Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * raid1.c : Multiple Devices driver for Linux |
| 3 | * |
| 4 | * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat |
| 5 | * |
| 6 | * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman |
| 7 | * |
| 8 | * RAID-1 management functions. |
| 9 | * |
| 10 | * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 |
| 11 | * |
| 12 | * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> |
| 13 | * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> |
| 14 | * |
| 15 | * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support |
| 16 | * bitmapped intelligence in resync: |
| 17 | * |
| 18 | * - bitmap marked during normal i/o |
| 19 | * - bitmap used to skip nondirty blocks during sync |
| 20 | * |
| 21 | * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: |
| 22 | * - persistent bitmap code |
| 23 | * |
| 24 | * This program is free software; you can redistribute it and/or modify |
| 25 | * it under the terms of the GNU General Public License as published by |
| 26 | * the Free Software Foundation; either version 2, or (at your option) |
| 27 | * any later version. |
| 28 | * |
| 29 | * You should have received a copy of the GNU General Public License |
| 30 | * (for example /usr/src/linux/COPYING); if not, write to the Free |
| 31 | * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 32 | */ |
| 33 | |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/delay.h> |
| 36 | #include <linux/blkdev.h> |
| 37 | #include <linux/module.h> |
| 38 | #include <linux/seq_file.h> |
| 39 | #include <linux/ratelimit.h> |
| 40 | |
| 41 | #include <trace/events/block.h> |
| 42 | |
| 43 | #include "md.h" |
| 44 | #include "raid1.h" |
| 45 | #include "md-bitmap.h" |
| 46 | |
| 47 | #define UNSUPPORTED_MDDEV_FLAGS \ |
| 48 | ((1L << MD_HAS_JOURNAL) | \ |
| 49 | (1L << MD_JOURNAL_CLEAN) | \ |
| 50 | (1L << MD_HAS_PPL) | \ |
| 51 | (1L << MD_HAS_MULTIPLE_PPLS)) |
| 52 | |
| 53 | /* |
| 54 | * Number of guaranteed r1bios in case of extreme VM load: |
| 55 | */ |
| 56 | #define NR_RAID1_BIOS 256 |
| 57 | |
| 58 | /* when we get a read error on a read-only array, we redirect to another |
| 59 | * device without failing the first device, or trying to over-write to |
| 60 | * correct the read error. To keep track of bad blocks on a per-bio |
| 61 | * level, we store IO_BLOCKED in the appropriate 'bios' pointer |
| 62 | */ |
| 63 | #define IO_BLOCKED ((struct bio *)1) |
| 64 | /* When we successfully write to a known bad-block, we need to remove the |
| 65 | * bad-block marking which must be done from process context. So we record |
| 66 | * the success by setting devs[n].bio to IO_MADE_GOOD |
| 67 | */ |
| 68 | #define IO_MADE_GOOD ((struct bio *)2) |
| 69 | |
| 70 | #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) |
| 71 | |
| 72 | /* When there are this many requests queue to be written by |
| 73 | * the raid1 thread, we become 'congested' to provide back-pressure |
| 74 | * for writeback. |
| 75 | */ |
| 76 | static int max_queued_requests = 1024; |
| 77 | |
| 78 | static void allow_barrier(struct r1conf *conf, sector_t sector_nr); |
| 79 | static void lower_barrier(struct r1conf *conf, sector_t sector_nr); |
| 80 | |
| 81 | #define raid1_log(md, fmt, args...) \ |
| 82 | do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) |
| 83 | |
| 84 | #include "raid1-10.c" |
| 85 | |
| 86 | /* |
| 87 | * for resync bio, r1bio pointer can be retrieved from the per-bio |
| 88 | * 'struct resync_pages'. |
| 89 | */ |
| 90 | static inline struct r1bio *get_resync_r1bio(struct bio *bio) |
| 91 | { |
| 92 | return get_resync_pages(bio)->raid_bio; |
| 93 | } |
| 94 | |
| 95 | static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) |
| 96 | { |
| 97 | struct pool_info *pi = data; |
| 98 | int size = offsetof(struct r1bio, bios[pi->raid_disks]); |
| 99 | |
| 100 | /* allocate a r1bio with room for raid_disks entries in the bios array */ |
| 101 | return kzalloc(size, gfp_flags); |
| 102 | } |
| 103 | |
| 104 | static void r1bio_pool_free(void *r1_bio, void *data) |
| 105 | { |
| 106 | kfree(r1_bio); |
| 107 | } |
| 108 | |
| 109 | #define RESYNC_DEPTH 32 |
| 110 | #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) |
| 111 | #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) |
| 112 | #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) |
| 113 | #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) |
| 114 | #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) |
| 115 | |
| 116 | static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) |
| 117 | { |
| 118 | struct pool_info *pi = data; |
| 119 | struct r1bio *r1_bio; |
| 120 | struct bio *bio; |
| 121 | int need_pages; |
| 122 | int j; |
| 123 | struct resync_pages *rps; |
| 124 | |
| 125 | r1_bio = r1bio_pool_alloc(gfp_flags, pi); |
| 126 | if (!r1_bio) |
| 127 | return NULL; |
| 128 | |
| 129 | rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), |
| 130 | gfp_flags); |
| 131 | if (!rps) |
| 132 | goto out_free_r1bio; |
| 133 | |
| 134 | /* |
| 135 | * Allocate bios : 1 for reading, n-1 for writing |
| 136 | */ |
| 137 | for (j = pi->raid_disks ; j-- ; ) { |
| 138 | bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); |
| 139 | if (!bio) |
| 140 | goto out_free_bio; |
| 141 | r1_bio->bios[j] = bio; |
| 142 | } |
| 143 | /* |
| 144 | * Allocate RESYNC_PAGES data pages and attach them to |
| 145 | * the first bio. |
| 146 | * If this is a user-requested check/repair, allocate |
| 147 | * RESYNC_PAGES for each bio. |
| 148 | */ |
| 149 | if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) |
| 150 | need_pages = pi->raid_disks; |
| 151 | else |
| 152 | need_pages = 1; |
| 153 | for (j = 0; j < pi->raid_disks; j++) { |
| 154 | struct resync_pages *rp = &rps[j]; |
| 155 | |
| 156 | bio = r1_bio->bios[j]; |
| 157 | |
| 158 | if (j < need_pages) { |
| 159 | if (resync_alloc_pages(rp, gfp_flags)) |
| 160 | goto out_free_pages; |
| 161 | } else { |
| 162 | memcpy(rp, &rps[0], sizeof(*rp)); |
| 163 | resync_get_all_pages(rp); |
| 164 | } |
| 165 | |
| 166 | rp->raid_bio = r1_bio; |
| 167 | bio->bi_private = rp; |
| 168 | } |
| 169 | |
| 170 | r1_bio->master_bio = NULL; |
| 171 | |
| 172 | return r1_bio; |
| 173 | |
| 174 | out_free_pages: |
| 175 | while (--j >= 0) |
| 176 | resync_free_pages(&rps[j]); |
| 177 | |
| 178 | out_free_bio: |
| 179 | while (++j < pi->raid_disks) |
| 180 | bio_put(r1_bio->bios[j]); |
| 181 | kfree(rps); |
| 182 | |
| 183 | out_free_r1bio: |
| 184 | r1bio_pool_free(r1_bio, data); |
| 185 | return NULL; |
| 186 | } |
| 187 | |
| 188 | static void r1buf_pool_free(void *__r1_bio, void *data) |
| 189 | { |
| 190 | struct pool_info *pi = data; |
| 191 | int i; |
| 192 | struct r1bio *r1bio = __r1_bio; |
| 193 | struct resync_pages *rp = NULL; |
| 194 | |
| 195 | for (i = pi->raid_disks; i--; ) { |
| 196 | rp = get_resync_pages(r1bio->bios[i]); |
| 197 | resync_free_pages(rp); |
| 198 | bio_put(r1bio->bios[i]); |
| 199 | } |
| 200 | |
| 201 | /* resync pages array stored in the 1st bio's .bi_private */ |
| 202 | kfree(rp); |
| 203 | |
| 204 | r1bio_pool_free(r1bio, data); |
| 205 | } |
| 206 | |
| 207 | static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) |
| 208 | { |
| 209 | int i; |
| 210 | |
| 211 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 212 | struct bio **bio = r1_bio->bios + i; |
| 213 | if (!BIO_SPECIAL(*bio)) |
| 214 | bio_put(*bio); |
| 215 | *bio = NULL; |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | static void free_r1bio(struct r1bio *r1_bio) |
| 220 | { |
| 221 | struct r1conf *conf = r1_bio->mddev->private; |
| 222 | |
| 223 | put_all_bios(conf, r1_bio); |
| 224 | mempool_free(r1_bio, &conf->r1bio_pool); |
| 225 | } |
| 226 | |
| 227 | static void put_buf(struct r1bio *r1_bio) |
| 228 | { |
| 229 | struct r1conf *conf = r1_bio->mddev->private; |
| 230 | sector_t sect = r1_bio->sector; |
| 231 | int i; |
| 232 | |
| 233 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 234 | struct bio *bio = r1_bio->bios[i]; |
| 235 | if (bio->bi_end_io) |
| 236 | rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); |
| 237 | } |
| 238 | |
| 239 | mempool_free(r1_bio, &conf->r1buf_pool); |
| 240 | |
| 241 | lower_barrier(conf, sect); |
| 242 | } |
| 243 | |
| 244 | static void reschedule_retry(struct r1bio *r1_bio) |
| 245 | { |
| 246 | unsigned long flags; |
| 247 | struct mddev *mddev = r1_bio->mddev; |
| 248 | struct r1conf *conf = mddev->private; |
| 249 | int idx; |
| 250 | |
| 251 | idx = sector_to_idx(r1_bio->sector); |
| 252 | spin_lock_irqsave(&conf->device_lock, flags); |
| 253 | list_add(&r1_bio->retry_list, &conf->retry_list); |
| 254 | atomic_inc(&conf->nr_queued[idx]); |
| 255 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 256 | |
| 257 | wake_up(&conf->wait_barrier); |
| 258 | md_wakeup_thread(mddev->thread); |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * raid_end_bio_io() is called when we have finished servicing a mirrored |
| 263 | * operation and are ready to return a success/failure code to the buffer |
| 264 | * cache layer. |
| 265 | */ |
| 266 | static void call_bio_endio(struct r1bio *r1_bio) |
| 267 | { |
| 268 | struct bio *bio = r1_bio->master_bio; |
| 269 | struct r1conf *conf = r1_bio->mddev->private; |
| 270 | |
| 271 | if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) |
| 272 | bio->bi_status = BLK_STS_IOERR; |
| 273 | |
| 274 | bio_endio(bio); |
| 275 | /* |
| 276 | * Wake up any possible resync thread that waits for the device |
| 277 | * to go idle. |
| 278 | */ |
| 279 | allow_barrier(conf, r1_bio->sector); |
| 280 | } |
| 281 | |
| 282 | static void raid_end_bio_io(struct r1bio *r1_bio) |
| 283 | { |
| 284 | struct bio *bio = r1_bio->master_bio; |
| 285 | |
| 286 | /* if nobody has done the final endio yet, do it now */ |
| 287 | if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { |
| 288 | pr_debug("raid1: sync end %s on sectors %llu-%llu\n", |
| 289 | (bio_data_dir(bio) == WRITE) ? "write" : "read", |
| 290 | (unsigned long long) bio->bi_iter.bi_sector, |
| 291 | (unsigned long long) bio_end_sector(bio) - 1); |
| 292 | |
| 293 | call_bio_endio(r1_bio); |
| 294 | } |
| 295 | free_r1bio(r1_bio); |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * Update disk head position estimator based on IRQ completion info. |
| 300 | */ |
| 301 | static inline void update_head_pos(int disk, struct r1bio *r1_bio) |
| 302 | { |
| 303 | struct r1conf *conf = r1_bio->mddev->private; |
| 304 | |
| 305 | conf->mirrors[disk].head_position = |
| 306 | r1_bio->sector + (r1_bio->sectors); |
| 307 | } |
| 308 | |
| 309 | /* |
| 310 | * Find the disk number which triggered given bio |
| 311 | */ |
| 312 | static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) |
| 313 | { |
| 314 | int mirror; |
| 315 | struct r1conf *conf = r1_bio->mddev->private; |
| 316 | int raid_disks = conf->raid_disks; |
| 317 | |
| 318 | for (mirror = 0; mirror < raid_disks * 2; mirror++) |
| 319 | if (r1_bio->bios[mirror] == bio) |
| 320 | break; |
| 321 | |
| 322 | BUG_ON(mirror == raid_disks * 2); |
| 323 | update_head_pos(mirror, r1_bio); |
| 324 | |
| 325 | return mirror; |
| 326 | } |
| 327 | |
| 328 | static void raid1_end_read_request(struct bio *bio) |
| 329 | { |
| 330 | int uptodate = !bio->bi_status; |
| 331 | struct r1bio *r1_bio = bio->bi_private; |
| 332 | struct r1conf *conf = r1_bio->mddev->private; |
| 333 | struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; |
| 334 | |
| 335 | /* |
| 336 | * this branch is our 'one mirror IO has finished' event handler: |
| 337 | */ |
| 338 | update_head_pos(r1_bio->read_disk, r1_bio); |
| 339 | |
| 340 | if (uptodate) |
| 341 | set_bit(R1BIO_Uptodate, &r1_bio->state); |
| 342 | else if (test_bit(FailFast, &rdev->flags) && |
| 343 | test_bit(R1BIO_FailFast, &r1_bio->state)) |
| 344 | /* This was a fail-fast read so we definitely |
| 345 | * want to retry */ |
| 346 | ; |
| 347 | else { |
| 348 | /* If all other devices have failed, we want to return |
| 349 | * the error upwards rather than fail the last device. |
| 350 | * Here we redefine "uptodate" to mean "Don't want to retry" |
| 351 | */ |
| 352 | unsigned long flags; |
| 353 | spin_lock_irqsave(&conf->device_lock, flags); |
| 354 | if (r1_bio->mddev->degraded == conf->raid_disks || |
| 355 | (r1_bio->mddev->degraded == conf->raid_disks-1 && |
| 356 | test_bit(In_sync, &rdev->flags))) |
| 357 | uptodate = 1; |
| 358 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 359 | } |
| 360 | |
| 361 | if (uptodate) { |
| 362 | raid_end_bio_io(r1_bio); |
| 363 | rdev_dec_pending(rdev, conf->mddev); |
| 364 | } else { |
| 365 | /* |
| 366 | * oops, read error: |
| 367 | */ |
| 368 | char b[BDEVNAME_SIZE]; |
| 369 | pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", |
| 370 | mdname(conf->mddev), |
| 371 | bdevname(rdev->bdev, b), |
| 372 | (unsigned long long)r1_bio->sector); |
| 373 | set_bit(R1BIO_ReadError, &r1_bio->state); |
| 374 | reschedule_retry(r1_bio); |
| 375 | /* don't drop the reference on read_disk yet */ |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | static void close_write(struct r1bio *r1_bio) |
| 380 | { |
| 381 | /* it really is the end of this request */ |
| 382 | if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { |
| 383 | bio_free_pages(r1_bio->behind_master_bio); |
| 384 | bio_put(r1_bio->behind_master_bio); |
| 385 | r1_bio->behind_master_bio = NULL; |
| 386 | } |
| 387 | /* clear the bitmap if all writes complete successfully */ |
| 388 | md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, |
| 389 | r1_bio->sectors, |
| 390 | !test_bit(R1BIO_Degraded, &r1_bio->state), |
| 391 | test_bit(R1BIO_BehindIO, &r1_bio->state)); |
| 392 | md_write_end(r1_bio->mddev); |
| 393 | } |
| 394 | |
| 395 | static void r1_bio_write_done(struct r1bio *r1_bio) |
| 396 | { |
| 397 | if (!atomic_dec_and_test(&r1_bio->remaining)) |
| 398 | return; |
| 399 | |
| 400 | if (test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 401 | reschedule_retry(r1_bio); |
| 402 | else { |
| 403 | close_write(r1_bio); |
| 404 | if (test_bit(R1BIO_MadeGood, &r1_bio->state)) |
| 405 | reschedule_retry(r1_bio); |
| 406 | else |
| 407 | raid_end_bio_io(r1_bio); |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | static void raid1_end_write_request(struct bio *bio) |
| 412 | { |
| 413 | struct r1bio *r1_bio = bio->bi_private; |
| 414 | int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); |
| 415 | struct r1conf *conf = r1_bio->mddev->private; |
| 416 | struct bio *to_put = NULL; |
| 417 | int mirror = find_bio_disk(r1_bio, bio); |
| 418 | struct md_rdev *rdev = conf->mirrors[mirror].rdev; |
| 419 | bool discard_error; |
| 420 | |
| 421 | discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; |
| 422 | |
| 423 | /* |
| 424 | * 'one mirror IO has finished' event handler: |
| 425 | */ |
| 426 | if (bio->bi_status && !discard_error) { |
| 427 | set_bit(WriteErrorSeen, &rdev->flags); |
| 428 | if (!test_and_set_bit(WantReplacement, &rdev->flags)) |
| 429 | set_bit(MD_RECOVERY_NEEDED, & |
| 430 | conf->mddev->recovery); |
| 431 | |
| 432 | if (test_bit(FailFast, &rdev->flags) && |
| 433 | (bio->bi_opf & MD_FAILFAST) && |
| 434 | /* We never try FailFast to WriteMostly devices */ |
| 435 | !test_bit(WriteMostly, &rdev->flags)) { |
| 436 | md_error(r1_bio->mddev, rdev); |
| 437 | if (!test_bit(Faulty, &rdev->flags)) |
| 438 | /* This is the only remaining device, |
| 439 | * We need to retry the write without |
| 440 | * FailFast |
| 441 | */ |
| 442 | set_bit(R1BIO_WriteError, &r1_bio->state); |
| 443 | else { |
| 444 | /* Finished with this branch */ |
| 445 | r1_bio->bios[mirror] = NULL; |
| 446 | to_put = bio; |
| 447 | } |
| 448 | } else |
| 449 | set_bit(R1BIO_WriteError, &r1_bio->state); |
| 450 | } else { |
| 451 | /* |
| 452 | * Set R1BIO_Uptodate in our master bio, so that we |
| 453 | * will return a good error code for to the higher |
| 454 | * levels even if IO on some other mirrored buffer |
| 455 | * fails. |
| 456 | * |
| 457 | * The 'master' represents the composite IO operation |
| 458 | * to user-side. So if something waits for IO, then it |
| 459 | * will wait for the 'master' bio. |
| 460 | */ |
| 461 | sector_t first_bad; |
| 462 | int bad_sectors; |
| 463 | |
| 464 | r1_bio->bios[mirror] = NULL; |
| 465 | to_put = bio; |
| 466 | /* |
| 467 | * Do not set R1BIO_Uptodate if the current device is |
| 468 | * rebuilding or Faulty. This is because we cannot use |
| 469 | * such device for properly reading the data back (we could |
| 470 | * potentially use it, if the current write would have felt |
| 471 | * before rdev->recovery_offset, but for simplicity we don't |
| 472 | * check this here. |
| 473 | */ |
| 474 | if (test_bit(In_sync, &rdev->flags) && |
| 475 | !test_bit(Faulty, &rdev->flags)) |
| 476 | set_bit(R1BIO_Uptodate, &r1_bio->state); |
| 477 | |
| 478 | /* Maybe we can clear some bad blocks. */ |
| 479 | if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, |
| 480 | &first_bad, &bad_sectors) && !discard_error) { |
| 481 | r1_bio->bios[mirror] = IO_MADE_GOOD; |
| 482 | set_bit(R1BIO_MadeGood, &r1_bio->state); |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | if (behind) { |
| 487 | if (test_bit(WriteMostly, &rdev->flags)) |
| 488 | atomic_dec(&r1_bio->behind_remaining); |
| 489 | |
| 490 | /* |
| 491 | * In behind mode, we ACK the master bio once the I/O |
| 492 | * has safely reached all non-writemostly |
| 493 | * disks. Setting the Returned bit ensures that this |
| 494 | * gets done only once -- we don't ever want to return |
| 495 | * -EIO here, instead we'll wait |
| 496 | */ |
| 497 | if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && |
| 498 | test_bit(R1BIO_Uptodate, &r1_bio->state)) { |
| 499 | /* Maybe we can return now */ |
| 500 | if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { |
| 501 | struct bio *mbio = r1_bio->master_bio; |
| 502 | pr_debug("raid1: behind end write sectors" |
| 503 | " %llu-%llu\n", |
| 504 | (unsigned long long) mbio->bi_iter.bi_sector, |
| 505 | (unsigned long long) bio_end_sector(mbio) - 1); |
| 506 | call_bio_endio(r1_bio); |
| 507 | } |
| 508 | } |
| 509 | } |
| 510 | if (r1_bio->bios[mirror] == NULL) |
| 511 | rdev_dec_pending(rdev, conf->mddev); |
| 512 | |
| 513 | /* |
| 514 | * Let's see if all mirrored write operations have finished |
| 515 | * already. |
| 516 | */ |
| 517 | r1_bio_write_done(r1_bio); |
| 518 | |
| 519 | if (to_put) |
| 520 | bio_put(to_put); |
| 521 | } |
| 522 | |
| 523 | static sector_t align_to_barrier_unit_end(sector_t start_sector, |
| 524 | sector_t sectors) |
| 525 | { |
| 526 | sector_t len; |
| 527 | |
| 528 | WARN_ON(sectors == 0); |
| 529 | /* |
| 530 | * len is the number of sectors from start_sector to end of the |
| 531 | * barrier unit which start_sector belongs to. |
| 532 | */ |
| 533 | len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - |
| 534 | start_sector; |
| 535 | |
| 536 | if (len > sectors) |
| 537 | len = sectors; |
| 538 | |
| 539 | return len; |
| 540 | } |
| 541 | |
| 542 | /* |
| 543 | * This routine returns the disk from which the requested read should |
| 544 | * be done. There is a per-array 'next expected sequential IO' sector |
| 545 | * number - if this matches on the next IO then we use the last disk. |
| 546 | * There is also a per-disk 'last know head position' sector that is |
| 547 | * maintained from IRQ contexts, both the normal and the resync IO |
| 548 | * completion handlers update this position correctly. If there is no |
| 549 | * perfect sequential match then we pick the disk whose head is closest. |
| 550 | * |
| 551 | * If there are 2 mirrors in the same 2 devices, performance degrades |
| 552 | * because position is mirror, not device based. |
| 553 | * |
| 554 | * The rdev for the device selected will have nr_pending incremented. |
| 555 | */ |
| 556 | static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) |
| 557 | { |
| 558 | const sector_t this_sector = r1_bio->sector; |
| 559 | int sectors; |
| 560 | int best_good_sectors; |
| 561 | int best_disk, best_dist_disk, best_pending_disk; |
| 562 | int has_nonrot_disk; |
| 563 | int disk; |
| 564 | sector_t best_dist; |
| 565 | unsigned int min_pending; |
| 566 | struct md_rdev *rdev; |
| 567 | int choose_first; |
| 568 | int choose_next_idle; |
| 569 | |
| 570 | rcu_read_lock(); |
| 571 | /* |
| 572 | * Check if we can balance. We can balance on the whole |
| 573 | * device if no resync is going on, or below the resync window. |
| 574 | * We take the first readable disk when above the resync window. |
| 575 | */ |
| 576 | retry: |
| 577 | sectors = r1_bio->sectors; |
| 578 | best_disk = -1; |
| 579 | best_dist_disk = -1; |
| 580 | best_dist = MaxSector; |
| 581 | best_pending_disk = -1; |
| 582 | min_pending = UINT_MAX; |
| 583 | best_good_sectors = 0; |
| 584 | has_nonrot_disk = 0; |
| 585 | choose_next_idle = 0; |
| 586 | clear_bit(R1BIO_FailFast, &r1_bio->state); |
| 587 | |
| 588 | if ((conf->mddev->recovery_cp < this_sector + sectors) || |
| 589 | (mddev_is_clustered(conf->mddev) && |
| 590 | md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, |
| 591 | this_sector + sectors))) |
| 592 | choose_first = 1; |
| 593 | else |
| 594 | choose_first = 0; |
| 595 | |
| 596 | for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { |
| 597 | sector_t dist; |
| 598 | sector_t first_bad; |
| 599 | int bad_sectors; |
| 600 | unsigned int pending; |
| 601 | bool nonrot; |
| 602 | |
| 603 | rdev = rcu_dereference(conf->mirrors[disk].rdev); |
| 604 | if (r1_bio->bios[disk] == IO_BLOCKED |
| 605 | || rdev == NULL |
| 606 | || test_bit(Faulty, &rdev->flags)) |
| 607 | continue; |
| 608 | if (!test_bit(In_sync, &rdev->flags) && |
| 609 | rdev->recovery_offset < this_sector + sectors) |
| 610 | continue; |
| 611 | if (test_bit(WriteMostly, &rdev->flags)) { |
| 612 | /* Don't balance among write-mostly, just |
| 613 | * use the first as a last resort */ |
| 614 | if (best_dist_disk < 0) { |
| 615 | if (is_badblock(rdev, this_sector, sectors, |
| 616 | &first_bad, &bad_sectors)) { |
| 617 | if (first_bad <= this_sector) |
| 618 | /* Cannot use this */ |
| 619 | continue; |
| 620 | best_good_sectors = first_bad - this_sector; |
| 621 | } else |
| 622 | best_good_sectors = sectors; |
| 623 | best_dist_disk = disk; |
| 624 | best_pending_disk = disk; |
| 625 | } |
| 626 | continue; |
| 627 | } |
| 628 | /* This is a reasonable device to use. It might |
| 629 | * even be best. |
| 630 | */ |
| 631 | if (is_badblock(rdev, this_sector, sectors, |
| 632 | &first_bad, &bad_sectors)) { |
| 633 | if (best_dist < MaxSector) |
| 634 | /* already have a better device */ |
| 635 | continue; |
| 636 | if (first_bad <= this_sector) { |
| 637 | /* cannot read here. If this is the 'primary' |
| 638 | * device, then we must not read beyond |
| 639 | * bad_sectors from another device.. |
| 640 | */ |
| 641 | bad_sectors -= (this_sector - first_bad); |
| 642 | if (choose_first && sectors > bad_sectors) |
| 643 | sectors = bad_sectors; |
| 644 | if (best_good_sectors > sectors) |
| 645 | best_good_sectors = sectors; |
| 646 | |
| 647 | } else { |
| 648 | sector_t good_sectors = first_bad - this_sector; |
| 649 | if (good_sectors > best_good_sectors) { |
| 650 | best_good_sectors = good_sectors; |
| 651 | best_disk = disk; |
| 652 | } |
| 653 | if (choose_first) |
| 654 | break; |
| 655 | } |
| 656 | continue; |
| 657 | } else { |
| 658 | if ((sectors > best_good_sectors) && (best_disk >= 0)) |
| 659 | best_disk = -1; |
| 660 | best_good_sectors = sectors; |
| 661 | } |
| 662 | |
| 663 | if (best_disk >= 0) |
| 664 | /* At least two disks to choose from so failfast is OK */ |
| 665 | set_bit(R1BIO_FailFast, &r1_bio->state); |
| 666 | |
| 667 | nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); |
| 668 | has_nonrot_disk |= nonrot; |
| 669 | pending = atomic_read(&rdev->nr_pending); |
| 670 | dist = abs(this_sector - conf->mirrors[disk].head_position); |
| 671 | if (choose_first) { |
| 672 | best_disk = disk; |
| 673 | break; |
| 674 | } |
| 675 | /* Don't change to another disk for sequential reads */ |
| 676 | if (conf->mirrors[disk].next_seq_sect == this_sector |
| 677 | || dist == 0) { |
| 678 | int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; |
| 679 | struct raid1_info *mirror = &conf->mirrors[disk]; |
| 680 | |
| 681 | best_disk = disk; |
| 682 | /* |
| 683 | * If buffered sequential IO size exceeds optimal |
| 684 | * iosize, check if there is idle disk. If yes, choose |
| 685 | * the idle disk. read_balance could already choose an |
| 686 | * idle disk before noticing it's a sequential IO in |
| 687 | * this disk. This doesn't matter because this disk |
| 688 | * will idle, next time it will be utilized after the |
| 689 | * first disk has IO size exceeds optimal iosize. In |
| 690 | * this way, iosize of the first disk will be optimal |
| 691 | * iosize at least. iosize of the second disk might be |
| 692 | * small, but not a big deal since when the second disk |
| 693 | * starts IO, the first disk is likely still busy. |
| 694 | */ |
| 695 | if (nonrot && opt_iosize > 0 && |
| 696 | mirror->seq_start != MaxSector && |
| 697 | mirror->next_seq_sect > opt_iosize && |
| 698 | mirror->next_seq_sect - opt_iosize >= |
| 699 | mirror->seq_start) { |
| 700 | choose_next_idle = 1; |
| 701 | continue; |
| 702 | } |
| 703 | break; |
| 704 | } |
| 705 | |
| 706 | if (choose_next_idle) |
| 707 | continue; |
| 708 | |
| 709 | if (min_pending > pending) { |
| 710 | min_pending = pending; |
| 711 | best_pending_disk = disk; |
| 712 | } |
| 713 | |
| 714 | if (dist < best_dist) { |
| 715 | best_dist = dist; |
| 716 | best_dist_disk = disk; |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | /* |
| 721 | * If all disks are rotational, choose the closest disk. If any disk is |
| 722 | * non-rotational, choose the disk with less pending request even the |
| 723 | * disk is rotational, which might/might not be optimal for raids with |
| 724 | * mixed ratation/non-rotational disks depending on workload. |
| 725 | */ |
| 726 | if (best_disk == -1) { |
| 727 | if (has_nonrot_disk || min_pending == 0) |
| 728 | best_disk = best_pending_disk; |
| 729 | else |
| 730 | best_disk = best_dist_disk; |
| 731 | } |
| 732 | |
| 733 | if (best_disk >= 0) { |
| 734 | rdev = rcu_dereference(conf->mirrors[best_disk].rdev); |
| 735 | if (!rdev) |
| 736 | goto retry; |
| 737 | atomic_inc(&rdev->nr_pending); |
| 738 | sectors = best_good_sectors; |
| 739 | |
| 740 | if (conf->mirrors[best_disk].next_seq_sect != this_sector) |
| 741 | conf->mirrors[best_disk].seq_start = this_sector; |
| 742 | |
| 743 | conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; |
| 744 | } |
| 745 | rcu_read_unlock(); |
| 746 | *max_sectors = sectors; |
| 747 | |
| 748 | return best_disk; |
| 749 | } |
| 750 | |
| 751 | static int raid1_congested(struct mddev *mddev, int bits) |
| 752 | { |
| 753 | struct r1conf *conf = mddev->private; |
| 754 | int i, ret = 0; |
| 755 | |
| 756 | if ((bits & (1 << WB_async_congested)) && |
| 757 | conf->pending_count >= max_queued_requests) |
| 758 | return 1; |
| 759 | |
| 760 | rcu_read_lock(); |
| 761 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 762 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); |
| 763 | if (rdev && !test_bit(Faulty, &rdev->flags)) { |
| 764 | struct request_queue *q = bdev_get_queue(rdev->bdev); |
| 765 | |
| 766 | BUG_ON(!q); |
| 767 | |
| 768 | /* Note the '|| 1' - when read_balance prefers |
| 769 | * non-congested targets, it can be removed |
| 770 | */ |
| 771 | if ((bits & (1 << WB_async_congested)) || 1) |
| 772 | ret |= bdi_congested(q->backing_dev_info, bits); |
| 773 | else |
| 774 | ret &= bdi_congested(q->backing_dev_info, bits); |
| 775 | } |
| 776 | } |
| 777 | rcu_read_unlock(); |
| 778 | return ret; |
| 779 | } |
| 780 | |
| 781 | static void flush_bio_list(struct r1conf *conf, struct bio *bio) |
| 782 | { |
| 783 | /* flush any pending bitmap writes to disk before proceeding w/ I/O */ |
| 784 | md_bitmap_unplug(conf->mddev->bitmap); |
| 785 | wake_up(&conf->wait_barrier); |
| 786 | |
| 787 | while (bio) { /* submit pending writes */ |
| 788 | struct bio *next = bio->bi_next; |
| 789 | struct md_rdev *rdev = (void *)bio->bi_disk; |
| 790 | bio->bi_next = NULL; |
| 791 | bio_set_dev(bio, rdev->bdev); |
| 792 | if (test_bit(Faulty, &rdev->flags)) { |
| 793 | bio_io_error(bio); |
| 794 | } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && |
| 795 | !blk_queue_discard(bio->bi_disk->queue))) |
| 796 | /* Just ignore it */ |
| 797 | bio_endio(bio); |
| 798 | else |
| 799 | generic_make_request(bio); |
| 800 | bio = next; |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | static void flush_pending_writes(struct r1conf *conf) |
| 805 | { |
| 806 | /* Any writes that have been queued but are awaiting |
| 807 | * bitmap updates get flushed here. |
| 808 | */ |
| 809 | spin_lock_irq(&conf->device_lock); |
| 810 | |
| 811 | if (conf->pending_bio_list.head) { |
| 812 | struct blk_plug plug; |
| 813 | struct bio *bio; |
| 814 | |
| 815 | bio = bio_list_get(&conf->pending_bio_list); |
| 816 | conf->pending_count = 0; |
| 817 | spin_unlock_irq(&conf->device_lock); |
| 818 | |
| 819 | /* |
| 820 | * As this is called in a wait_event() loop (see freeze_array), |
| 821 | * current->state might be TASK_UNINTERRUPTIBLE which will |
| 822 | * cause a warning when we prepare to wait again. As it is |
| 823 | * rare that this path is taken, it is perfectly safe to force |
| 824 | * us to go around the wait_event() loop again, so the warning |
| 825 | * is a false-positive. Silence the warning by resetting |
| 826 | * thread state |
| 827 | */ |
| 828 | __set_current_state(TASK_RUNNING); |
| 829 | blk_start_plug(&plug); |
| 830 | flush_bio_list(conf, bio); |
| 831 | blk_finish_plug(&plug); |
| 832 | } else |
| 833 | spin_unlock_irq(&conf->device_lock); |
| 834 | } |
| 835 | |
| 836 | /* Barriers.... |
| 837 | * Sometimes we need to suspend IO while we do something else, |
| 838 | * either some resync/recovery, or reconfigure the array. |
| 839 | * To do this we raise a 'barrier'. |
| 840 | * The 'barrier' is a counter that can be raised multiple times |
| 841 | * to count how many activities are happening which preclude |
| 842 | * normal IO. |
| 843 | * We can only raise the barrier if there is no pending IO. |
| 844 | * i.e. if nr_pending == 0. |
| 845 | * We choose only to raise the barrier if no-one is waiting for the |
| 846 | * barrier to go down. This means that as soon as an IO request |
| 847 | * is ready, no other operations which require a barrier will start |
| 848 | * until the IO request has had a chance. |
| 849 | * |
| 850 | * So: regular IO calls 'wait_barrier'. When that returns there |
| 851 | * is no backgroup IO happening, It must arrange to call |
| 852 | * allow_barrier when it has finished its IO. |
| 853 | * backgroup IO calls must call raise_barrier. Once that returns |
| 854 | * there is no normal IO happeing. It must arrange to call |
| 855 | * lower_barrier when the particular background IO completes. |
| 856 | */ |
| 857 | static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr) |
| 858 | { |
| 859 | int idx = sector_to_idx(sector_nr); |
| 860 | |
| 861 | spin_lock_irq(&conf->resync_lock); |
| 862 | |
| 863 | /* Wait until no block IO is waiting */ |
| 864 | wait_event_lock_irq(conf->wait_barrier, |
| 865 | !atomic_read(&conf->nr_waiting[idx]), |
| 866 | conf->resync_lock); |
| 867 | |
| 868 | /* block any new IO from starting */ |
| 869 | atomic_inc(&conf->barrier[idx]); |
| 870 | /* |
| 871 | * In raise_barrier() we firstly increase conf->barrier[idx] then |
| 872 | * check conf->nr_pending[idx]. In _wait_barrier() we firstly |
| 873 | * increase conf->nr_pending[idx] then check conf->barrier[idx]. |
| 874 | * A memory barrier here to make sure conf->nr_pending[idx] won't |
| 875 | * be fetched before conf->barrier[idx] is increased. Otherwise |
| 876 | * there will be a race between raise_barrier() and _wait_barrier(). |
| 877 | */ |
| 878 | smp_mb__after_atomic(); |
| 879 | |
| 880 | /* For these conditions we must wait: |
| 881 | * A: while the array is in frozen state |
| 882 | * B: while conf->nr_pending[idx] is not 0, meaning regular I/O |
| 883 | * existing in corresponding I/O barrier bucket. |
| 884 | * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches |
| 885 | * max resync count which allowed on current I/O barrier bucket. |
| 886 | */ |
| 887 | wait_event_lock_irq(conf->wait_barrier, |
| 888 | (!conf->array_frozen && |
| 889 | !atomic_read(&conf->nr_pending[idx]) && |
| 890 | atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || |
| 891 | test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), |
| 892 | conf->resync_lock); |
| 893 | |
| 894 | if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { |
| 895 | atomic_dec(&conf->barrier[idx]); |
| 896 | spin_unlock_irq(&conf->resync_lock); |
| 897 | wake_up(&conf->wait_barrier); |
| 898 | return -EINTR; |
| 899 | } |
| 900 | |
| 901 | atomic_inc(&conf->nr_sync_pending); |
| 902 | spin_unlock_irq(&conf->resync_lock); |
| 903 | |
| 904 | return 0; |
| 905 | } |
| 906 | |
| 907 | static void lower_barrier(struct r1conf *conf, sector_t sector_nr) |
| 908 | { |
| 909 | int idx = sector_to_idx(sector_nr); |
| 910 | |
| 911 | BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); |
| 912 | |
| 913 | atomic_dec(&conf->barrier[idx]); |
| 914 | atomic_dec(&conf->nr_sync_pending); |
| 915 | wake_up(&conf->wait_barrier); |
| 916 | } |
| 917 | |
| 918 | static void _wait_barrier(struct r1conf *conf, int idx) |
| 919 | { |
| 920 | /* |
| 921 | * We need to increase conf->nr_pending[idx] very early here, |
| 922 | * then raise_barrier() can be blocked when it waits for |
| 923 | * conf->nr_pending[idx] to be 0. Then we can avoid holding |
| 924 | * conf->resync_lock when there is no barrier raised in same |
| 925 | * barrier unit bucket. Also if the array is frozen, I/O |
| 926 | * should be blocked until array is unfrozen. |
| 927 | */ |
| 928 | atomic_inc(&conf->nr_pending[idx]); |
| 929 | /* |
| 930 | * In _wait_barrier() we firstly increase conf->nr_pending[idx], then |
| 931 | * check conf->barrier[idx]. In raise_barrier() we firstly increase |
| 932 | * conf->barrier[idx], then check conf->nr_pending[idx]. A memory |
| 933 | * barrier is necessary here to make sure conf->barrier[idx] won't be |
| 934 | * fetched before conf->nr_pending[idx] is increased. Otherwise there |
| 935 | * will be a race between _wait_barrier() and raise_barrier(). |
| 936 | */ |
| 937 | smp_mb__after_atomic(); |
| 938 | |
| 939 | /* |
| 940 | * Don't worry about checking two atomic_t variables at same time |
| 941 | * here. If during we check conf->barrier[idx], the array is |
| 942 | * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is |
| 943 | * 0, it is safe to return and make the I/O continue. Because the |
| 944 | * array is frozen, all I/O returned here will eventually complete |
| 945 | * or be queued, no race will happen. See code comment in |
| 946 | * frozen_array(). |
| 947 | */ |
| 948 | if (!READ_ONCE(conf->array_frozen) && |
| 949 | !atomic_read(&conf->barrier[idx])) |
| 950 | return; |
| 951 | |
| 952 | /* |
| 953 | * After holding conf->resync_lock, conf->nr_pending[idx] |
| 954 | * should be decreased before waiting for barrier to drop. |
| 955 | * Otherwise, we may encounter a race condition because |
| 956 | * raise_barrer() might be waiting for conf->nr_pending[idx] |
| 957 | * to be 0 at same time. |
| 958 | */ |
| 959 | spin_lock_irq(&conf->resync_lock); |
| 960 | atomic_inc(&conf->nr_waiting[idx]); |
| 961 | atomic_dec(&conf->nr_pending[idx]); |
| 962 | /* |
| 963 | * In case freeze_array() is waiting for |
| 964 | * get_unqueued_pending() == extra |
| 965 | */ |
| 966 | wake_up(&conf->wait_barrier); |
| 967 | /* Wait for the barrier in same barrier unit bucket to drop. */ |
| 968 | wait_event_lock_irq(conf->wait_barrier, |
| 969 | !conf->array_frozen && |
| 970 | !atomic_read(&conf->barrier[idx]), |
| 971 | conf->resync_lock); |
| 972 | atomic_inc(&conf->nr_pending[idx]); |
| 973 | atomic_dec(&conf->nr_waiting[idx]); |
| 974 | spin_unlock_irq(&conf->resync_lock); |
| 975 | } |
| 976 | |
| 977 | static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) |
| 978 | { |
| 979 | int idx = sector_to_idx(sector_nr); |
| 980 | |
| 981 | /* |
| 982 | * Very similar to _wait_barrier(). The difference is, for read |
| 983 | * I/O we don't need wait for sync I/O, but if the whole array |
| 984 | * is frozen, the read I/O still has to wait until the array is |
| 985 | * unfrozen. Since there is no ordering requirement with |
| 986 | * conf->barrier[idx] here, memory barrier is unnecessary as well. |
| 987 | */ |
| 988 | atomic_inc(&conf->nr_pending[idx]); |
| 989 | |
| 990 | if (!READ_ONCE(conf->array_frozen)) |
| 991 | return; |
| 992 | |
| 993 | spin_lock_irq(&conf->resync_lock); |
| 994 | atomic_inc(&conf->nr_waiting[idx]); |
| 995 | atomic_dec(&conf->nr_pending[idx]); |
| 996 | /* |
| 997 | * In case freeze_array() is waiting for |
| 998 | * get_unqueued_pending() == extra |
| 999 | */ |
| 1000 | wake_up(&conf->wait_barrier); |
| 1001 | /* Wait for array to be unfrozen */ |
| 1002 | wait_event_lock_irq(conf->wait_barrier, |
| 1003 | !conf->array_frozen, |
| 1004 | conf->resync_lock); |
| 1005 | atomic_inc(&conf->nr_pending[idx]); |
| 1006 | atomic_dec(&conf->nr_waiting[idx]); |
| 1007 | spin_unlock_irq(&conf->resync_lock); |
| 1008 | } |
| 1009 | |
| 1010 | static void wait_barrier(struct r1conf *conf, sector_t sector_nr) |
| 1011 | { |
| 1012 | int idx = sector_to_idx(sector_nr); |
| 1013 | |
| 1014 | _wait_barrier(conf, idx); |
| 1015 | } |
| 1016 | |
| 1017 | static void _allow_barrier(struct r1conf *conf, int idx) |
| 1018 | { |
| 1019 | atomic_dec(&conf->nr_pending[idx]); |
| 1020 | wake_up(&conf->wait_barrier); |
| 1021 | } |
| 1022 | |
| 1023 | static void allow_barrier(struct r1conf *conf, sector_t sector_nr) |
| 1024 | { |
| 1025 | int idx = sector_to_idx(sector_nr); |
| 1026 | |
| 1027 | _allow_barrier(conf, idx); |
| 1028 | } |
| 1029 | |
| 1030 | /* conf->resync_lock should be held */ |
| 1031 | static int get_unqueued_pending(struct r1conf *conf) |
| 1032 | { |
| 1033 | int idx, ret; |
| 1034 | |
| 1035 | ret = atomic_read(&conf->nr_sync_pending); |
| 1036 | for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) |
| 1037 | ret += atomic_read(&conf->nr_pending[idx]) - |
| 1038 | atomic_read(&conf->nr_queued[idx]); |
| 1039 | |
| 1040 | return ret; |
| 1041 | } |
| 1042 | |
| 1043 | static void freeze_array(struct r1conf *conf, int extra) |
| 1044 | { |
| 1045 | /* Stop sync I/O and normal I/O and wait for everything to |
| 1046 | * go quiet. |
| 1047 | * This is called in two situations: |
| 1048 | * 1) management command handlers (reshape, remove disk, quiesce). |
| 1049 | * 2) one normal I/O request failed. |
| 1050 | |
| 1051 | * After array_frozen is set to 1, new sync IO will be blocked at |
| 1052 | * raise_barrier(), and new normal I/O will blocked at _wait_barrier() |
| 1053 | * or wait_read_barrier(). The flying I/Os will either complete or be |
| 1054 | * queued. When everything goes quite, there are only queued I/Os left. |
| 1055 | |
| 1056 | * Every flying I/O contributes to a conf->nr_pending[idx], idx is the |
| 1057 | * barrier bucket index which this I/O request hits. When all sync and |
| 1058 | * normal I/O are queued, sum of all conf->nr_pending[] will match sum |
| 1059 | * of all conf->nr_queued[]. But normal I/O failure is an exception, |
| 1060 | * in handle_read_error(), we may call freeze_array() before trying to |
| 1061 | * fix the read error. In this case, the error read I/O is not queued, |
| 1062 | * so get_unqueued_pending() == 1. |
| 1063 | * |
| 1064 | * Therefore before this function returns, we need to wait until |
| 1065 | * get_unqueued_pendings(conf) gets equal to extra. For |
| 1066 | * normal I/O context, extra is 1, in rested situations extra is 0. |
| 1067 | */ |
| 1068 | spin_lock_irq(&conf->resync_lock); |
| 1069 | conf->array_frozen = 1; |
| 1070 | raid1_log(conf->mddev, "wait freeze"); |
| 1071 | wait_event_lock_irq_cmd( |
| 1072 | conf->wait_barrier, |
| 1073 | get_unqueued_pending(conf) == extra, |
| 1074 | conf->resync_lock, |
| 1075 | flush_pending_writes(conf)); |
| 1076 | spin_unlock_irq(&conf->resync_lock); |
| 1077 | } |
| 1078 | static void unfreeze_array(struct r1conf *conf) |
| 1079 | { |
| 1080 | /* reverse the effect of the freeze */ |
| 1081 | spin_lock_irq(&conf->resync_lock); |
| 1082 | conf->array_frozen = 0; |
| 1083 | spin_unlock_irq(&conf->resync_lock); |
| 1084 | wake_up(&conf->wait_barrier); |
| 1085 | } |
| 1086 | |
| 1087 | static void alloc_behind_master_bio(struct r1bio *r1_bio, |
| 1088 | struct bio *bio) |
| 1089 | { |
| 1090 | int size = bio->bi_iter.bi_size; |
| 1091 | unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 1092 | int i = 0; |
| 1093 | struct bio *behind_bio = NULL; |
| 1094 | |
| 1095 | behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); |
| 1096 | if (!behind_bio) |
| 1097 | return; |
| 1098 | |
| 1099 | /* discard op, we don't support writezero/writesame yet */ |
| 1100 | if (!bio_has_data(bio)) { |
| 1101 | behind_bio->bi_iter.bi_size = size; |
| 1102 | goto skip_copy; |
| 1103 | } |
| 1104 | |
| 1105 | behind_bio->bi_write_hint = bio->bi_write_hint; |
| 1106 | |
| 1107 | while (i < vcnt && size) { |
| 1108 | struct page *page; |
| 1109 | int len = min_t(int, PAGE_SIZE, size); |
| 1110 | |
| 1111 | page = alloc_page(GFP_NOIO); |
| 1112 | if (unlikely(!page)) |
| 1113 | goto free_pages; |
| 1114 | |
| 1115 | bio_add_page(behind_bio, page, len, 0); |
| 1116 | |
| 1117 | size -= len; |
| 1118 | i++; |
| 1119 | } |
| 1120 | |
| 1121 | bio_copy_data(behind_bio, bio); |
| 1122 | skip_copy: |
| 1123 | r1_bio->behind_master_bio = behind_bio; |
| 1124 | set_bit(R1BIO_BehindIO, &r1_bio->state); |
| 1125 | |
| 1126 | return; |
| 1127 | |
| 1128 | free_pages: |
| 1129 | pr_debug("%dB behind alloc failed, doing sync I/O\n", |
| 1130 | bio->bi_iter.bi_size); |
| 1131 | bio_free_pages(behind_bio); |
| 1132 | bio_put(behind_bio); |
| 1133 | } |
| 1134 | |
| 1135 | struct raid1_plug_cb { |
| 1136 | struct blk_plug_cb cb; |
| 1137 | struct bio_list pending; |
| 1138 | int pending_cnt; |
| 1139 | }; |
| 1140 | |
| 1141 | static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) |
| 1142 | { |
| 1143 | struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, |
| 1144 | cb); |
| 1145 | struct mddev *mddev = plug->cb.data; |
| 1146 | struct r1conf *conf = mddev->private; |
| 1147 | struct bio *bio; |
| 1148 | |
| 1149 | if (from_schedule || current->bio_list) { |
| 1150 | spin_lock_irq(&conf->device_lock); |
| 1151 | bio_list_merge(&conf->pending_bio_list, &plug->pending); |
| 1152 | conf->pending_count += plug->pending_cnt; |
| 1153 | spin_unlock_irq(&conf->device_lock); |
| 1154 | wake_up(&conf->wait_barrier); |
| 1155 | md_wakeup_thread(mddev->thread); |
| 1156 | kfree(plug); |
| 1157 | return; |
| 1158 | } |
| 1159 | |
| 1160 | /* we aren't scheduling, so we can do the write-out directly. */ |
| 1161 | bio = bio_list_get(&plug->pending); |
| 1162 | flush_bio_list(conf, bio); |
| 1163 | kfree(plug); |
| 1164 | } |
| 1165 | |
| 1166 | static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) |
| 1167 | { |
| 1168 | r1_bio->master_bio = bio; |
| 1169 | r1_bio->sectors = bio_sectors(bio); |
| 1170 | r1_bio->state = 0; |
| 1171 | r1_bio->mddev = mddev; |
| 1172 | r1_bio->sector = bio->bi_iter.bi_sector; |
| 1173 | } |
| 1174 | |
| 1175 | static inline struct r1bio * |
| 1176 | alloc_r1bio(struct mddev *mddev, struct bio *bio) |
| 1177 | { |
| 1178 | struct r1conf *conf = mddev->private; |
| 1179 | struct r1bio *r1_bio; |
| 1180 | |
| 1181 | r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); |
| 1182 | /* Ensure no bio records IO_BLOCKED */ |
| 1183 | memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); |
| 1184 | init_r1bio(r1_bio, mddev, bio); |
| 1185 | return r1_bio; |
| 1186 | } |
| 1187 | |
| 1188 | static void raid1_read_request(struct mddev *mddev, struct bio *bio, |
| 1189 | int max_read_sectors, struct r1bio *r1_bio) |
| 1190 | { |
| 1191 | struct r1conf *conf = mddev->private; |
| 1192 | struct raid1_info *mirror; |
| 1193 | struct bio *read_bio; |
| 1194 | struct bitmap *bitmap = mddev->bitmap; |
| 1195 | const int op = bio_op(bio); |
| 1196 | const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); |
| 1197 | int max_sectors; |
| 1198 | int rdisk; |
| 1199 | bool print_msg = !!r1_bio; |
| 1200 | char b[BDEVNAME_SIZE]; |
| 1201 | |
| 1202 | /* |
| 1203 | * If r1_bio is set, we are blocking the raid1d thread |
| 1204 | * so there is a tiny risk of deadlock. So ask for |
| 1205 | * emergency memory if needed. |
| 1206 | */ |
| 1207 | gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; |
| 1208 | |
| 1209 | if (print_msg) { |
| 1210 | /* Need to get the block device name carefully */ |
| 1211 | struct md_rdev *rdev; |
| 1212 | rcu_read_lock(); |
| 1213 | rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); |
| 1214 | if (rdev) |
| 1215 | bdevname(rdev->bdev, b); |
| 1216 | else |
| 1217 | strcpy(b, "???"); |
| 1218 | rcu_read_unlock(); |
| 1219 | } |
| 1220 | |
| 1221 | /* |
| 1222 | * Still need barrier for READ in case that whole |
| 1223 | * array is frozen. |
| 1224 | */ |
| 1225 | wait_read_barrier(conf, bio->bi_iter.bi_sector); |
| 1226 | |
| 1227 | if (!r1_bio) |
| 1228 | r1_bio = alloc_r1bio(mddev, bio); |
| 1229 | else |
| 1230 | init_r1bio(r1_bio, mddev, bio); |
| 1231 | r1_bio->sectors = max_read_sectors; |
| 1232 | |
| 1233 | /* |
| 1234 | * make_request() can abort the operation when read-ahead is being |
| 1235 | * used and no empty request is available. |
| 1236 | */ |
| 1237 | rdisk = read_balance(conf, r1_bio, &max_sectors); |
| 1238 | |
| 1239 | if (rdisk < 0) { |
| 1240 | /* couldn't find anywhere to read from */ |
| 1241 | if (print_msg) { |
| 1242 | pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", |
| 1243 | mdname(mddev), |
| 1244 | b, |
| 1245 | (unsigned long long)r1_bio->sector); |
| 1246 | } |
| 1247 | raid_end_bio_io(r1_bio); |
| 1248 | return; |
| 1249 | } |
| 1250 | mirror = conf->mirrors + rdisk; |
| 1251 | |
| 1252 | if (print_msg) |
| 1253 | pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", |
| 1254 | mdname(mddev), |
| 1255 | (unsigned long long)r1_bio->sector, |
| 1256 | bdevname(mirror->rdev->bdev, b)); |
| 1257 | |
| 1258 | if (test_bit(WriteMostly, &mirror->rdev->flags) && |
| 1259 | bitmap) { |
| 1260 | /* |
| 1261 | * Reading from a write-mostly device must take care not to |
| 1262 | * over-take any writes that are 'behind' |
| 1263 | */ |
| 1264 | raid1_log(mddev, "wait behind writes"); |
| 1265 | wait_event(bitmap->behind_wait, |
| 1266 | atomic_read(&bitmap->behind_writes) == 0); |
| 1267 | } |
| 1268 | |
| 1269 | if (max_sectors < bio_sectors(bio)) { |
| 1270 | struct bio *split = bio_split(bio, max_sectors, |
| 1271 | gfp, &conf->bio_split); |
| 1272 | bio_chain(split, bio); |
| 1273 | generic_make_request(bio); |
| 1274 | bio = split; |
| 1275 | r1_bio->master_bio = bio; |
| 1276 | r1_bio->sectors = max_sectors; |
| 1277 | } |
| 1278 | |
| 1279 | r1_bio->read_disk = rdisk; |
| 1280 | |
| 1281 | read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); |
| 1282 | |
| 1283 | r1_bio->bios[rdisk] = read_bio; |
| 1284 | |
| 1285 | read_bio->bi_iter.bi_sector = r1_bio->sector + |
| 1286 | mirror->rdev->data_offset; |
| 1287 | bio_set_dev(read_bio, mirror->rdev->bdev); |
| 1288 | read_bio->bi_end_io = raid1_end_read_request; |
| 1289 | bio_set_op_attrs(read_bio, op, do_sync); |
| 1290 | if (test_bit(FailFast, &mirror->rdev->flags) && |
| 1291 | test_bit(R1BIO_FailFast, &r1_bio->state)) |
| 1292 | read_bio->bi_opf |= MD_FAILFAST; |
| 1293 | read_bio->bi_private = r1_bio; |
| 1294 | |
| 1295 | if (mddev->gendisk) |
| 1296 | trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, |
| 1297 | disk_devt(mddev->gendisk), r1_bio->sector); |
| 1298 | |
| 1299 | generic_make_request(read_bio); |
| 1300 | } |
| 1301 | |
| 1302 | static void raid1_write_request(struct mddev *mddev, struct bio *bio, |
| 1303 | int max_write_sectors) |
| 1304 | { |
| 1305 | struct r1conf *conf = mddev->private; |
| 1306 | struct r1bio *r1_bio; |
| 1307 | int i, disks; |
| 1308 | struct bitmap *bitmap = mddev->bitmap; |
| 1309 | unsigned long flags; |
| 1310 | struct md_rdev *blocked_rdev; |
| 1311 | struct blk_plug_cb *cb; |
| 1312 | struct raid1_plug_cb *plug = NULL; |
| 1313 | int first_clone; |
| 1314 | int max_sectors; |
| 1315 | |
| 1316 | if (mddev_is_clustered(mddev) && |
| 1317 | md_cluster_ops->area_resyncing(mddev, WRITE, |
| 1318 | bio->bi_iter.bi_sector, bio_end_sector(bio))) { |
| 1319 | |
| 1320 | DEFINE_WAIT(w); |
| 1321 | for (;;) { |
| 1322 | prepare_to_wait(&conf->wait_barrier, |
| 1323 | &w, TASK_IDLE); |
| 1324 | if (!md_cluster_ops->area_resyncing(mddev, WRITE, |
| 1325 | bio->bi_iter.bi_sector, |
| 1326 | bio_end_sector(bio))) |
| 1327 | break; |
| 1328 | schedule(); |
| 1329 | } |
| 1330 | finish_wait(&conf->wait_barrier, &w); |
| 1331 | } |
| 1332 | |
| 1333 | /* |
| 1334 | * Register the new request and wait if the reconstruction |
| 1335 | * thread has put up a bar for new requests. |
| 1336 | * Continue immediately if no resync is active currently. |
| 1337 | */ |
| 1338 | wait_barrier(conf, bio->bi_iter.bi_sector); |
| 1339 | |
| 1340 | r1_bio = alloc_r1bio(mddev, bio); |
| 1341 | r1_bio->sectors = max_write_sectors; |
| 1342 | |
| 1343 | if (conf->pending_count >= max_queued_requests) { |
| 1344 | md_wakeup_thread(mddev->thread); |
| 1345 | raid1_log(mddev, "wait queued"); |
| 1346 | wait_event(conf->wait_barrier, |
| 1347 | conf->pending_count < max_queued_requests); |
| 1348 | } |
| 1349 | /* first select target devices under rcu_lock and |
| 1350 | * inc refcount on their rdev. Record them by setting |
| 1351 | * bios[x] to bio |
| 1352 | * If there are known/acknowledged bad blocks on any device on |
| 1353 | * which we have seen a write error, we want to avoid writing those |
| 1354 | * blocks. |
| 1355 | * This potentially requires several writes to write around |
| 1356 | * the bad blocks. Each set of writes gets it's own r1bio |
| 1357 | * with a set of bios attached. |
| 1358 | */ |
| 1359 | |
| 1360 | disks = conf->raid_disks * 2; |
| 1361 | retry_write: |
| 1362 | blocked_rdev = NULL; |
| 1363 | rcu_read_lock(); |
| 1364 | max_sectors = r1_bio->sectors; |
| 1365 | for (i = 0; i < disks; i++) { |
| 1366 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); |
| 1367 | if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { |
| 1368 | atomic_inc(&rdev->nr_pending); |
| 1369 | blocked_rdev = rdev; |
| 1370 | break; |
| 1371 | } |
| 1372 | r1_bio->bios[i] = NULL; |
| 1373 | if (!rdev || test_bit(Faulty, &rdev->flags)) { |
| 1374 | if (i < conf->raid_disks) |
| 1375 | set_bit(R1BIO_Degraded, &r1_bio->state); |
| 1376 | continue; |
| 1377 | } |
| 1378 | |
| 1379 | atomic_inc(&rdev->nr_pending); |
| 1380 | if (test_bit(WriteErrorSeen, &rdev->flags)) { |
| 1381 | sector_t first_bad; |
| 1382 | int bad_sectors; |
| 1383 | int is_bad; |
| 1384 | |
| 1385 | is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, |
| 1386 | &first_bad, &bad_sectors); |
| 1387 | if (is_bad < 0) { |
| 1388 | /* mustn't write here until the bad block is |
| 1389 | * acknowledged*/ |
| 1390 | set_bit(BlockedBadBlocks, &rdev->flags); |
| 1391 | blocked_rdev = rdev; |
| 1392 | break; |
| 1393 | } |
| 1394 | if (is_bad && first_bad <= r1_bio->sector) { |
| 1395 | /* Cannot write here at all */ |
| 1396 | bad_sectors -= (r1_bio->sector - first_bad); |
| 1397 | if (bad_sectors < max_sectors) |
| 1398 | /* mustn't write more than bad_sectors |
| 1399 | * to other devices yet |
| 1400 | */ |
| 1401 | max_sectors = bad_sectors; |
| 1402 | rdev_dec_pending(rdev, mddev); |
| 1403 | /* We don't set R1BIO_Degraded as that |
| 1404 | * only applies if the disk is |
| 1405 | * missing, so it might be re-added, |
| 1406 | * and we want to know to recover this |
| 1407 | * chunk. |
| 1408 | * In this case the device is here, |
| 1409 | * and the fact that this chunk is not |
| 1410 | * in-sync is recorded in the bad |
| 1411 | * block log |
| 1412 | */ |
| 1413 | continue; |
| 1414 | } |
| 1415 | if (is_bad) { |
| 1416 | int good_sectors = first_bad - r1_bio->sector; |
| 1417 | if (good_sectors < max_sectors) |
| 1418 | max_sectors = good_sectors; |
| 1419 | } |
| 1420 | } |
| 1421 | r1_bio->bios[i] = bio; |
| 1422 | } |
| 1423 | rcu_read_unlock(); |
| 1424 | |
| 1425 | if (unlikely(blocked_rdev)) { |
| 1426 | /* Wait for this device to become unblocked */ |
| 1427 | int j; |
| 1428 | |
| 1429 | for (j = 0; j < i; j++) |
| 1430 | if (r1_bio->bios[j]) |
| 1431 | rdev_dec_pending(conf->mirrors[j].rdev, mddev); |
| 1432 | r1_bio->state = 0; |
| 1433 | allow_barrier(conf, bio->bi_iter.bi_sector); |
| 1434 | raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); |
| 1435 | md_wait_for_blocked_rdev(blocked_rdev, mddev); |
| 1436 | wait_barrier(conf, bio->bi_iter.bi_sector); |
| 1437 | goto retry_write; |
| 1438 | } |
| 1439 | |
| 1440 | if (max_sectors < bio_sectors(bio)) { |
| 1441 | struct bio *split = bio_split(bio, max_sectors, |
| 1442 | GFP_NOIO, &conf->bio_split); |
| 1443 | bio_chain(split, bio); |
| 1444 | generic_make_request(bio); |
| 1445 | bio = split; |
| 1446 | r1_bio->master_bio = bio; |
| 1447 | r1_bio->sectors = max_sectors; |
| 1448 | } |
| 1449 | |
| 1450 | atomic_set(&r1_bio->remaining, 1); |
| 1451 | atomic_set(&r1_bio->behind_remaining, 0); |
| 1452 | |
| 1453 | first_clone = 1; |
| 1454 | |
| 1455 | for (i = 0; i < disks; i++) { |
| 1456 | struct bio *mbio = NULL; |
| 1457 | if (!r1_bio->bios[i]) |
| 1458 | continue; |
| 1459 | |
| 1460 | |
| 1461 | if (first_clone) { |
| 1462 | /* do behind I/O ? |
| 1463 | * Not if there are too many, or cannot |
| 1464 | * allocate memory, or a reader on WriteMostly |
| 1465 | * is waiting for behind writes to flush */ |
| 1466 | if (bitmap && |
| 1467 | (atomic_read(&bitmap->behind_writes) |
| 1468 | < mddev->bitmap_info.max_write_behind) && |
| 1469 | !waitqueue_active(&bitmap->behind_wait)) { |
| 1470 | alloc_behind_master_bio(r1_bio, bio); |
| 1471 | } |
| 1472 | |
| 1473 | md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, |
| 1474 | test_bit(R1BIO_BehindIO, &r1_bio->state)); |
| 1475 | first_clone = 0; |
| 1476 | } |
| 1477 | |
| 1478 | if (r1_bio->behind_master_bio) |
| 1479 | mbio = bio_clone_fast(r1_bio->behind_master_bio, |
| 1480 | GFP_NOIO, &mddev->bio_set); |
| 1481 | else |
| 1482 | mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); |
| 1483 | |
| 1484 | if (r1_bio->behind_master_bio) { |
| 1485 | if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) |
| 1486 | atomic_inc(&r1_bio->behind_remaining); |
| 1487 | } |
| 1488 | |
| 1489 | r1_bio->bios[i] = mbio; |
| 1490 | |
| 1491 | mbio->bi_iter.bi_sector = (r1_bio->sector + |
| 1492 | conf->mirrors[i].rdev->data_offset); |
| 1493 | bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); |
| 1494 | mbio->bi_end_io = raid1_end_write_request; |
| 1495 | mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); |
| 1496 | if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && |
| 1497 | !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && |
| 1498 | conf->raid_disks - mddev->degraded > 1) |
| 1499 | mbio->bi_opf |= MD_FAILFAST; |
| 1500 | mbio->bi_private = r1_bio; |
| 1501 | |
| 1502 | atomic_inc(&r1_bio->remaining); |
| 1503 | |
| 1504 | if (mddev->gendisk) |
| 1505 | trace_block_bio_remap(mbio->bi_disk->queue, |
| 1506 | mbio, disk_devt(mddev->gendisk), |
| 1507 | r1_bio->sector); |
| 1508 | /* flush_pending_writes() needs access to the rdev so...*/ |
| 1509 | mbio->bi_disk = (void *)conf->mirrors[i].rdev; |
| 1510 | |
| 1511 | cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); |
| 1512 | if (cb) |
| 1513 | plug = container_of(cb, struct raid1_plug_cb, cb); |
| 1514 | else |
| 1515 | plug = NULL; |
| 1516 | if (plug) { |
| 1517 | bio_list_add(&plug->pending, mbio); |
| 1518 | plug->pending_cnt++; |
| 1519 | } else { |
| 1520 | spin_lock_irqsave(&conf->device_lock, flags); |
| 1521 | bio_list_add(&conf->pending_bio_list, mbio); |
| 1522 | conf->pending_count++; |
| 1523 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 1524 | md_wakeup_thread(mddev->thread); |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | r1_bio_write_done(r1_bio); |
| 1529 | |
| 1530 | /* In case raid1d snuck in to freeze_array */ |
| 1531 | wake_up(&conf->wait_barrier); |
| 1532 | } |
| 1533 | |
| 1534 | static bool raid1_make_request(struct mddev *mddev, struct bio *bio) |
| 1535 | { |
| 1536 | sector_t sectors; |
| 1537 | |
| 1538 | if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { |
| 1539 | md_flush_request(mddev, bio); |
| 1540 | return true; |
| 1541 | } |
| 1542 | |
| 1543 | /* |
| 1544 | * There is a limit to the maximum size, but |
| 1545 | * the read/write handler might find a lower limit |
| 1546 | * due to bad blocks. To avoid multiple splits, |
| 1547 | * we pass the maximum number of sectors down |
| 1548 | * and let the lower level perform the split. |
| 1549 | */ |
| 1550 | sectors = align_to_barrier_unit_end( |
| 1551 | bio->bi_iter.bi_sector, bio_sectors(bio)); |
| 1552 | |
| 1553 | if (bio_data_dir(bio) == READ) |
| 1554 | raid1_read_request(mddev, bio, sectors, NULL); |
| 1555 | else { |
| 1556 | if (!md_write_start(mddev,bio)) |
| 1557 | return false; |
| 1558 | raid1_write_request(mddev, bio, sectors); |
| 1559 | } |
| 1560 | return true; |
| 1561 | } |
| 1562 | |
| 1563 | static void raid1_status(struct seq_file *seq, struct mddev *mddev) |
| 1564 | { |
| 1565 | struct r1conf *conf = mddev->private; |
| 1566 | int i; |
| 1567 | |
| 1568 | seq_printf(seq, " [%d/%d] [", conf->raid_disks, |
| 1569 | conf->raid_disks - mddev->degraded); |
| 1570 | rcu_read_lock(); |
| 1571 | for (i = 0; i < conf->raid_disks; i++) { |
| 1572 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); |
| 1573 | seq_printf(seq, "%s", |
| 1574 | rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); |
| 1575 | } |
| 1576 | rcu_read_unlock(); |
| 1577 | seq_printf(seq, "]"); |
| 1578 | } |
| 1579 | |
| 1580 | static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) |
| 1581 | { |
| 1582 | char b[BDEVNAME_SIZE]; |
| 1583 | struct r1conf *conf = mddev->private; |
| 1584 | unsigned long flags; |
| 1585 | |
| 1586 | /* |
| 1587 | * If it is not operational, then we have already marked it as dead |
| 1588 | * else if it is the last working disks, ignore the error, let the |
| 1589 | * next level up know. |
| 1590 | * else mark the drive as failed |
| 1591 | */ |
| 1592 | spin_lock_irqsave(&conf->device_lock, flags); |
| 1593 | if (test_bit(In_sync, &rdev->flags) |
| 1594 | && (conf->raid_disks - mddev->degraded) == 1) { |
| 1595 | /* |
| 1596 | * Don't fail the drive, act as though we were just a |
| 1597 | * normal single drive. |
| 1598 | * However don't try a recovery from this drive as |
| 1599 | * it is very likely to fail. |
| 1600 | */ |
| 1601 | conf->recovery_disabled = mddev->recovery_disabled; |
| 1602 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 1603 | return; |
| 1604 | } |
| 1605 | set_bit(Blocked, &rdev->flags); |
| 1606 | if (test_and_clear_bit(In_sync, &rdev->flags)) { |
| 1607 | mddev->degraded++; |
| 1608 | set_bit(Faulty, &rdev->flags); |
| 1609 | } else |
| 1610 | set_bit(Faulty, &rdev->flags); |
| 1611 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 1612 | /* |
| 1613 | * if recovery is running, make sure it aborts. |
| 1614 | */ |
| 1615 | set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
| 1616 | set_mask_bits(&mddev->sb_flags, 0, |
| 1617 | BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); |
| 1618 | pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" |
| 1619 | "md/raid1:%s: Operation continuing on %d devices.\n", |
| 1620 | mdname(mddev), bdevname(rdev->bdev, b), |
| 1621 | mdname(mddev), conf->raid_disks - mddev->degraded); |
| 1622 | } |
| 1623 | |
| 1624 | static void print_conf(struct r1conf *conf) |
| 1625 | { |
| 1626 | int i; |
| 1627 | |
| 1628 | pr_debug("RAID1 conf printout:\n"); |
| 1629 | if (!conf) { |
| 1630 | pr_debug("(!conf)\n"); |
| 1631 | return; |
| 1632 | } |
| 1633 | pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, |
| 1634 | conf->raid_disks); |
| 1635 | |
| 1636 | rcu_read_lock(); |
| 1637 | for (i = 0; i < conf->raid_disks; i++) { |
| 1638 | char b[BDEVNAME_SIZE]; |
| 1639 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); |
| 1640 | if (rdev) |
| 1641 | pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", |
| 1642 | i, !test_bit(In_sync, &rdev->flags), |
| 1643 | !test_bit(Faulty, &rdev->flags), |
| 1644 | bdevname(rdev->bdev,b)); |
| 1645 | } |
| 1646 | rcu_read_unlock(); |
| 1647 | } |
| 1648 | |
| 1649 | static void close_sync(struct r1conf *conf) |
| 1650 | { |
| 1651 | int idx; |
| 1652 | |
| 1653 | for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { |
| 1654 | _wait_barrier(conf, idx); |
| 1655 | _allow_barrier(conf, idx); |
| 1656 | } |
| 1657 | |
| 1658 | mempool_exit(&conf->r1buf_pool); |
| 1659 | } |
| 1660 | |
| 1661 | static int raid1_spare_active(struct mddev *mddev) |
| 1662 | { |
| 1663 | int i; |
| 1664 | struct r1conf *conf = mddev->private; |
| 1665 | int count = 0; |
| 1666 | unsigned long flags; |
| 1667 | |
| 1668 | /* |
| 1669 | * Find all failed disks within the RAID1 configuration |
| 1670 | * and mark them readable. |
| 1671 | * Called under mddev lock, so rcu protection not needed. |
| 1672 | * device_lock used to avoid races with raid1_end_read_request |
| 1673 | * which expects 'In_sync' flags and ->degraded to be consistent. |
| 1674 | */ |
| 1675 | spin_lock_irqsave(&conf->device_lock, flags); |
| 1676 | for (i = 0; i < conf->raid_disks; i++) { |
| 1677 | struct md_rdev *rdev = conf->mirrors[i].rdev; |
| 1678 | struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; |
| 1679 | if (repl |
| 1680 | && !test_bit(Candidate, &repl->flags) |
| 1681 | && repl->recovery_offset == MaxSector |
| 1682 | && !test_bit(Faulty, &repl->flags) |
| 1683 | && !test_and_set_bit(In_sync, &repl->flags)) { |
| 1684 | /* replacement has just become active */ |
| 1685 | if (!rdev || |
| 1686 | !test_and_clear_bit(In_sync, &rdev->flags)) |
| 1687 | count++; |
| 1688 | if (rdev) { |
| 1689 | /* Replaced device not technically |
| 1690 | * faulty, but we need to be sure |
| 1691 | * it gets removed and never re-added |
| 1692 | */ |
| 1693 | set_bit(Faulty, &rdev->flags); |
| 1694 | sysfs_notify_dirent_safe( |
| 1695 | rdev->sysfs_state); |
| 1696 | } |
| 1697 | } |
| 1698 | if (rdev |
| 1699 | && rdev->recovery_offset == MaxSector |
| 1700 | && !test_bit(Faulty, &rdev->flags) |
| 1701 | && !test_and_set_bit(In_sync, &rdev->flags)) { |
| 1702 | count++; |
| 1703 | sysfs_notify_dirent_safe(rdev->sysfs_state); |
| 1704 | } |
| 1705 | } |
| 1706 | mddev->degraded -= count; |
| 1707 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 1708 | |
| 1709 | print_conf(conf); |
| 1710 | return count; |
| 1711 | } |
| 1712 | |
| 1713 | static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) |
| 1714 | { |
| 1715 | struct r1conf *conf = mddev->private; |
| 1716 | int err = -EEXIST; |
| 1717 | int mirror = 0; |
| 1718 | struct raid1_info *p; |
| 1719 | int first = 0; |
| 1720 | int last = conf->raid_disks - 1; |
| 1721 | |
| 1722 | if (mddev->recovery_disabled == conf->recovery_disabled) |
| 1723 | return -EBUSY; |
| 1724 | |
| 1725 | if (md_integrity_add_rdev(rdev, mddev)) |
| 1726 | return -ENXIO; |
| 1727 | |
| 1728 | if (rdev->raid_disk >= 0) |
| 1729 | first = last = rdev->raid_disk; |
| 1730 | |
| 1731 | /* |
| 1732 | * find the disk ... but prefer rdev->saved_raid_disk |
| 1733 | * if possible. |
| 1734 | */ |
| 1735 | if (rdev->saved_raid_disk >= 0 && |
| 1736 | rdev->saved_raid_disk >= first && |
| 1737 | rdev->saved_raid_disk < conf->raid_disks && |
| 1738 | conf->mirrors[rdev->saved_raid_disk].rdev == NULL) |
| 1739 | first = last = rdev->saved_raid_disk; |
| 1740 | |
| 1741 | for (mirror = first; mirror <= last; mirror++) { |
| 1742 | p = conf->mirrors+mirror; |
| 1743 | if (!p->rdev) { |
| 1744 | |
| 1745 | if (mddev->gendisk) |
| 1746 | disk_stack_limits(mddev->gendisk, rdev->bdev, |
| 1747 | rdev->data_offset << 9); |
| 1748 | |
| 1749 | p->head_position = 0; |
| 1750 | rdev->raid_disk = mirror; |
| 1751 | err = 0; |
| 1752 | /* As all devices are equivalent, we don't need a full recovery |
| 1753 | * if this was recently any drive of the array |
| 1754 | */ |
| 1755 | if (rdev->saved_raid_disk < 0) |
| 1756 | conf->fullsync = 1; |
| 1757 | rcu_assign_pointer(p->rdev, rdev); |
| 1758 | break; |
| 1759 | } |
| 1760 | if (test_bit(WantReplacement, &p->rdev->flags) && |
| 1761 | p[conf->raid_disks].rdev == NULL) { |
| 1762 | /* Add this device as a replacement */ |
| 1763 | clear_bit(In_sync, &rdev->flags); |
| 1764 | set_bit(Replacement, &rdev->flags); |
| 1765 | rdev->raid_disk = mirror; |
| 1766 | err = 0; |
| 1767 | conf->fullsync = 1; |
| 1768 | rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); |
| 1769 | break; |
| 1770 | } |
| 1771 | } |
| 1772 | if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) |
| 1773 | blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); |
| 1774 | print_conf(conf); |
| 1775 | return err; |
| 1776 | } |
| 1777 | |
| 1778 | static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) |
| 1779 | { |
| 1780 | struct r1conf *conf = mddev->private; |
| 1781 | int err = 0; |
| 1782 | int number = rdev->raid_disk; |
| 1783 | struct raid1_info *p = conf->mirrors + number; |
| 1784 | |
| 1785 | if (rdev != p->rdev) |
| 1786 | p = conf->mirrors + conf->raid_disks + number; |
| 1787 | |
| 1788 | print_conf(conf); |
| 1789 | if (rdev == p->rdev) { |
| 1790 | if (test_bit(In_sync, &rdev->flags) || |
| 1791 | atomic_read(&rdev->nr_pending)) { |
| 1792 | err = -EBUSY; |
| 1793 | goto abort; |
| 1794 | } |
| 1795 | /* Only remove non-faulty devices if recovery |
| 1796 | * is not possible. |
| 1797 | */ |
| 1798 | if (!test_bit(Faulty, &rdev->flags) && |
| 1799 | mddev->recovery_disabled != conf->recovery_disabled && |
| 1800 | mddev->degraded < conf->raid_disks) { |
| 1801 | err = -EBUSY; |
| 1802 | goto abort; |
| 1803 | } |
| 1804 | p->rdev = NULL; |
| 1805 | if (!test_bit(RemoveSynchronized, &rdev->flags)) { |
| 1806 | synchronize_rcu(); |
| 1807 | if (atomic_read(&rdev->nr_pending)) { |
| 1808 | /* lost the race, try later */ |
| 1809 | err = -EBUSY; |
| 1810 | p->rdev = rdev; |
| 1811 | goto abort; |
| 1812 | } |
| 1813 | } |
| 1814 | if (conf->mirrors[conf->raid_disks + number].rdev) { |
| 1815 | /* We just removed a device that is being replaced. |
| 1816 | * Move down the replacement. We drain all IO before |
| 1817 | * doing this to avoid confusion. |
| 1818 | */ |
| 1819 | struct md_rdev *repl = |
| 1820 | conf->mirrors[conf->raid_disks + number].rdev; |
| 1821 | freeze_array(conf, 0); |
| 1822 | if (atomic_read(&repl->nr_pending)) { |
| 1823 | /* It means that some queued IO of retry_list |
| 1824 | * hold repl. Thus, we cannot set replacement |
| 1825 | * as NULL, avoiding rdev NULL pointer |
| 1826 | * dereference in sync_request_write and |
| 1827 | * handle_write_finished. |
| 1828 | */ |
| 1829 | err = -EBUSY; |
| 1830 | unfreeze_array(conf); |
| 1831 | goto abort; |
| 1832 | } |
| 1833 | clear_bit(Replacement, &repl->flags); |
| 1834 | p->rdev = repl; |
| 1835 | conf->mirrors[conf->raid_disks + number].rdev = NULL; |
| 1836 | unfreeze_array(conf); |
| 1837 | } |
| 1838 | |
| 1839 | clear_bit(WantReplacement, &rdev->flags); |
| 1840 | err = md_integrity_register(mddev); |
| 1841 | } |
| 1842 | abort: |
| 1843 | |
| 1844 | print_conf(conf); |
| 1845 | return err; |
| 1846 | } |
| 1847 | |
| 1848 | static void end_sync_read(struct bio *bio) |
| 1849 | { |
| 1850 | struct r1bio *r1_bio = get_resync_r1bio(bio); |
| 1851 | |
| 1852 | update_head_pos(r1_bio->read_disk, r1_bio); |
| 1853 | |
| 1854 | /* |
| 1855 | * we have read a block, now it needs to be re-written, |
| 1856 | * or re-read if the read failed. |
| 1857 | * We don't do much here, just schedule handling by raid1d |
| 1858 | */ |
| 1859 | if (!bio->bi_status) |
| 1860 | set_bit(R1BIO_Uptodate, &r1_bio->state); |
| 1861 | |
| 1862 | if (atomic_dec_and_test(&r1_bio->remaining)) |
| 1863 | reschedule_retry(r1_bio); |
| 1864 | } |
| 1865 | |
| 1866 | static void end_sync_write(struct bio *bio) |
| 1867 | { |
| 1868 | int uptodate = !bio->bi_status; |
| 1869 | struct r1bio *r1_bio = get_resync_r1bio(bio); |
| 1870 | struct mddev *mddev = r1_bio->mddev; |
| 1871 | struct r1conf *conf = mddev->private; |
| 1872 | sector_t first_bad; |
| 1873 | int bad_sectors; |
| 1874 | struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; |
| 1875 | |
| 1876 | if (!uptodate) { |
| 1877 | sector_t sync_blocks = 0; |
| 1878 | sector_t s = r1_bio->sector; |
| 1879 | long sectors_to_go = r1_bio->sectors; |
| 1880 | /* make sure these bits doesn't get cleared. */ |
| 1881 | do { |
| 1882 | md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); |
| 1883 | s += sync_blocks; |
| 1884 | sectors_to_go -= sync_blocks; |
| 1885 | } while (sectors_to_go > 0); |
| 1886 | set_bit(WriteErrorSeen, &rdev->flags); |
| 1887 | if (!test_and_set_bit(WantReplacement, &rdev->flags)) |
| 1888 | set_bit(MD_RECOVERY_NEEDED, & |
| 1889 | mddev->recovery); |
| 1890 | set_bit(R1BIO_WriteError, &r1_bio->state); |
| 1891 | } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, |
| 1892 | &first_bad, &bad_sectors) && |
| 1893 | !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, |
| 1894 | r1_bio->sector, |
| 1895 | r1_bio->sectors, |
| 1896 | &first_bad, &bad_sectors) |
| 1897 | ) |
| 1898 | set_bit(R1BIO_MadeGood, &r1_bio->state); |
| 1899 | |
| 1900 | if (atomic_dec_and_test(&r1_bio->remaining)) { |
| 1901 | int s = r1_bio->sectors; |
| 1902 | if (test_bit(R1BIO_MadeGood, &r1_bio->state) || |
| 1903 | test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 1904 | reschedule_retry(r1_bio); |
| 1905 | else { |
| 1906 | put_buf(r1_bio); |
| 1907 | md_done_sync(mddev, s, uptodate); |
| 1908 | } |
| 1909 | } |
| 1910 | } |
| 1911 | |
| 1912 | static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, |
| 1913 | int sectors, struct page *page, int rw) |
| 1914 | { |
| 1915 | if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) |
| 1916 | /* success */ |
| 1917 | return 1; |
| 1918 | if (rw == WRITE) { |
| 1919 | set_bit(WriteErrorSeen, &rdev->flags); |
| 1920 | if (!test_and_set_bit(WantReplacement, |
| 1921 | &rdev->flags)) |
| 1922 | set_bit(MD_RECOVERY_NEEDED, & |
| 1923 | rdev->mddev->recovery); |
| 1924 | } |
| 1925 | /* need to record an error - either for the block or the device */ |
| 1926 | if (!rdev_set_badblocks(rdev, sector, sectors, 0)) |
| 1927 | md_error(rdev->mddev, rdev); |
| 1928 | return 0; |
| 1929 | } |
| 1930 | |
| 1931 | static int fix_sync_read_error(struct r1bio *r1_bio) |
| 1932 | { |
| 1933 | /* Try some synchronous reads of other devices to get |
| 1934 | * good data, much like with normal read errors. Only |
| 1935 | * read into the pages we already have so we don't |
| 1936 | * need to re-issue the read request. |
| 1937 | * We don't need to freeze the array, because being in an |
| 1938 | * active sync request, there is no normal IO, and |
| 1939 | * no overlapping syncs. |
| 1940 | * We don't need to check is_badblock() again as we |
| 1941 | * made sure that anything with a bad block in range |
| 1942 | * will have bi_end_io clear. |
| 1943 | */ |
| 1944 | struct mddev *mddev = r1_bio->mddev; |
| 1945 | struct r1conf *conf = mddev->private; |
| 1946 | struct bio *bio = r1_bio->bios[r1_bio->read_disk]; |
| 1947 | struct page **pages = get_resync_pages(bio)->pages; |
| 1948 | sector_t sect = r1_bio->sector; |
| 1949 | int sectors = r1_bio->sectors; |
| 1950 | int idx = 0; |
| 1951 | struct md_rdev *rdev; |
| 1952 | |
| 1953 | rdev = conf->mirrors[r1_bio->read_disk].rdev; |
| 1954 | if (test_bit(FailFast, &rdev->flags)) { |
| 1955 | /* Don't try recovering from here - just fail it |
| 1956 | * ... unless it is the last working device of course */ |
| 1957 | md_error(mddev, rdev); |
| 1958 | if (test_bit(Faulty, &rdev->flags)) |
| 1959 | /* Don't try to read from here, but make sure |
| 1960 | * put_buf does it's thing |
| 1961 | */ |
| 1962 | bio->bi_end_io = end_sync_write; |
| 1963 | } |
| 1964 | |
| 1965 | while(sectors) { |
| 1966 | int s = sectors; |
| 1967 | int d = r1_bio->read_disk; |
| 1968 | int success = 0; |
| 1969 | int start; |
| 1970 | |
| 1971 | if (s > (PAGE_SIZE>>9)) |
| 1972 | s = PAGE_SIZE >> 9; |
| 1973 | do { |
| 1974 | if (r1_bio->bios[d]->bi_end_io == end_sync_read) { |
| 1975 | /* No rcu protection needed here devices |
| 1976 | * can only be removed when no resync is |
| 1977 | * active, and resync is currently active |
| 1978 | */ |
| 1979 | rdev = conf->mirrors[d].rdev; |
| 1980 | if (sync_page_io(rdev, sect, s<<9, |
| 1981 | pages[idx], |
| 1982 | REQ_OP_READ, 0, false)) { |
| 1983 | success = 1; |
| 1984 | break; |
| 1985 | } |
| 1986 | } |
| 1987 | d++; |
| 1988 | if (d == conf->raid_disks * 2) |
| 1989 | d = 0; |
| 1990 | } while (!success && d != r1_bio->read_disk); |
| 1991 | |
| 1992 | if (!success) { |
| 1993 | char b[BDEVNAME_SIZE]; |
| 1994 | int abort = 0; |
| 1995 | /* Cannot read from anywhere, this block is lost. |
| 1996 | * Record a bad block on each device. If that doesn't |
| 1997 | * work just disable and interrupt the recovery. |
| 1998 | * Don't fail devices as that won't really help. |
| 1999 | */ |
| 2000 | pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", |
| 2001 | mdname(mddev), bio_devname(bio, b), |
| 2002 | (unsigned long long)r1_bio->sector); |
| 2003 | for (d = 0; d < conf->raid_disks * 2; d++) { |
| 2004 | rdev = conf->mirrors[d].rdev; |
| 2005 | if (!rdev || test_bit(Faulty, &rdev->flags)) |
| 2006 | continue; |
| 2007 | if (!rdev_set_badblocks(rdev, sect, s, 0)) |
| 2008 | abort = 1; |
| 2009 | } |
| 2010 | if (abort) { |
| 2011 | conf->recovery_disabled = |
| 2012 | mddev->recovery_disabled; |
| 2013 | set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
| 2014 | md_done_sync(mddev, r1_bio->sectors, 0); |
| 2015 | put_buf(r1_bio); |
| 2016 | return 0; |
| 2017 | } |
| 2018 | /* Try next page */ |
| 2019 | sectors -= s; |
| 2020 | sect += s; |
| 2021 | idx++; |
| 2022 | continue; |
| 2023 | } |
| 2024 | |
| 2025 | start = d; |
| 2026 | /* write it back and re-read */ |
| 2027 | while (d != r1_bio->read_disk) { |
| 2028 | if (d == 0) |
| 2029 | d = conf->raid_disks * 2; |
| 2030 | d--; |
| 2031 | if (r1_bio->bios[d]->bi_end_io != end_sync_read) |
| 2032 | continue; |
| 2033 | rdev = conf->mirrors[d].rdev; |
| 2034 | if (r1_sync_page_io(rdev, sect, s, |
| 2035 | pages[idx], |
| 2036 | WRITE) == 0) { |
| 2037 | r1_bio->bios[d]->bi_end_io = NULL; |
| 2038 | rdev_dec_pending(rdev, mddev); |
| 2039 | } |
| 2040 | } |
| 2041 | d = start; |
| 2042 | while (d != r1_bio->read_disk) { |
| 2043 | if (d == 0) |
| 2044 | d = conf->raid_disks * 2; |
| 2045 | d--; |
| 2046 | if (r1_bio->bios[d]->bi_end_io != end_sync_read) |
| 2047 | continue; |
| 2048 | rdev = conf->mirrors[d].rdev; |
| 2049 | if (r1_sync_page_io(rdev, sect, s, |
| 2050 | pages[idx], |
| 2051 | READ) != 0) |
| 2052 | atomic_add(s, &rdev->corrected_errors); |
| 2053 | } |
| 2054 | sectors -= s; |
| 2055 | sect += s; |
| 2056 | idx ++; |
| 2057 | } |
| 2058 | set_bit(R1BIO_Uptodate, &r1_bio->state); |
| 2059 | bio->bi_status = 0; |
| 2060 | return 1; |
| 2061 | } |
| 2062 | |
| 2063 | static void process_checks(struct r1bio *r1_bio) |
| 2064 | { |
| 2065 | /* We have read all readable devices. If we haven't |
| 2066 | * got the block, then there is no hope left. |
| 2067 | * If we have, then we want to do a comparison |
| 2068 | * and skip the write if everything is the same. |
| 2069 | * If any blocks failed to read, then we need to |
| 2070 | * attempt an over-write |
| 2071 | */ |
| 2072 | struct mddev *mddev = r1_bio->mddev; |
| 2073 | struct r1conf *conf = mddev->private; |
| 2074 | int primary; |
| 2075 | int i; |
| 2076 | int vcnt; |
| 2077 | |
| 2078 | /* Fix variable parts of all bios */ |
| 2079 | vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); |
| 2080 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 2081 | blk_status_t status; |
| 2082 | struct bio *b = r1_bio->bios[i]; |
| 2083 | struct resync_pages *rp = get_resync_pages(b); |
| 2084 | if (b->bi_end_io != end_sync_read) |
| 2085 | continue; |
| 2086 | /* fixup the bio for reuse, but preserve errno */ |
| 2087 | status = b->bi_status; |
| 2088 | bio_reset(b); |
| 2089 | b->bi_status = status; |
| 2090 | b->bi_iter.bi_sector = r1_bio->sector + |
| 2091 | conf->mirrors[i].rdev->data_offset; |
| 2092 | bio_set_dev(b, conf->mirrors[i].rdev->bdev); |
| 2093 | b->bi_end_io = end_sync_read; |
| 2094 | rp->raid_bio = r1_bio; |
| 2095 | b->bi_private = rp; |
| 2096 | |
| 2097 | /* initialize bvec table again */ |
| 2098 | md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); |
| 2099 | } |
| 2100 | for (primary = 0; primary < conf->raid_disks * 2; primary++) |
| 2101 | if (r1_bio->bios[primary]->bi_end_io == end_sync_read && |
| 2102 | !r1_bio->bios[primary]->bi_status) { |
| 2103 | r1_bio->bios[primary]->bi_end_io = NULL; |
| 2104 | rdev_dec_pending(conf->mirrors[primary].rdev, mddev); |
| 2105 | break; |
| 2106 | } |
| 2107 | r1_bio->read_disk = primary; |
| 2108 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 2109 | int j; |
| 2110 | struct bio *pbio = r1_bio->bios[primary]; |
| 2111 | struct bio *sbio = r1_bio->bios[i]; |
| 2112 | blk_status_t status = sbio->bi_status; |
| 2113 | struct page **ppages = get_resync_pages(pbio)->pages; |
| 2114 | struct page **spages = get_resync_pages(sbio)->pages; |
| 2115 | struct bio_vec *bi; |
| 2116 | int page_len[RESYNC_PAGES] = { 0 }; |
| 2117 | |
| 2118 | if (sbio->bi_end_io != end_sync_read) |
| 2119 | continue; |
| 2120 | /* Now we can 'fixup' the error value */ |
| 2121 | sbio->bi_status = 0; |
| 2122 | |
| 2123 | bio_for_each_segment_all(bi, sbio, j) |
| 2124 | page_len[j] = bi->bv_len; |
| 2125 | |
| 2126 | if (!status) { |
| 2127 | for (j = vcnt; j-- ; ) { |
| 2128 | if (memcmp(page_address(ppages[j]), |
| 2129 | page_address(spages[j]), |
| 2130 | page_len[j])) |
| 2131 | break; |
| 2132 | } |
| 2133 | } else |
| 2134 | j = 0; |
| 2135 | if (j >= 0) |
| 2136 | atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); |
| 2137 | if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) |
| 2138 | && !status)) { |
| 2139 | /* No need to write to this device. */ |
| 2140 | sbio->bi_end_io = NULL; |
| 2141 | rdev_dec_pending(conf->mirrors[i].rdev, mddev); |
| 2142 | continue; |
| 2143 | } |
| 2144 | |
| 2145 | bio_copy_data(sbio, pbio); |
| 2146 | } |
| 2147 | } |
| 2148 | |
| 2149 | static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) |
| 2150 | { |
| 2151 | struct r1conf *conf = mddev->private; |
| 2152 | int i; |
| 2153 | int disks = conf->raid_disks * 2; |
| 2154 | struct bio *wbio; |
| 2155 | |
| 2156 | if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) |
| 2157 | /* ouch - failed to read all of that. */ |
| 2158 | if (!fix_sync_read_error(r1_bio)) |
| 2159 | return; |
| 2160 | |
| 2161 | if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) |
| 2162 | process_checks(r1_bio); |
| 2163 | |
| 2164 | /* |
| 2165 | * schedule writes |
| 2166 | */ |
| 2167 | atomic_set(&r1_bio->remaining, 1); |
| 2168 | for (i = 0; i < disks ; i++) { |
| 2169 | wbio = r1_bio->bios[i]; |
| 2170 | if (wbio->bi_end_io == NULL || |
| 2171 | (wbio->bi_end_io == end_sync_read && |
| 2172 | (i == r1_bio->read_disk || |
| 2173 | !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) |
| 2174 | continue; |
| 2175 | if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) |
| 2176 | continue; |
| 2177 | |
| 2178 | bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); |
| 2179 | if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) |
| 2180 | wbio->bi_opf |= MD_FAILFAST; |
| 2181 | |
| 2182 | wbio->bi_end_io = end_sync_write; |
| 2183 | atomic_inc(&r1_bio->remaining); |
| 2184 | md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); |
| 2185 | |
| 2186 | generic_make_request(wbio); |
| 2187 | } |
| 2188 | |
| 2189 | if (atomic_dec_and_test(&r1_bio->remaining)) { |
| 2190 | /* if we're here, all write(s) have completed, so clean up */ |
| 2191 | int s = r1_bio->sectors; |
| 2192 | if (test_bit(R1BIO_MadeGood, &r1_bio->state) || |
| 2193 | test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 2194 | reschedule_retry(r1_bio); |
| 2195 | else { |
| 2196 | put_buf(r1_bio); |
| 2197 | md_done_sync(mddev, s, 1); |
| 2198 | } |
| 2199 | } |
| 2200 | } |
| 2201 | |
| 2202 | /* |
| 2203 | * This is a kernel thread which: |
| 2204 | * |
| 2205 | * 1. Retries failed read operations on working mirrors. |
| 2206 | * 2. Updates the raid superblock when problems encounter. |
| 2207 | * 3. Performs writes following reads for array synchronising. |
| 2208 | */ |
| 2209 | |
| 2210 | static void fix_read_error(struct r1conf *conf, int read_disk, |
| 2211 | sector_t sect, int sectors) |
| 2212 | { |
| 2213 | struct mddev *mddev = conf->mddev; |
| 2214 | while(sectors) { |
| 2215 | int s = sectors; |
| 2216 | int d = read_disk; |
| 2217 | int success = 0; |
| 2218 | int start; |
| 2219 | struct md_rdev *rdev; |
| 2220 | |
| 2221 | if (s > (PAGE_SIZE>>9)) |
| 2222 | s = PAGE_SIZE >> 9; |
| 2223 | |
| 2224 | do { |
| 2225 | sector_t first_bad; |
| 2226 | int bad_sectors; |
| 2227 | |
| 2228 | rcu_read_lock(); |
| 2229 | rdev = rcu_dereference(conf->mirrors[d].rdev); |
| 2230 | if (rdev && |
| 2231 | (test_bit(In_sync, &rdev->flags) || |
| 2232 | (!test_bit(Faulty, &rdev->flags) && |
| 2233 | rdev->recovery_offset >= sect + s)) && |
| 2234 | is_badblock(rdev, sect, s, |
| 2235 | &first_bad, &bad_sectors) == 0) { |
| 2236 | atomic_inc(&rdev->nr_pending); |
| 2237 | rcu_read_unlock(); |
| 2238 | if (sync_page_io(rdev, sect, s<<9, |
| 2239 | conf->tmppage, REQ_OP_READ, 0, false)) |
| 2240 | success = 1; |
| 2241 | rdev_dec_pending(rdev, mddev); |
| 2242 | if (success) |
| 2243 | break; |
| 2244 | } else |
| 2245 | rcu_read_unlock(); |
| 2246 | d++; |
| 2247 | if (d == conf->raid_disks * 2) |
| 2248 | d = 0; |
| 2249 | } while (!success && d != read_disk); |
| 2250 | |
| 2251 | if (!success) { |
| 2252 | /* Cannot read from anywhere - mark it bad */ |
| 2253 | struct md_rdev *rdev = conf->mirrors[read_disk].rdev; |
| 2254 | if (!rdev_set_badblocks(rdev, sect, s, 0)) |
| 2255 | md_error(mddev, rdev); |
| 2256 | break; |
| 2257 | } |
| 2258 | /* write it back and re-read */ |
| 2259 | start = d; |
| 2260 | while (d != read_disk) { |
| 2261 | if (d==0) |
| 2262 | d = conf->raid_disks * 2; |
| 2263 | d--; |
| 2264 | rcu_read_lock(); |
| 2265 | rdev = rcu_dereference(conf->mirrors[d].rdev); |
| 2266 | if (rdev && |
| 2267 | !test_bit(Faulty, &rdev->flags)) { |
| 2268 | atomic_inc(&rdev->nr_pending); |
| 2269 | rcu_read_unlock(); |
| 2270 | r1_sync_page_io(rdev, sect, s, |
| 2271 | conf->tmppage, WRITE); |
| 2272 | rdev_dec_pending(rdev, mddev); |
| 2273 | } else |
| 2274 | rcu_read_unlock(); |
| 2275 | } |
| 2276 | d = start; |
| 2277 | while (d != read_disk) { |
| 2278 | char b[BDEVNAME_SIZE]; |
| 2279 | if (d==0) |
| 2280 | d = conf->raid_disks * 2; |
| 2281 | d--; |
| 2282 | rcu_read_lock(); |
| 2283 | rdev = rcu_dereference(conf->mirrors[d].rdev); |
| 2284 | if (rdev && |
| 2285 | !test_bit(Faulty, &rdev->flags)) { |
| 2286 | atomic_inc(&rdev->nr_pending); |
| 2287 | rcu_read_unlock(); |
| 2288 | if (r1_sync_page_io(rdev, sect, s, |
| 2289 | conf->tmppage, READ)) { |
| 2290 | atomic_add(s, &rdev->corrected_errors); |
| 2291 | pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", |
| 2292 | mdname(mddev), s, |
| 2293 | (unsigned long long)(sect + |
| 2294 | rdev->data_offset), |
| 2295 | bdevname(rdev->bdev, b)); |
| 2296 | } |
| 2297 | rdev_dec_pending(rdev, mddev); |
| 2298 | } else |
| 2299 | rcu_read_unlock(); |
| 2300 | } |
| 2301 | sectors -= s; |
| 2302 | sect += s; |
| 2303 | } |
| 2304 | } |
| 2305 | |
| 2306 | static int narrow_write_error(struct r1bio *r1_bio, int i) |
| 2307 | { |
| 2308 | struct mddev *mddev = r1_bio->mddev; |
| 2309 | struct r1conf *conf = mddev->private; |
| 2310 | struct md_rdev *rdev = conf->mirrors[i].rdev; |
| 2311 | |
| 2312 | /* bio has the data to be written to device 'i' where |
| 2313 | * we just recently had a write error. |
| 2314 | * We repeatedly clone the bio and trim down to one block, |
| 2315 | * then try the write. Where the write fails we record |
| 2316 | * a bad block. |
| 2317 | * It is conceivable that the bio doesn't exactly align with |
| 2318 | * blocks. We must handle this somehow. |
| 2319 | * |
| 2320 | * We currently own a reference on the rdev. |
| 2321 | */ |
| 2322 | |
| 2323 | int block_sectors; |
| 2324 | sector_t sector; |
| 2325 | int sectors; |
| 2326 | int sect_to_write = r1_bio->sectors; |
| 2327 | int ok = 1; |
| 2328 | |
| 2329 | if (rdev->badblocks.shift < 0) |
| 2330 | return 0; |
| 2331 | |
| 2332 | block_sectors = roundup(1 << rdev->badblocks.shift, |
| 2333 | bdev_logical_block_size(rdev->bdev) >> 9); |
| 2334 | sector = r1_bio->sector; |
| 2335 | sectors = ((sector + block_sectors) |
| 2336 | & ~(sector_t)(block_sectors - 1)) |
| 2337 | - sector; |
| 2338 | |
| 2339 | while (sect_to_write) { |
| 2340 | struct bio *wbio; |
| 2341 | if (sectors > sect_to_write) |
| 2342 | sectors = sect_to_write; |
| 2343 | /* Write at 'sector' for 'sectors'*/ |
| 2344 | |
| 2345 | if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { |
| 2346 | wbio = bio_clone_fast(r1_bio->behind_master_bio, |
| 2347 | GFP_NOIO, |
| 2348 | &mddev->bio_set); |
| 2349 | } else { |
| 2350 | wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, |
| 2351 | &mddev->bio_set); |
| 2352 | } |
| 2353 | |
| 2354 | bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); |
| 2355 | wbio->bi_iter.bi_sector = r1_bio->sector; |
| 2356 | wbio->bi_iter.bi_size = r1_bio->sectors << 9; |
| 2357 | |
| 2358 | bio_trim(wbio, sector - r1_bio->sector, sectors); |
| 2359 | wbio->bi_iter.bi_sector += rdev->data_offset; |
| 2360 | bio_set_dev(wbio, rdev->bdev); |
| 2361 | |
| 2362 | if (submit_bio_wait(wbio) < 0) |
| 2363 | /* failure! */ |
| 2364 | ok = rdev_set_badblocks(rdev, sector, |
| 2365 | sectors, 0) |
| 2366 | && ok; |
| 2367 | |
| 2368 | bio_put(wbio); |
| 2369 | sect_to_write -= sectors; |
| 2370 | sector += sectors; |
| 2371 | sectors = block_sectors; |
| 2372 | } |
| 2373 | return ok; |
| 2374 | } |
| 2375 | |
| 2376 | static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) |
| 2377 | { |
| 2378 | int m; |
| 2379 | int s = r1_bio->sectors; |
| 2380 | for (m = 0; m < conf->raid_disks * 2 ; m++) { |
| 2381 | struct md_rdev *rdev = conf->mirrors[m].rdev; |
| 2382 | struct bio *bio = r1_bio->bios[m]; |
| 2383 | if (bio->bi_end_io == NULL) |
| 2384 | continue; |
| 2385 | if (!bio->bi_status && |
| 2386 | test_bit(R1BIO_MadeGood, &r1_bio->state)) { |
| 2387 | rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); |
| 2388 | } |
| 2389 | if (bio->bi_status && |
| 2390 | test_bit(R1BIO_WriteError, &r1_bio->state)) { |
| 2391 | if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) |
| 2392 | md_error(conf->mddev, rdev); |
| 2393 | } |
| 2394 | } |
| 2395 | put_buf(r1_bio); |
| 2396 | md_done_sync(conf->mddev, s, 1); |
| 2397 | } |
| 2398 | |
| 2399 | static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) |
| 2400 | { |
| 2401 | int m, idx; |
| 2402 | bool fail = false; |
| 2403 | |
| 2404 | for (m = 0; m < conf->raid_disks * 2 ; m++) |
| 2405 | if (r1_bio->bios[m] == IO_MADE_GOOD) { |
| 2406 | struct md_rdev *rdev = conf->mirrors[m].rdev; |
| 2407 | rdev_clear_badblocks(rdev, |
| 2408 | r1_bio->sector, |
| 2409 | r1_bio->sectors, 0); |
| 2410 | rdev_dec_pending(rdev, conf->mddev); |
| 2411 | } else if (r1_bio->bios[m] != NULL) { |
| 2412 | /* This drive got a write error. We need to |
| 2413 | * narrow down and record precise write |
| 2414 | * errors. |
| 2415 | */ |
| 2416 | fail = true; |
| 2417 | if (!narrow_write_error(r1_bio, m)) { |
| 2418 | md_error(conf->mddev, |
| 2419 | conf->mirrors[m].rdev); |
| 2420 | /* an I/O failed, we can't clear the bitmap */ |
| 2421 | set_bit(R1BIO_Degraded, &r1_bio->state); |
| 2422 | } |
| 2423 | rdev_dec_pending(conf->mirrors[m].rdev, |
| 2424 | conf->mddev); |
| 2425 | } |
| 2426 | if (fail) { |
| 2427 | spin_lock_irq(&conf->device_lock); |
| 2428 | list_add(&r1_bio->retry_list, &conf->bio_end_io_list); |
| 2429 | idx = sector_to_idx(r1_bio->sector); |
| 2430 | atomic_inc(&conf->nr_queued[idx]); |
| 2431 | spin_unlock_irq(&conf->device_lock); |
| 2432 | /* |
| 2433 | * In case freeze_array() is waiting for condition |
| 2434 | * get_unqueued_pending() == extra to be true. |
| 2435 | */ |
| 2436 | wake_up(&conf->wait_barrier); |
| 2437 | md_wakeup_thread(conf->mddev->thread); |
| 2438 | } else { |
| 2439 | if (test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 2440 | close_write(r1_bio); |
| 2441 | raid_end_bio_io(r1_bio); |
| 2442 | } |
| 2443 | } |
| 2444 | |
| 2445 | static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) |
| 2446 | { |
| 2447 | struct mddev *mddev = conf->mddev; |
| 2448 | struct bio *bio; |
| 2449 | struct md_rdev *rdev; |
| 2450 | |
| 2451 | clear_bit(R1BIO_ReadError, &r1_bio->state); |
| 2452 | /* we got a read error. Maybe the drive is bad. Maybe just |
| 2453 | * the block and we can fix it. |
| 2454 | * We freeze all other IO, and try reading the block from |
| 2455 | * other devices. When we find one, we re-write |
| 2456 | * and check it that fixes the read error. |
| 2457 | * This is all done synchronously while the array is |
| 2458 | * frozen |
| 2459 | */ |
| 2460 | |
| 2461 | bio = r1_bio->bios[r1_bio->read_disk]; |
| 2462 | bio_put(bio); |
| 2463 | r1_bio->bios[r1_bio->read_disk] = NULL; |
| 2464 | |
| 2465 | rdev = conf->mirrors[r1_bio->read_disk].rdev; |
| 2466 | if (mddev->ro == 0 |
| 2467 | && !test_bit(FailFast, &rdev->flags)) { |
| 2468 | freeze_array(conf, 1); |
| 2469 | fix_read_error(conf, r1_bio->read_disk, |
| 2470 | r1_bio->sector, r1_bio->sectors); |
| 2471 | unfreeze_array(conf); |
| 2472 | } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { |
| 2473 | md_error(mddev, rdev); |
| 2474 | } else { |
| 2475 | r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; |
| 2476 | } |
| 2477 | |
| 2478 | rdev_dec_pending(rdev, conf->mddev); |
| 2479 | allow_barrier(conf, r1_bio->sector); |
| 2480 | bio = r1_bio->master_bio; |
| 2481 | |
| 2482 | /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ |
| 2483 | r1_bio->state = 0; |
| 2484 | raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); |
| 2485 | } |
| 2486 | |
| 2487 | static void raid1d(struct md_thread *thread) |
| 2488 | { |
| 2489 | struct mddev *mddev = thread->mddev; |
| 2490 | struct r1bio *r1_bio; |
| 2491 | unsigned long flags; |
| 2492 | struct r1conf *conf = mddev->private; |
| 2493 | struct list_head *head = &conf->retry_list; |
| 2494 | struct blk_plug plug; |
| 2495 | int idx; |
| 2496 | |
| 2497 | md_check_recovery(mddev); |
| 2498 | |
| 2499 | if (!list_empty_careful(&conf->bio_end_io_list) && |
| 2500 | !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { |
| 2501 | LIST_HEAD(tmp); |
| 2502 | spin_lock_irqsave(&conf->device_lock, flags); |
| 2503 | if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) |
| 2504 | list_splice_init(&conf->bio_end_io_list, &tmp); |
| 2505 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 2506 | while (!list_empty(&tmp)) { |
| 2507 | r1_bio = list_first_entry(&tmp, struct r1bio, |
| 2508 | retry_list); |
| 2509 | list_del(&r1_bio->retry_list); |
| 2510 | idx = sector_to_idx(r1_bio->sector); |
| 2511 | atomic_dec(&conf->nr_queued[idx]); |
| 2512 | if (mddev->degraded) |
| 2513 | set_bit(R1BIO_Degraded, &r1_bio->state); |
| 2514 | if (test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 2515 | close_write(r1_bio); |
| 2516 | raid_end_bio_io(r1_bio); |
| 2517 | } |
| 2518 | } |
| 2519 | |
| 2520 | blk_start_plug(&plug); |
| 2521 | for (;;) { |
| 2522 | |
| 2523 | flush_pending_writes(conf); |
| 2524 | |
| 2525 | spin_lock_irqsave(&conf->device_lock, flags); |
| 2526 | if (list_empty(head)) { |
| 2527 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 2528 | break; |
| 2529 | } |
| 2530 | r1_bio = list_entry(head->prev, struct r1bio, retry_list); |
| 2531 | list_del(head->prev); |
| 2532 | idx = sector_to_idx(r1_bio->sector); |
| 2533 | atomic_dec(&conf->nr_queued[idx]); |
| 2534 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 2535 | |
| 2536 | mddev = r1_bio->mddev; |
| 2537 | conf = mddev->private; |
| 2538 | if (test_bit(R1BIO_IsSync, &r1_bio->state)) { |
| 2539 | if (test_bit(R1BIO_MadeGood, &r1_bio->state) || |
| 2540 | test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 2541 | handle_sync_write_finished(conf, r1_bio); |
| 2542 | else |
| 2543 | sync_request_write(mddev, r1_bio); |
| 2544 | } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || |
| 2545 | test_bit(R1BIO_WriteError, &r1_bio->state)) |
| 2546 | handle_write_finished(conf, r1_bio); |
| 2547 | else if (test_bit(R1BIO_ReadError, &r1_bio->state)) |
| 2548 | handle_read_error(conf, r1_bio); |
| 2549 | else |
| 2550 | WARN_ON_ONCE(1); |
| 2551 | |
| 2552 | cond_resched(); |
| 2553 | if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) |
| 2554 | md_check_recovery(mddev); |
| 2555 | } |
| 2556 | blk_finish_plug(&plug); |
| 2557 | } |
| 2558 | |
| 2559 | static int init_resync(struct r1conf *conf) |
| 2560 | { |
| 2561 | int buffs; |
| 2562 | |
| 2563 | buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; |
| 2564 | BUG_ON(mempool_initialized(&conf->r1buf_pool)); |
| 2565 | |
| 2566 | return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, |
| 2567 | r1buf_pool_free, conf->poolinfo); |
| 2568 | } |
| 2569 | |
| 2570 | static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) |
| 2571 | { |
| 2572 | struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); |
| 2573 | struct resync_pages *rps; |
| 2574 | struct bio *bio; |
| 2575 | int i; |
| 2576 | |
| 2577 | for (i = conf->poolinfo->raid_disks; i--; ) { |
| 2578 | bio = r1bio->bios[i]; |
| 2579 | rps = bio->bi_private; |
| 2580 | bio_reset(bio); |
| 2581 | bio->bi_private = rps; |
| 2582 | } |
| 2583 | r1bio->master_bio = NULL; |
| 2584 | return r1bio; |
| 2585 | } |
| 2586 | |
| 2587 | /* |
| 2588 | * perform a "sync" on one "block" |
| 2589 | * |
| 2590 | * We need to make sure that no normal I/O request - particularly write |
| 2591 | * requests - conflict with active sync requests. |
| 2592 | * |
| 2593 | * This is achieved by tracking pending requests and a 'barrier' concept |
| 2594 | * that can be installed to exclude normal IO requests. |
| 2595 | */ |
| 2596 | |
| 2597 | static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, |
| 2598 | int *skipped) |
| 2599 | { |
| 2600 | struct r1conf *conf = mddev->private; |
| 2601 | struct r1bio *r1_bio; |
| 2602 | struct bio *bio; |
| 2603 | sector_t max_sector, nr_sectors; |
| 2604 | int disk = -1; |
| 2605 | int i; |
| 2606 | int wonly = -1; |
| 2607 | int write_targets = 0, read_targets = 0; |
| 2608 | sector_t sync_blocks; |
| 2609 | int still_degraded = 0; |
| 2610 | int good_sectors = RESYNC_SECTORS; |
| 2611 | int min_bad = 0; /* number of sectors that are bad in all devices */ |
| 2612 | int idx = sector_to_idx(sector_nr); |
| 2613 | int page_idx = 0; |
| 2614 | |
| 2615 | if (!mempool_initialized(&conf->r1buf_pool)) |
| 2616 | if (init_resync(conf)) |
| 2617 | return 0; |
| 2618 | |
| 2619 | max_sector = mddev->dev_sectors; |
| 2620 | if (sector_nr >= max_sector) { |
| 2621 | /* If we aborted, we need to abort the |
| 2622 | * sync on the 'current' bitmap chunk (there will |
| 2623 | * only be one in raid1 resync. |
| 2624 | * We can find the current addess in mddev->curr_resync |
| 2625 | */ |
| 2626 | if (mddev->curr_resync < max_sector) /* aborted */ |
| 2627 | md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, |
| 2628 | &sync_blocks, 1); |
| 2629 | else /* completed sync */ |
| 2630 | conf->fullsync = 0; |
| 2631 | |
| 2632 | md_bitmap_close_sync(mddev->bitmap); |
| 2633 | close_sync(conf); |
| 2634 | |
| 2635 | if (mddev_is_clustered(mddev)) { |
| 2636 | conf->cluster_sync_low = 0; |
| 2637 | conf->cluster_sync_high = 0; |
| 2638 | } |
| 2639 | return 0; |
| 2640 | } |
| 2641 | |
| 2642 | if (mddev->bitmap == NULL && |
| 2643 | mddev->recovery_cp == MaxSector && |
| 2644 | !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && |
| 2645 | conf->fullsync == 0) { |
| 2646 | *skipped = 1; |
| 2647 | return max_sector - sector_nr; |
| 2648 | } |
| 2649 | /* before building a request, check if we can skip these blocks.. |
| 2650 | * This call the bitmap_start_sync doesn't actually record anything |
| 2651 | */ |
| 2652 | if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && |
| 2653 | !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { |
| 2654 | /* We can skip this block, and probably several more */ |
| 2655 | *skipped = 1; |
| 2656 | return sync_blocks; |
| 2657 | } |
| 2658 | |
| 2659 | /* |
| 2660 | * If there is non-resync activity waiting for a turn, then let it |
| 2661 | * though before starting on this new sync request. |
| 2662 | */ |
| 2663 | if (atomic_read(&conf->nr_waiting[idx])) |
| 2664 | schedule_timeout_uninterruptible(1); |
| 2665 | |
| 2666 | /* we are incrementing sector_nr below. To be safe, we check against |
| 2667 | * sector_nr + two times RESYNC_SECTORS |
| 2668 | */ |
| 2669 | |
| 2670 | md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, |
| 2671 | mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); |
| 2672 | |
| 2673 | |
| 2674 | if (raise_barrier(conf, sector_nr)) |
| 2675 | return 0; |
| 2676 | |
| 2677 | r1_bio = raid1_alloc_init_r1buf(conf); |
| 2678 | |
| 2679 | rcu_read_lock(); |
| 2680 | /* |
| 2681 | * If we get a correctably read error during resync or recovery, |
| 2682 | * we might want to read from a different device. So we |
| 2683 | * flag all drives that could conceivably be read from for READ, |
| 2684 | * and any others (which will be non-In_sync devices) for WRITE. |
| 2685 | * If a read fails, we try reading from something else for which READ |
| 2686 | * is OK. |
| 2687 | */ |
| 2688 | |
| 2689 | r1_bio->mddev = mddev; |
| 2690 | r1_bio->sector = sector_nr; |
| 2691 | r1_bio->state = 0; |
| 2692 | set_bit(R1BIO_IsSync, &r1_bio->state); |
| 2693 | /* make sure good_sectors won't go across barrier unit boundary */ |
| 2694 | good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); |
| 2695 | |
| 2696 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 2697 | struct md_rdev *rdev; |
| 2698 | bio = r1_bio->bios[i]; |
| 2699 | |
| 2700 | rdev = rcu_dereference(conf->mirrors[i].rdev); |
| 2701 | if (rdev == NULL || |
| 2702 | test_bit(Faulty, &rdev->flags)) { |
| 2703 | if (i < conf->raid_disks) |
| 2704 | still_degraded = 1; |
| 2705 | } else if (!test_bit(In_sync, &rdev->flags)) { |
| 2706 | bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
| 2707 | bio->bi_end_io = end_sync_write; |
| 2708 | write_targets ++; |
| 2709 | } else { |
| 2710 | /* may need to read from here */ |
| 2711 | sector_t first_bad = MaxSector; |
| 2712 | int bad_sectors; |
| 2713 | |
| 2714 | if (is_badblock(rdev, sector_nr, good_sectors, |
| 2715 | &first_bad, &bad_sectors)) { |
| 2716 | if (first_bad > sector_nr) |
| 2717 | good_sectors = first_bad - sector_nr; |
| 2718 | else { |
| 2719 | bad_sectors -= (sector_nr - first_bad); |
| 2720 | if (min_bad == 0 || |
| 2721 | min_bad > bad_sectors) |
| 2722 | min_bad = bad_sectors; |
| 2723 | } |
| 2724 | } |
| 2725 | if (sector_nr < first_bad) { |
| 2726 | if (test_bit(WriteMostly, &rdev->flags)) { |
| 2727 | if (wonly < 0) |
| 2728 | wonly = i; |
| 2729 | } else { |
| 2730 | if (disk < 0) |
| 2731 | disk = i; |
| 2732 | } |
| 2733 | bio_set_op_attrs(bio, REQ_OP_READ, 0); |
| 2734 | bio->bi_end_io = end_sync_read; |
| 2735 | read_targets++; |
| 2736 | } else if (!test_bit(WriteErrorSeen, &rdev->flags) && |
| 2737 | test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && |
| 2738 | !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { |
| 2739 | /* |
| 2740 | * The device is suitable for reading (InSync), |
| 2741 | * but has bad block(s) here. Let's try to correct them, |
| 2742 | * if we are doing resync or repair. Otherwise, leave |
| 2743 | * this device alone for this sync request. |
| 2744 | */ |
| 2745 | bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
| 2746 | bio->bi_end_io = end_sync_write; |
| 2747 | write_targets++; |
| 2748 | } |
| 2749 | } |
| 2750 | if (bio->bi_end_io) { |
| 2751 | atomic_inc(&rdev->nr_pending); |
| 2752 | bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; |
| 2753 | bio_set_dev(bio, rdev->bdev); |
| 2754 | if (test_bit(FailFast, &rdev->flags)) |
| 2755 | bio->bi_opf |= MD_FAILFAST; |
| 2756 | } |
| 2757 | } |
| 2758 | rcu_read_unlock(); |
| 2759 | if (disk < 0) |
| 2760 | disk = wonly; |
| 2761 | r1_bio->read_disk = disk; |
| 2762 | |
| 2763 | if (read_targets == 0 && min_bad > 0) { |
| 2764 | /* These sectors are bad on all InSync devices, so we |
| 2765 | * need to mark them bad on all write targets |
| 2766 | */ |
| 2767 | int ok = 1; |
| 2768 | for (i = 0 ; i < conf->raid_disks * 2 ; i++) |
| 2769 | if (r1_bio->bios[i]->bi_end_io == end_sync_write) { |
| 2770 | struct md_rdev *rdev = conf->mirrors[i].rdev; |
| 2771 | ok = rdev_set_badblocks(rdev, sector_nr, |
| 2772 | min_bad, 0 |
| 2773 | ) && ok; |
| 2774 | } |
| 2775 | set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); |
| 2776 | *skipped = 1; |
| 2777 | put_buf(r1_bio); |
| 2778 | |
| 2779 | if (!ok) { |
| 2780 | /* Cannot record the badblocks, so need to |
| 2781 | * abort the resync. |
| 2782 | * If there are multiple read targets, could just |
| 2783 | * fail the really bad ones ??? |
| 2784 | */ |
| 2785 | conf->recovery_disabled = mddev->recovery_disabled; |
| 2786 | set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
| 2787 | return 0; |
| 2788 | } else |
| 2789 | return min_bad; |
| 2790 | |
| 2791 | } |
| 2792 | if (min_bad > 0 && min_bad < good_sectors) { |
| 2793 | /* only resync enough to reach the next bad->good |
| 2794 | * transition */ |
| 2795 | good_sectors = min_bad; |
| 2796 | } |
| 2797 | |
| 2798 | if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) |
| 2799 | /* extra read targets are also write targets */ |
| 2800 | write_targets += read_targets-1; |
| 2801 | |
| 2802 | if (write_targets == 0 || read_targets == 0) { |
| 2803 | /* There is nowhere to write, so all non-sync |
| 2804 | * drives must be failed - so we are finished |
| 2805 | */ |
| 2806 | sector_t rv; |
| 2807 | if (min_bad > 0) |
| 2808 | max_sector = sector_nr + min_bad; |
| 2809 | rv = max_sector - sector_nr; |
| 2810 | *skipped = 1; |
| 2811 | put_buf(r1_bio); |
| 2812 | return rv; |
| 2813 | } |
| 2814 | |
| 2815 | if (max_sector > mddev->resync_max) |
| 2816 | max_sector = mddev->resync_max; /* Don't do IO beyond here */ |
| 2817 | if (max_sector > sector_nr + good_sectors) |
| 2818 | max_sector = sector_nr + good_sectors; |
| 2819 | nr_sectors = 0; |
| 2820 | sync_blocks = 0; |
| 2821 | do { |
| 2822 | struct page *page; |
| 2823 | int len = PAGE_SIZE; |
| 2824 | if (sector_nr + (len>>9) > max_sector) |
| 2825 | len = (max_sector - sector_nr) << 9; |
| 2826 | if (len == 0) |
| 2827 | break; |
| 2828 | if (sync_blocks == 0) { |
| 2829 | if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, |
| 2830 | &sync_blocks, still_degraded) && |
| 2831 | !conf->fullsync && |
| 2832 | !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) |
| 2833 | break; |
| 2834 | if ((len >> 9) > sync_blocks) |
| 2835 | len = sync_blocks<<9; |
| 2836 | } |
| 2837 | |
| 2838 | for (i = 0 ; i < conf->raid_disks * 2; i++) { |
| 2839 | struct resync_pages *rp; |
| 2840 | |
| 2841 | bio = r1_bio->bios[i]; |
| 2842 | rp = get_resync_pages(bio); |
| 2843 | if (bio->bi_end_io) { |
| 2844 | page = resync_fetch_page(rp, page_idx); |
| 2845 | |
| 2846 | /* |
| 2847 | * won't fail because the vec table is big |
| 2848 | * enough to hold all these pages |
| 2849 | */ |
| 2850 | bio_add_page(bio, page, len, 0); |
| 2851 | } |
| 2852 | } |
| 2853 | nr_sectors += len>>9; |
| 2854 | sector_nr += len>>9; |
| 2855 | sync_blocks -= (len>>9); |
| 2856 | } while (++page_idx < RESYNC_PAGES); |
| 2857 | |
| 2858 | r1_bio->sectors = nr_sectors; |
| 2859 | |
| 2860 | if (mddev_is_clustered(mddev) && |
| 2861 | conf->cluster_sync_high < sector_nr + nr_sectors) { |
| 2862 | conf->cluster_sync_low = mddev->curr_resync_completed; |
| 2863 | conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; |
| 2864 | /* Send resync message */ |
| 2865 | md_cluster_ops->resync_info_update(mddev, |
| 2866 | conf->cluster_sync_low, |
| 2867 | conf->cluster_sync_high); |
| 2868 | } |
| 2869 | |
| 2870 | /* For a user-requested sync, we read all readable devices and do a |
| 2871 | * compare |
| 2872 | */ |
| 2873 | if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { |
| 2874 | atomic_set(&r1_bio->remaining, read_targets); |
| 2875 | for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { |
| 2876 | bio = r1_bio->bios[i]; |
| 2877 | if (bio->bi_end_io == end_sync_read) { |
| 2878 | read_targets--; |
| 2879 | md_sync_acct_bio(bio, nr_sectors); |
| 2880 | if (read_targets == 1) |
| 2881 | bio->bi_opf &= ~MD_FAILFAST; |
| 2882 | generic_make_request(bio); |
| 2883 | } |
| 2884 | } |
| 2885 | } else { |
| 2886 | atomic_set(&r1_bio->remaining, 1); |
| 2887 | bio = r1_bio->bios[r1_bio->read_disk]; |
| 2888 | md_sync_acct_bio(bio, nr_sectors); |
| 2889 | if (read_targets == 1) |
| 2890 | bio->bi_opf &= ~MD_FAILFAST; |
| 2891 | generic_make_request(bio); |
| 2892 | |
| 2893 | } |
| 2894 | return nr_sectors; |
| 2895 | } |
| 2896 | |
| 2897 | static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) |
| 2898 | { |
| 2899 | if (sectors) |
| 2900 | return sectors; |
| 2901 | |
| 2902 | return mddev->dev_sectors; |
| 2903 | } |
| 2904 | |
| 2905 | static struct r1conf *setup_conf(struct mddev *mddev) |
| 2906 | { |
| 2907 | struct r1conf *conf; |
| 2908 | int i; |
| 2909 | struct raid1_info *disk; |
| 2910 | struct md_rdev *rdev; |
| 2911 | int err = -ENOMEM; |
| 2912 | |
| 2913 | conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); |
| 2914 | if (!conf) |
| 2915 | goto abort; |
| 2916 | |
| 2917 | conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, |
| 2918 | sizeof(atomic_t), GFP_KERNEL); |
| 2919 | if (!conf->nr_pending) |
| 2920 | goto abort; |
| 2921 | |
| 2922 | conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, |
| 2923 | sizeof(atomic_t), GFP_KERNEL); |
| 2924 | if (!conf->nr_waiting) |
| 2925 | goto abort; |
| 2926 | |
| 2927 | conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, |
| 2928 | sizeof(atomic_t), GFP_KERNEL); |
| 2929 | if (!conf->nr_queued) |
| 2930 | goto abort; |
| 2931 | |
| 2932 | conf->barrier = kcalloc(BARRIER_BUCKETS_NR, |
| 2933 | sizeof(atomic_t), GFP_KERNEL); |
| 2934 | if (!conf->barrier) |
| 2935 | goto abort; |
| 2936 | |
| 2937 | conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), |
| 2938 | mddev->raid_disks, 2), |
| 2939 | GFP_KERNEL); |
| 2940 | if (!conf->mirrors) |
| 2941 | goto abort; |
| 2942 | |
| 2943 | conf->tmppage = alloc_page(GFP_KERNEL); |
| 2944 | if (!conf->tmppage) |
| 2945 | goto abort; |
| 2946 | |
| 2947 | conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); |
| 2948 | if (!conf->poolinfo) |
| 2949 | goto abort; |
| 2950 | conf->poolinfo->raid_disks = mddev->raid_disks * 2; |
| 2951 | err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc, |
| 2952 | r1bio_pool_free, conf->poolinfo); |
| 2953 | if (err) |
| 2954 | goto abort; |
| 2955 | |
| 2956 | err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); |
| 2957 | if (err) |
| 2958 | goto abort; |
| 2959 | |
| 2960 | conf->poolinfo->mddev = mddev; |
| 2961 | |
| 2962 | err = -EINVAL; |
| 2963 | spin_lock_init(&conf->device_lock); |
| 2964 | rdev_for_each(rdev, mddev) { |
| 2965 | int disk_idx = rdev->raid_disk; |
| 2966 | if (disk_idx >= mddev->raid_disks |
| 2967 | || disk_idx < 0) |
| 2968 | continue; |
| 2969 | if (test_bit(Replacement, &rdev->flags)) |
| 2970 | disk = conf->mirrors + mddev->raid_disks + disk_idx; |
| 2971 | else |
| 2972 | disk = conf->mirrors + disk_idx; |
| 2973 | |
| 2974 | if (disk->rdev) |
| 2975 | goto abort; |
| 2976 | disk->rdev = rdev; |
| 2977 | disk->head_position = 0; |
| 2978 | disk->seq_start = MaxSector; |
| 2979 | } |
| 2980 | conf->raid_disks = mddev->raid_disks; |
| 2981 | conf->mddev = mddev; |
| 2982 | INIT_LIST_HEAD(&conf->retry_list); |
| 2983 | INIT_LIST_HEAD(&conf->bio_end_io_list); |
| 2984 | |
| 2985 | spin_lock_init(&conf->resync_lock); |
| 2986 | init_waitqueue_head(&conf->wait_barrier); |
| 2987 | |
| 2988 | bio_list_init(&conf->pending_bio_list); |
| 2989 | conf->pending_count = 0; |
| 2990 | conf->recovery_disabled = mddev->recovery_disabled - 1; |
| 2991 | |
| 2992 | err = -EIO; |
| 2993 | for (i = 0; i < conf->raid_disks * 2; i++) { |
| 2994 | |
| 2995 | disk = conf->mirrors + i; |
| 2996 | |
| 2997 | if (i < conf->raid_disks && |
| 2998 | disk[conf->raid_disks].rdev) { |
| 2999 | /* This slot has a replacement. */ |
| 3000 | if (!disk->rdev) { |
| 3001 | /* No original, just make the replacement |
| 3002 | * a recovering spare |
| 3003 | */ |
| 3004 | disk->rdev = |
| 3005 | disk[conf->raid_disks].rdev; |
| 3006 | disk[conf->raid_disks].rdev = NULL; |
| 3007 | } else if (!test_bit(In_sync, &disk->rdev->flags)) |
| 3008 | /* Original is not in_sync - bad */ |
| 3009 | goto abort; |
| 3010 | } |
| 3011 | |
| 3012 | if (!disk->rdev || |
| 3013 | !test_bit(In_sync, &disk->rdev->flags)) { |
| 3014 | disk->head_position = 0; |
| 3015 | if (disk->rdev && |
| 3016 | (disk->rdev->saved_raid_disk < 0)) |
| 3017 | conf->fullsync = 1; |
| 3018 | } |
| 3019 | } |
| 3020 | |
| 3021 | err = -ENOMEM; |
| 3022 | conf->thread = md_register_thread(raid1d, mddev, "raid1"); |
| 3023 | if (!conf->thread) |
| 3024 | goto abort; |
| 3025 | |
| 3026 | return conf; |
| 3027 | |
| 3028 | abort: |
| 3029 | if (conf) { |
| 3030 | mempool_exit(&conf->r1bio_pool); |
| 3031 | kfree(conf->mirrors); |
| 3032 | safe_put_page(conf->tmppage); |
| 3033 | kfree(conf->poolinfo); |
| 3034 | kfree(conf->nr_pending); |
| 3035 | kfree(conf->nr_waiting); |
| 3036 | kfree(conf->nr_queued); |
| 3037 | kfree(conf->barrier); |
| 3038 | bioset_exit(&conf->bio_split); |
| 3039 | kfree(conf); |
| 3040 | } |
| 3041 | return ERR_PTR(err); |
| 3042 | } |
| 3043 | |
| 3044 | static void raid1_free(struct mddev *mddev, void *priv); |
| 3045 | static int raid1_run(struct mddev *mddev) |
| 3046 | { |
| 3047 | struct r1conf *conf; |
| 3048 | int i; |
| 3049 | struct md_rdev *rdev; |
| 3050 | int ret; |
| 3051 | bool discard_supported = false; |
| 3052 | |
| 3053 | if (mddev->level != 1) { |
| 3054 | pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", |
| 3055 | mdname(mddev), mddev->level); |
| 3056 | return -EIO; |
| 3057 | } |
| 3058 | if (mddev->reshape_position != MaxSector) { |
| 3059 | pr_warn("md/raid1:%s: reshape_position set but not supported\n", |
| 3060 | mdname(mddev)); |
| 3061 | return -EIO; |
| 3062 | } |
| 3063 | if (mddev_init_writes_pending(mddev) < 0) |
| 3064 | return -ENOMEM; |
| 3065 | /* |
| 3066 | * copy the already verified devices into our private RAID1 |
| 3067 | * bookkeeping area. [whatever we allocate in run(), |
| 3068 | * should be freed in raid1_free()] |
| 3069 | */ |
| 3070 | if (mddev->private == NULL) |
| 3071 | conf = setup_conf(mddev); |
| 3072 | else |
| 3073 | conf = mddev->private; |
| 3074 | |
| 3075 | if (IS_ERR(conf)) |
| 3076 | return PTR_ERR(conf); |
| 3077 | |
| 3078 | if (mddev->queue) { |
| 3079 | blk_queue_max_write_same_sectors(mddev->queue, 0); |
| 3080 | blk_queue_max_write_zeroes_sectors(mddev->queue, 0); |
| 3081 | } |
| 3082 | |
| 3083 | rdev_for_each(rdev, mddev) { |
| 3084 | if (!mddev->gendisk) |
| 3085 | continue; |
| 3086 | disk_stack_limits(mddev->gendisk, rdev->bdev, |
| 3087 | rdev->data_offset << 9); |
| 3088 | if (blk_queue_discard(bdev_get_queue(rdev->bdev))) |
| 3089 | discard_supported = true; |
| 3090 | } |
| 3091 | |
| 3092 | mddev->degraded = 0; |
| 3093 | for (i=0; i < conf->raid_disks; i++) |
| 3094 | if (conf->mirrors[i].rdev == NULL || |
| 3095 | !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || |
| 3096 | test_bit(Faulty, &conf->mirrors[i].rdev->flags)) |
| 3097 | mddev->degraded++; |
| 3098 | |
| 3099 | if (conf->raid_disks - mddev->degraded == 1) |
| 3100 | mddev->recovery_cp = MaxSector; |
| 3101 | |
| 3102 | if (mddev->recovery_cp != MaxSector) |
| 3103 | pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", |
| 3104 | mdname(mddev)); |
| 3105 | pr_info("md/raid1:%s: active with %d out of %d mirrors\n", |
| 3106 | mdname(mddev), mddev->raid_disks - mddev->degraded, |
| 3107 | mddev->raid_disks); |
| 3108 | |
| 3109 | /* |
| 3110 | * Ok, everything is just fine now |
| 3111 | */ |
| 3112 | mddev->thread = conf->thread; |
| 3113 | conf->thread = NULL; |
| 3114 | mddev->private = conf; |
| 3115 | set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); |
| 3116 | |
| 3117 | md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); |
| 3118 | |
| 3119 | if (mddev->queue) { |
| 3120 | if (discard_supported) |
| 3121 | blk_queue_flag_set(QUEUE_FLAG_DISCARD, |
| 3122 | mddev->queue); |
| 3123 | else |
| 3124 | blk_queue_flag_clear(QUEUE_FLAG_DISCARD, |
| 3125 | mddev->queue); |
| 3126 | } |
| 3127 | |
| 3128 | ret = md_integrity_register(mddev); |
| 3129 | if (ret) { |
| 3130 | md_unregister_thread(&mddev->thread); |
| 3131 | raid1_free(mddev, conf); |
| 3132 | } |
| 3133 | return ret; |
| 3134 | } |
| 3135 | |
| 3136 | static void raid1_free(struct mddev *mddev, void *priv) |
| 3137 | { |
| 3138 | struct r1conf *conf = priv; |
| 3139 | |
| 3140 | mempool_exit(&conf->r1bio_pool); |
| 3141 | kfree(conf->mirrors); |
| 3142 | safe_put_page(conf->tmppage); |
| 3143 | kfree(conf->poolinfo); |
| 3144 | kfree(conf->nr_pending); |
| 3145 | kfree(conf->nr_waiting); |
| 3146 | kfree(conf->nr_queued); |
| 3147 | kfree(conf->barrier); |
| 3148 | bioset_exit(&conf->bio_split); |
| 3149 | kfree(conf); |
| 3150 | } |
| 3151 | |
| 3152 | static int raid1_resize(struct mddev *mddev, sector_t sectors) |
| 3153 | { |
| 3154 | /* no resync is happening, and there is enough space |
| 3155 | * on all devices, so we can resize. |
| 3156 | * We need to make sure resync covers any new space. |
| 3157 | * If the array is shrinking we should possibly wait until |
| 3158 | * any io in the removed space completes, but it hardly seems |
| 3159 | * worth it. |
| 3160 | */ |
| 3161 | sector_t newsize = raid1_size(mddev, sectors, 0); |
| 3162 | if (mddev->external_size && |
| 3163 | mddev->array_sectors > newsize) |
| 3164 | return -EINVAL; |
| 3165 | if (mddev->bitmap) { |
| 3166 | int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); |
| 3167 | if (ret) |
| 3168 | return ret; |
| 3169 | } |
| 3170 | md_set_array_sectors(mddev, newsize); |
| 3171 | if (sectors > mddev->dev_sectors && |
| 3172 | mddev->recovery_cp > mddev->dev_sectors) { |
| 3173 | mddev->recovery_cp = mddev->dev_sectors; |
| 3174 | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); |
| 3175 | } |
| 3176 | mddev->dev_sectors = sectors; |
| 3177 | mddev->resync_max_sectors = sectors; |
| 3178 | return 0; |
| 3179 | } |
| 3180 | |
| 3181 | static int raid1_reshape(struct mddev *mddev) |
| 3182 | { |
| 3183 | /* We need to: |
| 3184 | * 1/ resize the r1bio_pool |
| 3185 | * 2/ resize conf->mirrors |
| 3186 | * |
| 3187 | * We allocate a new r1bio_pool if we can. |
| 3188 | * Then raise a device barrier and wait until all IO stops. |
| 3189 | * Then resize conf->mirrors and swap in the new r1bio pool. |
| 3190 | * |
| 3191 | * At the same time, we "pack" the devices so that all the missing |
| 3192 | * devices have the higher raid_disk numbers. |
| 3193 | */ |
| 3194 | mempool_t newpool, oldpool; |
| 3195 | struct pool_info *newpoolinfo; |
| 3196 | struct raid1_info *newmirrors; |
| 3197 | struct r1conf *conf = mddev->private; |
| 3198 | int cnt, raid_disks; |
| 3199 | unsigned long flags; |
| 3200 | int d, d2; |
| 3201 | int ret; |
| 3202 | |
| 3203 | memset(&newpool, 0, sizeof(newpool)); |
| 3204 | memset(&oldpool, 0, sizeof(oldpool)); |
| 3205 | |
| 3206 | /* Cannot change chunk_size, layout, or level */ |
| 3207 | if (mddev->chunk_sectors != mddev->new_chunk_sectors || |
| 3208 | mddev->layout != mddev->new_layout || |
| 3209 | mddev->level != mddev->new_level) { |
| 3210 | mddev->new_chunk_sectors = mddev->chunk_sectors; |
| 3211 | mddev->new_layout = mddev->layout; |
| 3212 | mddev->new_level = mddev->level; |
| 3213 | return -EINVAL; |
| 3214 | } |
| 3215 | |
| 3216 | if (!mddev_is_clustered(mddev)) |
| 3217 | md_allow_write(mddev); |
| 3218 | |
| 3219 | raid_disks = mddev->raid_disks + mddev->delta_disks; |
| 3220 | |
| 3221 | if (raid_disks < conf->raid_disks) { |
| 3222 | cnt=0; |
| 3223 | for (d= 0; d < conf->raid_disks; d++) |
| 3224 | if (conf->mirrors[d].rdev) |
| 3225 | cnt++; |
| 3226 | if (cnt > raid_disks) |
| 3227 | return -EBUSY; |
| 3228 | } |
| 3229 | |
| 3230 | newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); |
| 3231 | if (!newpoolinfo) |
| 3232 | return -ENOMEM; |
| 3233 | newpoolinfo->mddev = mddev; |
| 3234 | newpoolinfo->raid_disks = raid_disks * 2; |
| 3235 | |
| 3236 | ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc, |
| 3237 | r1bio_pool_free, newpoolinfo); |
| 3238 | if (ret) { |
| 3239 | kfree(newpoolinfo); |
| 3240 | return ret; |
| 3241 | } |
| 3242 | newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), |
| 3243 | raid_disks, 2), |
| 3244 | GFP_KERNEL); |
| 3245 | if (!newmirrors) { |
| 3246 | kfree(newpoolinfo); |
| 3247 | mempool_exit(&newpool); |
| 3248 | return -ENOMEM; |
| 3249 | } |
| 3250 | |
| 3251 | freeze_array(conf, 0); |
| 3252 | |
| 3253 | /* ok, everything is stopped */ |
| 3254 | oldpool = conf->r1bio_pool; |
| 3255 | conf->r1bio_pool = newpool; |
| 3256 | |
| 3257 | for (d = d2 = 0; d < conf->raid_disks; d++) { |
| 3258 | struct md_rdev *rdev = conf->mirrors[d].rdev; |
| 3259 | if (rdev && rdev->raid_disk != d2) { |
| 3260 | sysfs_unlink_rdev(mddev, rdev); |
| 3261 | rdev->raid_disk = d2; |
| 3262 | sysfs_unlink_rdev(mddev, rdev); |
| 3263 | if (sysfs_link_rdev(mddev, rdev)) |
| 3264 | pr_warn("md/raid1:%s: cannot register rd%d\n", |
| 3265 | mdname(mddev), rdev->raid_disk); |
| 3266 | } |
| 3267 | if (rdev) |
| 3268 | newmirrors[d2++].rdev = rdev; |
| 3269 | } |
| 3270 | kfree(conf->mirrors); |
| 3271 | conf->mirrors = newmirrors; |
| 3272 | kfree(conf->poolinfo); |
| 3273 | conf->poolinfo = newpoolinfo; |
| 3274 | |
| 3275 | spin_lock_irqsave(&conf->device_lock, flags); |
| 3276 | mddev->degraded += (raid_disks - conf->raid_disks); |
| 3277 | spin_unlock_irqrestore(&conf->device_lock, flags); |
| 3278 | conf->raid_disks = mddev->raid_disks = raid_disks; |
| 3279 | mddev->delta_disks = 0; |
| 3280 | |
| 3281 | unfreeze_array(conf); |
| 3282 | |
| 3283 | set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); |
| 3284 | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); |
| 3285 | md_wakeup_thread(mddev->thread); |
| 3286 | |
| 3287 | mempool_exit(&oldpool); |
| 3288 | return 0; |
| 3289 | } |
| 3290 | |
| 3291 | static void raid1_quiesce(struct mddev *mddev, int quiesce) |
| 3292 | { |
| 3293 | struct r1conf *conf = mddev->private; |
| 3294 | |
| 3295 | if (quiesce) |
| 3296 | freeze_array(conf, 0); |
| 3297 | else |
| 3298 | unfreeze_array(conf); |
| 3299 | } |
| 3300 | |
| 3301 | static void *raid1_takeover(struct mddev *mddev) |
| 3302 | { |
| 3303 | /* raid1 can take over: |
| 3304 | * raid5 with 2 devices, any layout or chunk size |
| 3305 | */ |
| 3306 | if (mddev->level == 5 && mddev->raid_disks == 2) { |
| 3307 | struct r1conf *conf; |
| 3308 | mddev->new_level = 1; |
| 3309 | mddev->new_layout = 0; |
| 3310 | mddev->new_chunk_sectors = 0; |
| 3311 | conf = setup_conf(mddev); |
| 3312 | if (!IS_ERR(conf)) { |
| 3313 | /* Array must appear to be quiesced */ |
| 3314 | conf->array_frozen = 1; |
| 3315 | mddev_clear_unsupported_flags(mddev, |
| 3316 | UNSUPPORTED_MDDEV_FLAGS); |
| 3317 | } |
| 3318 | return conf; |
| 3319 | } |
| 3320 | return ERR_PTR(-EINVAL); |
| 3321 | } |
| 3322 | |
| 3323 | static struct md_personality raid1_personality = |
| 3324 | { |
| 3325 | .name = "raid1", |
| 3326 | .level = 1, |
| 3327 | .owner = THIS_MODULE, |
| 3328 | .make_request = raid1_make_request, |
| 3329 | .run = raid1_run, |
| 3330 | .free = raid1_free, |
| 3331 | .status = raid1_status, |
| 3332 | .error_handler = raid1_error, |
| 3333 | .hot_add_disk = raid1_add_disk, |
| 3334 | .hot_remove_disk= raid1_remove_disk, |
| 3335 | .spare_active = raid1_spare_active, |
| 3336 | .sync_request = raid1_sync_request, |
| 3337 | .resize = raid1_resize, |
| 3338 | .size = raid1_size, |
| 3339 | .check_reshape = raid1_reshape, |
| 3340 | .quiesce = raid1_quiesce, |
| 3341 | .takeover = raid1_takeover, |
| 3342 | .congested = raid1_congested, |
| 3343 | }; |
| 3344 | |
| 3345 | static int __init raid_init(void) |
| 3346 | { |
| 3347 | return register_md_personality(&raid1_personality); |
| 3348 | } |
| 3349 | |
| 3350 | static void raid_exit(void) |
| 3351 | { |
| 3352 | unregister_md_personality(&raid1_personality); |
| 3353 | } |
| 3354 | |
| 3355 | module_init(raid_init); |
| 3356 | module_exit(raid_exit); |
| 3357 | MODULE_LICENSE("GPL"); |
| 3358 | MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); |
| 3359 | MODULE_ALIAS("md-personality-3"); /* RAID1 */ |
| 3360 | MODULE_ALIAS("md-raid1"); |
| 3361 | MODULE_ALIAS("md-level-1"); |
| 3362 | |
| 3363 | module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); |