUG_ON(parent > 0); |
| 8284 | |
| 8285 | if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { |
| 8286 | extent_op = btrfs_alloc_delayed_extent_op(); |
| 8287 | if (!extent_op) { |
| 8288 | ret = -ENOMEM; |
| 8289 | goto out_free_buf; |
| 8290 | } |
| 8291 | if (key) |
| 8292 | memcpy(&extent_op->key, key, sizeof(extent_op->key)); |
| 8293 | else |
| 8294 | memset(&extent_op->key, 0, sizeof(extent_op->key)); |
| 8295 | extent_op->flags_to_set = flags; |
| 8296 | extent_op->update_key = skinny_metadata ? false : true; |
| 8297 | extent_op->update_flags = true; |
| 8298 | extent_op->is_data = false; |
| 8299 | extent_op->level = level; |
| 8300 | |
| 8301 | btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, |
| 8302 | root_objectid, level, 0, |
| 8303 | BTRFS_ADD_DELAYED_EXTENT); |
| 8304 | ret = btrfs_add_delayed_tree_ref(trans, ins.objectid, |
| 8305 | ins.offset, parent, |
| 8306 | root_objectid, level, |
| 8307 | BTRFS_ADD_DELAYED_EXTENT, |
| 8308 | extent_op, NULL, NULL); |
| 8309 | if (ret) |
| 8310 | goto out_free_delayed; |
| 8311 | } |
| 8312 | return buf; |
| 8313 | |
| 8314 | out_free_delayed: |
| 8315 | btrfs_free_delayed_extent_op(extent_op); |
| 8316 | out_free_buf: |
| 8317 | free_extent_buffer(buf); |
| 8318 | out_free_reserved: |
| 8319 | btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); |
| 8320 | out_unuse: |
| 8321 | unuse_block_rsv(fs_info, block_rsv, blocksize); |
| 8322 | return ERR_PTR(ret); |
| 8323 | } |
| 8324 | |
| 8325 | struct walk_control { |
| 8326 | u64 refs[BTRFS_MAX_LEVEL]; |
| 8327 | u64 flags[BTRFS_MAX_LEVEL]; |
| 8328 | struct btrfs_key update_progress; |
| 8329 | int stage; |
| 8330 | int level; |
| 8331 | int shared_level; |
| 8332 | int update_ref; |
| 8333 | int keep_locks; |
| 8334 | int reada_slot; |
| 8335 | int reada_count; |
| 8336 | }; |
| 8337 | |
| 8338 | #define DROP_REFERENCE 1 |
| 8339 | #define UPDATE_BACKREF 2 |
| 8340 | |
| 8341 | static noinline void reada_walk_down(struct btrfs_trans_handle *trans, |
| 8342 | struct btrfs_root *root, |
| 8343 | struct walk_control *wc, |
| 8344 | struct btrfs_path *path) |
| 8345 | { |
| 8346 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 8347 | u64 bytenr; |
| 8348 | u64 generation; |
| 8349 | u64 refs; |
| 8350 | u64 flags; |
| 8351 | u32 nritems; |
| 8352 | struct btrfs_key key; |
| 8353 | struct extent_buffer *eb; |
| 8354 | int ret; |
| 8355 | int slot; |
| 8356 | int nread = 0; |
| 8357 | |
| 8358 | if (path->slots[wc->level] < wc->reada_slot) { |
| 8359 | wc->reada_count = wc->reada_count * 2 / 3; |
| 8360 | wc->reada_count = max(wc->reada_count, 2); |
| 8361 | } else { |
| 8362 | wc->reada_count = wc->reada_count * 3 / 2; |
| 8363 | wc->reada_count = min_t(int, wc->reada_count, |
| 8364 | BTRFS_NODEPTRS_PER_BLOCK(fs_info)); |
| 8365 | } |
| 8366 | |
| 8367 | eb = path->nodes[wc->level]; |
| 8368 | nritems = btrfs_header_nritems(eb); |
| 8369 | |
| 8370 | for (slot = path->slots[wc->level]; slot < nritems; slot++) { |
| 8371 | if (nread >= wc->reada_count) |
| 8372 | break; |
| 8373 | |
| 8374 | cond_resched(); |
| 8375 | bytenr = btrfs_node_blockptr(eb, slot); |
| 8376 | generation = btrfs_node_ptr_generation(eb, slot); |
| 8377 | |
| 8378 | if (slot == path->slots[wc->level]) |
| 8379 | goto reada; |
| 8380 | |
| 8381 | if (wc->stage == UPDATE_BACKREF && |
| 8382 | generation <= root->root_key.offset) |
| 8383 | continue; |
| 8384 | |
| 8385 | /* We don't lock the tree block, it's OK to be racy here */ |
| 8386 | ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, |
| 8387 | wc->level - 1, 1, &refs, |
| 8388 | &flags); |
| 8389 | /* We don't care about errors in readahead. */ |
| 8390 | if (ret < 0) |
| 8391 | continue; |
| 8392 | BUG_ON(refs == 0); |
| 8393 | |
| 8394 | if (wc->stage == DROP_REFERENCE) { |
| 8395 | if (refs == 1) |
| 8396 | goto reada; |
| 8397 | |
| 8398 | if (wc->level == 1 && |
| 8399 | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| 8400 | continue; |
| 8401 | if (!wc->update_ref || |
| 8402 | generation <= root->root_key.offset) |
| 8403 | continue; |
| 8404 | btrfs_node_key_to_cpu(eb, &key, slot); |
| 8405 | ret = btrfs_comp_cpu_keys(&key, |
| 8406 | &wc->update_progress); |
| 8407 | if (ret < 0) |
| 8408 | continue; |
| 8409 | } else { |
| 8410 | if (wc->level == 1 && |
| 8411 | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| 8412 | continue; |
| 8413 | } |
| 8414 | reada: |
| 8415 | readahead_tree_block(fs_info, bytenr); |
| 8416 | nread++; |
| 8417 | } |
| 8418 | wc->reada_slot = slot; |
| 8419 | } |
| 8420 | |
| 8421 | /* |
| 8422 | * helper to process tree block while walking down the tree. |
| 8423 | * |
| 8424 | * when wc->stage == UPDATE_BACKREF, this function updates |
| 8425 | * back refs for pointers in the block. |
| 8426 | * |
| 8427 | * NOTE: return value 1 means we should stop walking down. |
| 8428 | */ |
| 8429 | static noinline int walk_down_proc(struct btrfs_trans_handle *trans, |
| 8430 | struct btrfs_root *root, |
| 8431 | struct btrfs_path *path, |
| 8432 | struct walk_control *wc, int lookup_info) |
| 8433 | { |
| 8434 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 8435 | int level = wc->level; |
| 8436 | struct extent_buffer *eb = path->nodes[level]; |
| 8437 | u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| 8438 | int ret; |
| 8439 | |
| 8440 | if (wc->stage == UPDATE_BACKREF && |
| 8441 | btrfs_header_owner(eb) != root->root_key.objectid) |
| 8442 | return 1; |
| 8443 | |
| 8444 | /* |
| 8445 | * when reference count of tree block is 1, it won't increase |
| 8446 | * again. once full backref flag is set, we never clear it. |
| 8447 | */ |
| 8448 | if (lookup_info && |
| 8449 | ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || |
| 8450 | (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { |
| 8451 | BUG_ON(!path->locks[level]); |
| 8452 | ret = btrfs_lookup_extent_info(trans, fs_info, |
| 8453 | eb->start, level, 1, |
| 8454 | &wc->refs[level], |
| 8455 | &wc->flags[level]); |
| 8456 | BUG_ON(ret == -ENOMEM); |
| 8457 | if (ret) |
| 8458 | return ret; |
| 8459 | BUG_ON(wc->refs[level] == 0); |
| 8460 | } |
| 8461 | |
| 8462 | if (wc->stage == DROP_REFERENCE) { |
| 8463 | if (wc->refs[level] > 1) |
| 8464 | return 1; |
| 8465 | |
| 8466 | if (path->locks[level] && !wc->keep_locks) { |
| 8467 | btrfs_tree_unlock_rw(eb, path->locks[level]); |
| 8468 | path->locks[level] = 0; |
| 8469 | } |
| 8470 | return 0; |
| 8471 | } |
| 8472 | |
| 8473 | /* wc->stage == UPDATE_BACKREF */ |
| 8474 | if (!(wc->flags[level] & flag)) { |
| 8475 | BUG_ON(!path->locks[level]); |
| 8476 | ret = btrfs_inc_ref(trans, root, eb, 1); |
| 8477 | BUG_ON(ret); /* -ENOMEM */ |
| 8478 | ret = btrfs_dec_ref(trans, root, eb, 0); |
| 8479 | BUG_ON(ret); /* -ENOMEM */ |
| 8480 | ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, |
| 8481 | eb->len, flag, |
| 8482 | btrfs_header_level(eb), 0); |
| 8483 | BUG_ON(ret); /* -ENOMEM */ |
| 8484 | wc->flags[level] |= flag; |
| 8485 | } |
| 8486 | |
| 8487 | /* |
| 8488 | * the block is shared by multiple trees, so it's not good to |
| 8489 | * keep the tree lock |
| 8490 | */ |
| 8491 | if (path->locks[level] && level > 0) { |
| 8492 | btrfs_tree_unlock_rw(eb, path->locks[level]); |
| 8493 | path->locks[level] = 0; |
| 8494 | } |
| 8495 | return 0; |
| 8496 | } |
| 8497 | |
| 8498 | /* |
| 8499 | * helper to process tree block pointer. |
| 8500 | * |
| 8501 | * when wc->stage == DROP_REFERENCE, this function checks |
| 8502 | * reference count of the block pointed to. if the block |
| 8503 | * is shared and we need update back refs for the subtree |
| 8504 | * rooted at the block, this function changes wc->stage to |
| 8505 | * UPDATE_BACKREF. if the block is shared and there is no |
| 8506 | * need to update back, this function drops the reference |
| 8507 | * to the block. |
| 8508 | * |
| 8509 | * NOTE: return value 1 means we should stop walking down. |
| 8510 | */ |
| 8511 | static noinline int do_walk_down(struct btrfs_trans_handle *trans, |
| 8512 | struct btrfs_root *root, |
| 8513 | struct btrfs_path *path, |
| 8514 | struct walk_control *wc, int *lookup_info) |
| 8515 | { |
| 8516 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 8517 | u64 bytenr; |
| 8518 | u64 generation; |
| 8519 | u64 parent; |
| 8520 | u32 blocksize; |
| 8521 | struct btrfs_key key; |
| 8522 | struct btrfs_key first_key; |
| 8523 | struct extent_buffer *next; |
| 8524 | int level = wc->level; |
| 8525 | int reada = 0; |
| 8526 | int ret = 0; |
| 8527 | bool need_account = false; |
| 8528 | |
| 8529 | generation = btrfs_node_ptr_generation(path->nodes[level], |
| 8530 | path->slots[level]); |
| 8531 | /* |
| 8532 | * if the lower level block was created before the snapshot |
| 8533 | * was created, we know there is no need to update back refs |
| 8534 | * for the subtree |
| 8535 | */ |
| 8536 | if (wc->stage == UPDATE_BACKREF && |
| 8537 | generation <= root->root_key.offset) { |
| 8538 | *lookup_info = 1; |
| 8539 | return 1; |
| 8540 | } |
| 8541 | |
| 8542 | bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); |
| 8543 | btrfs_node_key_to_cpu(path->nodes[level], &first_key, |
| 8544 | path->slots[level]); |
| 8545 | blocksize = fs_info->nodesize; |
| 8546 | |
| 8547 | next = find_extent_buffer(fs_info, bytenr); |
| 8548 | if (!next) { |
| 8549 | next = btrfs_find_create_tree_block(fs_info, bytenr); |
| 8550 | if (IS_ERR(next)) |
| 8551 | return PTR_ERR(next); |
| 8552 | |
| 8553 | btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, |
| 8554 | level - 1); |
| 8555 | reada = 1; |
| 8556 | } |
| 8557 | btrfs_tree_lock(next); |
| 8558 | btrfs_set_lock_blocking(next); |
| 8559 | |
| 8560 | ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, |
| 8561 | &wc->refs[level - 1], |
| 8562 | &wc->flags[level - 1]); |
| 8563 | if (ret < 0) |
| 8564 | goto out_unlock; |
| 8565 | |
| 8566 | if (unlikely(wc->refs[level - 1] == 0)) { |
| 8567 | btrfs_err(fs_info, "Missing references."); |
| 8568 | ret = -EIO; |
| 8569 | goto out_unlock; |
| 8570 | } |
| 8571 | *lookup_info = 0; |
| 8572 | |
| 8573 | if (wc->stage == DROP_REFERENCE) { |
| 8574 | if (wc->refs[level - 1] > 1) { |
| 8575 | need_account = true; |
| 8576 | if (level == 1 && |
| 8577 | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| 8578 | goto skip; |
| 8579 | |
| 8580 | if (!wc->update_ref || |
| 8581 | generation <= root->root_key.offset) |
| 8582 | goto skip; |
| 8583 | |
| 8584 | btrfs_node_key_to_cpu(path->nodes[level], &key, |
| 8585 | path->slots[level]); |
| 8586 | ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); |
| 8587 | if (ret < 0) |
| 8588 | goto skip; |
| 8589 | |
| 8590 | wc->stage = UPDATE_BACKREF; |
| 8591 | wc->shared_level = level - 1; |
| 8592 | } |
| 8593 | } else { |
| 8594 | if (level == 1 && |
| 8595 | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| 8596 | goto skip; |
| 8597 | } |
| 8598 | |
| 8599 | if (!btrfs_buffer_uptodate(next, generation, 0)) { |
| 8600 | btrfs_tree_unlock(next); |
| 8601 | free_extent_buffer(next); |
| 8602 | next = NULL; |
| 8603 | *lookup_info = 1; |
| 8604 | } |
| 8605 | |
| 8606 | if (!next) { |
| 8607 | if (reada && level == 1) |
| 8608 | reada_walk_down(trans, root, wc, path); |
| 8609 | next = read_tree_block(fs_info, bytenr, generation, level - 1, |
| 8610 | &first_key); |
| 8611 | if (IS_ERR(next)) { |
| 8612 | return PTR_ERR(next); |
| 8613 | } else if (!extent_buffer_uptodate(next)) { |
| 8614 | free_extent_buffer(next); |
| 8615 | return -EIO; |
| 8616 | } |
| 8617 | btrfs_tree_lock(next); |
| 8618 | btrfs_set_lock_blocking(next); |
| 8619 | } |
| 8620 | |
| 8621 | level--; |
| 8622 | ASSERT(level == btrfs_header_level(next)); |
| 8623 | if (level != btrfs_header_level(next)) { |
| 8624 | btrfs_err(root->fs_info, "mismatched level"); |
| 8625 | ret = -EIO; |
| 8626 | goto out_unlock; |
| 8627 | } |
| 8628 | path->nodes[level] = next; |
| 8629 | path->slots[level] = 0; |
| 8630 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 8631 | wc->level = level; |
| 8632 | if (wc->level == 1) |
| 8633 | wc->reada_slot = 0; |
| 8634 | return 0; |
| 8635 | skip: |
| 8636 | wc->refs[level - 1] = 0; |
| 8637 | wc->flags[level - 1] = 0; |
| 8638 | if (wc->stage == DROP_REFERENCE) { |
| 8639 | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { |
| 8640 | parent = path->nodes[level]->start; |
| 8641 | } else { |
| 8642 | ASSERT(root->root_key.objectid == |
| 8643 | btrfs_header_owner(path->nodes[level])); |
| 8644 | if (root->root_key.objectid != |
| 8645 | btrfs_header_owner(path->nodes[level])) { |
| 8646 | btrfs_err(root->fs_info, |
| 8647 | "mismatched block owner"); |
| 8648 | ret = -EIO; |
| 8649 | goto out_unlock; |
| 8650 | } |
| 8651 | parent = 0; |
| 8652 | } |
| 8653 | |
| 8654 | if (need_account) { |
| 8655 | ret = btrfs_qgroup_trace_subtree(trans, next, |
| 8656 | generation, level - 1); |
| 8657 | if (ret) { |
| 8658 | btrfs_err_rl(fs_info, |
| 8659 | "Error %d accounting shared subtree. Quota is out of sync, rescan required.", |
| 8660 | ret); |
| 8661 | } |
| 8662 | } |
| 8663 | ret = btrfs_free_extent(trans, root, bytenr, blocksize, |
| 8664 | parent, root->root_key.objectid, |
| 8665 | level - 1, 0); |
| 8666 | if (ret) |
| 8667 | goto out_unlock; |
| 8668 | } |
| 8669 | |
| 8670 | *lookup_info = 1; |
| 8671 | ret = 1; |
| 8672 | |
| 8673 | out_unlock: |
| 8674 | btrfs_tree_unlock(next); |
| 8675 | free_extent_buffer(next); |
| 8676 | |
| 8677 | return ret; |
| 8678 | } |
| 8679 | |
| 8680 | /* |
| 8681 | * helper to process tree block while walking up the tree. |
| 8682 | * |
| 8683 | * when wc->stage == DROP_REFERENCE, this function drops |
| 8684 | * reference count on the block. |
| 8685 | * |
| 8686 | * when wc->stage == UPDATE_BACKREF, this function changes |
| 8687 | * wc->stage back to DROP_REFERENCE if we changed wc->stage |
| 8688 | * to UPDATE_BACKREF previously while processing the block. |
| 8689 | * |
| 8690 | * NOTE: return value 1 means we should stop walking up. |
| 8691 | */ |
| 8692 | static noinline int walk_up_proc(struct btrfs_trans_handle *trans, |
| 8693 | struct btrfs_root *root, |
| 8694 | struct btrfs_path *path, |
| 8695 | struct walk_control *wc) |
| 8696 | { |
| 8697 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 8698 | int ret; |
| 8699 | int level = wc->level; |
| 8700 | struct extent_buffer *eb = path->nodes[level]; |
| 8701 | u64 parent = 0; |
| 8702 | |
| 8703 | if (wc->stage == UPDATE_BACKREF) { |
| 8704 | BUG_ON(wc->shared_level < level); |
| 8705 | if (level < wc->shared_level) |
| 8706 | goto out; |
| 8707 | |
| 8708 | ret = find_next_key(path, level + 1, &wc->update_progress); |
| 8709 | if (ret > 0) |
| 8710 | wc->update_ref = 0; |
| 8711 | |
| 8712 | wc->stage = DROP_REFERENCE; |
| 8713 | wc->shared_level = -1; |
| 8714 | path->slots[level] = 0; |
| 8715 | |
| 8716 | /* |
| 8717 | * check reference count again if the block isn't locked. |
| 8718 | * we should start walking down the tree again if reference |
| 8719 | * count is one. |
| 8720 | */ |
| 8721 | if (!path->locks[level]) { |
| 8722 | BUG_ON(level == 0); |
| 8723 | btrfs_tree_lock(eb); |
| 8724 | btrfs_set_lock_blocking(eb); |
| 8725 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 8726 | |
| 8727 | ret = btrfs_lookup_extent_info(trans, fs_info, |
| 8728 | eb->start, level, 1, |
| 8729 | &wc->refs[level], |
| 8730 | &wc->flags[level]); |
| 8731 | if (ret < 0) { |
| 8732 | btrfs_tree_unlock_rw(eb, path->locks[level]); |
| 8733 | path->locks[level] = 0; |
| 8734 | return ret; |
| 8735 | } |
| 8736 | BUG_ON(wc->refs[level] == 0); |
| 8737 | if (wc->refs[level] == 1) { |
| 8738 | btrfs_tree_unlock_rw(eb, path->locks[level]); |
| 8739 | path->locks[level] = 0; |
| 8740 | return 1; |
| 8741 | } |
| 8742 | } |
| 8743 | } |
| 8744 | |
| 8745 | /* wc->stage == DROP_REFERENCE */ |
| 8746 | BUG_ON(wc->refs[level] > 1 && !path->locks[level]); |
| 8747 | |
| 8748 | if (wc->refs[level] == 1) { |
| 8749 | if (level == 0) { |
| 8750 | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| 8751 | ret = btrfs_dec_ref(trans, root, eb, 1); |
| 8752 | else |
| 8753 | ret = btrfs_dec_ref(trans, root, eb, 0); |
| 8754 | BUG_ON(ret); /* -ENOMEM */ |
| 8755 | ret = btrfs_qgroup_trace_leaf_items(trans, eb); |
| 8756 | if (ret) { |
| 8757 | btrfs_err_rl(fs_info, |
| 8758 | "error %d accounting leaf items. Quota is out of sync, rescan required.", |
| 8759 | ret); |
| 8760 | } |
| 8761 | } |
| 8762 | /* make block locked assertion in clean_tree_block happy */ |
| 8763 | if (!path->locks[level] && |
| 8764 | btrfs_header_generation(eb) == trans->transid) { |
| 8765 | btrfs_tree_lock(eb); |
| 8766 | btrfs_set_lock_blocking(eb); |
| 8767 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 8768 | } |
| 8769 | clean_tree_block(fs_info, eb); |
| 8770 | } |
| 8771 | |
| 8772 | if (eb == root->node) { |
| 8773 | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| 8774 | parent = eb->start; |
| 8775 | else if (root->root_key.objectid != btrfs_header_owner(eb)) |
| 8776 | goto owner_mismatch; |
| 8777 | } else { |
| 8778 | if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| 8779 | parent = path->nodes[level + 1]->start; |
| 8780 | else if (root->root_key.objectid != |
| 8781 | btrfs_header_owner(path->nodes[level + 1])) |
| 8782 | goto owner_mismatch; |
| 8783 | } |
| 8784 | |
| 8785 | btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); |
| 8786 | out: |
| 8787 | wc->refs[level] = 0; |
| 8788 | wc->flags[level] = 0; |
| 8789 | return 0; |
| 8790 | |
| 8791 | owner_mismatch: |
| 8792 | btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", |
| 8793 | btrfs_header_owner(eb), root->root_key.objectid); |
| 8794 | return -EUCLEAN; |
| 8795 | } |
| 8796 | |
| 8797 | static noinline int walk_down_tree(struct btrfs_trans_handle *trans, |
| 8798 | struct btrfs_root *root, |
| 8799 | struct btrfs_path *path, |
| 8800 | struct walk_control *wc) |
| 8801 | { |
| 8802 | int level = wc->level; |
| 8803 | int lookup_info = 1; |
| 8804 | int ret; |
| 8805 | |
| 8806 | while (level >= 0) { |
| 8807 | ret = walk_down_proc(trans, root, path, wc, lookup_info); |
| 8808 | if (ret > 0) |
| 8809 | break; |
| 8810 | |
| 8811 | if (level == 0) |
| 8812 | break; |
| 8813 | |
| 8814 | if (path->slots[level] >= |
| 8815 | btrfs_header_nritems(path->nodes[level])) |
| 8816 | break; |
| 8817 | |
| 8818 | ret = do_walk_down(trans, root, path, wc, &lookup_info); |
| 8819 | if (ret > 0) { |
| 8820 | path->slots[level]++; |
| 8821 | continue; |
| 8822 | } else if (ret < 0) |
| 8823 | return ret; |
| 8824 | level = wc->level; |
| 8825 | } |
| 8826 | return 0; |
| 8827 | } |
| 8828 | |
| 8829 | static noinline int walk_up_tree(struct btrfs_trans_handle *trans, |
| 8830 | struct btrfs_root *root, |
| 8831 | struct btrfs_path *path, |
| 8832 | struct walk_control *wc, int max_level) |
| 8833 | { |
| 8834 | int level = wc->level; |
| 8835 | int ret; |
| 8836 | |
| 8837 | path->slots[level] = btrfs_header_nritems(path->nodes[level]); |
| 8838 | while (level < max_level && path->nodes[level]) { |
| 8839 | wc->level = level; |
| 8840 | if (path->slots[level] + 1 < |
| 8841 | btrfs_header_nritems(path->nodes[level])) { |
| 8842 | path->slots[level]++; |
| 8843 | return 0; |
| 8844 | } else { |
| 8845 | ret = walk_up_proc(trans, root, path, wc); |
| 8846 | if (ret > 0) |
| 8847 | return 0; |
| 8848 | if (ret < 0) |
| 8849 | return ret; |
| 8850 | |
| 8851 | if (path->locks[level]) { |
| 8852 | btrfs_tree_unlock_rw(path->nodes[level], |
| 8853 | path->locks[level]); |
| 8854 | path->locks[level] = 0; |
| 8855 | } |
| 8856 | free_extent_buffer(path->nodes[level]); |
| 8857 | path->nodes[level] = NULL; |
| 8858 | level++; |
| 8859 | } |
| 8860 | } |
| 8861 | return 1; |
| 8862 | } |
| 8863 | |
| 8864 | /* |
| 8865 | * drop a subvolume tree. |
| 8866 | * |
| 8867 | * this function traverses the tree freeing any blocks that only |
| 8868 | * referenced by the tree. |
| 8869 | * |
| 8870 | * when a shared tree block is found. this function decreases its |
| 8871 | * reference count by one. if update_ref is true, this function |
| 8872 | * also make sure backrefs for the shared block and all lower level |
| 8873 | * blocks are properly updated. |
| 8874 | * |
| 8875 | * If called with for_reloc == 0, may exit early with -EAGAIN |
| 8876 | */ |
| 8877 | int btrfs_drop_snapshot(struct btrfs_root *root, |
| 8878 | struct btrfs_block_rsv *block_rsv, int update_ref, |
| 8879 | int for_reloc) |
| 8880 | { |
| 8881 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 8882 | struct btrfs_path *path; |
| 8883 | struct btrfs_trans_handle *trans; |
| 8884 | struct btrfs_root *tree_root = fs_info->tree_root; |
| 8885 | struct btrfs_root_item *root_item = &root->root_item; |
| 8886 | struct walk_control *wc; |
| 8887 | struct btrfs_key key; |
| 8888 | int err = 0; |
| 8889 | int ret; |
| 8890 | int level; |
| 8891 | bool root_dropped = false; |
| 8892 | |
| 8893 | btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); |
| 8894 | |
| 8895 | path = btrfs_alloc_path(); |
| 8896 | if (!path) { |
| 8897 | err = -ENOMEM; |
| 8898 | goto out; |
| 8899 | } |
| 8900 | |
| 8901 | wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| 8902 | if (!wc) { |
| 8903 | btrfs_free_path(path); |
| 8904 | err = -ENOMEM; |
| 8905 | goto out; |
| 8906 | } |
| 8907 | |
| 8908 | trans = btrfs_start_transaction(tree_root, 0); |
| 8909 | if (IS_ERR(trans)) { |
| 8910 | err = PTR_ERR(trans); |
| 8911 | goto out_free; |
| 8912 | } |
| 8913 | |
| 8914 | if (block_rsv) |
| 8915 | trans->block_rsv = block_rsv; |
| 8916 | |
| 8917 | if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { |
| 8918 | level = btrfs_header_level(root->node); |
| 8919 | path->nodes[level] = btrfs_lock_root_node(root); |
| 8920 | btrfs_set_lock_blocking(path->nodes[level]); |
| 8921 | path->slots[level] = 0; |
| 8922 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 8923 | memset(&wc->update_progress, 0, |
| 8924 | sizeof(wc->update_progress)); |
| 8925 | } else { |
| 8926 | btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); |
| 8927 | memcpy(&wc->update_progress, &key, |
| 8928 | sizeof(wc->update_progress)); |
| 8929 | |
| 8930 | level = root_item->drop_level; |
| 8931 | BUG_ON(level == 0); |
| 8932 | path->lowest_level = level; |
| 8933 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 8934 | path->lowest_level = 0; |
| 8935 | if (ret < 0) { |
| 8936 | err = ret; |
| 8937 | goto out_end_trans; |
| 8938 | } |
| 8939 | WARN_ON(ret > 0); |
| 8940 | |
| 8941 | /* |
| 8942 | * unlock our path, this is safe because only this |
| 8943 | * function is allowed to delete this snapshot |
| 8944 | */ |
| 8945 | btrfs_unlock_up_safe(path, 0); |
| 8946 | |
| 8947 | level = btrfs_header_level(root->node); |
| 8948 | while (1) { |
| 8949 | btrfs_tree_lock(path->nodes[level]); |
| 8950 | btrfs_set_lock_blocking(path->nodes[level]); |
| 8951 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 8952 | |
| 8953 | ret = btrfs_lookup_extent_info(trans, fs_info, |
| 8954 | path->nodes[level]->start, |
| 8955 | level, 1, &wc->refs[level], |
| 8956 | &wc->flags[level]); |
| 8957 | if (ret < 0) { |
| 8958 | err = ret; |
| 8959 | goto out_end_trans; |
| 8960 | } |
| 8961 | BUG_ON(wc->refs[level] == 0); |
| 8962 | |
| 8963 | if (level == root_item->drop_level) |
| 8964 | break; |
| 8965 | |
| 8966 | btrfs_tree_unlock(path->nodes[level]); |
| 8967 | path->locks[level] = 0; |
| 8968 | WARN_ON(wc->refs[level] != 1); |
| 8969 | level--; |
| 8970 | } |
| 8971 | } |
| 8972 | |
| 8973 | wc->level = level; |
| 8974 | wc->shared_level = -1; |
| 8975 | wc->stage = DROP_REFERENCE; |
| 8976 | wc->update_ref = update_ref; |
| 8977 | wc->keep_locks = 0; |
| 8978 | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); |
| 8979 | |
| 8980 | while (1) { |
| 8981 | |
| 8982 | ret = walk_down_tree(trans, root, path, wc); |
| 8983 | if (ret < 0) { |
| 8984 | err = ret; |
| 8985 | break; |
| 8986 | } |
| 8987 | |
| 8988 | ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); |
| 8989 | if (ret < 0) { |
| 8990 | err = ret; |
| 8991 | break; |
| 8992 | } |
| 8993 | |
| 8994 | if (ret > 0) { |
| 8995 | BUG_ON(wc->stage != DROP_REFERENCE); |
| 8996 | break; |
| 8997 | } |
| 8998 | |
| 8999 | if (wc->stage == DROP_REFERENCE) { |
| 9000 | level = wc->level; |
| 9001 | btrfs_node_key(path->nodes[level], |
| 9002 | &root_item->drop_progress, |
| 9003 | path->slots[level]); |
| 9004 | root_item->drop_level = level; |
| 9005 | } |
| 9006 | |
| 9007 | BUG_ON(wc->level == 0); |
| 9008 | if (btrfs_should_end_transaction(trans) || |
| 9009 | (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { |
| 9010 | ret = btrfs_update_root(trans, tree_root, |
| 9011 | &root->root_key, |
| 9012 | root_item); |
| 9013 | if (ret) { |
| 9014 | btrfs_abort_transaction(trans, ret); |
| 9015 | err = ret; |
| 9016 | goto out_end_trans; |
| 9017 | } |
| 9018 | |
| 9019 | btrfs_end_transaction_throttle(trans); |
| 9020 | if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { |
| 9021 | btrfs_debug(fs_info, |
| 9022 | "drop snapshot early exit"); |
| 9023 | err = -EAGAIN; |
| 9024 | goto out_free; |
| 9025 | } |
| 9026 | |
| 9027 | trans = btrfs_start_transaction(tree_root, 0); |
| 9028 | if (IS_ERR(trans)) { |
| 9029 | err = PTR_ERR(trans); |
| 9030 | goto out_free; |
| 9031 | } |
| 9032 | if (block_rsv) |
| 9033 | trans->block_rsv = block_rsv; |
| 9034 | } |
| 9035 | } |
| 9036 | btrfs_release_path(path); |
| 9037 | if (err) |
| 9038 | goto out_end_trans; |
| 9039 | |
| 9040 | ret = btrfs_del_root(trans, &root->root_key); |
| 9041 | if (ret) { |
| 9042 | btrfs_abort_transaction(trans, ret); |
| 9043 | err = ret; |
| 9044 | goto out_end_trans; |
| 9045 | } |
| 9046 | |
| 9047 | if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { |
| 9048 | ret = btrfs_find_root(tree_root, &root->root_key, path, |
| 9049 | NULL, NULL); |
| 9050 | if (ret < 0) { |
| 9051 | btrfs_abort_transaction(trans, ret); |
| 9052 | err = ret; |
| 9053 | goto out_end_trans; |
| 9054 | } else if (ret > 0) { |
| 9055 | /* if we fail to delete the orphan item this time |
| 9056 | * around, it'll get picked up the next time. |
| 9057 | * |
| 9058 | * The most common failure here is just -ENOENT. |
| 9059 | */ |
| 9060 | btrfs_del_orphan_item(trans, tree_root, |
| 9061 | root->root_key.objectid); |
| 9062 | } |
| 9063 | } |
| 9064 | |
| 9065 | if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { |
| 9066 | btrfs_add_dropped_root(trans, root); |
| 9067 | } else { |
| 9068 | free_extent_buffer(root->node); |
| 9069 | free_extent_buffer(root->commit_root); |
| 9070 | btrfs_put_fs_root(root); |
| 9071 | } |
| 9072 | root_dropped = true; |
| 9073 | out_end_trans: |
| 9074 | btrfs_end_transaction_throttle(trans); |
| 9075 | out_free: |
| 9076 | kfree(wc); |
| 9077 | btrfs_free_path(path); |
| 9078 | out: |
| 9079 | /* |
| 9080 | * So if we need to stop dropping the snapshot for whatever reason we |
| 9081 | * need to make sure to add it back to the dead root list so that we |
| 9082 | * keep trying to do the work later. This also cleans up roots if we |
| 9083 | * don't have it in the radix (like when we recover after a power fail |
| 9084 | * or unmount) so we don't leak memory. |
| 9085 | */ |
| 9086 | if (!for_reloc && !root_dropped) |
| 9087 | btrfs_add_dead_root(root); |
| 9088 | if (err && err != -EAGAIN) |
| 9089 | btrfs_handle_fs_error(fs_info, err, NULL); |
| 9090 | return err; |
| 9091 | } |
| 9092 | |
| 9093 | /* |
| 9094 | * drop subtree rooted at tree block 'node'. |
| 9095 | * |
| 9096 | * NOTE: this function will unlock and release tree block 'node' |
| 9097 | * only used by relocation code |
| 9098 | */ |
| 9099 | int btrfs_drop_subtree(struct btrfs_trans_handle *trans, |
| 9100 | struct btrfs_root *root, |
| 9101 | struct extent_buffer *node, |
| 9102 | struct extent_buffer *parent) |
| 9103 | { |
| 9104 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 9105 | struct btrfs_path *path; |
| 9106 | struct walk_control *wc; |
| 9107 | int level; |
| 9108 | int parent_level; |
| 9109 | int ret = 0; |
| 9110 | int wret; |
| 9111 | |
| 9112 | BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); |
| 9113 | |
| 9114 | path = btrfs_alloc_path(); |
| 9115 | if (!path) |
| 9116 | return -ENOMEM; |
| 9117 | |
| 9118 | wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| 9119 | if (!wc) { |
| 9120 | btrfs_free_path(path); |
| 9121 | return -ENOMEM; |
| 9122 | } |
| 9123 | |
| 9124 | btrfs_assert_tree_locked(parent); |
| 9125 | parent_level = btrfs_header_level(parent); |
| 9126 | extent_buffer_get(parent); |
| 9127 | path->nodes[parent_level] = parent; |
| 9128 | path->slots[parent_level] = btrfs_header_nritems(parent); |
| 9129 | |
| 9130 | btrfs_assert_tree_locked(node); |
| 9131 | level = btrfs_header_level(node); |
| 9132 | path->nodes[level] = node; |
| 9133 | path->slots[level] = 0; |
| 9134 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 9135 | |
| 9136 | wc->refs[parent_level] = 1; |
| 9137 | wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| 9138 | wc->level = level; |
| 9139 | wc->shared_level = -1; |
| 9140 | wc->stage = DROP_REFERENCE; |
| 9141 | wc->update_ref = 0; |
| 9142 | wc->keep_locks = 1; |
| 9143 | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); |
| 9144 | |
| 9145 | while (1) { |
| 9146 | wret = walk_down_tree(trans, root, path, wc); |
| 9147 | if (wret < 0) { |
| 9148 | ret = wret; |
| 9149 | break; |
| 9150 | } |
| 9151 | |
| 9152 | wret = walk_up_tree(trans, root, path, wc, parent_level); |
| 9153 | if (wret < 0) |
| 9154 | ret = wret; |
| 9155 | if (wret != 0) |
| 9156 | break; |
| 9157 | } |
| 9158 | |
| 9159 | kfree(wc); |
| 9160 | btrfs_free_path(path); |
| 9161 | return ret; |
| 9162 | } |
| 9163 | |
| 9164 | static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) |
| 9165 | { |
| 9166 | u64 num_devices; |
| 9167 | u64 stripped; |
| 9168 | |
| 9169 | /* |
| 9170 | * if restripe for this chunk_type is on pick target profile and |
| 9171 | * return, otherwise do the usual balance |
| 9172 | */ |
| 9173 | stripped = get_restripe_target(fs_info, flags); |
| 9174 | if (stripped) |
| 9175 | return extended_to_chunk(stripped); |
| 9176 | |
| 9177 | num_devices = fs_info->fs_devices->rw_devices; |
| 9178 | |
| 9179 | stripped = BTRFS_BLOCK_GROUP_RAID0 | |
| 9180 | BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | |
| 9181 | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; |
| 9182 | |
| 9183 | if (num_devices == 1) { |
| 9184 | stripped |= BTRFS_BLOCK_GROUP_DUP; |
| 9185 | stripped = flags & ~stripped; |
| 9186 | |
| 9187 | /* turn raid0 into single device chunks */ |
| 9188 | if (flags & BTRFS_BLOCK_GROUP_RAID0) |
| 9189 | return stripped; |
| 9190 | |
| 9191 | /* turn mirroring into duplication */ |
| 9192 | if (flags & (BTRFS_BLOCK_GROUP_RAID1 | |
| 9193 | BTRFS_BLOCK_GROUP_RAID10)) |
| 9194 | return stripped | BTRFS_BLOCK_GROUP_DUP; |
| 9195 | } else { |
| 9196 | /* they already had raid on here, just return */ |
| 9197 | if (flags & stripped) |
| 9198 | return flags; |
| 9199 | |
| 9200 | stripped |= BTRFS_BLOCK_GROUP_DUP; |
| 9201 | stripped = flags & ~stripped; |
| 9202 | |
| 9203 | /* switch duplicated blocks with raid1 */ |
| 9204 | if (flags & BTRFS_BLOCK_GROUP_DUP) |
| 9205 | return stripped | BTRFS_BLOCK_GROUP_RAID1; |
| 9206 | |
| 9207 | /* this is drive concat, leave it alone */ |
| 9208 | } |
| 9209 | |
| 9210 | return flags; |
| 9211 | } |
| 9212 | |
| 9213 | static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) |
| 9214 | { |
| 9215 | struct btrfs_space_info *sinfo = cache->space_info; |
| 9216 | u64 num_bytes; |
| 9217 | u64 min_allocable_bytes; |
| 9218 | int ret = -ENOSPC; |
| 9219 | |
| 9220 | /* |
| 9221 | * We need some metadata space and system metadata space for |
| 9222 | * allocating chunks in some corner cases until we force to set |
| 9223 | * it to be readonly. |
| 9224 | */ |
| 9225 | if ((sinfo->flags & |
| 9226 | (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && |
| 9227 | !force) |
| 9228 | min_allocable_bytes = SZ_1M; |
| 9229 | else |
| 9230 | min_allocable_bytes = 0; |
| 9231 | |
| 9232 | spin_lock(&sinfo->lock); |
| 9233 | spin_lock(&cache->lock); |
| 9234 | |
| 9235 | if (cache->ro) { |
| 9236 | cache->ro++; |
| 9237 | ret = 0; |
| 9238 | goto out; |
| 9239 | } |
| 9240 | |
| 9241 | num_bytes = cache->key.offset - cache->reserved - cache->pinned - |
| 9242 | cache->bytes_super - btrfs_block_group_used(&cache->item); |
| 9243 | |
| 9244 | if (btrfs_space_info_used(sinfo, true) + num_bytes + |
| 9245 | min_allocable_bytes <= sinfo->total_bytes) { |
| 9246 | sinfo->bytes_readonly += num_bytes; |
| 9247 | cache->ro++; |
| 9248 | list_add_tail(&cache->ro_list, &sinfo->ro_bgs); |
| 9249 | ret = 0; |
| 9250 | } |
| 9251 | out: |
| 9252 | spin_unlock(&cache->lock); |
| 9253 | spin_unlock(&sinfo->lock); |
| 9254 | return ret; |
| 9255 | } |
| 9256 | |
| 9257 | int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache) |
| 9258 | |
| 9259 | { |
| 9260 | struct btrfs_fs_info *fs_info = cache->fs_info; |
| 9261 | struct btrfs_trans_handle *trans; |
| 9262 | u64 alloc_flags; |
| 9263 | int ret; |
| 9264 | |
| 9265 | again: |
| 9266 | trans = btrfs_join_transaction(fs_info->extent_root); |
| 9267 | if (IS_ERR(trans)) |
| 9268 | return PTR_ERR(trans); |
| 9269 | |
| 9270 | /* |
| 9271 | * we're not allowed to set block groups readonly after the dirty |
| 9272 | * block groups cache has started writing. If it already started, |
| 9273 | * back off and let this transaction commit |
| 9274 | */ |
| 9275 | mutex_lock(&fs_info->ro_block_group_mutex); |
| 9276 | if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { |
| 9277 | u64 transid = trans->transid; |
| 9278 | |
| 9279 | mutex_unlock(&fs_info->ro_block_group_mutex); |
| 9280 | btrfs_end_transaction(trans); |
| 9281 | |
| 9282 | ret = btrfs_wait_for_commit(fs_info, transid); |
| 9283 | if (ret) |
| 9284 | return ret; |
| 9285 | goto again; |
| 9286 | } |
| 9287 | |
| 9288 | /* |
| 9289 | * if we are changing raid levels, try to allocate a corresponding |
| 9290 | * block group with the new raid level. |
| 9291 | */ |
| 9292 | alloc_flags = update_block_group_flags(fs_info, cache->flags); |
| 9293 | if (alloc_flags != cache->flags) { |
| 9294 | ret = do_chunk_alloc(trans, alloc_flags, |
| 9295 | CHUNK_ALLOC_FORCE); |
| 9296 | /* |
| 9297 | * ENOSPC is allowed here, we may have enough space |
| 9298 | * already allocated at the new raid level to |
| 9299 | * carry on |
| 9300 | */ |
| 9301 | if (ret == -ENOSPC) |
| 9302 | ret = 0; |
| 9303 | if (ret < 0) |
| 9304 | goto out; |
| 9305 | } |
| 9306 | |
| 9307 | ret = inc_block_group_ro(cache, 0); |
| 9308 | if (!ret) |
| 9309 | goto out; |
| 9310 | alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); |
| 9311 | ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); |
| 9312 | if (ret < 0) |
| 9313 | goto out; |
| 9314 | ret = inc_block_group_ro(cache, 0); |
| 9315 | out: |
| 9316 | if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { |
| 9317 | alloc_flags = update_block_group_flags(fs_info, cache->flags); |
| 9318 | mutex_lock(&fs_info->chunk_mutex); |
| 9319 | check_system_chunk(trans, alloc_flags); |
| 9320 | mutex_unlock(&fs_info->chunk_mutex); |
| 9321 | } |
| 9322 | mutex_unlock(&fs_info->ro_block_group_mutex); |
| 9323 | |
| 9324 | btrfs_end_transaction(trans); |
| 9325 | return ret; |
| 9326 | } |
| 9327 | |
| 9328 | int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) |
| 9329 | { |
| 9330 | u64 alloc_flags = get_alloc_profile(trans->fs_info, type); |
| 9331 | |
| 9332 | return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); |
| 9333 | } |
| 9334 | |
| 9335 | /* |
| 9336 | * helper to account the unused space of all the readonly block group in the |
| 9337 | * space_info. takes mirrors into account. |
| 9338 | */ |
| 9339 | u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) |
| 9340 | { |
| 9341 | struct btrfs_block_group_cache *block_group; |
| 9342 | u64 free_bytes = 0; |
| 9343 | int factor; |
| 9344 | |
| 9345 | /* It's df, we don't care if it's racy */ |
| 9346 | if (list_empty(&sinfo->ro_bgs)) |
| 9347 | return 0; |
| 9348 | |
| 9349 | spin_lock(&sinfo->lock); |
| 9350 | list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { |
| 9351 | spin_lock(&block_group->lock); |
| 9352 | |
| 9353 | if (!block_group->ro) { |
| 9354 | spin_unlock(&block_group->lock); |
| 9355 | continue; |
| 9356 | } |
| 9357 | |
| 9358 | factor = btrfs_bg_type_to_factor(block_group->flags); |
| 9359 | free_bytes += (block_group->key.offset - |
| 9360 | btrfs_block_group_used(&block_group->item)) * |
| 9361 | factor; |
| 9362 | |
| 9363 | spin_unlock(&block_group->lock); |
| 9364 | } |
| 9365 | spin_unlock(&sinfo->lock); |
| 9366 | |
| 9367 | return free_bytes; |
| 9368 | } |
| 9369 | |
| 9370 | void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) |
| 9371 | { |
| 9372 | struct btrfs_space_info *sinfo = cache->space_info; |
| 9373 | u64 num_bytes; |
| 9374 | |
| 9375 | BUG_ON(!cache->ro); |
| 9376 | |
| 9377 | spin_lock(&sinfo->lock); |
| 9378 | spin_lock(&cache->lock); |
| 9379 | if (!--cache->ro) { |
| 9380 | num_bytes = cache->key.offset - cache->reserved - |
| 9381 | cache->pinned - cache->bytes_super - |
| 9382 | btrfs_block_group_used(&cache->item); |
| 9383 | sinfo->bytes_readonly -= num_bytes; |
| 9384 | list_del_init(&cache->ro_list); |
| 9385 | } |
| 9386 | spin_unlock(&cache->lock); |
| 9387 | spin_unlock(&sinfo->lock); |
| 9388 | } |
| 9389 | |
| 9390 | /* |
| 9391 | * checks to see if its even possible to relocate this block group. |
| 9392 | * |
| 9393 | * @return - -1 if it's not a good idea to relocate this block group, 0 if its |
| 9394 | * ok to go ahead and try. |
| 9395 | */ |
| 9396 | int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) |
| 9397 | { |
| 9398 | struct btrfs_root *root = fs_info->extent_root; |
| 9399 | struct btrfs_block_group_cache *block_group; |
| 9400 | struct btrfs_space_info *space_info; |
| 9401 | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| 9402 | struct btrfs_device *device; |
| 9403 | struct btrfs_trans_handle *trans; |
| 9404 | u64 min_free; |
| 9405 | u64 dev_min = 1; |
| 9406 | u64 dev_nr = 0; |
| 9407 | u64 target; |
| 9408 | int debug; |
| 9409 | int index; |
| 9410 | int full = 0; |
| 9411 | int ret = 0; |
| 9412 | |
| 9413 | debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); |
| 9414 | |
| 9415 | block_group = btrfs_lookup_block_group(fs_info, bytenr); |
| 9416 | |
| 9417 | /* odd, couldn't find the block group, leave it alone */ |
| 9418 | if (!block_group) { |
| 9419 | if (debug) |
| 9420 | btrfs_warn(fs_info, |
| 9421 | "can't find block group for bytenr %llu", |
| 9422 | bytenr); |
| 9423 | return -1; |
| 9424 | } |
| 9425 | |
| 9426 | min_free = btrfs_block_group_used(&block_group->item); |
| 9427 | |
| 9428 | /* no bytes used, we're good */ |
| 9429 | if (!min_free) |
| 9430 | goto out; |
| 9431 | |
| 9432 | space_info = block_group->space_info; |
| 9433 | spin_lock(&space_info->lock); |
| 9434 | |
| 9435 | full = space_info->full; |
| 9436 | |
| 9437 | /* |
| 9438 | * if this is the last block group we have in this space, we can't |
| 9439 | * relocate it unless we're able to allocate a new chunk below. |
| 9440 | * |
| 9441 | * Otherwise, we need to make sure we have room in the space to handle |
| 9442 | * all of the extents from this block group. If we can, we're good |
| 9443 | */ |
| 9444 | if ((space_info->total_bytes != block_group->key.offset) && |
| 9445 | (btrfs_space_info_used(space_info, false) + min_free < |
| 9446 | space_info->total_bytes)) { |
| 9447 | spin_unlock(&space_info->lock); |
| 9448 | goto out; |
| 9449 | } |
| 9450 | spin_unlock(&space_info->lock); |
| 9451 | |
| 9452 | /* |
| 9453 | * ok we don't have enough space, but maybe we have free space on our |
| 9454 | * devices to allocate new chunks for relocation, so loop through our |
| 9455 | * alloc devices and guess if we have enough space. if this block |
| 9456 | * group is going to be restriped, run checks against the target |
| 9457 | * profile instead of the current one. |
| 9458 | */ |
| 9459 | ret = -1; |
| 9460 | |
| 9461 | /* |
| 9462 | * index: |
| 9463 | * 0: raid10 |
| 9464 | * 1: raid1 |
| 9465 | * 2: dup |
| 9466 | * 3: raid0 |
| 9467 | * 4: single |
| 9468 | */ |
| 9469 | target = get_restripe_target(fs_info, block_group->flags); |
| 9470 | if (target) { |
| 9471 | index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target)); |
| 9472 | } else { |
| 9473 | /* |
| 9474 | * this is just a balance, so if we were marked as full |
| 9475 | * we know there is no space for a new chunk |
| 9476 | */ |
| 9477 | if (full) { |
| 9478 | if (debug) |
| 9479 | btrfs_warn(fs_info, |
| 9480 | "no space to alloc new chunk for block group %llu", |
| 9481 | block_group->key.objectid); |
| 9482 | goto out; |
| 9483 | } |
| 9484 | |
| 9485 | index = btrfs_bg_flags_to_raid_index(block_group->flags); |
| 9486 | } |
| 9487 | |
| 9488 | if (index == BTRFS_RAID_RAID10) { |
| 9489 | dev_min = 4; |
| 9490 | /* Divide by 2 */ |
| 9491 | min_free >>= 1; |
| 9492 | } else if (index == BTRFS_RAID_RAID1) { |
| 9493 | dev_min = 2; |
| 9494 | } else if (index == BTRFS_RAID_DUP) { |
| 9495 | /* Multiply by 2 */ |
| 9496 | min_free <<= 1; |
| 9497 | } else if (index == BTRFS_RAID_RAID0) { |
| 9498 | dev_min = fs_devices->rw_devices; |
| 9499 | min_free = div64_u64(min_free, dev_min); |
| 9500 | } |
| 9501 | |
| 9502 | /* We need to do this so that we can look at pending chunks */ |
| 9503 | trans = btrfs_join_transaction(root); |
| 9504 | if (IS_ERR(trans)) { |
| 9505 | ret = PTR_ERR(trans); |
| 9506 | goto out; |
| 9507 | } |
| 9508 | |
| 9509 | mutex_lock(&fs_info->chunk_mutex); |
| 9510 | list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { |
| 9511 | u64 dev_offset; |
| 9512 | |
| 9513 | /* |
| 9514 | * check to make sure we can actually find a chunk with enough |
| 9515 | * space to fit our block group in. |
| 9516 | */ |
| 9517 | if (device->total_bytes > device->bytes_used + min_free && |
| 9518 | !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| 9519 | ret = find_free_dev_extent(trans, device, min_free, |
| 9520 | &dev_offset, NULL); |
| 9521 | if (!ret) |
| 9522 | dev_nr++; |
| 9523 | |
| 9524 | if (dev_nr >= dev_min) |
| 9525 | break; |
| 9526 | |
| 9527 | ret = -1; |
| 9528 | } |
| 9529 | } |
| 9530 | if (debug && ret == -1) |
| 9531 | btrfs_warn(fs_info, |
| 9532 | "no space to allocate a new chunk for block group %llu", |
| 9533 | block_group->key.objectid); |
| 9534 | mutex_unlock(&fs_info->chunk_mutex); |
| 9535 | btrfs_end_transaction(trans); |
| 9536 | out: |
| 9537 | btrfs_put_block_group(block_group); |
| 9538 | return ret; |
| 9539 | } |
| 9540 | |
| 9541 | static int find_first_block_group(struct btrfs_fs_info *fs_info, |
| 9542 | struct btrfs_path *path, |
| 9543 | struct btrfs_key *key) |
| 9544 | { |
| 9545 | struct btrfs_root *root = fs_info->extent_root; |
| 9546 | int ret = 0; |
| 9547 | struct btrfs_key found_key; |
| 9548 | struct extent_buffer *leaf; |
| 9549 | struct btrfs_block_group_item bg; |
| 9550 | u64 flags; |
| 9551 | int slot; |
| 9552 | |
| 9553 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| 9554 | if (ret < 0) |
| 9555 | goto out; |
| 9556 | |
| 9557 | while (1) { |
| 9558 | slot = path->slots[0]; |
| 9559 | leaf = path->nodes[0]; |
| 9560 | if (slot >= btrfs_header_nritems(leaf)) { |
| 9561 | ret = btrfs_next_leaf(root, path); |
| 9562 | if (ret == 0) |
| 9563 | continue; |
| 9564 | if (ret < 0) |
| 9565 | goto out; |
| 9566 | break; |
| 9567 | } |
| 9568 | btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| 9569 | |
| 9570 | if (found_key.objectid >= key->objectid && |
| 9571 | found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| 9572 | struct extent_map_tree *em_tree; |
| 9573 | struct extent_map *em; |
| 9574 | |
| 9575 | em_tree = &root->fs_info->mapping_tree.map_tree; |
| 9576 | read_lock(&em_tree->lock); |
| 9577 | em = lookup_extent_mapping(em_tree, found_key.objectid, |
| 9578 | found_key.offset); |
| 9579 | read_unlock(&em_tree->lock); |
| 9580 | if (!em) { |
| 9581 | btrfs_err(fs_info, |
| 9582 | "logical %llu len %llu found bg but no related chunk", |
| 9583 | found_key.objectid, found_key.offset); |
| 9584 | ret = -ENOENT; |
| 9585 | } else if (em->start != found_key.objectid || |
| 9586 | em->len != found_key.offset) { |
| 9587 | btrfs_err(fs_info, |
| 9588 | "block group %llu len %llu mismatch with chunk %llu len %llu", |
| 9589 | found_key.objectid, found_key.offset, |
| 9590 | em->start, em->len); |
| 9591 | ret = -EUCLEAN; |
| 9592 | } else { |
| 9593 | read_extent_buffer(leaf, &bg, |
| 9594 | btrfs_item_ptr_offset(leaf, slot), |
| 9595 | sizeof(bg)); |
| 9596 | flags = btrfs_block_group_flags(&bg) & |
| 9597 | BTRFS_BLOCK_GROUP_TYPE_MASK; |
| 9598 | |
| 9599 | if (flags != (em->map_lookup->type & |
| 9600 | BTRFS_BLOCK_GROUP_TYPE_MASK)) { |
| 9601 | btrfs_err(fs_info, |
| 9602 | "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", |
| 9603 | found_key.objectid, |
| 9604 | found_key.offset, flags, |
| 9605 | (BTRFS_BLOCK_GROUP_TYPE_MASK & |
| 9606 | em->map_lookup->type)); |
| 9607 | ret = -EUCLEAN; |
| 9608 | } else { |
| 9609 | ret = 0; |
| 9610 | } |
| 9611 | } |
| 9612 | free_extent_map(em); |
| 9613 | goto out; |
| 9614 | } |
| 9615 | path->slots[0]++; |
| 9616 | } |
| 9617 | out: |
| 9618 | return ret; |
| 9619 | } |
| 9620 | |
| 9621 | void btrfs_put_block_group_cache(struct btrfs_fs_info *info) |
| 9622 | { |
| 9623 | struct btrfs_block_group_cache *block_group; |
| 9624 | u64 last = 0; |
| 9625 | |
| 9626 | while (1) { |
| 9627 | struct inode *inode; |
| 9628 | |
| 9629 | block_group = btrfs_lookup_first_block_group(info, last); |
| 9630 | while (block_group) { |
| 9631 | wait_block_group_cache_done(block_group); |
| 9632 | spin_lock(&block_group->lock); |
| 9633 | if (block_group->iref) |
| 9634 | break; |
| 9635 | spin_unlock(&block_group->lock); |
| 9636 | block_group = next_block_group(info, block_group); |
| 9637 | } |
| 9638 | if (!block_group) { |
| 9639 | if (last == 0) |
| 9640 | break; |
| 9641 | last = 0; |
| 9642 | continue; |
| 9643 | } |
| 9644 | |
| 9645 | inode = block_group->inode; |
| 9646 | block_group->iref = 0; |
| 9647 | block_group->inode = NULL; |
| 9648 | spin_unlock(&block_group->lock); |
| 9649 | ASSERT(block_group->io_ctl.inode == NULL); |
| 9650 | iput(inode); |
| 9651 | last = block_group->key.objectid + block_group->key.offset; |
| 9652 | btrfs_put_block_group(block_group); |
| 9653 | } |
| 9654 | } |
| 9655 | |
| 9656 | /* |
| 9657 | * Must be called only after stopping all workers, since we could have block |
| 9658 | * group caching kthreads running, and therefore they could race with us if we |
| 9659 | * freed the block groups before stopping them. |
| 9660 | */ |
| 9661 | int btrfs_free_block_groups(struct btrfs_fs_info *info) |
| 9662 | { |
| 9663 | struct btrfs_block_group_cache *block_group; |
| 9664 | struct btrfs_space_info *space_info; |
| 9665 | struct btrfs_caching_control *caching_ctl; |
| 9666 | struct rb_node *n; |
| 9667 | |
| 9668 | down_write(&info->commit_root_sem); |
| 9669 | while (!list_empty(&info->caching_block_groups)) { |
| 9670 | caching_ctl = list_entry(info->caching_block_groups.next, |
| 9671 | struct btrfs_caching_control, list); |
| 9672 | list_del(&caching_ctl->list); |
| 9673 | put_caching_control(caching_ctl); |
| 9674 | } |
| 9675 | up_write(&info->commit_root_sem); |
| 9676 | |
| 9677 | spin_lock(&info->unused_bgs_lock); |
| 9678 | while (!list_empty(&info->unused_bgs)) { |
| 9679 | block_group = list_first_entry(&info->unused_bgs, |
| 9680 | struct btrfs_block_group_cache, |
| 9681 | bg_list); |
| 9682 | list_del_init(&block_group->bg_list); |
| 9683 | btrfs_put_block_group(block_group); |
| 9684 | } |
| 9685 | spin_unlock(&info->unused_bgs_lock); |
| 9686 | |
| 9687 | spin_lock(&info->block_group_cache_lock); |
| 9688 | while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { |
| 9689 | block_group = rb_entry(n, struct btrfs_block_group_cache, |
| 9690 | cache_node); |
| 9691 | rb_erase(&block_group->cache_node, |
| 9692 | &info->block_group_cache_tree); |
| 9693 | RB_CLEAR_NODE(&block_group->cache_node); |
| 9694 | spin_unlock(&info->block_group_cache_lock); |
| 9695 | |
| 9696 | down_write(&block_group->space_info->groups_sem); |
| 9697 | list_del(&block_group->list); |
| 9698 | up_write(&block_group->space_info->groups_sem); |
| 9699 | |
| 9700 | /* |
| 9701 | * We haven't cached this block group, which means we could |
| 9702 | * possibly have excluded extents on this block group. |
| 9703 | */ |
| 9704 | if (block_group->cached == BTRFS_CACHE_NO || |
| 9705 | block_group->cached == BTRFS_CACHE_ERROR) |
| 9706 | free_excluded_extents(block_group); |
| 9707 | |
| 9708 | btrfs_remove_free_space_cache(block_group); |
| 9709 | ASSERT(block_group->cached != BTRFS_CACHE_STARTED); |
| 9710 | ASSERT(list_empty(&block_group->dirty_list)); |
| 9711 | ASSERT(list_empty(&block_group->io_list)); |
| 9712 | ASSERT(list_empty(&block_group->bg_list)); |
| 9713 | ASSERT(atomic_read(&block_group->count) == 1); |
| 9714 | btrfs_put_block_group(block_group); |
| 9715 | |
| 9716 | spin_lock(&info->block_group_cache_lock); |
| 9717 | } |
| 9718 | spin_unlock(&info->block_group_cache_lock); |
| 9719 | |
| 9720 | /* now that all the block groups are freed, go through and |
| 9721 | * free all the space_info structs. This is only called during |
| 9722 | * the final stages of unmount, and so we know nobody is |
| 9723 | * using them. We call synchronize_rcu() once before we start, |
| 9724 | * just to be on the safe side. |
| 9725 | */ |
| 9726 | synchronize_rcu(); |
| 9727 | |
| 9728 | release_global_block_rsv(info); |
| 9729 | |
| 9730 | while (!list_empty(&info->space_info)) { |
| 9731 | int i; |
| 9732 | |
| 9733 | space_info = list_entry(info->space_info.next, |
| 9734 | struct btrfs_space_info, |
| 9735 | list); |
| 9736 | |
| 9737 | /* |
| 9738 | * Do not hide this behind enospc_debug, this is actually |
| 9739 | * important and indicates a real bug if this happens. |
| 9740 | */ |
| 9741 | if (WARN_ON(space_info->bytes_pinned > 0 || |
| 9742 | space_info->bytes_reserved > 0 || |
| 9743 | space_info->bytes_may_use > 0)) |
| 9744 | dump_space_info(info, space_info, 0, 0); |
| 9745 | list_del(&space_info->list); |
| 9746 | for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { |
| 9747 | struct kobject *kobj; |
| 9748 | kobj = space_info->block_group_kobjs[i]; |
| 9749 | space_info->block_group_kobjs[i] = NULL; |
| 9750 | if (kobj) { |
| 9751 | kobject_del(kobj); |
| 9752 | kobject_put(kobj); |
| 9753 | } |
| 9754 | } |
| 9755 | kobject_del(&space_info->kobj); |
| 9756 | kobject_put(&space_info->kobj); |
| 9757 | } |
| 9758 | return 0; |
| 9759 | } |
| 9760 | |
| 9761 | /* link_block_group will queue up kobjects to add when we're reclaim-safe */ |
| 9762 | void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info) |
| 9763 | { |
| 9764 | struct btrfs_space_info *space_info; |
| 9765 | struct raid_kobject *rkobj; |
| 9766 | LIST_HEAD(list); |
| 9767 | int index; |
| 9768 | int ret = 0; |
| 9769 | |
| 9770 | spin_lock(&fs_info->pending_raid_kobjs_lock); |
| 9771 | list_splice_init(&fs_info->pending_raid_kobjs, &list); |
| 9772 | spin_unlock(&fs_info->pending_raid_kobjs_lock); |
| 9773 | |
| 9774 | list_for_each_entry(rkobj, &list, list) { |
| 9775 | space_info = __find_space_info(fs_info, rkobj->flags); |
| 9776 | index = btrfs_bg_flags_to_raid_index(rkobj->flags); |
| 9777 | |
| 9778 | ret = kobject_add(&rkobj->kobj, &space_info->kobj, |
| 9779 | "%s", get_raid_name(index)); |
| 9780 | if (ret) { |
| 9781 | kobject_put(&rkobj->kobj); |
| 9782 | break; |
| 9783 | } |
| 9784 | } |
| 9785 | if (ret) |
| 9786 | btrfs_warn(fs_info, |
| 9787 | "failed to add kobject for block cache, ignoring"); |
| 9788 | } |
| 9789 | |
| 9790 | static void link_block_group(struct btrfs_block_group_cache *cache) |
| 9791 | { |
| 9792 | struct btrfs_space_info *space_info = cache->space_info; |
| 9793 | struct btrfs_fs_info *fs_info = cache->fs_info; |
| 9794 | int index = btrfs_bg_flags_to_raid_index(cache->flags); |
| 9795 | bool first = false; |
| 9796 | |
| 9797 | down_write(&space_info->groups_sem); |
| 9798 | if (list_empty(&space_info->block_groups[index])) |
| 9799 | first = true; |
| 9800 | list_add_tail(&cache->list, &space_info->block_groups[index]); |
| 9801 | up_write(&space_info->groups_sem); |
| 9802 | |
| 9803 | if (first) { |
| 9804 | struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); |
| 9805 | if (!rkobj) { |
| 9806 | btrfs_warn(cache->fs_info, |
| 9807 | "couldn't alloc memory for raid level kobject"); |
| 9808 | return; |
| 9809 | } |
| 9810 | rkobj->flags = cache->flags; |
| 9811 | kobject_init(&rkobj->kobj, &btrfs_raid_ktype); |
| 9812 | |
| 9813 | spin_lock(&fs_info->pending_raid_kobjs_lock); |
| 9814 | list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs); |
| 9815 | spin_unlock(&fs_info->pending_raid_kobjs_lock); |
| 9816 | space_info->block_group_kobjs[index] = &rkobj->kobj; |
| 9817 | } |
| 9818 | } |
| 9819 | |
| 9820 | static struct btrfs_block_group_cache * |
| 9821 | btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, |
| 9822 | u64 start, u64 size) |
| 9823 | { |
| 9824 | struct btrfs_block_group_cache *cache; |
| 9825 | |
| 9826 | cache = kzalloc(sizeof(*cache), GFP_NOFS); |
| 9827 | if (!cache) |
| 9828 | return NULL; |
| 9829 | |
| 9830 | cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), |
| 9831 | GFP_NOFS); |
| 9832 | if (!cache->free_space_ctl) { |
| 9833 | kfree(cache); |
| 9834 | return NULL; |
| 9835 | } |
| 9836 | |
| 9837 | cache->key.objectid = start; |
| 9838 | cache->key.offset = size; |
| 9839 | cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; |
| 9840 | |
| 9841 | cache->fs_info = fs_info; |
| 9842 | cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); |
| 9843 | set_free_space_tree_thresholds(cache); |
| 9844 | |
| 9845 | atomic_set(&cache->count, 1); |
| 9846 | spin_lock_init(&cache->lock); |
| 9847 | init_rwsem(&cache->data_rwsem); |
| 9848 | INIT_LIST_HEAD(&cache->list); |
| 9849 | INIT_LIST_HEAD(&cache->cluster_list); |
| 9850 | INIT_LIST_HEAD(&cache->bg_list); |
| 9851 | INIT_LIST_HEAD(&cache->ro_list); |
| 9852 | INIT_LIST_HEAD(&cache->dirty_list); |
| 9853 | INIT_LIST_HEAD(&cache->io_list); |
| 9854 | btrfs_init_free_space_ctl(cache); |
| 9855 | atomic_set(&cache->trimming, 0); |
| 9856 | mutex_init(&cache->free_space_lock); |
| 9857 | btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); |
| 9858 | |
| 9859 | return cache; |
| 9860 | } |
| 9861 | |
| 9862 | |
| 9863 | /* |
| 9864 | * Iterate all chunks and verify that each of them has the corresponding block |
| 9865 | * group |
| 9866 | */ |
| 9867 | static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) |
| 9868 | { |
| 9869 | struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; |
| 9870 | struct extent_map *em; |
| 9871 | struct btrfs_block_group_cache *bg; |
| 9872 | u64 start = 0; |
| 9873 | int ret = 0; |
| 9874 | |
| 9875 | while (1) { |
| 9876 | read_lock(&map_tree->map_tree.lock); |
| 9877 | /* |
| 9878 | * lookup_extent_mapping will return the first extent map |
| 9879 | * intersecting the range, so setting @len to 1 is enough to |
| 9880 | * get the first chunk. |
| 9881 | */ |
| 9882 | em = lookup_extent_mapping(&map_tree->map_tree, start, 1); |
| 9883 | read_unlock(&map_tree->map_tree.lock); |
| 9884 | if (!em) |
| 9885 | break; |
| 9886 | |
| 9887 | bg = btrfs_lookup_block_group(fs_info, em->start); |
| 9888 | if (!bg) { |
| 9889 | btrfs_err(fs_info, |
| 9890 | "chunk start=%llu len=%llu doesn't have corresponding block group", |
| 9891 | em->start, em->len); |
| 9892 | ret = -EUCLEAN; |
| 9893 | free_extent_map(em); |
| 9894 | break; |
| 9895 | } |
| 9896 | if (bg->key.objectid != em->start || |
| 9897 | bg->key.offset != em->len || |
| 9898 | (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != |
| 9899 | (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { |
| 9900 | btrfs_err(fs_info, |
| 9901 | "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", |
| 9902 | em->start, em->len, |
| 9903 | em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, |
| 9904 | bg->key.objectid, bg->key.offset, |
| 9905 | bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); |
| 9906 | ret = -EUCLEAN; |
| 9907 | free_extent_map(em); |
| 9908 | btrfs_put_block_group(bg); |
| 9909 | break; |
| 9910 | } |
| 9911 | start = em->start + em->len; |
| 9912 | free_extent_map(em); |
| 9913 | btrfs_put_block_group(bg); |
| 9914 | } |
| 9915 | return ret; |
| 9916 | } |
| 9917 | |
| 9918 | int btrfs_read_block_groups(struct btrfs_fs_info *info) |
| 9919 | { |
| 9920 | struct btrfs_path *path; |
| 9921 | int ret; |
| 9922 | struct btrfs_block_group_cache *cache; |
| 9923 | struct btrfs_space_info *space_info; |
| 9924 | struct btrfs_key key; |
| 9925 | struct btrfs_key found_key; |
| 9926 | struct extent_buffer *leaf; |
| 9927 | int need_clear = 0; |
| 9928 | u64 cache_gen; |
| 9929 | u64 feature; |
| 9930 | int mixed; |
| 9931 | |
| 9932 | feature = btrfs_super_incompat_flags(info->super_copy); |
| 9933 | mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); |
| 9934 | |
| 9935 | key.objectid = 0; |
| 9936 | key.offset = 0; |
| 9937 | key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; |
| 9938 | path = btrfs_alloc_path(); |
| 9939 | if (!path) |
| 9940 | return -ENOMEM; |
| 9941 | path->reada = READA_FORWARD; |
| 9942 | |
| 9943 | cache_gen = btrfs_super_cache_generation(info->super_copy); |
| 9944 | if (btrfs_test_opt(info, SPACE_CACHE) && |
| 9945 | btrfs_super_generation(info->super_copy) != cache_gen) |
| 9946 | need_clear = 1; |
| 9947 | if (btrfs_test_opt(info, CLEAR_CACHE)) |
| 9948 | need_clear = 1; |
| 9949 | |
| 9950 | while (1) { |
| 9951 | ret = find_first_block_group(info, path, &key); |
| 9952 | if (ret > 0) |
| 9953 | break; |
| 9954 | if (ret != 0) |
| 9955 | goto error; |
| 9956 | |
| 9957 | leaf = path->nodes[0]; |
| 9958 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| 9959 | |
| 9960 | cache = btrfs_create_block_group_cache(info, found_key.objectid, |
| 9961 | found_key.offset); |
| 9962 | if (!cache) { |
| 9963 | ret = -ENOMEM; |
| 9964 | goto error; |
| 9965 | } |
| 9966 | |
| 9967 | if (need_clear) { |
| 9968 | /* |
| 9969 | * When we mount with old space cache, we need to |
| 9970 | * set BTRFS_DC_CLEAR and set dirty flag. |
| 9971 | * |
| 9972 | * a) Setting 'BTRFS_DC_CLEAR' makes sure that we |
| 9973 | * truncate the old free space cache inode and |
| 9974 | * setup a new one. |
| 9975 | * b) Setting 'dirty flag' makes sure that we flush |
| 9976 | * the new space cache info onto disk. |
| 9977 | */ |
| 9978 | if (btrfs_test_opt(info, SPACE_CACHE)) |
| 9979 | cache->disk_cache_state = BTRFS_DC_CLEAR; |
| 9980 | } |
| 9981 | |
| 9982 | read_extent_buffer(leaf, &cache->item, |
| 9983 | btrfs_item_ptr_offset(leaf, path->slots[0]), |
| 9984 | sizeof(cache->item)); |
| 9985 | cache->flags = btrfs_block_group_flags(&cache->item); |
| 9986 | if (!mixed && |
| 9987 | ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && |
| 9988 | (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { |
| 9989 | btrfs_err(info, |
| 9990 | "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", |
| 9991 | cache->key.objectid); |
| 9992 | ret = -EINVAL; |
| 9993 | goto error; |
| 9994 | } |
| 9995 | |
| 9996 | key.objectid = found_key.objectid + found_key.offset; |
| 9997 | btrfs_release_path(path); |
| 9998 | |
| 9999 | /* |
| 10000 | * We need to exclude the super stripes now so that the space |
| 10001 | * info has super bytes accounted for, otherwise we'll think |
| 10002 | * we have more space than we actually do. |
| 10003 | */ |
| 10004 | ret = exclude_super_stripes(cache); |
| 10005 | if (ret) { |
| 10006 | /* |
| 10007 | * We may have excluded something, so call this just in |
| 10008 | * case. |
| 10009 | */ |
| 10010 | free_excluded_extents(cache); |
| 10011 | btrfs_put_block_group(cache); |
| 10012 | goto error; |
| 10013 | } |
| 10014 | |
| 10015 | /* |
| 10016 | * check for two cases, either we are full, and therefore |
| 10017 | * don't need to bother with the caching work since we won't |
| 10018 | * find any space, or we are empty, and we can just add all |
| 10019 | * the space in and be done with it. This saves us _alot_ of |
| 10020 | * time, particularly in the full case. |
| 10021 | */ |
| 10022 | if (found_key.offset == btrfs_block_group_used(&cache->item)) { |
| 10023 | cache->last_byte_to_unpin = (u64)-1; |
| 10024 | cache->cached = BTRFS_CACHE_FINISHED; |
| 10025 | free_excluded_extents(cache); |
| 10026 | } else if (btrfs_block_group_used(&cache->item) == 0) { |
| 10027 | cache->last_byte_to_unpin = (u64)-1; |
| 10028 | cache->cached = BTRFS_CACHE_FINISHED; |
| 10029 | add_new_free_space(cache, found_key.objectid, |
| 10030 | found_key.objectid + |
| 10031 | found_key.offset); |
| 10032 | free_excluded_extents(cache); |
| 10033 | } |
| 10034 | |
| 10035 | ret = btrfs_add_block_group_cache(info, cache); |
| 10036 | if (ret) { |
| 10037 | btrfs_remove_free_space_cache(cache); |
| 10038 | btrfs_put_block_group(cache); |
| 10039 | goto error; |
| 10040 | } |
| 10041 | |
| 10042 | trace_btrfs_add_block_group(info, cache, 0); |
| 10043 | update_space_info(info, cache->flags, found_key.offset, |
| 10044 | btrfs_block_group_used(&cache->item), |
| 10045 | cache->bytes_super, &space_info); |
| 10046 | |
| 10047 | cache->space_info = space_info; |
| 10048 | |
| 10049 | link_block_group(cache); |
| 10050 | |
| 10051 | set_avail_alloc_bits(info, cache->flags); |
| 10052 | if (btrfs_chunk_readonly(info, cache->key.objectid)) { |
| 10053 | inc_block_group_ro(cache, 1); |
| 10054 | } else if (btrfs_block_group_used(&cache->item) == 0) { |
| 10055 | ASSERT(list_empty(&cache->bg_list)); |
| 10056 | btrfs_mark_bg_unused(cache); |
| 10057 | } |
| 10058 | } |
| 10059 | |
| 10060 | list_for_each_entry_rcu(space_info, &info->space_info, list) { |
| 10061 | if (!(get_alloc_profile(info, space_info->flags) & |
| 10062 | (BTRFS_BLOCK_GROUP_RAID10 | |
| 10063 | BTRFS_BLOCK_GROUP_RAID1 | |
| 10064 | BTRFS_BLOCK_GROUP_RAID5 | |
| 10065 | BTRFS_BLOCK_GROUP_RAID6 | |
| 10066 | BTRFS_BLOCK_GROUP_DUP))) |
| 10067 | continue; |
| 10068 | /* |
| 10069 | * avoid allocating from un-mirrored block group if there are |
| 10070 | * mirrored block groups. |
| 10071 | */ |
| 10072 | list_for_each_entry(cache, |
| 10073 | &space_info->block_groups[BTRFS_RAID_RAID0], |
| 10074 | list) |
| 10075 | inc_block_group_ro(cache, 1); |
| 10076 | list_for_each_entry(cache, |
| 10077 | &space_info->block_groups[BTRFS_RAID_SINGLE], |
| 10078 | list) |
| 10079 | inc_block_group_ro(cache, 1); |
| 10080 | } |
| 10081 | |
| 10082 | btrfs_add_raid_kobjects(info); |
| 10083 | init_global_block_rsv(info); |
| 10084 | ret = check_chunk_block_group_mappings(info); |
| 10085 | error: |
| 10086 | btrfs_free_path(path); |
| 10087 | return ret; |
| 10088 | } |
| 10089 | |
| 10090 | void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) |
| 10091 | { |
| 10092 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 10093 | struct btrfs_block_group_cache *block_group; |
| 10094 | struct btrfs_root *extent_root = fs_info->extent_root; |
| 10095 | struct btrfs_block_group_item item; |
| 10096 | struct btrfs_key key; |
| 10097 | int ret = 0; |
| 10098 | |
| 10099 | if (!trans->can_flush_pending_bgs) |
| 10100 | return; |
| 10101 | |
| 10102 | while (!list_empty(&trans->new_bgs)) { |
| 10103 | block_group = list_first_entry(&trans->new_bgs, |
| 10104 | struct btrfs_block_group_cache, |
| 10105 | bg_list); |
| 10106 | if (ret) |
| 10107 | goto next; |
| 10108 | |
| 10109 | spin_lock(&block_group->lock); |
| 10110 | memcpy(&item, &block_group->item, sizeof(item)); |
| 10111 | memcpy(&key, &block_group->key, sizeof(key)); |
| 10112 | spin_unlock(&block_group->lock); |
| 10113 | |
| 10114 | ret = btrfs_insert_item(trans, extent_root, &key, &item, |
| 10115 | sizeof(item)); |
| 10116 | if (ret) |
| 10117 | btrfs_abort_transaction(trans, ret); |
| 10118 | ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset); |
| 10119 | if (ret) |
| 10120 | btrfs_abort_transaction(trans, ret); |
| 10121 | add_block_group_free_space(trans, block_group); |
| 10122 | /* already aborted the transaction if it failed. */ |
| 10123 | next: |
| 10124 | list_del_init(&block_group->bg_list); |
| 10125 | } |
| 10126 | btrfs_trans_release_chunk_metadata(trans); |
| 10127 | } |
| 10128 | |
| 10129 | int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, |
| 10130 | u64 type, u64 chunk_offset, u64 size) |
| 10131 | { |
| 10132 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 10133 | struct btrfs_block_group_cache *cache; |
| 10134 | int ret; |
| 10135 | |
| 10136 | btrfs_set_log_full_commit(fs_info, trans); |
| 10137 | |
| 10138 | cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); |
| 10139 | if (!cache) |
| 10140 | return -ENOMEM; |
| 10141 | |
| 10142 | btrfs_set_block_group_used(&cache->item, bytes_used); |
| 10143 | btrfs_set_block_group_chunk_objectid(&cache->item, |
| 10144 | BTRFS_FIRST_CHUNK_TREE_OBJECTID); |
| 10145 | btrfs_set_block_group_flags(&cache->item, type); |
| 10146 | |
| 10147 | cache->flags = type; |
| 10148 | cache->last_byte_to_unpin = (u64)-1; |
| 10149 | cache->cached = BTRFS_CACHE_FINISHED; |
| 10150 | cache->needs_free_space = 1; |
| 10151 | ret = exclude_super_stripes(cache); |
| 10152 | if (ret) { |
| 10153 | /* |
| 10154 | * We may have excluded something, so call this just in |
| 10155 | * case. |
| 10156 | */ |
| 10157 | free_excluded_extents(cache); |
| 10158 | btrfs_put_block_group(cache); |
| 10159 | return ret; |
| 10160 | } |
| 10161 | |
| 10162 | add_new_free_space(cache, chunk_offset, chunk_offset + size); |
| 10163 | |
| 10164 | free_excluded_extents(cache); |
| 10165 | |
| 10166 | #ifdef CONFIG_BTRFS_DEBUG |
| 10167 | if (btrfs_should_fragment_free_space(cache)) { |
| 10168 | u64 new_bytes_used = size - bytes_used; |
| 10169 | |
| 10170 | bytes_used += new_bytes_used >> 1; |
| 10171 | fragment_free_space(cache); |
| 10172 | } |
| 10173 | #endif |
| 10174 | /* |
| 10175 | * Ensure the corresponding space_info object is created and |
| 10176 | * assigned to our block group. We want our bg to be added to the rbtree |
| 10177 | * with its ->space_info set. |
| 10178 | */ |
| 10179 | cache->space_info = __find_space_info(fs_info, cache->flags); |
| 10180 | ASSERT(cache->space_info); |
| 10181 | |
| 10182 | ret = btrfs_add_block_group_cache(fs_info, cache); |
| 10183 | if (ret) { |
| 10184 | btrfs_remove_free_space_cache(cache); |
| 10185 | btrfs_put_block_group(cache); |
| 10186 | return ret; |
| 10187 | } |
| 10188 | |
| 10189 | /* |
| 10190 | * Now that our block group has its ->space_info set and is inserted in |
| 10191 | * the rbtree, update the space info's counters. |
| 10192 | */ |
| 10193 | trace_btrfs_add_block_group(fs_info, cache, 1); |
| 10194 | update_space_info(fs_info, cache->flags, size, bytes_used, |
| 10195 | cache->bytes_super, &cache->space_info); |
| 10196 | update_global_block_rsv(fs_info); |
| 10197 | |
| 10198 | link_block_group(cache); |
| 10199 | |
| 10200 | list_add_tail(&cache->bg_list, &trans->new_bgs); |
| 10201 | |
| 10202 | set_avail_alloc_bits(fs_info, type); |
| 10203 | return 0; |
| 10204 | } |
| 10205 | |
| 10206 | static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) |
| 10207 | { |
| 10208 | u64 extra_flags = chunk_to_extended(flags) & |
| 10209 | BTRFS_EXTENDED_PROFILE_MASK; |
| 10210 | |
| 10211 | write_seqlock(&fs_info->profiles_lock); |
| 10212 | if (flags & BTRFS_BLOCK_GROUP_DATA) |
| 10213 | fs_info->avail_data_alloc_bits &= ~extra_flags; |
| 10214 | if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| 10215 | fs_info->avail_metadata_alloc_bits &= ~extra_flags; |
| 10216 | if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| 10217 | fs_info->avail_system_alloc_bits &= ~extra_flags; |
| 10218 | write_sequnlock(&fs_info->profiles_lock); |
| 10219 | } |
| 10220 | |
| 10221 | int btrfs_remove_block_group(struct btrfs_trans_handle *trans, |
| 10222 | u64 group_start, struct extent_map *em) |
| 10223 | { |
| 10224 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 10225 | struct btrfs_root *root = fs_info->extent_root; |
| 10226 | struct btrfs_path *path; |
| 10227 | struct btrfs_block_group_cache *block_group; |
| 10228 | struct btrfs_free_cluster *cluster; |
| 10229 | struct btrfs_root *tree_root = fs_info->tree_root; |
| 10230 | struct btrfs_key key; |
| 10231 | struct inode *inode; |
| 10232 | struct kobject *kobj = NULL; |
| 10233 | int ret; |
| 10234 | int index; |
| 10235 | int factor; |
| 10236 | struct btrfs_caching_control *caching_ctl = NULL; |
| 10237 | bool remove_em; |
| 10238 | |
| 10239 | block_group = btrfs_lookup_block_group(fs_info, group_start); |
| 10240 | BUG_ON(!block_group); |
| 10241 | BUG_ON(!block_group->ro); |
| 10242 | |
| 10243 | trace_btrfs_remove_block_group(block_group); |
| 10244 | /* |
| 10245 | * Free the reserved super bytes from this block group before |
| 10246 | * remove it. |
| 10247 | */ |
| 10248 | free_excluded_extents(block_group); |
| 10249 | btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, |
| 10250 | block_group->key.offset); |
| 10251 | |
| 10252 | memcpy(&key, &block_group->key, sizeof(key)); |
| 10253 | index = btrfs_bg_flags_to_raid_index(block_group->flags); |
| 10254 | factor = btrfs_bg_type_to_factor(block_group->flags); |
| 10255 | |
| 10256 | /* make sure this block group isn't part of an allocation cluster */ |
| 10257 | cluster = &fs_info->data_alloc_cluster; |
| 10258 | spin_lock(&cluster->refill_lock); |
| 10259 | btrfs_return_cluster_to_free_space(block_group, cluster); |
| 10260 | spin_unlock(&cluster->refill_lock); |
| 10261 | |
| 10262 | /* |
| 10263 | * make sure this block group isn't part of a metadata |
| 10264 | * allocation cluster |
| 10265 | */ |
| 10266 | cluster = &fs_info->meta_alloc_cluster; |
| 10267 | spin_lock(&cluster->refill_lock); |
| 10268 | btrfs_return_cluster_to_free_space(block_group, cluster); |
| 10269 | spin_unlock(&cluster->refill_lock); |
| 10270 | |
| 10271 | path = btrfs_alloc_path(); |
| 10272 | if (!path) { |
| 10273 | ret = -ENOMEM; |
| 10274 | goto out; |
| 10275 | } |
| 10276 | |
| 10277 | /* |
| 10278 | * get the inode first so any iput calls done for the io_list |
| 10279 | * aren't the final iput (no unlinks allowed now) |
| 10280 | */ |
| 10281 | inode = lookup_free_space_inode(fs_info, block_group, path); |
| 10282 | |
| 10283 | mutex_lock(&trans->transaction->cache_write_mutex); |
| 10284 | /* |
| 10285 | * make sure our free spache cache IO is done before remove the |
| 10286 | * free space inode |
| 10287 | */ |
| 10288 | spin_lock(&trans->transaction->dirty_bgs_lock); |
| 10289 | if (!list_empty(&block_group->io_list)) { |
| 10290 | list_del_init(&block_group->io_list); |
| 10291 | |
| 10292 | WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); |
| 10293 | |
| 10294 | spin_unlock(&trans->transaction->dirty_bgs_lock); |
| 10295 | btrfs_wait_cache_io(trans, block_group, path); |
| 10296 | btrfs_put_block_group(block_group); |
| 10297 | spin_lock(&trans->transaction->dirty_bgs_lock); |
| 10298 | } |
| 10299 | |
| 10300 | if (!list_empty(&block_group->dirty_list)) { |
| 10301 | list_del_init(&block_group->dirty_list); |
| 10302 | btrfs_put_block_group(block_group); |
| 10303 | } |
| 10304 | spin_unlock(&trans->transaction->dirty_bgs_lock); |
| 10305 | mutex_unlock(&trans->transaction->cache_write_mutex); |
| 10306 | |
| 10307 | if (!IS_ERR(inode)) { |
| 10308 | ret = btrfs_orphan_add(trans, BTRFS_I(inode)); |
| 10309 | if (ret) { |
| 10310 | btrfs_add_delayed_iput(inode); |
| 10311 | goto out; |
| 10312 | } |
| 10313 | clear_nlink(inode); |
| 10314 | /* One for the block groups ref */ |
| 10315 | spin_lock(&block_group->lock); |
| 10316 | if (block_group->iref) { |
| 10317 | block_group->iref = 0; |
| 10318 | block_group->inode = NULL; |
| 10319 | spin_unlock(&block_group->lock); |
| 10320 | iput(inode); |
| 10321 | } else { |
| 10322 | spin_unlock(&block_group->lock); |
| 10323 | } |
| 10324 | /* One for our lookup ref */ |
| 10325 | btrfs_add_delayed_iput(inode); |
| 10326 | } |
| 10327 | |
| 10328 | key.objectid = BTRFS_FREE_SPACE_OBJECTID; |
| 10329 | key.offset = block_group->key.objectid; |
| 10330 | key.type = 0; |
| 10331 | |
| 10332 | ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); |
| 10333 | if (ret < 0) |
| 10334 | goto out; |
| 10335 | if (ret > 0) |
| 10336 | btrfs_release_path(path); |
| 10337 | if (ret == 0) { |
| 10338 | ret = btrfs_del_item(trans, tree_root, path); |
| 10339 | if (ret) |
| 10340 | goto out; |
| 10341 | btrfs_release_path(path); |
| 10342 | } |
| 10343 | |
| 10344 | spin_lock(&fs_info->block_group_cache_lock); |
| 10345 | rb_erase(&block_group->cache_node, |
| 10346 | &fs_info->block_group_cache_tree); |
| 10347 | RB_CLEAR_NODE(&block_group->cache_node); |
| 10348 | |
| 10349 | if (fs_info->first_logical_byte == block_group->key.objectid) |
| 10350 | fs_info->first_logical_byte = (u64)-1; |
| 10351 | spin_unlock(&fs_info->block_group_cache_lock); |
| 10352 | |
| 10353 | down_write(&block_group->space_info->groups_sem); |
| 10354 | /* |
| 10355 | * we must use list_del_init so people can check to see if they |
| 10356 | * are still on the list after taking the semaphore |
| 10357 | */ |
| 10358 | list_del_init(&block_group->list); |
| 10359 | if (list_empty(&block_group->space_info->block_groups[index])) { |
| 10360 | kobj = block_group->space_info->block_group_kobjs[index]; |
| 10361 | block_group->space_info->block_group_kobjs[index] = NULL; |
| 10362 | clear_avail_alloc_bits(fs_info, block_group->flags); |
| 10363 | } |
| 10364 | up_write(&block_group->space_info->groups_sem); |
| 10365 | if (kobj) { |
| 10366 | kobject_del(kobj); |
| 10367 | kobject_put(kobj); |
| 10368 | } |
| 10369 | |
| 10370 | if (block_group->has_caching_ctl) |
| 10371 | caching_ctl = get_caching_control(block_group); |
| 10372 | if (block_group->cached == BTRFS_CACHE_STARTED) |
| 10373 | wait_block_group_cache_done(block_group); |
| 10374 | if (block_group->has_caching_ctl) { |
| 10375 | down_write(&fs_info->commit_root_sem); |
| 10376 | if (!caching_ctl) { |
| 10377 | struct btrfs_caching_control *ctl; |
| 10378 | |
| 10379 | list_for_each_entry(ctl, |
| 10380 | &fs_info->caching_block_groups, list) |
| 10381 | if (ctl->block_group == block_group) { |
| 10382 | caching_ctl = ctl; |
| 10383 | refcount_inc(&caching_ctl->count); |
| 10384 | break; |
| 10385 | } |
| 10386 | } |
| 10387 | if (caching_ctl) |
| 10388 | list_del_init(&caching_ctl->list); |
| 10389 | up_write(&fs_info->commit_root_sem); |
| 10390 | if (caching_ctl) { |
| 10391 | /* Once for the caching bgs list and once for us. */ |
| 10392 | put_caching_control(caching_ctl); |
| 10393 | put_caching_control(caching_ctl); |
| 10394 | } |
| 10395 | } |
| 10396 | |
| 10397 | spin_lock(&trans->transaction->dirty_bgs_lock); |
| 10398 | if (!list_empty(&block_group->dirty_list)) { |
| 10399 | WARN_ON(1); |
| 10400 | } |
| 10401 | if (!list_empty(&block_group->io_list)) { |
| 10402 | WARN_ON(1); |
| 10403 | } |
| 10404 | spin_unlock(&trans->transaction->dirty_bgs_lock); |
| 10405 | btrfs_remove_free_space_cache(block_group); |
| 10406 | |
| 10407 | spin_lock(&block_group->space_info->lock); |
| 10408 | list_del_init(&block_group->ro_list); |
| 10409 | |
| 10410 | if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| 10411 | WARN_ON(block_group->space_info->total_bytes |
| 10412 | < block_group->key.offset); |
| 10413 | WARN_ON(block_group->space_info->bytes_readonly |
| 10414 | < block_group->key.offset); |
| 10415 | WARN_ON(block_group->space_info->disk_total |
| 10416 | < block_group->key.offset * factor); |
| 10417 | } |
| 10418 | block_group->space_info->total_bytes -= block_group->key.offset; |
| 10419 | block_group->space_info->bytes_readonly -= block_group->key.offset; |
| 10420 | block_group->space_info->disk_total -= block_group->key.offset * factor; |
| 10421 | |
| 10422 | spin_unlock(&block_group->space_info->lock); |
| 10423 | |
| 10424 | memcpy(&key, &block_group->key, sizeof(key)); |
| 10425 | |
| 10426 | mutex_lock(&fs_info->chunk_mutex); |
| 10427 | if (!list_empty(&em->list)) { |
| 10428 | /* We're in the transaction->pending_chunks list. */ |
| 10429 | free_extent_map(em); |
| 10430 | } |
| 10431 | spin_lock(&block_group->lock); |
| 10432 | block_group->removed = 1; |
| 10433 | /* |
| 10434 | * At this point trimming can't start on this block group, because we |
| 10435 | * removed the block group from the tree fs_info->block_group_cache_tree |
| 10436 | * so no one can't find it anymore and even if someone already got this |
| 10437 | * block group before we removed it from the rbtree, they have already |
| 10438 | * incremented block_group->trimming - if they didn't, they won't find |
| 10439 | * any free space entries because we already removed them all when we |
| 10440 | * called btrfs_remove_free_space_cache(). |
| 10441 | * |
| 10442 | * And we must not remove the extent map from the fs_info->mapping_tree |
| 10443 | * to prevent the same logical address range and physical device space |
| 10444 | * ranges from being reused for a new block group. This is because our |
| 10445 | * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is |
| 10446 | * completely transactionless, so while it is trimming a range the |
| 10447 | * currently running transaction might finish and a new one start, |
| 10448 | * allowing for new block groups to be created that can reuse the same |
| 10449 | * physical device locations unless we take this special care. |
| 10450 | * |
| 10451 | * There may also be an implicit trim operation if the file system |
| 10452 | * is mounted with -odiscard. The same protections must remain |
| 10453 | * in place until the extents have been discarded completely when |
| 10454 | * the transaction commit has completed. |
| 10455 | */ |
| 10456 | remove_em = (atomic_read(&block_group->trimming) == 0); |
| 10457 | /* |
| 10458 | * Make sure a trimmer task always sees the em in the pinned_chunks list |
| 10459 | * if it sees block_group->removed == 1 (needs to lock block_group->lock |
| 10460 | * before checking block_group->removed). |
| 10461 | */ |
| 10462 | if (!remove_em) { |
| 10463 | /* |
| 10464 | * Our em might be in trans->transaction->pending_chunks which |
| 10465 | * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), |
| 10466 | * and so is the fs_info->pinned_chunks list. |
| 10467 | * |
| 10468 | * So at this point we must be holding the chunk_mutex to avoid |
| 10469 | * any races with chunk allocation (more specifically at |
| 10470 | * volumes.c:contains_pending_extent()), to ensure it always |
| 10471 | * sees the em, either in the pending_chunks list or in the |
| 10472 | * pinned_chunks list. |
| 10473 | */ |
| 10474 | list_move_tail(&em->list, &fs_info->pinned_chunks); |
| 10475 | } |
| 10476 | spin_unlock(&block_group->lock); |
| 10477 | |
| 10478 | if (remove_em) { |
| 10479 | struct extent_map_tree *em_tree; |
| 10480 | |
| 10481 | em_tree = &fs_info->mapping_tree.map_tree; |
| 10482 | write_lock(&em_tree->lock); |
| 10483 | /* |
| 10484 | * The em might be in the pending_chunks list, so make sure the |
| 10485 | * chunk mutex is locked, since remove_extent_mapping() will |
| 10486 | * delete us from that list. |
| 10487 | */ |
| 10488 | remove_extent_mapping(em_tree, em); |
| 10489 | write_unlock(&em_tree->lock); |
| 10490 | /* once for the tree */ |
| 10491 | free_extent_map(em); |
| 10492 | } |
| 10493 | |
| 10494 | mutex_unlock(&fs_info->chunk_mutex); |
| 10495 | |
| 10496 | ret = remove_block_group_free_space(trans, block_group); |
| 10497 | if (ret) |
| 10498 | goto out; |
| 10499 | |
| 10500 | btrfs_put_block_group(block_group); |
| 10501 | btrfs_put_block_group(block_group); |
| 10502 | |
| 10503 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| 10504 | if (ret > 0) |
| 10505 | ret = -EIO; |
| 10506 | if (ret < 0) |
| 10507 | goto out; |
| 10508 | |
| 10509 | ret = btrfs_del_item(trans, root, path); |
| 10510 | out: |
| 10511 | btrfs_free_path(path); |
| 10512 | return ret; |
| 10513 | } |
| 10514 | |
| 10515 | struct btrfs_trans_handle * |
| 10516 | btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, |
| 10517 | const u64 chunk_offset) |
| 10518 | { |
| 10519 | struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; |
| 10520 | struct extent_map *em; |
| 10521 | struct map_lookup *map; |
| 10522 | unsigned int num_items; |
| 10523 | |
| 10524 | read_lock(&em_tree->lock); |
| 10525 | em = lookup_extent_mapping(em_tree, chunk_offset, 1); |
| 10526 | read_unlock(&em_tree->lock); |
| 10527 | ASSERT(em && em->start == chunk_offset); |
| 10528 | |
| 10529 | /* |
| 10530 | * We need to reserve 3 + N units from the metadata space info in order |
| 10531 | * to remove a block group (done at btrfs_remove_chunk() and at |
| 10532 | * btrfs_remove_block_group()), which are used for: |
| 10533 | * |
| 10534 | * 1 unit for adding the free space inode's orphan (located in the tree |
| 10535 | * of tree roots). |
| 10536 | * 1 unit for deleting the block group item (located in the extent |
| 10537 | * tree). |
| 10538 | * 1 unit for deleting the free space item (located in tree of tree |
| 10539 | * roots). |
| 10540 | * N units for deleting N device extent items corresponding to each |
| 10541 | * stripe (located in the device tree). |
| 10542 | * |
| 10543 | * In order to remove a block group we also need to reserve units in the |
| 10544 | * system space info in order to update the chunk tree (update one or |
| 10545 | * more device items and remove one chunk item), but this is done at |
| 10546 | * btrfs_remove_chunk() through a call to check_system_chunk(). |
| 10547 | */ |
| 10548 | map = em->map_lookup; |
| 10549 | num_items = 3 + map->num_stripes; |
| 10550 | free_extent_map(em); |
| 10551 | |
| 10552 | return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, |
| 10553 | num_items, 1); |
| 10554 | } |
| 10555 | |
| 10556 | /* |
| 10557 | * Process the unused_bgs list and remove any that don't have any allocated |
| 10558 | * space inside of them. |
| 10559 | */ |
| 10560 | void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) |
| 10561 | { |
| 10562 | struct btrfs_block_group_cache *block_group; |
| 10563 | struct btrfs_space_info *space_info; |
| 10564 | struct btrfs_trans_handle *trans; |
| 10565 | int ret = 0; |
| 10566 | |
| 10567 | if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) |
| 10568 | return; |
| 10569 | |
| 10570 | spin_lock(&fs_info->unused_bgs_lock); |
| 10571 | while (!list_empty(&fs_info->unused_bgs)) { |
| 10572 | u64 start, end; |
| 10573 | int trimming; |
| 10574 | |
| 10575 | block_group = list_first_entry(&fs_info->unused_bgs, |
| 10576 | struct btrfs_block_group_cache, |
| 10577 | bg_list); |
| 10578 | list_del_init(&block_group->bg_list); |
| 10579 | |
| 10580 | space_info = block_group->space_info; |
| 10581 | |
| 10582 | if (ret || btrfs_mixed_space_info(space_info)) { |
| 10583 | btrfs_put_block_group(block_group); |
| 10584 | continue; |
| 10585 | } |
| 10586 | spin_unlock(&fs_info->unused_bgs_lock); |
| 10587 | |
| 10588 | mutex_lock(&fs_info->delete_unused_bgs_mutex); |
| 10589 | |
| 10590 | /* Don't want to race with allocators so take the groups_sem */ |
| 10591 | down_write(&space_info->groups_sem); |
| 10592 | spin_lock(&block_group->lock); |
| 10593 | if (block_group->reserved || block_group->pinned || |
| 10594 | btrfs_block_group_used(&block_group->item) || |
| 10595 | block_group->ro || |
| 10596 | list_is_singular(&block_group->list)) { |
| 10597 | /* |
| 10598 | * We want to bail if we made new allocations or have |
| 10599 | * outstanding allocations in this block group. We do |
| 10600 | * the ro check in case balance is currently acting on |
| 10601 | * this block group. |
| 10602 | */ |
| 10603 | trace_btrfs_skip_unused_block_group(block_group); |
| 10604 | spin_unlock(&block_group->lock); |
| 10605 | up_write(&space_info->groups_sem); |
| 10606 | goto next; |
| 10607 | } |
| 10608 | spin_unlock(&block_group->lock); |
| 10609 | |
| 10610 | /* We don't want to force the issue, only flip if it's ok. */ |
| 10611 | ret = inc_block_group_ro(block_group, 0); |
| 10612 | up_write(&space_info->groups_sem); |
| 10613 | if (ret < 0) { |
| 10614 | ret = 0; |
| 10615 | goto next; |
| 10616 | } |
| 10617 | |
| 10618 | /* |
| 10619 | * Want to do this before we do anything else so we can recover |
| 10620 | * properly if we fail to join the transaction. |
| 10621 | */ |
| 10622 | trans = btrfs_start_trans_remove_block_group(fs_info, |
| 10623 | block_group->key.objectid); |
| 10624 | if (IS_ERR(trans)) { |
| 10625 | btrfs_dec_block_group_ro(block_group); |
| 10626 | ret = PTR_ERR(trans); |
| 10627 | goto next; |
| 10628 | } |
| 10629 | |
| 10630 | /* |
| 10631 | * We could have pending pinned extents for this block group, |
| 10632 | * just delete them, we don't care about them anymore. |
| 10633 | */ |
| 10634 | start = block_group->key.objectid; |
| 10635 | end = start + block_group->key.offset - 1; |
| 10636 | /* |
| 10637 | * Hold the unused_bg_unpin_mutex lock to avoid racing with |
| 10638 | * btrfs_finish_extent_commit(). If we are at transaction N, |
| 10639 | * another task might be running finish_extent_commit() for the |
| 10640 | * previous transaction N - 1, and have seen a range belonging |
| 10641 | * to the block group in freed_extents[] before we were able to |
| 10642 | * clear the whole block group range from freed_extents[]. This |
| 10643 | * means that task can lookup for the block group after we |
| 10644 | * unpinned it from freed_extents[] and removed it, leading to |
| 10645 | * a BUG_ON() at btrfs_unpin_extent_range(). |
| 10646 | */ |
| 10647 | mutex_lock(&fs_info->unused_bg_unpin_mutex); |
| 10648 | ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, |
| 10649 | EXTENT_DIRTY); |
| 10650 | if (ret) { |
| 10651 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| 10652 | btrfs_dec_block_group_ro(block_group); |
| 10653 | goto end_trans; |
| 10654 | } |
| 10655 | ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, |
| 10656 | EXTENT_DIRTY); |
| 10657 | if (ret) { |
| 10658 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| 10659 | btrfs_dec_block_group_ro(block_group); |
| 10660 | goto end_trans; |
| 10661 | } |
| 10662 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| 10663 | |
| 10664 | /* Reset pinned so btrfs_put_block_group doesn't complain */ |
| 10665 | spin_lock(&space_info->lock); |
| 10666 | spin_lock(&block_group->lock); |
| 10667 | |
| 10668 | space_info->bytes_pinned -= block_group->pinned; |
| 10669 | space_info->bytes_readonly += block_group->pinned; |
| 10670 | percpu_counter_add_batch(&space_info->total_bytes_pinned, |
| 10671 | -block_group->pinned, |
| 10672 | BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 10673 | block_group->pinned = 0; |
| 10674 | |
| 10675 | spin_unlock(&block_group->lock); |
| 10676 | spin_unlock(&space_info->lock); |
| 10677 | |
| 10678 | /* DISCARD can flip during remount */ |
| 10679 | trimming = btrfs_test_opt(fs_info, DISCARD); |
| 10680 | |
| 10681 | /* Implicit trim during transaction commit. */ |
| 10682 | if (trimming) |
| 10683 | btrfs_get_block_group_trimming(block_group); |
| 10684 | |
| 10685 | /* |
| 10686 | * Btrfs_remove_chunk will abort the transaction if things go |
| 10687 | * horribly wrong. |
| 10688 | */ |
| 10689 | ret = btrfs_remove_chunk(trans, block_group->key.objectid); |
| 10690 | |
| 10691 | if (ret) { |
| 10692 | if (trimming) |
| 10693 | btrfs_put_block_group_trimming(block_group); |
| 10694 | goto end_trans; |
| 10695 | } |
| 10696 | |
| 10697 | /* |
| 10698 | * If we're not mounted with -odiscard, we can just forget |
| 10699 | * about this block group. Otherwise we'll need to wait |
| 10700 | * until transaction commit to do the actual discard. |
| 10701 | */ |
| 10702 | if (trimming) { |
| 10703 | spin_lock(&fs_info->unused_bgs_lock); |
| 10704 | /* |
| 10705 | * A concurrent scrub might have added us to the list |
| 10706 | * fs_info->unused_bgs, so use a list_move operation |
| 10707 | * to add the block group to the deleted_bgs list. |
| 10708 | */ |
| 10709 | list_move(&block_group->bg_list, |
| 10710 | &trans->transaction->deleted_bgs); |
| 10711 | spin_unlock(&fs_info->unused_bgs_lock); |
| 10712 | btrfs_get_block_group(block_group); |
| 10713 | } |
| 10714 | end_trans: |
| 10715 | btrfs_end_transaction(trans); |
| 10716 | next: |
| 10717 | mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| 10718 | btrfs_put_block_group(block_group); |
| 10719 | spin_lock(&fs_info->unused_bgs_lock); |
| 10720 | } |
| 10721 | spin_unlock(&fs_info->unused_bgs_lock); |
| 10722 | } |
| 10723 | |
| 10724 | int btrfs_init_space_info(struct btrfs_fs_info *fs_info) |
| 10725 | { |
| 10726 | struct btrfs_super_block *disk_super; |
| 10727 | u64 features; |
| 10728 | u64 flags; |
| 10729 | int mixed = 0; |
| 10730 | int ret; |
| 10731 | |
| 10732 | disk_super = fs_info->super_copy; |
| 10733 | if (!btrfs_super_root(disk_super)) |
| 10734 | return -EINVAL; |
| 10735 | |
| 10736 | features = btrfs_super_incompat_flags(disk_super); |
| 10737 | if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) |
| 10738 | mixed = 1; |
| 10739 | |
| 10740 | flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| 10741 | ret = create_space_info(fs_info, flags); |
| 10742 | if (ret) |
| 10743 | goto out; |
| 10744 | |
| 10745 | if (mixed) { |
| 10746 | flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; |
| 10747 | ret = create_space_info(fs_info, flags); |
| 10748 | } else { |
| 10749 | flags = BTRFS_BLOCK_GROUP_METADATA; |
| 10750 | ret = create_space_info(fs_info, flags); |
| 10751 | if (ret) |
| 10752 | goto out; |
| 10753 | |
| 10754 | flags = BTRFS_BLOCK_GROUP_DATA; |
| 10755 | ret = create_space_info(fs_info, flags); |
| 10756 | } |
| 10757 | out: |
| 10758 | return ret; |
| 10759 | } |
| 10760 | |
| 10761 | int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, |
| 10762 | u64 start, u64 end) |
| 10763 | { |
| 10764 | return unpin_extent_range(fs_info, start, end, false); |
| 10765 | } |
| 10766 | |
| 10767 | /* |
| 10768 | * It used to be that old block groups would be left around forever. |
| 10769 | * Iterating over them would be enough to trim unused space. Since we |
| 10770 | * now automatically remove them, we also need to iterate over unallocated |
| 10771 | * space. |
| 10772 | * |
| 10773 | * We don't want a transaction for this since the discard may take a |
| 10774 | * substantial amount of time. We don't require that a transaction be |
| 10775 | * running, but we do need to take a running transaction into account |
| 10776 | * to ensure that we're not discarding chunks that were released or |
| 10777 | * allocated in the current transaction. |
| 10778 | * |
| 10779 | * Holding the chunks lock will prevent other threads from allocating |
| 10780 | * or releasing chunks, but it won't prevent a running transaction |
| 10781 | * from committing and releasing the memory that the pending chunks |
| 10782 | * list head uses. For that, we need to take a reference to the |
| 10783 | * transaction and hold the commit root sem. We only need to hold |
| 10784 | * it while performing the free space search since we have already |
| 10785 | * held back allocations. |
| 10786 | */ |
| 10787 | static int btrfs_trim_free_extents(struct btrfs_device *device, |
| 10788 | u64 minlen, u64 *trimmed) |
| 10789 | { |
| 10790 | u64 start = 0, len = 0; |
| 10791 | int ret; |
| 10792 | |
| 10793 | *trimmed = 0; |
| 10794 | |
| 10795 | /* Discard not supported = nothing to do. */ |
| 10796 | if (!blk_queue_discard(bdev_get_queue(device->bdev))) |
| 10797 | return 0; |
| 10798 | |
| 10799 | /* Not writeable = nothing to do. */ |
| 10800 | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| 10801 | return 0; |
| 10802 | |
| 10803 | /* No free space = nothing to do. */ |
| 10804 | if (device->total_bytes <= device->bytes_used) |
| 10805 | return 0; |
| 10806 | |
| 10807 | ret = 0; |
| 10808 | |
| 10809 | while (1) { |
| 10810 | struct btrfs_fs_info *fs_info = device->fs_info; |
| 10811 | struct btrfs_transaction *trans; |
| 10812 | u64 bytes; |
| 10813 | |
| 10814 | ret = mutex_lock_interruptible(&fs_info->chunk_mutex); |
| 10815 | if (ret) |
| 10816 | break; |
| 10817 | |
| 10818 | ret = down_read_killable(&fs_info->commit_root_sem); |
| 10819 | if (ret) { |
| 10820 | mutex_unlock(&fs_info->chunk_mutex); |
| 10821 | break; |
| 10822 | } |
| 10823 | |
| 10824 | spin_lock(&fs_info->trans_lock); |
| 10825 | trans = fs_info->running_transaction; |
| 10826 | if (trans) |
| 10827 | refcount_inc(&trans->use_count); |
| 10828 | spin_unlock(&fs_info->trans_lock); |
| 10829 | |
| 10830 | if (!trans) |
| 10831 | up_read(&fs_info->commit_root_sem); |
| 10832 | |
| 10833 | ret = find_free_dev_extent_start(trans, device, minlen, start, |
| 10834 | &start, &len); |
| 10835 | if (trans) { |
| 10836 | up_read(&fs_info->commit_root_sem); |
| 10837 | btrfs_put_transaction(trans); |
| 10838 | } |
| 10839 | |
| 10840 | if (ret) { |
| 10841 | mutex_unlock(&fs_info->chunk_mutex); |
| 10842 | if (ret == -ENOSPC) |
| 10843 | ret = 0; |
| 10844 | break; |
| 10845 | } |
| 10846 | |
| 10847 | ret = btrfs_issue_discard(device->bdev, start, len, &bytes); |
| 10848 | mutex_unlock(&fs_info->chunk_mutex); |
| 10849 | |
| 10850 | if (ret) |
| 10851 | break; |
| 10852 | |
| 10853 | start += len; |
| 10854 | *trimmed += bytes; |
| 10855 | |
| 10856 | if (fatal_signal_pending(current)) { |
| 10857 | ret = -ERESTARTSYS; |
| 10858 | break; |
| 10859 | } |
| 10860 | |
| 10861 | cond_resched(); |
| 10862 | } |
| 10863 | |
| 10864 | return ret; |
| 10865 | } |
| 10866 | |
| 10867 | /* |
| 10868 | * Trim the whole filesystem by: |
| 10869 | * 1) trimming the free space in each block group |
| 10870 | * 2) trimming the unallocated space on each device |
| 10871 | * |
| 10872 | * This will also continue trimming even if a block group or device encounters |
| 10873 | * an error. The return value will be the last error, or 0 if nothing bad |
| 10874 | * happens. |
| 10875 | */ |
| 10876 | int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) |
| 10877 | { |
| 10878 | struct btrfs_block_group_cache *cache = NULL; |
| 10879 | struct btrfs_device *device; |
| 10880 | struct list_head *devices; |
| 10881 | u64 group_trimmed; |
| 10882 | u64 start; |
| 10883 | u64 end; |
| 10884 | u64 trimmed = 0; |
| 10885 | u64 bg_failed = 0; |
| 10886 | u64 dev_failed = 0; |
| 10887 | int bg_ret = 0; |
| 10888 | int dev_ret = 0; |
| 10889 | int ret = 0; |
| 10890 | |
| 10891 | cache = btrfs_lookup_first_block_group(fs_info, range->start); |
| 10892 | for (; cache; cache = next_block_group(fs_info, cache)) { |
| 10893 | if (cache->key.objectid >= (range->start + range->len)) { |
| 10894 | btrfs_put_block_group(cache); |
| 10895 | break; |
| 10896 | } |
| 10897 | |
| 10898 | start = max(range->start, cache->key.objectid); |
| 10899 | end = min(range->start + range->len, |
| 10900 | cache->key.objectid + cache->key.offset); |
| 10901 | |
| 10902 | if (end - start >= range->minlen) { |
| 10903 | if (!block_group_cache_done(cache)) { |
| 10904 | ret = cache_block_group(cache, 0); |
| 10905 | if (ret) { |
| 10906 | bg_failed++; |
| 10907 | bg_ret = ret; |
| 10908 | continue; |
| 10909 | } |
| 10910 | ret = wait_block_group_cache_done(cache); |
| 10911 | if (ret) { |
| 10912 | bg_failed++; |
| 10913 | bg_ret = ret; |
| 10914 | continue; |
| 10915 | } |
| 10916 | } |
| 10917 | ret = btrfs_trim_block_group(cache, |
| 10918 | &group_trimmed, |
| 10919 | start, |
| 10920 | end, |
| 10921 | range->minlen); |
| 10922 | |
| 10923 | trimmed += group_trimmed; |
| 10924 | if (ret) { |
| 10925 | bg_failed++; |
| 10926 | bg_ret = ret; |
| 10927 | continue; |
| 10928 | } |
| 10929 | } |
| 10930 | } |
| 10931 | |
| 10932 | if (bg_failed) |
| 10933 | btrfs_warn(fs_info, |
| 10934 | "failed to trim %llu block group(s), last error %d", |
| 10935 | bg_failed, bg_ret); |
| 10936 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| 10937 | devices = &fs_info->fs_devices->devices; |
| 10938 | list_for_each_entry(device, devices, dev_list) { |
| 10939 | ret = btrfs_trim_free_extents(device, range->minlen, |
| 10940 | &group_trimmed); |
| 10941 | if (ret) { |
| 10942 | dev_failed++; |
| 10943 | dev_ret = ret; |
| 10944 | break; |
| 10945 | } |
| 10946 | |
| 10947 | trimmed += group_trimmed; |
| 10948 | } |
| 10949 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 10950 | |
| 10951 | if (dev_failed) |
| 10952 | btrfs_warn(fs_info, |
| 10953 | "failed to trim %llu device(s), last error %d", |
| 10954 | dev_failed, dev_ret); |
| 10955 | range->len = trimmed; |
| 10956 | if (bg_ret) |
| 10957 | return bg_ret; |
| 10958 | return dev_ret; |
| 10959 | } |
| 10960 | |
| 10961 | /* |
| 10962 | * btrfs_{start,end}_write_no_snapshotting() are similar to |
| 10963 | * mnt_{want,drop}_write(), they are used to prevent some tasks from writing |
| 10964 | * data into the page cache through nocow before the subvolume is snapshoted, |
| 10965 | * but flush the data into disk after the snapshot creation, or to prevent |
| 10966 | * operations while snapshotting is ongoing and that cause the snapshot to be |
| 10967 | * inconsistent (writes followed by expanding truncates for example). |
| 10968 | */ |
| 10969 | void btrfs_end_write_no_snapshotting(struct btrfs_root *root) |
| 10970 | { |
| 10971 | percpu_counter_dec(&root->subv_writers->counter); |
| 10972 | cond_wake_up(&root->subv_writers->wait); |
| 10973 | } |
| 10974 | |
| 10975 | int btrfs_start_write_no_snapshotting(struct btrfs_root *root) |
| 10976 | { |
| 10977 | if (atomic_read(&root->will_be_snapshotted)) |
| 10978 | return 0; |
| 10979 | |
| 10980 | percpu_counter_inc(&root->subv_writers->counter); |
| 10981 | /* |
| 10982 | * Make sure counter is updated before we check for snapshot creation. |
| 10983 | */ |
| 10984 | smp_mb(); |
| 10985 | if (atomic_read(&root->will_be_snapshotted)) { |
| 10986 | btrfs_end_write_no_snapshotting(root); |
| 10987 | return 0; |
| 10988 | } |
| 10989 | return 1; |
| 10990 | } |
| 10991 | |
| 10992 | void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) |
| 10993 | { |
| 10994 | while (true) { |
| 10995 | int ret; |
| 10996 | |
| 10997 | ret = btrfs_start_write_no_snapshotting(root); |
| 10998 | if (ret) |
| 10999 | break; |
| 11000 | wait_var_event(&root->will_be_snapshotted, |
| 11001 | !atomic_read(&root->will_be_snapshotted)); |
| 11002 | } |
| 11003 | } |
| 11004 | |
| 11005 | void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg) |
| 11006 | { |
| 11007 | struct btrfs_fs_info *fs_info = bg->fs_info; |
| 11008 | |
| 11009 | spin_lock(&fs_info->unused_bgs_lock); |
| 11010 | if (list_empty(&bg->bg_list)) { |
| 11011 | btrfs_get_block_group(bg); |
| 11012 | trace_btrfs_add_unused_block_group(bg); |
| 11013 | list_add_tail(&bg->bg_list, &fs_info->unused_bgs); |
| 11014 | } |
| 11015 | spin_unlock(&fs_info->unused_bgs_lock); |
| 11016 | } |