blob: b5f638286037a74a0f6c4d327838f33127a78fe7 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11#include <linux/bio.h>
12#include <linux/bitops.h>
13#include <linux/blkdev.h>
14#include <linux/completion.h>
15#include <linux/kernel.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/hardirq.h>
21#include <linux/scatterlist.h>
22#include <linux/blk-mq.h>
23#include <linux/ratelimit.h>
24#include <asm/unaligned.h>
25
26#include <scsi/scsi.h>
27#include <scsi/scsi_cmnd.h>
28#include <scsi/scsi_dbg.h>
29#include <scsi/scsi_device.h>
30#include <scsi/scsi_driver.h>
31#include <scsi/scsi_eh.h>
32#include <scsi/scsi_host.h>
33#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34#include <scsi/scsi_dh.h>
35
36#include <trace/events/scsi.h>
37
38#include "scsi_debugfs.h"
39#include "scsi_priv.h"
40#include "scsi_logging.h"
41
42static struct kmem_cache *scsi_sdb_cache;
43static struct kmem_cache *scsi_sense_cache;
44static struct kmem_cache *scsi_sense_isadma_cache;
45static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49static inline struct kmem_cache *
50scsi_select_sense_cache(bool unchecked_isa_dma)
51{
52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53}
54
55static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 unsigned char *sense_buffer)
57{
58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 sense_buffer);
60}
61
62static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 gfp_t gfp_mask, int numa_node)
64{
65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 gfp_mask, numa_node);
67}
68
69int scsi_init_sense_cache(struct Scsi_Host *shost)
70{
71 struct kmem_cache *cache;
72 int ret = 0;
73
74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 if (cache)
76 return 0;
77
78 mutex_lock(&scsi_sense_cache_mutex);
79 if (shost->unchecked_isa_dma) {
80 scsi_sense_isadma_cache =
81 kmem_cache_create("scsi_sense_cache(DMA)",
82 SCSI_SENSE_BUFFERSIZE, 0,
83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 if (!scsi_sense_isadma_cache)
85 ret = -ENOMEM;
86 } else {
87 scsi_sense_cache =
88 kmem_cache_create_usercopy("scsi_sense_cache",
89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 0, SCSI_SENSE_BUFFERSIZE, NULL);
91 if (!scsi_sense_cache)
92 ret = -ENOMEM;
93 }
94
95 mutex_unlock(&scsi_sense_cache_mutex);
96 return ret;
97}
98
99/*
100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101 * not change behaviour from the previous unplug mechanism, experimentation
102 * may prove this needs changing.
103 */
104#define SCSI_QUEUE_DELAY 3
105
106static void
107scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108{
109 struct Scsi_Host *host = cmd->device->host;
110 struct scsi_device *device = cmd->device;
111 struct scsi_target *starget = scsi_target(device);
112
113 /*
114 * Set the appropriate busy bit for the device/host.
115 *
116 * If the host/device isn't busy, assume that something actually
117 * completed, and that we should be able to queue a command now.
118 *
119 * Note that the prior mid-layer assumption that any host could
120 * always queue at least one command is now broken. The mid-layer
121 * will implement a user specifiable stall (see
122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 * if a command is requeued with no other commands outstanding
124 * either for the device or for the host.
125 */
126 switch (reason) {
127 case SCSI_MLQUEUE_HOST_BUSY:
128 atomic_set(&host->host_blocked, host->max_host_blocked);
129 break;
130 case SCSI_MLQUEUE_DEVICE_BUSY:
131 case SCSI_MLQUEUE_EH_RETRY:
132 atomic_set(&device->device_blocked,
133 device->max_device_blocked);
134 break;
135 case SCSI_MLQUEUE_TARGET_BUSY:
136 atomic_set(&starget->target_blocked,
137 starget->max_target_blocked);
138 break;
139 }
140}
141
142static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143{
144 struct scsi_device *sdev = cmd->device;
145
146 if (cmd->request->rq_flags & RQF_DONTPREP) {
147 cmd->request->rq_flags &= ~RQF_DONTPREP;
148 scsi_mq_uninit_cmd(cmd);
149 } else {
150 WARN_ON_ONCE(true);
151 }
152 blk_mq_requeue_request(cmd->request, true);
153 put_device(&sdev->sdev_gendev);
154}
155
156/**
157 * __scsi_queue_insert - private queue insertion
158 * @cmd: The SCSI command being requeued
159 * @reason: The reason for the requeue
160 * @unbusy: Whether the queue should be unbusied
161 *
162 * This is a private queue insertion. The public interface
163 * scsi_queue_insert() always assumes the queue should be unbusied
164 * because it's always called before the completion. This function is
165 * for a requeue after completion, which should only occur in this
166 * file.
167 */
168static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169{
170 struct scsi_device *device = cmd->device;
171 struct request_queue *q = device->request_queue;
172 unsigned long flags;
173
174 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175 "Inserting command %p into mlqueue\n", cmd));
176
177 scsi_set_blocked(cmd, reason);
178
179 /*
180 * Decrement the counters, since these commands are no longer
181 * active on the host/device.
182 */
183 if (unbusy)
184 scsi_device_unbusy(device);
185
186 /*
187 * Requeue this command. It will go before all other commands
188 * that are already in the queue. Schedule requeue work under
189 * lock such that the kblockd_schedule_work() call happens
190 * before blk_cleanup_queue() finishes.
191 */
192 cmd->result = 0;
193 if (q->mq_ops) {
194 /*
195 * Before a SCSI command is dispatched,
196 * get_device(&sdev->sdev_gendev) is called and the host,
197 * target and device busy counters are increased. Since
198 * requeuing a request causes these actions to be repeated and
199 * since scsi_device_unbusy() has already been called,
200 * put_device(&device->sdev_gendev) must still be called. Call
201 * put_device() after blk_mq_requeue_request() to avoid that
202 * removal of the SCSI device can start before requeueing has
203 * happened.
204 */
205 blk_mq_requeue_request(cmd->request, true);
206 put_device(&device->sdev_gendev);
207 return;
208 }
209 spin_lock_irqsave(q->queue_lock, flags);
210 blk_requeue_request(q, cmd->request);
211 kblockd_schedule_work(&device->requeue_work);
212 spin_unlock_irqrestore(q->queue_lock, flags);
213}
214
215/*
216 * Function: scsi_queue_insert()
217 *
218 * Purpose: Insert a command in the midlevel queue.
219 *
220 * Arguments: cmd - command that we are adding to queue.
221 * reason - why we are inserting command to queue.
222 *
223 * Lock status: Assumed that lock is not held upon entry.
224 *
225 * Returns: Nothing.
226 *
227 * Notes: We do this for one of two cases. Either the host is busy
228 * and it cannot accept any more commands for the time being,
229 * or the device returned QUEUE_FULL and can accept no more
230 * commands.
231 * Notes: This could be called either from an interrupt context or a
232 * normal process context.
233 */
234void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
235{
236 __scsi_queue_insert(cmd, reason, true);
237}
238
239
240/**
241 * __scsi_execute - insert request and wait for the result
242 * @sdev: scsi device
243 * @cmd: scsi command
244 * @data_direction: data direction
245 * @buffer: data buffer
246 * @bufflen: len of buffer
247 * @sense: optional sense buffer
248 * @sshdr: optional decoded sense header
249 * @timeout: request timeout in seconds
250 * @retries: number of times to retry request
251 * @flags: flags for ->cmd_flags
252 * @rq_flags: flags for ->rq_flags
253 * @resid: optional residual length
254 *
255 * Returns the scsi_cmnd result field if a command was executed, or a negative
256 * Linux error code if we didn't get that far.
257 */
258int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259 int data_direction, void *buffer, unsigned bufflen,
260 unsigned char *sense, struct scsi_sense_hdr *sshdr,
261 int timeout, int retries, u64 flags, req_flags_t rq_flags,
262 int *resid)
263{
264 struct request *req;
265 struct scsi_request *rq;
266 int ret = DRIVER_ERROR << 24;
267
268 req = blk_get_request(sdev->request_queue,
269 data_direction == DMA_TO_DEVICE ?
270 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271 if (IS_ERR(req))
272 return ret;
273 rq = scsi_req(req);
274
275 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
276 buffer, bufflen, GFP_NOIO))
277 goto out;
278
279 rq->cmd_len = COMMAND_SIZE(cmd[0]);
280 memcpy(rq->cmd, cmd, rq->cmd_len);
281 rq->retries = retries;
282 req->timeout = timeout;
283 req->cmd_flags |= flags;
284 req->rq_flags |= rq_flags | RQF_QUIET;
285
286 /*
287 * head injection *required* here otherwise quiesce won't work
288 */
289 blk_execute_rq(req->q, NULL, req, 1);
290
291 /*
292 * Some devices (USB mass-storage in particular) may transfer
293 * garbage data together with a residue indicating that the data
294 * is invalid. Prevent the garbage from being misinterpreted
295 * and prevent security leaks by zeroing out the excess data.
296 */
297 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
299
300 if (resid)
301 *resid = rq->resid_len;
302 if (sense && rq->sense_len)
303 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304 if (sshdr)
305 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306 ret = rq->result;
307 out:
308 blk_put_request(req);
309
310 return ret;
311}
312EXPORT_SYMBOL(__scsi_execute);
313
314/*
315 * Function: scsi_init_cmd_errh()
316 *
317 * Purpose: Initialize cmd fields related to error handling.
318 *
319 * Arguments: cmd - command that is ready to be queued.
320 *
321 * Notes: This function has the job of initializing a number of
322 * fields related to error handling. Typically this will
323 * be called once for each command, as required.
324 */
325static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
326{
327 cmd->serial_number = 0;
328 scsi_set_resid(cmd, 0);
329 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330 if (cmd->cmd_len == 0)
331 cmd->cmd_len = scsi_command_size(cmd->cmnd);
332}
333
334/*
335 * Decrement the host_busy counter and wake up the error handler if necessary.
336 * Avoid as follows that the error handler is not woken up if shost->host_busy
337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338 * with an RCU read lock in this function to ensure that this function in its
339 * entirety either finishes before scsi_eh_scmd_add() increases the
340 * host_failed counter or that it notices the shost state change made by
341 * scsi_eh_scmd_add().
342 */
343static void scsi_dec_host_busy(struct Scsi_Host *shost)
344{
345 unsigned long flags;
346
347 rcu_read_lock();
348 atomic_dec(&shost->host_busy);
349 if (unlikely(scsi_host_in_recovery(shost))) {
350 spin_lock_irqsave(shost->host_lock, flags);
351 if (shost->host_failed || shost->host_eh_scheduled)
352 scsi_eh_wakeup(shost);
353 spin_unlock_irqrestore(shost->host_lock, flags);
354 }
355 rcu_read_unlock();
356}
357
358void scsi_device_unbusy(struct scsi_device *sdev)
359{
360 struct Scsi_Host *shost = sdev->host;
361 struct scsi_target *starget = scsi_target(sdev);
362
363 scsi_dec_host_busy(shost);
364
365 if (starget->can_queue > 0)
366 atomic_dec(&starget->target_busy);
367
368 atomic_dec(&sdev->device_busy);
369}
370
371static void scsi_kick_queue(struct request_queue *q)
372{
373 if (q->mq_ops)
374 blk_mq_run_hw_queues(q, false);
375 else
376 blk_run_queue(q);
377}
378
379/*
380 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
381 * and call blk_run_queue for all the scsi_devices on the target -
382 * including current_sdev first.
383 *
384 * Called with *no* scsi locks held.
385 */
386static void scsi_single_lun_run(struct scsi_device *current_sdev)
387{
388 struct Scsi_Host *shost = current_sdev->host;
389 struct scsi_device *sdev, *tmp;
390 struct scsi_target *starget = scsi_target(current_sdev);
391 unsigned long flags;
392
393 spin_lock_irqsave(shost->host_lock, flags);
394 starget->starget_sdev_user = NULL;
395 spin_unlock_irqrestore(shost->host_lock, flags);
396
397 /*
398 * Call blk_run_queue for all LUNs on the target, starting with
399 * current_sdev. We race with others (to set starget_sdev_user),
400 * but in most cases, we will be first. Ideally, each LU on the
401 * target would get some limited time or requests on the target.
402 */
403 scsi_kick_queue(current_sdev->request_queue);
404
405 spin_lock_irqsave(shost->host_lock, flags);
406 if (starget->starget_sdev_user)
407 goto out;
408 list_for_each_entry_safe(sdev, tmp, &starget->devices,
409 same_target_siblings) {
410 if (sdev == current_sdev)
411 continue;
412 if (scsi_device_get(sdev))
413 continue;
414
415 spin_unlock_irqrestore(shost->host_lock, flags);
416 scsi_kick_queue(sdev->request_queue);
417 spin_lock_irqsave(shost->host_lock, flags);
418
419 scsi_device_put(sdev);
420 }
421 out:
422 spin_unlock_irqrestore(shost->host_lock, flags);
423}
424
425static inline bool scsi_device_is_busy(struct scsi_device *sdev)
426{
427 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
428 return true;
429 if (atomic_read(&sdev->device_blocked) > 0)
430 return true;
431 return false;
432}
433
434static inline bool scsi_target_is_busy(struct scsi_target *starget)
435{
436 if (starget->can_queue > 0) {
437 if (atomic_read(&starget->target_busy) >= starget->can_queue)
438 return true;
439 if (atomic_read(&starget->target_blocked) > 0)
440 return true;
441 }
442 return false;
443}
444
445static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
446{
447 if (shost->can_queue > 0 &&
448 atomic_read(&shost->host_busy) >= shost->can_queue)
449 return true;
450 if (atomic_read(&shost->host_blocked) > 0)
451 return true;
452 if (shost->host_self_blocked)
453 return true;
454 return false;
455}
456
457static void scsi_starved_list_run(struct Scsi_Host *shost)
458{
459 LIST_HEAD(starved_list);
460 struct scsi_device *sdev;
461 unsigned long flags;
462
463 spin_lock_irqsave(shost->host_lock, flags);
464 list_splice_init(&shost->starved_list, &starved_list);
465
466 while (!list_empty(&starved_list)) {
467 struct request_queue *slq;
468
469 /*
470 * As long as shost is accepting commands and we have
471 * starved queues, call blk_run_queue. scsi_request_fn
472 * drops the queue_lock and can add us back to the
473 * starved_list.
474 *
475 * host_lock protects the starved_list and starved_entry.
476 * scsi_request_fn must get the host_lock before checking
477 * or modifying starved_list or starved_entry.
478 */
479 if (scsi_host_is_busy(shost))
480 break;
481
482 sdev = list_entry(starved_list.next,
483 struct scsi_device, starved_entry);
484 list_del_init(&sdev->starved_entry);
485 if (scsi_target_is_busy(scsi_target(sdev))) {
486 list_move_tail(&sdev->starved_entry,
487 &shost->starved_list);
488 continue;
489 }
490
491 /*
492 * Once we drop the host lock, a racing scsi_remove_device()
493 * call may remove the sdev from the starved list and destroy
494 * it and the queue. Mitigate by taking a reference to the
495 * queue and never touching the sdev again after we drop the
496 * host lock. Note: if __scsi_remove_device() invokes
497 * blk_cleanup_queue() before the queue is run from this
498 * function then blk_run_queue() will return immediately since
499 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
500 */
501 slq = sdev->request_queue;
502 if (!blk_get_queue(slq))
503 continue;
504 spin_unlock_irqrestore(shost->host_lock, flags);
505
506 scsi_kick_queue(slq);
507 blk_put_queue(slq);
508
509 spin_lock_irqsave(shost->host_lock, flags);
510 }
511 /* put any unprocessed entries back */
512 list_splice(&starved_list, &shost->starved_list);
513 spin_unlock_irqrestore(shost->host_lock, flags);
514}
515
516/*
517 * Function: scsi_run_queue()
518 *
519 * Purpose: Select a proper request queue to serve next
520 *
521 * Arguments: q - last request's queue
522 *
523 * Returns: Nothing
524 *
525 * Notes: The previous command was completely finished, start
526 * a new one if possible.
527 */
528static void scsi_run_queue(struct request_queue *q)
529{
530 struct scsi_device *sdev = q->queuedata;
531
532 if (scsi_target(sdev)->single_lun)
533 scsi_single_lun_run(sdev);
534 if (!list_empty(&sdev->host->starved_list))
535 scsi_starved_list_run(sdev->host);
536
537 if (q->mq_ops)
538 blk_mq_run_hw_queues(q, false);
539 else
540 blk_run_queue(q);
541}
542
543void scsi_requeue_run_queue(struct work_struct *work)
544{
545 struct scsi_device *sdev;
546 struct request_queue *q;
547
548 sdev = container_of(work, struct scsi_device, requeue_work);
549 q = sdev->request_queue;
550 scsi_run_queue(q);
551}
552
553/*
554 * Function: scsi_requeue_command()
555 *
556 * Purpose: Handle post-processing of completed commands.
557 *
558 * Arguments: q - queue to operate on
559 * cmd - command that may need to be requeued.
560 *
561 * Returns: Nothing
562 *
563 * Notes: After command completion, there may be blocks left
564 * over which weren't finished by the previous command
565 * this can be for a number of reasons - the main one is
566 * I/O errors in the middle of the request, in which case
567 * we need to request the blocks that come after the bad
568 * sector.
569 * Notes: Upon return, cmd is a stale pointer.
570 */
571static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
572{
573 struct scsi_device *sdev = cmd->device;
574 struct request *req = cmd->request;
575 unsigned long flags;
576
577 spin_lock_irqsave(q->queue_lock, flags);
578 blk_unprep_request(req);
579 req->special = NULL;
580 scsi_put_command(cmd);
581 blk_requeue_request(q, req);
582 spin_unlock_irqrestore(q->queue_lock, flags);
583
584 scsi_run_queue(q);
585
586 put_device(&sdev->sdev_gendev);
587}
588
589void scsi_run_host_queues(struct Scsi_Host *shost)
590{
591 struct scsi_device *sdev;
592
593 shost_for_each_device(sdev, shost)
594 scsi_run_queue(sdev->request_queue);
595}
596
597static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
598{
599 if (!blk_rq_is_passthrough(cmd->request)) {
600 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
601
602 if (drv->uninit_command)
603 drv->uninit_command(cmd);
604 }
605}
606
607static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
608{
609 struct scsi_data_buffer *sdb;
610
611 if (cmd->sdb.table.nents)
612 sg_free_table_chained(&cmd->sdb.table, true);
613 if (cmd->request->next_rq) {
614 sdb = cmd->request->next_rq->special;
615 if (sdb)
616 sg_free_table_chained(&sdb->table, true);
617 }
618 if (scsi_prot_sg_count(cmd))
619 sg_free_table_chained(&cmd->prot_sdb->table, true);
620}
621
622static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
623{
624 scsi_mq_free_sgtables(cmd);
625 scsi_uninit_cmd(cmd);
626 scsi_del_cmd_from_list(cmd);
627}
628
629/*
630 * Function: scsi_release_buffers()
631 *
632 * Purpose: Free resources allocate for a scsi_command.
633 *
634 * Arguments: cmd - command that we are bailing.
635 *
636 * Lock status: Assumed that no lock is held upon entry.
637 *
638 * Returns: Nothing
639 *
640 * Notes: In the event that an upper level driver rejects a
641 * command, we must release resources allocated during
642 * the __init_io() function. Primarily this would involve
643 * the scatter-gather table.
644 */
645static void scsi_release_buffers(struct scsi_cmnd *cmd)
646{
647 if (cmd->sdb.table.nents)
648 sg_free_table_chained(&cmd->sdb.table, false);
649
650 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
651
652 if (scsi_prot_sg_count(cmd))
653 sg_free_table_chained(&cmd->prot_sdb->table, false);
654}
655
656static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
657{
658 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
659
660 sg_free_table_chained(&bidi_sdb->table, false);
661 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
662 cmd->request->next_rq->special = NULL;
663}
664
665/* Returns false when no more bytes to process, true if there are more */
666static bool scsi_end_request(struct request *req, blk_status_t error,
667 unsigned int bytes, unsigned int bidi_bytes)
668{
669 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
670 struct scsi_device *sdev = cmd->device;
671 struct request_queue *q = sdev->request_queue;
672
673 if (blk_update_request(req, error, bytes))
674 return true;
675
676 /* Bidi request must be completed as a whole */
677 if (unlikely(bidi_bytes) &&
678 blk_update_request(req->next_rq, error, bidi_bytes))
679 return true;
680
681 if (blk_queue_add_random(q))
682 add_disk_randomness(req->rq_disk);
683
684 if (!blk_rq_is_scsi(req)) {
685 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
686 cmd->flags &= ~SCMD_INITIALIZED;
687 destroy_rcu_head(&cmd->rcu);
688 }
689
690 if (req->mq_ctx) {
691 /*
692 * In the MQ case the command gets freed by __blk_mq_end_request,
693 * so we have to do all cleanup that depends on it earlier.
694 *
695 * We also can't kick the queues from irq context, so we
696 * will have to defer it to a workqueue.
697 */
698 scsi_mq_uninit_cmd(cmd);
699
700 /*
701 * queue is still alive, so grab the ref for preventing it
702 * from being cleaned up during running queue.
703 */
704 percpu_ref_get(&q->q_usage_counter);
705
706 __blk_mq_end_request(req, error);
707
708 if (scsi_target(sdev)->single_lun ||
709 !list_empty(&sdev->host->starved_list))
710 kblockd_schedule_work(&sdev->requeue_work);
711 else
712 blk_mq_run_hw_queues(q, true);
713
714 percpu_ref_put(&q->q_usage_counter);
715 } else {
716 unsigned long flags;
717
718 if (bidi_bytes)
719 scsi_release_bidi_buffers(cmd);
720 scsi_release_buffers(cmd);
721 scsi_put_command(cmd);
722
723 spin_lock_irqsave(q->queue_lock, flags);
724 blk_finish_request(req, error);
725 spin_unlock_irqrestore(q->queue_lock, flags);
726
727 scsi_run_queue(q);
728 }
729
730 put_device(&sdev->sdev_gendev);
731 return false;
732}
733
734/**
735 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
736 * @cmd: SCSI command
737 * @result: scsi error code
738 *
739 * Translate a SCSI result code into a blk_status_t value. May reset the host
740 * byte of @cmd->result.
741 */
742static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
743{
744 switch (host_byte(result)) {
745 case DID_OK:
746 /*
747 * Also check the other bytes than the status byte in result
748 * to handle the case when a SCSI LLD sets result to
749 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
750 */
751 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
752 return BLK_STS_OK;
753 return BLK_STS_IOERR;
754 case DID_TRANSPORT_FAILFAST:
755 return BLK_STS_TRANSPORT;
756 case DID_TARGET_FAILURE:
757 set_host_byte(cmd, DID_OK);
758 return BLK_STS_TARGET;
759 case DID_NEXUS_FAILURE:
760 return BLK_STS_NEXUS;
761 case DID_ALLOC_FAILURE:
762 set_host_byte(cmd, DID_OK);
763 return BLK_STS_NOSPC;
764 case DID_MEDIUM_ERROR:
765 set_host_byte(cmd, DID_OK);
766 return BLK_STS_MEDIUM;
767 default:
768 return BLK_STS_IOERR;
769 }
770}
771
772/* Helper for scsi_io_completion() when "reprep" action required. */
773static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
774 struct request_queue *q)
775{
776 /* A new command will be prepared and issued. */
777 if (q->mq_ops) {
778 scsi_mq_requeue_cmd(cmd);
779 } else {
780 /* Unprep request and put it back at head of the queue. */
781 scsi_release_buffers(cmd);
782 scsi_requeue_command(q, cmd);
783 }
784}
785
786/* Helper for scsi_io_completion() when special action required. */
787static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
788{
789 struct request_queue *q = cmd->device->request_queue;
790 struct request *req = cmd->request;
791 int level = 0;
792 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
793 ACTION_DELAYED_RETRY} action;
794 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
795 struct scsi_sense_hdr sshdr;
796 bool sense_valid;
797 bool sense_current = true; /* false implies "deferred sense" */
798 blk_status_t blk_stat;
799
800 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
801 if (sense_valid)
802 sense_current = !scsi_sense_is_deferred(&sshdr);
803
804 blk_stat = scsi_result_to_blk_status(cmd, result);
805
806 if (host_byte(result) == DID_RESET) {
807 /* Third party bus reset or reset for error recovery
808 * reasons. Just retry the command and see what
809 * happens.
810 */
811 action = ACTION_RETRY;
812 } else if (sense_valid && sense_current) {
813 switch (sshdr.sense_key) {
814 case UNIT_ATTENTION:
815 if (cmd->device->removable) {
816 /* Detected disc change. Set a bit
817 * and quietly refuse further access.
818 */
819 cmd->device->changed = 1;
820 action = ACTION_FAIL;
821 } else {
822 /* Must have been a power glitch, or a
823 * bus reset. Could not have been a
824 * media change, so we just retry the
825 * command and see what happens.
826 */
827 action = ACTION_RETRY;
828 }
829 break;
830 case ILLEGAL_REQUEST:
831 /* If we had an ILLEGAL REQUEST returned, then
832 * we may have performed an unsupported
833 * command. The only thing this should be
834 * would be a ten byte read where only a six
835 * byte read was supported. Also, on a system
836 * where READ CAPACITY failed, we may have
837 * read past the end of the disk.
838 */
839 if ((cmd->device->use_10_for_rw &&
840 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
841 (cmd->cmnd[0] == READ_10 ||
842 cmd->cmnd[0] == WRITE_10)) {
843 /* This will issue a new 6-byte command. */
844 cmd->device->use_10_for_rw = 0;
845 action = ACTION_REPREP;
846 } else if (sshdr.asc == 0x10) /* DIX */ {
847 action = ACTION_FAIL;
848 blk_stat = BLK_STS_PROTECTION;
849 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
850 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
851 action = ACTION_FAIL;
852 blk_stat = BLK_STS_TARGET;
853 } else
854 action = ACTION_FAIL;
855 break;
856 case ABORTED_COMMAND:
857 action = ACTION_FAIL;
858 if (sshdr.asc == 0x10) /* DIF */
859 blk_stat = BLK_STS_PROTECTION;
860 break;
861 case NOT_READY:
862 /* If the device is in the process of becoming
863 * ready, or has a temporary blockage, retry.
864 */
865 if (sshdr.asc == 0x04) {
866 switch (sshdr.ascq) {
867 case 0x01: /* becoming ready */
868 case 0x04: /* format in progress */
869 case 0x05: /* rebuild in progress */
870 case 0x06: /* recalculation in progress */
871 case 0x07: /* operation in progress */
872 case 0x08: /* Long write in progress */
873 case 0x09: /* self test in progress */
874 case 0x14: /* space allocation in progress */
875 case 0x1a: /* start stop unit in progress */
876 case 0x1b: /* sanitize in progress */
877 case 0x1d: /* configuration in progress */
878 case 0x24: /* depopulation in progress */
879 action = ACTION_DELAYED_RETRY;
880 break;
881 default:
882 action = ACTION_FAIL;
883 break;
884 }
885 } else
886 action = ACTION_FAIL;
887 break;
888 case VOLUME_OVERFLOW:
889 /* See SSC3rXX or current. */
890 action = ACTION_FAIL;
891 break;
892 default:
893 action = ACTION_FAIL;
894 break;
895 }
896 } else
897 action = ACTION_FAIL;
898
899 if (action != ACTION_FAIL &&
900 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
901 action = ACTION_FAIL;
902
903 switch (action) {
904 case ACTION_FAIL:
905 /* Give up and fail the remainder of the request */
906 if (!(req->rq_flags & RQF_QUIET)) {
907 static DEFINE_RATELIMIT_STATE(_rs,
908 DEFAULT_RATELIMIT_INTERVAL,
909 DEFAULT_RATELIMIT_BURST);
910
911 if (unlikely(scsi_logging_level))
912 level =
913 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
914 SCSI_LOG_MLCOMPLETE_BITS);
915
916 /*
917 * if logging is enabled the failure will be printed
918 * in scsi_log_completion(), so avoid duplicate messages
919 */
920 if (!level && __ratelimit(&_rs)) {
921 scsi_print_result(cmd, NULL, FAILED);
922 if (driver_byte(result) == DRIVER_SENSE)
923 scsi_print_sense(cmd);
924 scsi_print_command(cmd);
925 }
926 }
927 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0))
928 return;
929 /*FALLTHRU*/
930 case ACTION_REPREP:
931 scsi_io_completion_reprep(cmd, q);
932 break;
933 case ACTION_RETRY:
934 /* Retry the same command immediately */
935 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
936 break;
937 case ACTION_DELAYED_RETRY:
938 /* Retry the same command after a delay */
939 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
940 break;
941 }
942}
943
944/*
945 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
946 * new result that may suppress further error checking. Also modifies
947 * *blk_statp in some cases.
948 */
949static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
950 blk_status_t *blk_statp)
951{
952 bool sense_valid;
953 bool sense_current = true; /* false implies "deferred sense" */
954 struct request *req = cmd->request;
955 struct scsi_sense_hdr sshdr;
956
957 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
958 if (sense_valid)
959 sense_current = !scsi_sense_is_deferred(&sshdr);
960
961 if (blk_rq_is_passthrough(req)) {
962 if (sense_valid) {
963 /*
964 * SG_IO wants current and deferred errors
965 */
966 scsi_req(req)->sense_len =
967 min(8 + cmd->sense_buffer[7],
968 SCSI_SENSE_BUFFERSIZE);
969 }
970 if (sense_current)
971 *blk_statp = scsi_result_to_blk_status(cmd, result);
972 } else if (blk_rq_bytes(req) == 0 && sense_current) {
973 /*
974 * Flush commands do not transfers any data, and thus cannot use
975 * good_bytes != blk_rq_bytes(req) as the signal for an error.
976 * This sets *blk_statp explicitly for the problem case.
977 */
978 *blk_statp = scsi_result_to_blk_status(cmd, result);
979 }
980 /*
981 * Recovered errors need reporting, but they're always treated as
982 * success, so fiddle the result code here. For passthrough requests
983 * we already took a copy of the original into sreq->result which
984 * is what gets returned to the user
985 */
986 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
987 bool do_print = true;
988 /*
989 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
990 * skip print since caller wants ATA registers. Only occurs
991 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
992 */
993 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
994 do_print = false;
995 else if (req->rq_flags & RQF_QUIET)
996 do_print = false;
997 if (do_print)
998 scsi_print_sense(cmd);
999 result = 0;
1000 /* for passthrough, *blk_statp may be set */
1001 *blk_statp = BLK_STS_OK;
1002 }
1003 /*
1004 * Another corner case: the SCSI status byte is non-zero but 'good'.
1005 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1006 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1007 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1008 * intermediate statuses (both obsolete in SAM-4) as good.
1009 */
1010 if (status_byte(result) && scsi_status_is_good(result)) {
1011 result = 0;
1012 *blk_statp = BLK_STS_OK;
1013 }
1014 return result;
1015}
1016
1017/*
1018 * Function: scsi_io_completion()
1019 *
1020 * Purpose: Completion processing for block device I/O requests.
1021 *
1022 * Arguments: cmd - command that is finished.
1023 *
1024 * Lock status: Assumed that no lock is held upon entry.
1025 *
1026 * Returns: Nothing
1027 *
1028 * Notes: We will finish off the specified number of sectors. If we
1029 * are done, the command block will be released and the queue
1030 * function will be goosed. If we are not done then we have to
1031 * figure out what to do next:
1032 *
1033 * a) We can call scsi_requeue_command(). The request
1034 * will be unprepared and put back on the queue. Then
1035 * a new command will be created for it. This should
1036 * be used if we made forward progress, or if we want
1037 * to switch from READ(10) to READ(6) for example.
1038 *
1039 * b) We can call __scsi_queue_insert(). The request will
1040 * be put back on the queue and retried using the same
1041 * command as before, possibly after a delay.
1042 *
1043 * c) We can call scsi_end_request() with blk_stat other than
1044 * BLK_STS_OK, to fail the remainder of the request.
1045 */
1046void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1047{
1048 int result = cmd->result;
1049 struct request_queue *q = cmd->device->request_queue;
1050 struct request *req = cmd->request;
1051 blk_status_t blk_stat = BLK_STS_OK;
1052
1053 if (unlikely(result)) /* a nz result may or may not be an error */
1054 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1055
1056 if (unlikely(blk_rq_is_passthrough(req))) {
1057 /*
1058 * scsi_result_to_blk_status may have reset the host_byte
1059 */
1060 scsi_req(req)->result = cmd->result;
1061 scsi_req(req)->resid_len = scsi_get_resid(cmd);
1062
1063 if (unlikely(scsi_bidi_cmnd(cmd))) {
1064 /*
1065 * Bidi commands Must be complete as a whole,
1066 * both sides at once.
1067 */
1068 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
1069 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
1070 blk_rq_bytes(req->next_rq)))
1071 WARN_ONCE(true,
1072 "Bidi command with remaining bytes");
1073 return;
1074 }
1075 }
1076
1077 /* no bidi support yet, other than in pass-through */
1078 if (unlikely(blk_bidi_rq(req))) {
1079 WARN_ONCE(true, "Only support bidi command in passthrough");
1080 scmd_printk(KERN_ERR, cmd, "Killing bidi command\n");
1081 if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req),
1082 blk_rq_bytes(req->next_rq)))
1083 WARN_ONCE(true, "Bidi command with remaining bytes");
1084 return;
1085 }
1086
1087 /*
1088 * Next deal with any sectors which we were able to correctly
1089 * handle.
1090 */
1091 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1092 "%u sectors total, %d bytes done.\n",
1093 blk_rq_sectors(req), good_bytes));
1094
1095 /*
1096 * Next deal with any sectors which we were able to correctly
1097 * handle. Failed, zero length commands always need to drop down
1098 * to retry code. Fast path should return in this block.
1099 */
1100 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1101 if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0)))
1102 return; /* no bytes remaining */
1103 }
1104
1105 /* Kill remainder if no retries. */
1106 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1107 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0))
1108 WARN_ONCE(true,
1109 "Bytes remaining after failed, no-retry command");
1110 return;
1111 }
1112
1113 /*
1114 * If there had been no error, but we have leftover bytes in the
1115 * requeues just queue the command up again.
1116 */
1117 if (likely(result == 0))
1118 scsi_io_completion_reprep(cmd, q);
1119 else
1120 scsi_io_completion_action(cmd, result);
1121}
1122
1123static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1124{
1125 int count;
1126
1127 /*
1128 * If sg table allocation fails, requeue request later.
1129 */
1130 if (unlikely(sg_alloc_table_chained(&sdb->table,
1131 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1132 return BLKPREP_DEFER;
1133
1134 /*
1135 * Next, walk the list, and fill in the addresses and sizes of
1136 * each segment.
1137 */
1138 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1139 BUG_ON(count > sdb->table.nents);
1140 sdb->table.nents = count;
1141 sdb->length = blk_rq_payload_bytes(req);
1142 return BLKPREP_OK;
1143}
1144
1145/*
1146 * Function: scsi_init_io()
1147 *
1148 * Purpose: SCSI I/O initialize function.
1149 *
1150 * Arguments: cmd - Command descriptor we wish to initialize
1151 *
1152 * Returns: 0 on success
1153 * BLKPREP_DEFER if the failure is retryable
1154 * BLKPREP_KILL if the failure is fatal
1155 */
1156int scsi_init_io(struct scsi_cmnd *cmd)
1157{
1158 struct scsi_device *sdev = cmd->device;
1159 struct request *rq = cmd->request;
1160 bool is_mq = (rq->mq_ctx != NULL);
1161 int error = BLKPREP_KILL;
1162
1163 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1164 goto err_exit;
1165
1166 error = scsi_init_sgtable(rq, &cmd->sdb);
1167 if (error)
1168 goto err_exit;
1169
1170 if (blk_bidi_rq(rq)) {
1171 if (!rq->q->mq_ops) {
1172 struct scsi_data_buffer *bidi_sdb =
1173 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1174 if (!bidi_sdb) {
1175 error = BLKPREP_DEFER;
1176 goto err_exit;
1177 }
1178
1179 rq->next_rq->special = bidi_sdb;
1180 }
1181
1182 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1183 if (error)
1184 goto err_exit;
1185 }
1186
1187 if (blk_integrity_rq(rq)) {
1188 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1189 int ivecs, count;
1190
1191 if (prot_sdb == NULL) {
1192 /*
1193 * This can happen if someone (e.g. multipath)
1194 * queues a command to a device on an adapter
1195 * that does not support DIX.
1196 */
1197 WARN_ON_ONCE(1);
1198 error = BLKPREP_KILL;
1199 goto err_exit;
1200 }
1201
1202 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1203
1204 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1205 prot_sdb->table.sgl)) {
1206 error = BLKPREP_DEFER;
1207 goto err_exit;
1208 }
1209
1210 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1211 prot_sdb->table.sgl);
1212 BUG_ON(unlikely(count > ivecs));
1213 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1214
1215 cmd->prot_sdb = prot_sdb;
1216 cmd->prot_sdb->table.nents = count;
1217 }
1218
1219 return BLKPREP_OK;
1220err_exit:
1221 if (is_mq) {
1222 scsi_mq_free_sgtables(cmd);
1223 } else {
1224 scsi_release_buffers(cmd);
1225 cmd->request->special = NULL;
1226 scsi_put_command(cmd);
1227 put_device(&sdev->sdev_gendev);
1228 }
1229 return error;
1230}
1231EXPORT_SYMBOL(scsi_init_io);
1232
1233/**
1234 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1235 * @rq: Request associated with the SCSI command to be initialized.
1236 *
1237 * This function initializes the members of struct scsi_cmnd that must be
1238 * initialized before request processing starts and that won't be
1239 * reinitialized if a SCSI command is requeued.
1240 *
1241 * Called from inside blk_get_request() for pass-through requests and from
1242 * inside scsi_init_command() for filesystem requests.
1243 */
1244static void scsi_initialize_rq(struct request *rq)
1245{
1246 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1247
1248 scsi_req_init(&cmd->req);
1249 init_rcu_head(&cmd->rcu);
1250 cmd->jiffies_at_alloc = jiffies;
1251 cmd->retries = 0;
1252}
1253
1254/* Add a command to the list used by the aacraid and dpt_i2o drivers */
1255void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1256{
1257 struct scsi_device *sdev = cmd->device;
1258 struct Scsi_Host *shost = sdev->host;
1259 unsigned long flags;
1260
1261 if (shost->use_cmd_list) {
1262 spin_lock_irqsave(&sdev->list_lock, flags);
1263 list_add_tail(&cmd->list, &sdev->cmd_list);
1264 spin_unlock_irqrestore(&sdev->list_lock, flags);
1265 }
1266}
1267
1268/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1269void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1270{
1271 struct scsi_device *sdev = cmd->device;
1272 struct Scsi_Host *shost = sdev->host;
1273 unsigned long flags;
1274
1275 if (shost->use_cmd_list) {
1276 spin_lock_irqsave(&sdev->list_lock, flags);
1277 BUG_ON(list_empty(&cmd->list));
1278 list_del_init(&cmd->list);
1279 spin_unlock_irqrestore(&sdev->list_lock, flags);
1280 }
1281}
1282
1283/* Called after a request has been started. */
1284void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1285{
1286 void *buf = cmd->sense_buffer;
1287 void *prot = cmd->prot_sdb;
1288 struct request *rq = blk_mq_rq_from_pdu(cmd);
1289 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1290 unsigned long jiffies_at_alloc;
1291 int retries;
1292
1293 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1294 flags |= SCMD_INITIALIZED;
1295 scsi_initialize_rq(rq);
1296 }
1297
1298 jiffies_at_alloc = cmd->jiffies_at_alloc;
1299 retries = cmd->retries;
1300 /* zero out the cmd, except for the embedded scsi_request */
1301 memset((char *)cmd + sizeof(cmd->req), 0,
1302 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1303
1304 cmd->device = dev;
1305 cmd->sense_buffer = buf;
1306 cmd->prot_sdb = prot;
1307 cmd->flags = flags;
1308 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1309 cmd->jiffies_at_alloc = jiffies_at_alloc;
1310 cmd->retries = retries;
1311
1312 scsi_add_cmd_to_list(cmd);
1313}
1314
1315static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1316{
1317 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1318
1319 /*
1320 * Passthrough requests may transfer data, in which case they must
1321 * a bio attached to them. Or they might contain a SCSI command
1322 * that does not transfer data, in which case they may optionally
1323 * submit a request without an attached bio.
1324 */
1325 if (req->bio) {
1326 int ret = scsi_init_io(cmd);
1327 if (unlikely(ret))
1328 return ret;
1329 } else {
1330 BUG_ON(blk_rq_bytes(req));
1331
1332 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1333 }
1334
1335 cmd->cmd_len = scsi_req(req)->cmd_len;
1336 cmd->cmnd = scsi_req(req)->cmd;
1337 cmd->transfersize = blk_rq_bytes(req);
1338 cmd->allowed = scsi_req(req)->retries;
1339 return BLKPREP_OK;
1340}
1341
1342/*
1343 * Setup a normal block command. These are simple request from filesystems
1344 * that still need to be translated to SCSI CDBs from the ULD.
1345 */
1346static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1347{
1348 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1349
1350 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1351 int ret = sdev->handler->prep_fn(sdev, req);
1352 if (ret != BLKPREP_OK)
1353 return ret;
1354 }
1355
1356 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1357 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1358 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1359}
1360
1361static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1362{
1363 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1364
1365 if (!blk_rq_bytes(req))
1366 cmd->sc_data_direction = DMA_NONE;
1367 else if (rq_data_dir(req) == WRITE)
1368 cmd->sc_data_direction = DMA_TO_DEVICE;
1369 else
1370 cmd->sc_data_direction = DMA_FROM_DEVICE;
1371
1372 if (blk_rq_is_scsi(req))
1373 return scsi_setup_scsi_cmnd(sdev, req);
1374 else
1375 return scsi_setup_fs_cmnd(sdev, req);
1376}
1377
1378static int
1379scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1380{
1381 int ret = BLKPREP_OK;
1382
1383 /*
1384 * If the device is not in running state we will reject some
1385 * or all commands.
1386 */
1387 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1388 switch (sdev->sdev_state) {
1389 case SDEV_OFFLINE:
1390 case SDEV_TRANSPORT_OFFLINE:
1391 /*
1392 * If the device is offline we refuse to process any
1393 * commands. The device must be brought online
1394 * before trying any recovery commands.
1395 */
1396 sdev_printk(KERN_ERR, sdev,
1397 "rejecting I/O to offline device\n");
1398 ret = BLKPREP_KILL;
1399 break;
1400 case SDEV_DEL:
1401 /*
1402 * If the device is fully deleted, we refuse to
1403 * process any commands as well.
1404 */
1405 sdev_printk(KERN_ERR, sdev,
1406 "rejecting I/O to dead device\n");
1407 ret = BLKPREP_KILL;
1408 break;
1409 case SDEV_BLOCK:
1410 case SDEV_CREATED_BLOCK:
1411 ret = BLKPREP_DEFER;
1412 break;
1413 case SDEV_QUIESCE:
1414 /*
1415 * If the devices is blocked we defer normal commands.
1416 */
1417 if (req && !(req->rq_flags & RQF_PREEMPT))
1418 ret = BLKPREP_DEFER;
1419 break;
1420 default:
1421 /*
1422 * For any other not fully online state we only allow
1423 * special commands. In particular any user initiated
1424 * command is not allowed.
1425 */
1426 if (req && !(req->rq_flags & RQF_PREEMPT))
1427 ret = BLKPREP_KILL;
1428 break;
1429 }
1430 }
1431 return ret;
1432}
1433
1434static int
1435scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1436{
1437 struct scsi_device *sdev = q->queuedata;
1438
1439 switch (ret) {
1440 case BLKPREP_KILL:
1441 case BLKPREP_INVALID:
1442 scsi_req(req)->result = DID_NO_CONNECT << 16;
1443 /* release the command and kill it */
1444 if (req->special) {
1445 struct scsi_cmnd *cmd = req->special;
1446 scsi_release_buffers(cmd);
1447 scsi_put_command(cmd);
1448 put_device(&sdev->sdev_gendev);
1449 req->special = NULL;
1450 }
1451 break;
1452 case BLKPREP_DEFER:
1453 /*
1454 * If we defer, the blk_peek_request() returns NULL, but the
1455 * queue must be restarted, so we schedule a callback to happen
1456 * shortly.
1457 */
1458 if (atomic_read(&sdev->device_busy) == 0)
1459 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1460 break;
1461 default:
1462 req->rq_flags |= RQF_DONTPREP;
1463 }
1464
1465 return ret;
1466}
1467
1468static int scsi_prep_fn(struct request_queue *q, struct request *req)
1469{
1470 struct scsi_device *sdev = q->queuedata;
1471 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1472 int ret;
1473
1474 ret = scsi_prep_state_check(sdev, req);
1475 if (ret != BLKPREP_OK)
1476 goto out;
1477
1478 if (!req->special) {
1479 /* Bail if we can't get a reference to the device */
1480 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1481 ret = BLKPREP_DEFER;
1482 goto out;
1483 }
1484
1485 scsi_init_command(sdev, cmd);
1486 req->special = cmd;
1487 }
1488
1489 cmd->tag = req->tag;
1490 cmd->request = req;
1491 cmd->prot_op = SCSI_PROT_NORMAL;
1492
1493 ret = scsi_setup_cmnd(sdev, req);
1494out:
1495 return scsi_prep_return(q, req, ret);
1496}
1497
1498static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1499{
1500 scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1501}
1502
1503/*
1504 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1505 * return 0.
1506 *
1507 * Called with the queue_lock held.
1508 */
1509static inline int scsi_dev_queue_ready(struct request_queue *q,
1510 struct scsi_device *sdev)
1511{
1512 unsigned int busy;
1513
1514 busy = atomic_inc_return(&sdev->device_busy) - 1;
1515 if (atomic_read(&sdev->device_blocked)) {
1516 if (busy)
1517 goto out_dec;
1518
1519 /*
1520 * unblock after device_blocked iterates to zero
1521 */
1522 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1523 /*
1524 * For the MQ case we take care of this in the caller.
1525 */
1526 if (!q->mq_ops)
1527 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1528 goto out_dec;
1529 }
1530 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1531 "unblocking device at zero depth\n"));
1532 }
1533
1534 if (busy >= sdev->queue_depth)
1535 goto out_dec;
1536
1537 return 1;
1538out_dec:
1539 atomic_dec(&sdev->device_busy);
1540 return 0;
1541}
1542
1543/*
1544 * scsi_target_queue_ready: checks if there we can send commands to target
1545 * @sdev: scsi device on starget to check.
1546 */
1547static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1548 struct scsi_device *sdev)
1549{
1550 struct scsi_target *starget = scsi_target(sdev);
1551 unsigned int busy;
1552
1553 if (starget->single_lun) {
1554 spin_lock_irq(shost->host_lock);
1555 if (starget->starget_sdev_user &&
1556 starget->starget_sdev_user != sdev) {
1557 spin_unlock_irq(shost->host_lock);
1558 return 0;
1559 }
1560 starget->starget_sdev_user = sdev;
1561 spin_unlock_irq(shost->host_lock);
1562 }
1563
1564 if (starget->can_queue <= 0)
1565 return 1;
1566
1567 busy = atomic_inc_return(&starget->target_busy) - 1;
1568 if (atomic_read(&starget->target_blocked) > 0) {
1569 if (busy)
1570 goto starved;
1571
1572 /*
1573 * unblock after target_blocked iterates to zero
1574 */
1575 if (atomic_dec_return(&starget->target_blocked) > 0)
1576 goto out_dec;
1577
1578 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1579 "unblocking target at zero depth\n"));
1580 }
1581
1582 if (busy >= starget->can_queue)
1583 goto starved;
1584
1585 return 1;
1586
1587starved:
1588 spin_lock_irq(shost->host_lock);
1589 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1590 spin_unlock_irq(shost->host_lock);
1591out_dec:
1592 if (starget->can_queue > 0)
1593 atomic_dec(&starget->target_busy);
1594 return 0;
1595}
1596
1597/*
1598 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1599 * return 0. We must end up running the queue again whenever 0 is
1600 * returned, else IO can hang.
1601 */
1602static inline int scsi_host_queue_ready(struct request_queue *q,
1603 struct Scsi_Host *shost,
1604 struct scsi_device *sdev)
1605{
1606 unsigned int busy;
1607
1608 if (scsi_host_in_recovery(shost))
1609 return 0;
1610
1611 busy = atomic_inc_return(&shost->host_busy) - 1;
1612 if (atomic_read(&shost->host_blocked) > 0) {
1613 if (busy)
1614 goto starved;
1615
1616 /*
1617 * unblock after host_blocked iterates to zero
1618 */
1619 if (atomic_dec_return(&shost->host_blocked) > 0)
1620 goto out_dec;
1621
1622 SCSI_LOG_MLQUEUE(3,
1623 shost_printk(KERN_INFO, shost,
1624 "unblocking host at zero depth\n"));
1625 }
1626
1627 if (shost->can_queue > 0 && busy >= shost->can_queue)
1628 goto starved;
1629 if (shost->host_self_blocked)
1630 goto starved;
1631
1632 /* We're OK to process the command, so we can't be starved */
1633 if (!list_empty(&sdev->starved_entry)) {
1634 spin_lock_irq(shost->host_lock);
1635 if (!list_empty(&sdev->starved_entry))
1636 list_del_init(&sdev->starved_entry);
1637 spin_unlock_irq(shost->host_lock);
1638 }
1639
1640 return 1;
1641
1642starved:
1643 spin_lock_irq(shost->host_lock);
1644 if (list_empty(&sdev->starved_entry))
1645 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1646 spin_unlock_irq(shost->host_lock);
1647out_dec:
1648 scsi_dec_host_busy(shost);
1649 return 0;
1650}
1651
1652/*
1653 * Busy state exporting function for request stacking drivers.
1654 *
1655 * For efficiency, no lock is taken to check the busy state of
1656 * shost/starget/sdev, since the returned value is not guaranteed and
1657 * may be changed after request stacking drivers call the function,
1658 * regardless of taking lock or not.
1659 *
1660 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1661 * needs to return 'not busy'. Otherwise, request stacking drivers
1662 * may hold requests forever.
1663 */
1664static int scsi_lld_busy(struct request_queue *q)
1665{
1666 struct scsi_device *sdev = q->queuedata;
1667 struct Scsi_Host *shost;
1668
1669 if (blk_queue_dying(q))
1670 return 0;
1671
1672 shost = sdev->host;
1673
1674 /*
1675 * Ignore host/starget busy state.
1676 * Since block layer does not have a concept of fairness across
1677 * multiple queues, congestion of host/starget needs to be handled
1678 * in SCSI layer.
1679 */
1680 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1681 return 1;
1682
1683 return 0;
1684}
1685
1686/*
1687 * Kill a request for a dead device
1688 */
1689static void scsi_kill_request(struct request *req, struct request_queue *q)
1690{
1691 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1692 struct scsi_device *sdev;
1693 struct scsi_target *starget;
1694 struct Scsi_Host *shost;
1695
1696 blk_start_request(req);
1697
1698 scmd_printk(KERN_INFO, cmd, "killing request\n");
1699
1700 sdev = cmd->device;
1701 starget = scsi_target(sdev);
1702 shost = sdev->host;
1703 scsi_init_cmd_errh(cmd);
1704 cmd->result = DID_NO_CONNECT << 16;
1705 atomic_inc(&cmd->device->iorequest_cnt);
1706
1707 /*
1708 * SCSI request completion path will do scsi_device_unbusy(),
1709 * bump busy counts. To bump the counters, we need to dance
1710 * with the locks as normal issue path does.
1711 */
1712 atomic_inc(&sdev->device_busy);
1713 atomic_inc(&shost->host_busy);
1714 if (starget->can_queue > 0)
1715 atomic_inc(&starget->target_busy);
1716
1717 blk_complete_request(req);
1718}
1719
1720static void scsi_softirq_done(struct request *rq)
1721{
1722 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1723 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1724 int disposition;
1725
1726 INIT_LIST_HEAD(&cmd->eh_entry);
1727
1728 atomic_inc(&cmd->device->iodone_cnt);
1729 if (cmd->result)
1730 atomic_inc(&cmd->device->ioerr_cnt);
1731
1732 disposition = scsi_decide_disposition(cmd);
1733 if (disposition != SUCCESS &&
1734 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1735 sdev_printk(KERN_ERR, cmd->device,
1736 "timing out command, waited %lus\n",
1737 wait_for/HZ);
1738 disposition = SUCCESS;
1739 }
1740
1741 scsi_log_completion(cmd, disposition);
1742
1743 switch (disposition) {
1744 case SUCCESS:
1745 scsi_finish_command(cmd);
1746 break;
1747 case NEEDS_RETRY:
1748 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1749 break;
1750 case ADD_TO_MLQUEUE:
1751 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1752 break;
1753 default:
1754 scsi_eh_scmd_add(cmd);
1755 break;
1756 }
1757}
1758
1759/**
1760 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1761 * @cmd: command block we are dispatching.
1762 *
1763 * Return: nonzero return request was rejected and device's queue needs to be
1764 * plugged.
1765 */
1766static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1767{
1768 struct Scsi_Host *host = cmd->device->host;
1769 int rtn = 0;
1770
1771 atomic_inc(&cmd->device->iorequest_cnt);
1772
1773 /* check if the device is still usable */
1774 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1775 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1776 * returns an immediate error upwards, and signals
1777 * that the device is no longer present */
1778 cmd->result = DID_NO_CONNECT << 16;
1779 goto done;
1780 }
1781
1782 /* Check to see if the scsi lld made this device blocked. */
1783 if (unlikely(scsi_device_blocked(cmd->device))) {
1784 /*
1785 * in blocked state, the command is just put back on
1786 * the device queue. The suspend state has already
1787 * blocked the queue so future requests should not
1788 * occur until the device transitions out of the
1789 * suspend state.
1790 */
1791 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1792 "queuecommand : device blocked\n"));
1793 return SCSI_MLQUEUE_DEVICE_BUSY;
1794 }
1795
1796 /* Store the LUN value in cmnd, if needed. */
1797 if (cmd->device->lun_in_cdb)
1798 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1799 (cmd->device->lun << 5 & 0xe0);
1800
1801 scsi_log_send(cmd);
1802
1803 /*
1804 * Before we queue this command, check if the command
1805 * length exceeds what the host adapter can handle.
1806 */
1807 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1808 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1809 "queuecommand : command too long. "
1810 "cdb_size=%d host->max_cmd_len=%d\n",
1811 cmd->cmd_len, cmd->device->host->max_cmd_len));
1812 cmd->result = (DID_ABORT << 16);
1813 goto done;
1814 }
1815
1816 if (unlikely(host->shost_state == SHOST_DEL)) {
1817 cmd->result = (DID_NO_CONNECT << 16);
1818 goto done;
1819
1820 }
1821
1822 trace_scsi_dispatch_cmd_start(cmd);
1823 rtn = host->hostt->queuecommand(host, cmd);
1824 if (rtn) {
1825 trace_scsi_dispatch_cmd_error(cmd, rtn);
1826 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1827 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1828 rtn = SCSI_MLQUEUE_HOST_BUSY;
1829
1830 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1831 "queuecommand : request rejected\n"));
1832 }
1833
1834 return rtn;
1835 done:
1836 cmd->scsi_done(cmd);
1837 return 0;
1838}
1839
1840/**
1841 * scsi_done - Invoke completion on finished SCSI command.
1842 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1843 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1844 *
1845 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1846 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1847 * calls blk_complete_request() for further processing.
1848 *
1849 * This function is interrupt context safe.
1850 */
1851static void scsi_done(struct scsi_cmnd *cmd)
1852{
1853 trace_scsi_dispatch_cmd_done(cmd);
1854 blk_complete_request(cmd->request);
1855}
1856
1857/*
1858 * Function: scsi_request_fn()
1859 *
1860 * Purpose: Main strategy routine for SCSI.
1861 *
1862 * Arguments: q - Pointer to actual queue.
1863 *
1864 * Returns: Nothing
1865 *
1866 * Lock status: request queue lock assumed to be held when called.
1867 *
1868 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1869 * protection for ZBC disks.
1870 */
1871static void scsi_request_fn(struct request_queue *q)
1872 __releases(q->queue_lock)
1873 __acquires(q->queue_lock)
1874{
1875 struct scsi_device *sdev = q->queuedata;
1876 struct Scsi_Host *shost;
1877 struct scsi_cmnd *cmd;
1878 struct request *req;
1879
1880 /*
1881 * To start with, we keep looping until the queue is empty, or until
1882 * the host is no longer able to accept any more requests.
1883 */
1884 shost = sdev->host;
1885 for (;;) {
1886 int rtn;
1887 /*
1888 * get next queueable request. We do this early to make sure
1889 * that the request is fully prepared even if we cannot
1890 * accept it.
1891 */
1892 req = blk_peek_request(q);
1893 if (!req)
1894 break;
1895
1896 if (unlikely(!scsi_device_online(sdev))) {
1897 sdev_printk(KERN_ERR, sdev,
1898 "rejecting I/O to offline device\n");
1899 scsi_kill_request(req, q);
1900 continue;
1901 }
1902
1903 if (!scsi_dev_queue_ready(q, sdev))
1904 break;
1905
1906 /*
1907 * Remove the request from the request list.
1908 */
1909 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1910 blk_start_request(req);
1911
1912 spin_unlock_irq(q->queue_lock);
1913 cmd = blk_mq_rq_to_pdu(req);
1914 if (cmd != req->special) {
1915 printk(KERN_CRIT "impossible request in %s.\n"
1916 "please mail a stack trace to "
1917 "linux-scsi@vger.kernel.org\n",
1918 __func__);
1919 blk_dump_rq_flags(req, "foo");
1920 BUG();
1921 }
1922
1923 /*
1924 * We hit this when the driver is using a host wide
1925 * tag map. For device level tag maps the queue_depth check
1926 * in the device ready fn would prevent us from trying
1927 * to allocate a tag. Since the map is a shared host resource
1928 * we add the dev to the starved list so it eventually gets
1929 * a run when a tag is freed.
1930 */
1931 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1932 spin_lock_irq(shost->host_lock);
1933 if (list_empty(&sdev->starved_entry))
1934 list_add_tail(&sdev->starved_entry,
1935 &shost->starved_list);
1936 spin_unlock_irq(shost->host_lock);
1937 goto not_ready;
1938 }
1939
1940 if (!scsi_target_queue_ready(shost, sdev))
1941 goto not_ready;
1942
1943 if (!scsi_host_queue_ready(q, shost, sdev))
1944 goto host_not_ready;
1945
1946 if (sdev->simple_tags)
1947 cmd->flags |= SCMD_TAGGED;
1948 else
1949 cmd->flags &= ~SCMD_TAGGED;
1950
1951 /*
1952 * Finally, initialize any error handling parameters, and set up
1953 * the timers for timeouts.
1954 */
1955 scsi_init_cmd_errh(cmd);
1956
1957 /*
1958 * Dispatch the command to the low-level driver.
1959 */
1960 cmd->scsi_done = scsi_done;
1961 rtn = scsi_dispatch_cmd(cmd);
1962 if (rtn) {
1963 scsi_queue_insert(cmd, rtn);
1964 spin_lock_irq(q->queue_lock);
1965 goto out_delay;
1966 }
1967 spin_lock_irq(q->queue_lock);
1968 }
1969
1970 return;
1971
1972 host_not_ready:
1973 if (scsi_target(sdev)->can_queue > 0)
1974 atomic_dec(&scsi_target(sdev)->target_busy);
1975 not_ready:
1976 /*
1977 * lock q, handle tag, requeue req, and decrement device_busy. We
1978 * must return with queue_lock held.
1979 *
1980 * Decrementing device_busy without checking it is OK, as all such
1981 * cases (host limits or settings) should run the queue at some
1982 * later time.
1983 */
1984 spin_lock_irq(q->queue_lock);
1985 blk_requeue_request(q, req);
1986 atomic_dec(&sdev->device_busy);
1987out_delay:
1988 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1989 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1990}
1991
1992static inline blk_status_t prep_to_mq(int ret)
1993{
1994 switch (ret) {
1995 case BLKPREP_OK:
1996 return BLK_STS_OK;
1997 case BLKPREP_DEFER:
1998 return BLK_STS_RESOURCE;
1999 default:
2000 return BLK_STS_IOERR;
2001 }
2002}
2003
2004/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
2005static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
2006{
2007 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
2008 sizeof(struct scatterlist);
2009}
2010
2011static int scsi_mq_prep_fn(struct request *req)
2012{
2013 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2014 struct scsi_device *sdev = req->q->queuedata;
2015 struct Scsi_Host *shost = sdev->host;
2016 struct scatterlist *sg;
2017
2018 scsi_init_command(sdev, cmd);
2019
2020 req->special = cmd;
2021
2022 cmd->request = req;
2023
2024 cmd->tag = req->tag;
2025 cmd->prot_op = SCSI_PROT_NORMAL;
2026
2027 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2028 cmd->sdb.table.sgl = sg;
2029
2030 if (scsi_host_get_prot(shost)) {
2031 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
2032
2033 cmd->prot_sdb->table.sgl =
2034 (struct scatterlist *)(cmd->prot_sdb + 1);
2035 }
2036
2037 if (blk_bidi_rq(req)) {
2038 struct request *next_rq = req->next_rq;
2039 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
2040
2041 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
2042 bidi_sdb->table.sgl =
2043 (struct scatterlist *)(bidi_sdb + 1);
2044
2045 next_rq->special = bidi_sdb;
2046 }
2047
2048 blk_mq_start_request(req);
2049
2050 return scsi_setup_cmnd(sdev, req);
2051}
2052
2053static void scsi_mq_done(struct scsi_cmnd *cmd)
2054{
2055 trace_scsi_dispatch_cmd_done(cmd);
2056 blk_mq_complete_request(cmd->request);
2057}
2058
2059static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
2060{
2061 struct request_queue *q = hctx->queue;
2062 struct scsi_device *sdev = q->queuedata;
2063
2064 atomic_dec(&sdev->device_busy);
2065 put_device(&sdev->sdev_gendev);
2066}
2067
2068static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2069{
2070 struct request_queue *q = hctx->queue;
2071 struct scsi_device *sdev = q->queuedata;
2072
2073 if (!get_device(&sdev->sdev_gendev))
2074 goto out;
2075 if (!scsi_dev_queue_ready(q, sdev))
2076 goto out_put_device;
2077
2078 return true;
2079
2080out_put_device:
2081 put_device(&sdev->sdev_gendev);
2082out:
2083 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2084 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2085 return false;
2086}
2087
2088static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2089 const struct blk_mq_queue_data *bd)
2090{
2091 struct request *req = bd->rq;
2092 struct request_queue *q = req->q;
2093 struct scsi_device *sdev = q->queuedata;
2094 struct Scsi_Host *shost = sdev->host;
2095 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2096 blk_status_t ret;
2097 int reason;
2098
2099 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2100 if (ret != BLK_STS_OK)
2101 goto out_put_budget;
2102
2103 ret = BLK_STS_RESOURCE;
2104 if (!scsi_target_queue_ready(shost, sdev))
2105 goto out_put_budget;
2106 if (!scsi_host_queue_ready(q, shost, sdev))
2107 goto out_dec_target_busy;
2108
2109 if (!(req->rq_flags & RQF_DONTPREP)) {
2110 ret = prep_to_mq(scsi_mq_prep_fn(req));
2111 if (ret != BLK_STS_OK)
2112 goto out_dec_host_busy;
2113 req->rq_flags |= RQF_DONTPREP;
2114 } else {
2115 blk_mq_start_request(req);
2116 }
2117
2118 if (sdev->simple_tags)
2119 cmd->flags |= SCMD_TAGGED;
2120 else
2121 cmd->flags &= ~SCMD_TAGGED;
2122
2123 scsi_init_cmd_errh(cmd);
2124 cmd->scsi_done = scsi_mq_done;
2125
2126 reason = scsi_dispatch_cmd(cmd);
2127 if (reason) {
2128 scsi_set_blocked(cmd, reason);
2129 ret = BLK_STS_RESOURCE;
2130 goto out_dec_host_busy;
2131 }
2132
2133 return BLK_STS_OK;
2134
2135out_dec_host_busy:
2136 scsi_dec_host_busy(shost);
2137out_dec_target_busy:
2138 if (scsi_target(sdev)->can_queue > 0)
2139 atomic_dec(&scsi_target(sdev)->target_busy);
2140out_put_budget:
2141 scsi_mq_put_budget(hctx);
2142 switch (ret) {
2143 case BLK_STS_OK:
2144 break;
2145 case BLK_STS_RESOURCE:
2146 if (atomic_read(&sdev->device_busy) ||
2147 scsi_device_blocked(sdev))
2148 ret = BLK_STS_DEV_RESOURCE;
2149 break;
2150 default:
2151 /*
2152 * Make sure to release all allocated ressources when
2153 * we hit an error, as we will never see this command
2154 * again.
2155 */
2156 if (req->rq_flags & RQF_DONTPREP)
2157 scsi_mq_uninit_cmd(cmd);
2158 break;
2159 }
2160 return ret;
2161}
2162
2163static enum blk_eh_timer_return scsi_timeout(struct request *req,
2164 bool reserved)
2165{
2166 if (reserved)
2167 return BLK_EH_RESET_TIMER;
2168 return scsi_times_out(req);
2169}
2170
2171static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2172 unsigned int hctx_idx, unsigned int numa_node)
2173{
2174 struct Scsi_Host *shost = set->driver_data;
2175 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2176 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2177 struct scatterlist *sg;
2178
2179 if (unchecked_isa_dma)
2180 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2181 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2182 GFP_KERNEL, numa_node);
2183 if (!cmd->sense_buffer)
2184 return -ENOMEM;
2185 cmd->req.sense = cmd->sense_buffer;
2186
2187 if (scsi_host_get_prot(shost)) {
2188 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2189 shost->hostt->cmd_size;
2190 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2191 }
2192
2193 return 0;
2194}
2195
2196static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2197 unsigned int hctx_idx)
2198{
2199 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2200
2201 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2202 cmd->sense_buffer);
2203}
2204
2205static int scsi_map_queues(struct blk_mq_tag_set *set)
2206{
2207 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2208
2209 if (shost->hostt->map_queues)
2210 return shost->hostt->map_queues(shost);
2211 return blk_mq_map_queues(set);
2212}
2213
2214void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2215{
2216 struct device *dev = shost->dma_dev;
2217
2218 /*
2219 * this limit is imposed by hardware restrictions
2220 */
2221 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2222 SG_MAX_SEGMENTS));
2223
2224 if (scsi_host_prot_dma(shost)) {
2225 shost->sg_prot_tablesize =
2226 min_not_zero(shost->sg_prot_tablesize,
2227 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2228 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2229 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2230 }
2231
2232 blk_queue_max_hw_sectors(q, shost->max_sectors);
2233 if (shost->unchecked_isa_dma)
2234 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
2235 blk_queue_segment_boundary(q, shost->dma_boundary);
2236 dma_set_seg_boundary(dev, shost->dma_boundary);
2237
2238 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2239
2240 if (!shost->use_clustering)
2241 q->limits.cluster = 0;
2242
2243 /*
2244 * Set a reasonable default alignment: The larger of 32-byte (dword),
2245 * which is a common minimum for HBAs, and the minimum DMA alignment,
2246 * which is set by the platform.
2247 *
2248 * Devices that require a bigger alignment can increase it later.
2249 */
2250 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2251}
2252EXPORT_SYMBOL_GPL(__scsi_init_queue);
2253
2254static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2255 gfp_t gfp)
2256{
2257 struct Scsi_Host *shost = q->rq_alloc_data;
2258 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2259 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2260
2261 memset(cmd, 0, sizeof(*cmd));
2262
2263 if (unchecked_isa_dma)
2264 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2265 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2266 NUMA_NO_NODE);
2267 if (!cmd->sense_buffer)
2268 goto fail;
2269 cmd->req.sense = cmd->sense_buffer;
2270
2271 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2272 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2273 if (!cmd->prot_sdb)
2274 goto fail_free_sense;
2275 }
2276
2277 return 0;
2278
2279fail_free_sense:
2280 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2281fail:
2282 return -ENOMEM;
2283}
2284
2285static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2286{
2287 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2288
2289 if (cmd->prot_sdb)
2290 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2291 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2292 cmd->sense_buffer);
2293}
2294
2295struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2296{
2297 struct Scsi_Host *shost = sdev->host;
2298 struct request_queue *q;
2299
2300 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2301 if (!q)
2302 return NULL;
2303 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2304 q->rq_alloc_data = shost;
2305 q->request_fn = scsi_request_fn;
2306 q->init_rq_fn = scsi_old_init_rq;
2307 q->exit_rq_fn = scsi_old_exit_rq;
2308 q->initialize_rq_fn = scsi_initialize_rq;
2309
2310 if (blk_init_allocated_queue(q) < 0) {
2311 blk_cleanup_queue(q);
2312 return NULL;
2313 }
2314
2315 __scsi_init_queue(shost, q);
2316 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2317 blk_queue_prep_rq(q, scsi_prep_fn);
2318 blk_queue_unprep_rq(q, scsi_unprep_fn);
2319 blk_queue_softirq_done(q, scsi_softirq_done);
2320 blk_queue_rq_timed_out(q, scsi_times_out);
2321 blk_queue_lld_busy(q, scsi_lld_busy);
2322 return q;
2323}
2324
2325static const struct blk_mq_ops scsi_mq_ops = {
2326 .get_budget = scsi_mq_get_budget,
2327 .put_budget = scsi_mq_put_budget,
2328 .queue_rq = scsi_queue_rq,
2329 .complete = scsi_softirq_done,
2330 .timeout = scsi_timeout,
2331#ifdef CONFIG_BLK_DEBUG_FS
2332 .show_rq = scsi_show_rq,
2333#endif
2334 .init_request = scsi_mq_init_request,
2335 .exit_request = scsi_mq_exit_request,
2336 .initialize_rq_fn = scsi_initialize_rq,
2337 .map_queues = scsi_map_queues,
2338};
2339
2340struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2341{
2342 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2343 if (IS_ERR(sdev->request_queue))
2344 return NULL;
2345
2346 sdev->request_queue->queuedata = sdev;
2347 __scsi_init_queue(sdev->host, sdev->request_queue);
2348 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2349 return sdev->request_queue;
2350}
2351
2352int scsi_mq_setup_tags(struct Scsi_Host *shost)
2353{
2354 unsigned int cmd_size, sgl_size;
2355
2356 sgl_size = scsi_mq_sgl_size(shost);
2357 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2358 if (scsi_host_get_prot(shost))
2359 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2360
2361 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2362 shost->tag_set.ops = &scsi_mq_ops;
2363 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2364 shost->tag_set.queue_depth = shost->can_queue;
2365 shost->tag_set.cmd_size = cmd_size;
2366 shost->tag_set.numa_node = NUMA_NO_NODE;
2367 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2368 shost->tag_set.flags |=
2369 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2370 shost->tag_set.driver_data = shost;
2371
2372 return blk_mq_alloc_tag_set(&shost->tag_set);
2373}
2374
2375void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2376{
2377 blk_mq_free_tag_set(&shost->tag_set);
2378}
2379
2380/**
2381 * scsi_device_from_queue - return sdev associated with a request_queue
2382 * @q: The request queue to return the sdev from
2383 *
2384 * Return the sdev associated with a request queue or NULL if the
2385 * request_queue does not reference a SCSI device.
2386 */
2387struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2388{
2389 struct scsi_device *sdev = NULL;
2390
2391 if (q->mq_ops) {
2392 if (q->mq_ops == &scsi_mq_ops)
2393 sdev = q->queuedata;
2394 } else if (q->request_fn == scsi_request_fn)
2395 sdev = q->queuedata;
2396 if (!sdev || !get_device(&sdev->sdev_gendev))
2397 sdev = NULL;
2398
2399 return sdev;
2400}
2401EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2402
2403/*
2404 * Function: scsi_block_requests()
2405 *
2406 * Purpose: Utility function used by low-level drivers to prevent further
2407 * commands from being queued to the device.
2408 *
2409 * Arguments: shost - Host in question
2410 *
2411 * Returns: Nothing
2412 *
2413 * Lock status: No locks are assumed held.
2414 *
2415 * Notes: There is no timer nor any other means by which the requests
2416 * get unblocked other than the low-level driver calling
2417 * scsi_unblock_requests().
2418 */
2419void scsi_block_requests(struct Scsi_Host *shost)
2420{
2421 shost->host_self_blocked = 1;
2422}
2423EXPORT_SYMBOL(scsi_block_requests);
2424
2425/*
2426 * Function: scsi_unblock_requests()
2427 *
2428 * Purpose: Utility function used by low-level drivers to allow further
2429 * commands from being queued to the device.
2430 *
2431 * Arguments: shost - Host in question
2432 *
2433 * Returns: Nothing
2434 *
2435 * Lock status: No locks are assumed held.
2436 *
2437 * Notes: There is no timer nor any other means by which the requests
2438 * get unblocked other than the low-level driver calling
2439 * scsi_unblock_requests().
2440 *
2441 * This is done as an API function so that changes to the
2442 * internals of the scsi mid-layer won't require wholesale
2443 * changes to drivers that use this feature.
2444 */
2445void scsi_unblock_requests(struct Scsi_Host *shost)
2446{
2447 shost->host_self_blocked = 0;
2448 scsi_run_host_queues(shost);
2449}
2450EXPORT_SYMBOL(scsi_unblock_requests);
2451
2452int __init scsi_init_queue(void)
2453{
2454 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2455 sizeof(struct scsi_data_buffer),
2456 0, 0, NULL);
2457 if (!scsi_sdb_cache) {
2458 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2459 return -ENOMEM;
2460 }
2461
2462 return 0;
2463}
2464
2465void scsi_exit_queue(void)
2466{
2467 kmem_cache_destroy(scsi_sense_cache);
2468 kmem_cache_destroy(scsi_sense_isadma_cache);
2469 kmem_cache_destroy(scsi_sdb_cache);
2470}
2471
2472/**
2473 * scsi_mode_select - issue a mode select
2474 * @sdev: SCSI device to be queried
2475 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2476 * @sp: Save page bit (0 == don't save, 1 == save)
2477 * @modepage: mode page being requested
2478 * @buffer: request buffer (may not be smaller than eight bytes)
2479 * @len: length of request buffer.
2480 * @timeout: command timeout
2481 * @retries: number of retries before failing
2482 * @data: returns a structure abstracting the mode header data
2483 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2484 * must be SCSI_SENSE_BUFFERSIZE big.
2485 *
2486 * Returns zero if successful; negative error number or scsi
2487 * status on error
2488 *
2489 */
2490int
2491scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2492 unsigned char *buffer, int len, int timeout, int retries,
2493 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2494{
2495 unsigned char cmd[10];
2496 unsigned char *real_buffer;
2497 int ret;
2498
2499 memset(cmd, 0, sizeof(cmd));
2500 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2501
2502 if (sdev->use_10_for_ms) {
2503 if (len > 65535)
2504 return -EINVAL;
2505 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2506 if (!real_buffer)
2507 return -ENOMEM;
2508 memcpy(real_buffer + 8, buffer, len);
2509 len += 8;
2510 real_buffer[0] = 0;
2511 real_buffer[1] = 0;
2512 real_buffer[2] = data->medium_type;
2513 real_buffer[3] = data->device_specific;
2514 real_buffer[4] = data->longlba ? 0x01 : 0;
2515 real_buffer[5] = 0;
2516 real_buffer[6] = data->block_descriptor_length >> 8;
2517 real_buffer[7] = data->block_descriptor_length;
2518
2519 cmd[0] = MODE_SELECT_10;
2520 cmd[7] = len >> 8;
2521 cmd[8] = len;
2522 } else {
2523 if (len > 255 || data->block_descriptor_length > 255 ||
2524 data->longlba)
2525 return -EINVAL;
2526
2527 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2528 if (!real_buffer)
2529 return -ENOMEM;
2530 memcpy(real_buffer + 4, buffer, len);
2531 len += 4;
2532 real_buffer[0] = 0;
2533 real_buffer[1] = data->medium_type;
2534 real_buffer[2] = data->device_specific;
2535 real_buffer[3] = data->block_descriptor_length;
2536
2537
2538 cmd[0] = MODE_SELECT;
2539 cmd[4] = len;
2540 }
2541
2542 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2543 sshdr, timeout, retries, NULL);
2544 kfree(real_buffer);
2545 return ret;
2546}
2547EXPORT_SYMBOL_GPL(scsi_mode_select);
2548
2549/**
2550 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2551 * @sdev: SCSI device to be queried
2552 * @dbd: set if mode sense will allow block descriptors to be returned
2553 * @modepage: mode page being requested
2554 * @buffer: request buffer (may not be smaller than eight bytes)
2555 * @len: length of request buffer.
2556 * @timeout: command timeout
2557 * @retries: number of retries before failing
2558 * @data: returns a structure abstracting the mode header data
2559 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2560 * must be SCSI_SENSE_BUFFERSIZE big.
2561 *
2562 * Returns zero if unsuccessful, or the header offset (either 4
2563 * or 8 depending on whether a six or ten byte command was
2564 * issued) if successful.
2565 */
2566int
2567scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2568 unsigned char *buffer, int len, int timeout, int retries,
2569 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2570{
2571 unsigned char cmd[12];
2572 int use_10_for_ms;
2573 int header_length;
2574 int result, retry_count = retries;
2575 struct scsi_sense_hdr my_sshdr;
2576
2577 memset(data, 0, sizeof(*data));
2578 memset(&cmd[0], 0, 12);
2579 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2580 cmd[2] = modepage;
2581
2582 /* caller might not be interested in sense, but we need it */
2583 if (!sshdr)
2584 sshdr = &my_sshdr;
2585
2586 retry:
2587 use_10_for_ms = sdev->use_10_for_ms;
2588
2589 if (use_10_for_ms) {
2590 if (len < 8)
2591 len = 8;
2592
2593 cmd[0] = MODE_SENSE_10;
2594 cmd[8] = len;
2595 header_length = 8;
2596 } else {
2597 if (len < 4)
2598 len = 4;
2599
2600 cmd[0] = MODE_SENSE;
2601 cmd[4] = len;
2602 header_length = 4;
2603 }
2604
2605 memset(buffer, 0, len);
2606
2607 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2608 sshdr, timeout, retries, NULL);
2609
2610 /* This code looks awful: what it's doing is making sure an
2611 * ILLEGAL REQUEST sense return identifies the actual command
2612 * byte as the problem. MODE_SENSE commands can return
2613 * ILLEGAL REQUEST if the code page isn't supported */
2614
2615 if (use_10_for_ms && !scsi_status_is_good(result) &&
2616 driver_byte(result) == DRIVER_SENSE) {
2617 if (scsi_sense_valid(sshdr)) {
2618 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2619 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2620 /*
2621 * Invalid command operation code
2622 */
2623 sdev->use_10_for_ms = 0;
2624 goto retry;
2625 }
2626 }
2627 }
2628
2629 if(scsi_status_is_good(result)) {
2630 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2631 (modepage == 6 || modepage == 8))) {
2632 /* Initio breakage? */
2633 header_length = 0;
2634 data->length = 13;
2635 data->medium_type = 0;
2636 data->device_specific = 0;
2637 data->longlba = 0;
2638 data->block_descriptor_length = 0;
2639 } else if(use_10_for_ms) {
2640 data->length = buffer[0]*256 + buffer[1] + 2;
2641 data->medium_type = buffer[2];
2642 data->device_specific = buffer[3];
2643 data->longlba = buffer[4] & 0x01;
2644 data->block_descriptor_length = buffer[6]*256
2645 + buffer[7];
2646 } else {
2647 data->length = buffer[0] + 1;
2648 data->medium_type = buffer[1];
2649 data->device_specific = buffer[2];
2650 data->block_descriptor_length = buffer[3];
2651 }
2652 data->header_length = header_length;
2653 } else if ((status_byte(result) == CHECK_CONDITION) &&
2654 scsi_sense_valid(sshdr) &&
2655 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2656 retry_count--;
2657 goto retry;
2658 }
2659
2660 return result;
2661}
2662EXPORT_SYMBOL(scsi_mode_sense);
2663
2664/**
2665 * scsi_test_unit_ready - test if unit is ready
2666 * @sdev: scsi device to change the state of.
2667 * @timeout: command timeout
2668 * @retries: number of retries before failing
2669 * @sshdr: outpout pointer for decoded sense information.
2670 *
2671 * Returns zero if unsuccessful or an error if TUR failed. For
2672 * removable media, UNIT_ATTENTION sets ->changed flag.
2673 **/
2674int
2675scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2676 struct scsi_sense_hdr *sshdr)
2677{
2678 char cmd[] = {
2679 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2680 };
2681 int result;
2682
2683 /* try to eat the UNIT_ATTENTION if there are enough retries */
2684 do {
2685 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2686 timeout, 1, NULL);
2687 if (sdev->removable && scsi_sense_valid(sshdr) &&
2688 sshdr->sense_key == UNIT_ATTENTION)
2689 sdev->changed = 1;
2690 } while (scsi_sense_valid(sshdr) &&
2691 sshdr->sense_key == UNIT_ATTENTION && --retries);
2692
2693 return result;
2694}
2695EXPORT_SYMBOL(scsi_test_unit_ready);
2696
2697/**
2698 * scsi_device_set_state - Take the given device through the device state model.
2699 * @sdev: scsi device to change the state of.
2700 * @state: state to change to.
2701 *
2702 * Returns zero if successful or an error if the requested
2703 * transition is illegal.
2704 */
2705int
2706scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2707{
2708 enum scsi_device_state oldstate = sdev->sdev_state;
2709
2710 if (state == oldstate)
2711 return 0;
2712
2713 switch (state) {
2714 case SDEV_CREATED:
2715 switch (oldstate) {
2716 case SDEV_CREATED_BLOCK:
2717 break;
2718 default:
2719 goto illegal;
2720 }
2721 break;
2722
2723 case SDEV_RUNNING:
2724 switch (oldstate) {
2725 case SDEV_CREATED:
2726 case SDEV_OFFLINE:
2727 case SDEV_TRANSPORT_OFFLINE:
2728 case SDEV_QUIESCE:
2729 case SDEV_BLOCK:
2730 break;
2731 default:
2732 goto illegal;
2733 }
2734 break;
2735
2736 case SDEV_QUIESCE:
2737 switch (oldstate) {
2738 case SDEV_RUNNING:
2739 case SDEV_OFFLINE:
2740 case SDEV_TRANSPORT_OFFLINE:
2741 break;
2742 default:
2743 goto illegal;
2744 }
2745 break;
2746
2747 case SDEV_OFFLINE:
2748 case SDEV_TRANSPORT_OFFLINE:
2749 switch (oldstate) {
2750 case SDEV_CREATED:
2751 case SDEV_RUNNING:
2752 case SDEV_QUIESCE:
2753 case SDEV_BLOCK:
2754 break;
2755 default:
2756 goto illegal;
2757 }
2758 break;
2759
2760 case SDEV_BLOCK:
2761 switch (oldstate) {
2762 case SDEV_RUNNING:
2763 case SDEV_CREATED_BLOCK:
2764 break;
2765 default:
2766 goto illegal;
2767 }
2768 break;
2769
2770 case SDEV_CREATED_BLOCK:
2771 switch (oldstate) {
2772 case SDEV_CREATED:
2773 break;
2774 default:
2775 goto illegal;
2776 }
2777 break;
2778
2779 case SDEV_CANCEL:
2780 switch (oldstate) {
2781 case SDEV_CREATED:
2782 case SDEV_RUNNING:
2783 case SDEV_QUIESCE:
2784 case SDEV_OFFLINE:
2785 case SDEV_TRANSPORT_OFFLINE:
2786 break;
2787 default:
2788 goto illegal;
2789 }
2790 break;
2791
2792 case SDEV_DEL:
2793 switch (oldstate) {
2794 case SDEV_CREATED:
2795 case SDEV_RUNNING:
2796 case SDEV_OFFLINE:
2797 case SDEV_TRANSPORT_OFFLINE:
2798 case SDEV_CANCEL:
2799 case SDEV_BLOCK:
2800 case SDEV_CREATED_BLOCK:
2801 break;
2802 default:
2803 goto illegal;
2804 }
2805 break;
2806
2807 }
2808 sdev->sdev_state = state;
2809 return 0;
2810
2811 illegal:
2812 SCSI_LOG_ERROR_RECOVERY(1,
2813 sdev_printk(KERN_ERR, sdev,
2814 "Illegal state transition %s->%s",
2815 scsi_device_state_name(oldstate),
2816 scsi_device_state_name(state))
2817 );
2818 return -EINVAL;
2819}
2820EXPORT_SYMBOL(scsi_device_set_state);
2821
2822/**
2823 * sdev_evt_emit - emit a single SCSI device uevent
2824 * @sdev: associated SCSI device
2825 * @evt: event to emit
2826 *
2827 * Send a single uevent (scsi_event) to the associated scsi_device.
2828 */
2829static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2830{
2831 int idx = 0;
2832 char *envp[3];
2833
2834 switch (evt->evt_type) {
2835 case SDEV_EVT_MEDIA_CHANGE:
2836 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2837 break;
2838 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2839 scsi_rescan_device(&sdev->sdev_gendev);
2840 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2841 break;
2842 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2843 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2844 break;
2845 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2846 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2847 break;
2848 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2849 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2850 break;
2851 case SDEV_EVT_LUN_CHANGE_REPORTED:
2852 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2853 break;
2854 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2855 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2856 break;
2857 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2858 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2859 break;
2860 default:
2861 /* do nothing */
2862 break;
2863 }
2864
2865 envp[idx++] = NULL;
2866
2867 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2868}
2869
2870/**
2871 * sdev_evt_thread - send a uevent for each scsi event
2872 * @work: work struct for scsi_device
2873 *
2874 * Dispatch queued events to their associated scsi_device kobjects
2875 * as uevents.
2876 */
2877void scsi_evt_thread(struct work_struct *work)
2878{
2879 struct scsi_device *sdev;
2880 enum scsi_device_event evt_type;
2881 LIST_HEAD(event_list);
2882
2883 sdev = container_of(work, struct scsi_device, event_work);
2884
2885 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2886 if (test_and_clear_bit(evt_type, sdev->pending_events))
2887 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2888
2889 while (1) {
2890 struct scsi_event *evt;
2891 struct list_head *this, *tmp;
2892 unsigned long flags;
2893
2894 spin_lock_irqsave(&sdev->list_lock, flags);
2895 list_splice_init(&sdev->event_list, &event_list);
2896 spin_unlock_irqrestore(&sdev->list_lock, flags);
2897
2898 if (list_empty(&event_list))
2899 break;
2900
2901 list_for_each_safe(this, tmp, &event_list) {
2902 evt = list_entry(this, struct scsi_event, node);
2903 list_del(&evt->node);
2904 scsi_evt_emit(sdev, evt);
2905 kfree(evt);
2906 }
2907 }
2908}
2909
2910/**
2911 * sdev_evt_send - send asserted event to uevent thread
2912 * @sdev: scsi_device event occurred on
2913 * @evt: event to send
2914 *
2915 * Assert scsi device event asynchronously.
2916 */
2917void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2918{
2919 unsigned long flags;
2920
2921#if 0
2922 /* FIXME: currently this check eliminates all media change events
2923 * for polled devices. Need to update to discriminate between AN
2924 * and polled events */
2925 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2926 kfree(evt);
2927 return;
2928 }
2929#endif
2930
2931 spin_lock_irqsave(&sdev->list_lock, flags);
2932 list_add_tail(&evt->node, &sdev->event_list);
2933 schedule_work(&sdev->event_work);
2934 spin_unlock_irqrestore(&sdev->list_lock, flags);
2935}
2936EXPORT_SYMBOL_GPL(sdev_evt_send);
2937
2938/**
2939 * sdev_evt_alloc - allocate a new scsi event
2940 * @evt_type: type of event to allocate
2941 * @gfpflags: GFP flags for allocation
2942 *
2943 * Allocates and returns a new scsi_event.
2944 */
2945struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2946 gfp_t gfpflags)
2947{
2948 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2949 if (!evt)
2950 return NULL;
2951
2952 evt->evt_type = evt_type;
2953 INIT_LIST_HEAD(&evt->node);
2954
2955 /* evt_type-specific initialization, if any */
2956 switch (evt_type) {
2957 case SDEV_EVT_MEDIA_CHANGE:
2958 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2959 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2960 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2961 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2962 case SDEV_EVT_LUN_CHANGE_REPORTED:
2963 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2964 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2965 default:
2966 /* do nothing */
2967 break;
2968 }
2969
2970 return evt;
2971}
2972EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2973
2974/**
2975 * sdev_evt_send_simple - send asserted event to uevent thread
2976 * @sdev: scsi_device event occurred on
2977 * @evt_type: type of event to send
2978 * @gfpflags: GFP flags for allocation
2979 *
2980 * Assert scsi device event asynchronously, given an event type.
2981 */
2982void sdev_evt_send_simple(struct scsi_device *sdev,
2983 enum scsi_device_event evt_type, gfp_t gfpflags)
2984{
2985 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2986 if (!evt) {
2987 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2988 evt_type);
2989 return;
2990 }
2991
2992 sdev_evt_send(sdev, evt);
2993}
2994EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2995
2996/**
2997 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2998 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2999 */
3000static int scsi_request_fn_active(struct scsi_device *sdev)
3001{
3002 struct request_queue *q = sdev->request_queue;
3003 int request_fn_active;
3004
3005 WARN_ON_ONCE(sdev->host->use_blk_mq);
3006
3007 spin_lock_irq(q->queue_lock);
3008 request_fn_active = q->request_fn_active;
3009 spin_unlock_irq(q->queue_lock);
3010
3011 return request_fn_active;
3012}
3013
3014/**
3015 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
3016 * @sdev: SCSI device pointer.
3017 *
3018 * Wait until the ongoing shost->hostt->queuecommand() calls that are
3019 * invoked from scsi_request_fn() have finished.
3020 */
3021static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
3022{
3023 WARN_ON_ONCE(sdev->host->use_blk_mq);
3024
3025 while (scsi_request_fn_active(sdev))
3026 msleep(20);
3027}
3028
3029/**
3030 * scsi_device_quiesce - Block user issued commands.
3031 * @sdev: scsi device to quiesce.
3032 *
3033 * This works by trying to transition to the SDEV_QUIESCE state
3034 * (which must be a legal transition). When the device is in this
3035 * state, only special requests will be accepted, all others will
3036 * be deferred. Since special requests may also be requeued requests,
3037 * a successful return doesn't guarantee the device will be
3038 * totally quiescent.
3039 *
3040 * Must be called with user context, may sleep.
3041 *
3042 * Returns zero if unsuccessful or an error if not.
3043 */
3044int
3045scsi_device_quiesce(struct scsi_device *sdev)
3046{
3047 struct request_queue *q = sdev->request_queue;
3048 int err;
3049
3050 /*
3051 * It is allowed to call scsi_device_quiesce() multiple times from
3052 * the same context but concurrent scsi_device_quiesce() calls are
3053 * not allowed.
3054 */
3055 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3056
3057 blk_set_preempt_only(q);
3058
3059 blk_mq_freeze_queue(q);
3060 /*
3061 * Ensure that the effect of blk_set_preempt_only() will be visible
3062 * for percpu_ref_tryget() callers that occur after the queue
3063 * unfreeze even if the queue was already frozen before this function
3064 * was called. See also https://lwn.net/Articles/573497/.
3065 */
3066 synchronize_rcu();
3067 blk_mq_unfreeze_queue(q);
3068
3069 mutex_lock(&sdev->state_mutex);
3070 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3071 if (err == 0)
3072 sdev->quiesced_by = current;
3073 else
3074 blk_clear_preempt_only(q);
3075 mutex_unlock(&sdev->state_mutex);
3076
3077 return err;
3078}
3079EXPORT_SYMBOL(scsi_device_quiesce);
3080
3081/**
3082 * scsi_device_resume - Restart user issued commands to a quiesced device.
3083 * @sdev: scsi device to resume.
3084 *
3085 * Moves the device from quiesced back to running and restarts the
3086 * queues.
3087 *
3088 * Must be called with user context, may sleep.
3089 */
3090void scsi_device_resume(struct scsi_device *sdev)
3091{
3092 /* check if the device state was mutated prior to resume, and if
3093 * so assume the state is being managed elsewhere (for example
3094 * device deleted during suspend)
3095 */
3096 mutex_lock(&sdev->state_mutex);
3097 WARN_ON_ONCE(!sdev->quiesced_by);
3098 sdev->quiesced_by = NULL;
3099 blk_clear_preempt_only(sdev->request_queue);
3100 if (sdev->sdev_state == SDEV_QUIESCE)
3101 scsi_device_set_state(sdev, SDEV_RUNNING);
3102 mutex_unlock(&sdev->state_mutex);
3103}
3104EXPORT_SYMBOL(scsi_device_resume);
3105
3106static void
3107device_quiesce_fn(struct scsi_device *sdev, void *data)
3108{
3109 scsi_device_quiesce(sdev);
3110}
3111
3112void
3113scsi_target_quiesce(struct scsi_target *starget)
3114{
3115 starget_for_each_device(starget, NULL, device_quiesce_fn);
3116}
3117EXPORT_SYMBOL(scsi_target_quiesce);
3118
3119static void
3120device_resume_fn(struct scsi_device *sdev, void *data)
3121{
3122 scsi_device_resume(sdev);
3123}
3124
3125void
3126scsi_target_resume(struct scsi_target *starget)
3127{
3128 starget_for_each_device(starget, NULL, device_resume_fn);
3129}
3130EXPORT_SYMBOL(scsi_target_resume);
3131
3132/**
3133 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3134 * @sdev: device to block
3135 *
3136 * Pause SCSI command processing on the specified device. Does not sleep.
3137 *
3138 * Returns zero if successful or a negative error code upon failure.
3139 *
3140 * Notes:
3141 * This routine transitions the device to the SDEV_BLOCK state (which must be
3142 * a legal transition). When the device is in this state, command processing
3143 * is paused until the device leaves the SDEV_BLOCK state. See also
3144 * scsi_internal_device_unblock_nowait().
3145 */
3146int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3147{
3148 struct request_queue *q = sdev->request_queue;
3149 unsigned long flags;
3150 int err = 0;
3151
3152 err = scsi_device_set_state(sdev, SDEV_BLOCK);
3153 if (err) {
3154 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3155
3156 if (err)
3157 return err;
3158 }
3159
3160 /*
3161 * The device has transitioned to SDEV_BLOCK. Stop the
3162 * block layer from calling the midlayer with this device's
3163 * request queue.
3164 */
3165 if (q->mq_ops) {
3166 blk_mq_quiesce_queue_nowait(q);
3167 } else {
3168 spin_lock_irqsave(q->queue_lock, flags);
3169 blk_stop_queue(q);
3170 spin_unlock_irqrestore(q->queue_lock, flags);
3171 }
3172
3173 return 0;
3174}
3175EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3176
3177/**
3178 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3179 * @sdev: device to block
3180 *
3181 * Pause SCSI command processing on the specified device and wait until all
3182 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3183 *
3184 * Returns zero if successful or a negative error code upon failure.
3185 *
3186 * Note:
3187 * This routine transitions the device to the SDEV_BLOCK state (which must be
3188 * a legal transition). When the device is in this state, command processing
3189 * is paused until the device leaves the SDEV_BLOCK state. See also
3190 * scsi_internal_device_unblock().
3191 *
3192 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3193 * scsi_internal_device_block() has blocked a SCSI device and also
3194 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3195 */
3196static int scsi_internal_device_block(struct scsi_device *sdev)
3197{
3198 struct request_queue *q = sdev->request_queue;
3199 int err;
3200
3201 mutex_lock(&sdev->state_mutex);
3202 err = scsi_internal_device_block_nowait(sdev);
3203 if (err == 0) {
3204 if (q->mq_ops)
3205 blk_mq_quiesce_queue(q);
3206 else
3207 scsi_wait_for_queuecommand(sdev);
3208 }
3209 mutex_unlock(&sdev->state_mutex);
3210
3211 return err;
3212}
3213
3214void scsi_start_queue(struct scsi_device *sdev)
3215{
3216 struct request_queue *q = sdev->request_queue;
3217 unsigned long flags;
3218
3219 if (q->mq_ops) {
3220 blk_mq_unquiesce_queue(q);
3221 } else {
3222 spin_lock_irqsave(q->queue_lock, flags);
3223 blk_start_queue(q);
3224 spin_unlock_irqrestore(q->queue_lock, flags);
3225 }
3226}
3227
3228/**
3229 * scsi_internal_device_unblock_nowait - resume a device after a block request
3230 * @sdev: device to resume
3231 * @new_state: state to set the device to after unblocking
3232 *
3233 * Restart the device queue for a previously suspended SCSI device. Does not
3234 * sleep.
3235 *
3236 * Returns zero if successful or a negative error code upon failure.
3237 *
3238 * Notes:
3239 * This routine transitions the device to the SDEV_RUNNING state or to one of
3240 * the offline states (which must be a legal transition) allowing the midlayer
3241 * to goose the queue for this device.
3242 */
3243int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3244 enum scsi_device_state new_state)
3245{
3246 /*
3247 * Try to transition the scsi device to SDEV_RUNNING or one of the
3248 * offlined states and goose the device queue if successful.
3249 */
3250 switch (sdev->sdev_state) {
3251 case SDEV_BLOCK:
3252 case SDEV_TRANSPORT_OFFLINE:
3253 sdev->sdev_state = new_state;
3254 break;
3255 case SDEV_CREATED_BLOCK:
3256 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3257 new_state == SDEV_OFFLINE)
3258 sdev->sdev_state = new_state;
3259 else
3260 sdev->sdev_state = SDEV_CREATED;
3261 break;
3262 case SDEV_CANCEL:
3263 case SDEV_OFFLINE:
3264 break;
3265 default:
3266 return -EINVAL;
3267 }
3268 scsi_start_queue(sdev);
3269
3270 return 0;
3271}
3272EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3273
3274/**
3275 * scsi_internal_device_unblock - resume a device after a block request
3276 * @sdev: device to resume
3277 * @new_state: state to set the device to after unblocking
3278 *
3279 * Restart the device queue for a previously suspended SCSI device. May sleep.
3280 *
3281 * Returns zero if successful or a negative error code upon failure.
3282 *
3283 * Notes:
3284 * This routine transitions the device to the SDEV_RUNNING state or to one of
3285 * the offline states (which must be a legal transition) allowing the midlayer
3286 * to goose the queue for this device.
3287 */
3288static int scsi_internal_device_unblock(struct scsi_device *sdev,
3289 enum scsi_device_state new_state)
3290{
3291 int ret;
3292
3293 mutex_lock(&sdev->state_mutex);
3294 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3295 mutex_unlock(&sdev->state_mutex);
3296
3297 return ret;
3298}
3299
3300static void
3301device_block(struct scsi_device *sdev, void *data)
3302{
3303 scsi_internal_device_block(sdev);
3304}
3305
3306static int
3307target_block(struct device *dev, void *data)
3308{
3309 if (scsi_is_target_device(dev))
3310 starget_for_each_device(to_scsi_target(dev), NULL,
3311 device_block);
3312 return 0;
3313}
3314
3315void
3316scsi_target_block(struct device *dev)
3317{
3318 if (scsi_is_target_device(dev))
3319 starget_for_each_device(to_scsi_target(dev), NULL,
3320 device_block);
3321 else
3322 device_for_each_child(dev, NULL, target_block);
3323}
3324EXPORT_SYMBOL_GPL(scsi_target_block);
3325
3326static void
3327device_unblock(struct scsi_device *sdev, void *data)
3328{
3329 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3330}
3331
3332static int
3333target_unblock(struct device *dev, void *data)
3334{
3335 if (scsi_is_target_device(dev))
3336 starget_for_each_device(to_scsi_target(dev), data,
3337 device_unblock);
3338 return 0;
3339}
3340
3341void
3342scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3343{
3344 if (scsi_is_target_device(dev))
3345 starget_for_each_device(to_scsi_target(dev), &new_state,
3346 device_unblock);
3347 else
3348 device_for_each_child(dev, &new_state, target_unblock);
3349}
3350EXPORT_SYMBOL_GPL(scsi_target_unblock);
3351
3352/**
3353 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3354 * @sgl: scatter-gather list
3355 * @sg_count: number of segments in sg
3356 * @offset: offset in bytes into sg, on return offset into the mapped area
3357 * @len: bytes to map, on return number of bytes mapped
3358 *
3359 * Returns virtual address of the start of the mapped page
3360 */
3361void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3362 size_t *offset, size_t *len)
3363{
3364 int i;
3365 size_t sg_len = 0, len_complete = 0;
3366 struct scatterlist *sg;
3367 struct page *page;
3368
3369 WARN_ON(!irqs_disabled());
3370
3371 for_each_sg(sgl, sg, sg_count, i) {
3372 len_complete = sg_len; /* Complete sg-entries */
3373 sg_len += sg->length;
3374 if (sg_len > *offset)
3375 break;
3376 }
3377
3378 if (unlikely(i == sg_count)) {
3379 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3380 "elements %d\n",
3381 __func__, sg_len, *offset, sg_count);
3382 WARN_ON(1);
3383 return NULL;
3384 }
3385
3386 /* Offset starting from the beginning of first page in this sg-entry */
3387 *offset = *offset - len_complete + sg->offset;
3388
3389 /* Assumption: contiguous pages can be accessed as "page + i" */
3390 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3391 *offset &= ~PAGE_MASK;
3392
3393 /* Bytes in this sg-entry from *offset to the end of the page */
3394 sg_len = PAGE_SIZE - *offset;
3395 if (*len > sg_len)
3396 *len = sg_len;
3397
3398 return kmap_atomic(page);
3399}
3400EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3401
3402/**
3403 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3404 * @virt: virtual address to be unmapped
3405 */
3406void scsi_kunmap_atomic_sg(void *virt)
3407{
3408 kunmap_atomic(virt);
3409}
3410EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3411
3412void sdev_disable_disk_events(struct scsi_device *sdev)
3413{
3414 atomic_inc(&sdev->disk_events_disable_depth);
3415}
3416EXPORT_SYMBOL(sdev_disable_disk_events);
3417
3418void sdev_enable_disk_events(struct scsi_device *sdev)
3419{
3420 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3421 return;
3422 atomic_dec(&sdev->disk_events_disable_depth);
3423}
3424EXPORT_SYMBOL(sdev_enable_disk_events);
3425
3426/**
3427 * scsi_vpd_lun_id - return a unique device identification
3428 * @sdev: SCSI device
3429 * @id: buffer for the identification
3430 * @id_len: length of the buffer
3431 *
3432 * Copies a unique device identification into @id based
3433 * on the information in the VPD page 0x83 of the device.
3434 * The string will be formatted as a SCSI name string.
3435 *
3436 * Returns the length of the identification or error on failure.
3437 * If the identifier is longer than the supplied buffer the actual
3438 * identifier length is returned and the buffer is not zero-padded.
3439 */
3440int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3441{
3442 u8 cur_id_type = 0xff;
3443 u8 cur_id_size = 0;
3444 const unsigned char *d, *cur_id_str;
3445 const struct scsi_vpd *vpd_pg83;
3446 int id_size = -EINVAL;
3447
3448 rcu_read_lock();
3449 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3450 if (!vpd_pg83) {
3451 rcu_read_unlock();
3452 return -ENXIO;
3453 }
3454
3455 /*
3456 * Look for the correct descriptor.
3457 * Order of preference for lun descriptor:
3458 * - SCSI name string
3459 * - NAA IEEE Registered Extended
3460 * - EUI-64 based 16-byte
3461 * - EUI-64 based 12-byte
3462 * - NAA IEEE Registered
3463 * - NAA IEEE Extended
3464 * - T10 Vendor ID
3465 * as longer descriptors reduce the likelyhood
3466 * of identification clashes.
3467 */
3468
3469 /* The id string must be at least 20 bytes + terminating NULL byte */
3470 if (id_len < 21) {
3471 rcu_read_unlock();
3472 return -EINVAL;
3473 }
3474
3475 memset(id, 0, id_len);
3476 d = vpd_pg83->data + 4;
3477 while (d < vpd_pg83->data + vpd_pg83->len) {
3478 /* Skip designators not referring to the LUN */
3479 if ((d[1] & 0x30) != 0x00)
3480 goto next_desig;
3481
3482 switch (d[1] & 0xf) {
3483 case 0x1:
3484 /* T10 Vendor ID */
3485 if (cur_id_size > d[3])
3486 break;
3487 /* Prefer anything */
3488 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3489 break;
3490 cur_id_size = d[3];
3491 if (cur_id_size + 4 > id_len)
3492 cur_id_size = id_len - 4;
3493 cur_id_str = d + 4;
3494 cur_id_type = d[1] & 0xf;
3495 id_size = snprintf(id, id_len, "t10.%*pE",
3496 cur_id_size, cur_id_str);
3497 break;
3498 case 0x2:
3499 /* EUI-64 */
3500 if (cur_id_size > d[3])
3501 break;
3502 /* Prefer NAA IEEE Registered Extended */
3503 if (cur_id_type == 0x3 &&
3504 cur_id_size == d[3])
3505 break;
3506 cur_id_size = d[3];
3507 cur_id_str = d + 4;
3508 cur_id_type = d[1] & 0xf;
3509 switch (cur_id_size) {
3510 case 8:
3511 id_size = snprintf(id, id_len,
3512 "eui.%8phN",
3513 cur_id_str);
3514 break;
3515 case 12:
3516 id_size = snprintf(id, id_len,
3517 "eui.%12phN",
3518 cur_id_str);
3519 break;
3520 case 16:
3521 id_size = snprintf(id, id_len,
3522 "eui.%16phN",
3523 cur_id_str);
3524 break;
3525 default:
3526 cur_id_size = 0;
3527 break;
3528 }
3529 break;
3530 case 0x3:
3531 /* NAA */
3532 if (cur_id_size > d[3])
3533 break;
3534 cur_id_size = d[3];
3535 cur_id_str = d + 4;
3536 cur_id_type = d[1] & 0xf;
3537 switch (cur_id_size) {
3538 case 8:
3539 id_size = snprintf(id, id_len,
3540 "naa.%8phN",
3541 cur_id_str);
3542 break;
3543 case 16:
3544 id_size = snprintf(id, id_len,
3545 "naa.%16phN",
3546 cur_id_str);
3547 break;
3548 default:
3549 cur_id_size = 0;
3550 break;
3551 }
3552 break;
3553 case 0x8:
3554 /* SCSI name string */
3555 if (cur_id_size + 4 > d[3])
3556 break;
3557 /* Prefer others for truncated descriptor */
3558 if (cur_id_size && d[3] > id_len)
3559 break;
3560 cur_id_size = id_size = d[3];
3561 cur_id_str = d + 4;
3562 cur_id_type = d[1] & 0xf;
3563 if (cur_id_size >= id_len)
3564 cur_id_size = id_len - 1;
3565 memcpy(id, cur_id_str, cur_id_size);
3566 /* Decrease priority for truncated descriptor */
3567 if (cur_id_size != id_size)
3568 cur_id_size = 6;
3569 break;
3570 default:
3571 break;
3572 }
3573next_desig:
3574 d += d[3] + 4;
3575 }
3576 rcu_read_unlock();
3577
3578 return id_size;
3579}
3580EXPORT_SYMBOL(scsi_vpd_lun_id);
3581
3582/*
3583 * scsi_vpd_tpg_id - return a target port group identifier
3584 * @sdev: SCSI device
3585 *
3586 * Returns the Target Port Group identifier from the information
3587 * froom VPD page 0x83 of the device.
3588 *
3589 * Returns the identifier or error on failure.
3590 */
3591int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3592{
3593 const unsigned char *d;
3594 const struct scsi_vpd *vpd_pg83;
3595 int group_id = -EAGAIN, rel_port = -1;
3596
3597 rcu_read_lock();
3598 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3599 if (!vpd_pg83) {
3600 rcu_read_unlock();
3601 return -ENXIO;
3602 }
3603
3604 d = vpd_pg83->data + 4;
3605 while (d < vpd_pg83->data + vpd_pg83->len) {
3606 switch (d[1] & 0xf) {
3607 case 0x4:
3608 /* Relative target port */
3609 rel_port = get_unaligned_be16(&d[6]);
3610 break;
3611 case 0x5:
3612 /* Target port group */
3613 group_id = get_unaligned_be16(&d[6]);
3614 break;
3615 default:
3616 break;
3617 }
3618 d += d[3] + 4;
3619 }
3620 rcu_read_unlock();
3621
3622 if (group_id >= 0 && rel_id && rel_port != -1)
3623 *rel_id = rel_port;
3624
3625 return group_id;
3626}
3627EXPORT_SYMBOL(scsi_vpd_tpg_id);