Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Local APIC handling, local APIC timers |
| 3 | * |
| 4 | * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> |
| 5 | * |
| 6 | * Fixes |
| 7 | * Maciej W. Rozycki : Bits for genuine 82489DX APICs; |
| 8 | * thanks to Eric Gilmore |
| 9 | * and Rolf G. Tews |
| 10 | * for testing these extensively. |
| 11 | * Maciej W. Rozycki : Various updates and fixes. |
| 12 | * Mikael Pettersson : Power Management for UP-APIC. |
| 13 | * Pavel Machek and |
| 14 | * Mikael Pettersson : PM converted to driver model. |
| 15 | */ |
| 16 | |
| 17 | #include <linux/perf_event.h> |
| 18 | #include <linux/kernel_stat.h> |
| 19 | #include <linux/mc146818rtc.h> |
| 20 | #include <linux/acpi_pmtmr.h> |
| 21 | #include <linux/clockchips.h> |
| 22 | #include <linux/interrupt.h> |
| 23 | #include <linux/bootmem.h> |
| 24 | #include <linux/ftrace.h> |
| 25 | #include <linux/ioport.h> |
| 26 | #include <linux/export.h> |
| 27 | #include <linux/syscore_ops.h> |
| 28 | #include <linux/delay.h> |
| 29 | #include <linux/timex.h> |
| 30 | #include <linux/i8253.h> |
| 31 | #include <linux/dmar.h> |
| 32 | #include <linux/init.h> |
| 33 | #include <linux/cpu.h> |
| 34 | #include <linux/dmi.h> |
| 35 | #include <linux/smp.h> |
| 36 | #include <linux/mm.h> |
| 37 | |
| 38 | #include <asm/trace/irq_vectors.h> |
| 39 | #include <asm/irq_remapping.h> |
| 40 | #include <asm/perf_event.h> |
| 41 | #include <asm/x86_init.h> |
| 42 | #include <asm/pgalloc.h> |
| 43 | #include <linux/atomic.h> |
| 44 | #include <asm/mpspec.h> |
| 45 | #include <asm/i8259.h> |
| 46 | #include <asm/proto.h> |
| 47 | #include <asm/apic.h> |
| 48 | #include <asm/io_apic.h> |
| 49 | #include <asm/desc.h> |
| 50 | #include <asm/hpet.h> |
| 51 | #include <asm/mtrr.h> |
| 52 | #include <asm/time.h> |
| 53 | #include <asm/smp.h> |
| 54 | #include <asm/mce.h> |
| 55 | #include <asm/tsc.h> |
| 56 | #include <asm/hypervisor.h> |
| 57 | #include <asm/cpu_device_id.h> |
| 58 | #include <asm/intel-family.h> |
| 59 | #include <asm/irq_regs.h> |
| 60 | |
| 61 | unsigned int num_processors; |
| 62 | |
| 63 | unsigned disabled_cpus; |
| 64 | |
| 65 | /* Processor that is doing the boot up */ |
| 66 | unsigned int boot_cpu_physical_apicid = -1U; |
| 67 | EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid); |
| 68 | |
| 69 | u8 boot_cpu_apic_version; |
| 70 | |
| 71 | /* |
| 72 | * The highest APIC ID seen during enumeration. |
| 73 | */ |
| 74 | static unsigned int max_physical_apicid; |
| 75 | |
| 76 | /* |
| 77 | * Bitmask of physically existing CPUs: |
| 78 | */ |
| 79 | physid_mask_t phys_cpu_present_map; |
| 80 | |
| 81 | /* |
| 82 | * Processor to be disabled specified by kernel parameter |
| 83 | * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to |
| 84 | * avoid undefined behaviour caused by sending INIT from AP to BSP. |
| 85 | */ |
| 86 | static unsigned int disabled_cpu_apicid __read_mostly = BAD_APICID; |
| 87 | |
| 88 | /* |
| 89 | * This variable controls which CPUs receive external NMIs. By default, |
| 90 | * external NMIs are delivered only to the BSP. |
| 91 | */ |
| 92 | static int apic_extnmi = APIC_EXTNMI_BSP; |
| 93 | |
| 94 | /* |
| 95 | * Map cpu index to physical APIC ID |
| 96 | */ |
| 97 | DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID); |
| 98 | DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID); |
| 99 | DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX); |
| 100 | EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid); |
| 101 | EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid); |
| 102 | EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid); |
| 103 | |
| 104 | #ifdef CONFIG_X86_32 |
| 105 | |
| 106 | /* |
| 107 | * On x86_32, the mapping between cpu and logical apicid may vary |
| 108 | * depending on apic in use. The following early percpu variable is |
| 109 | * used for the mapping. This is where the behaviors of x86_64 and 32 |
| 110 | * actually diverge. Let's keep it ugly for now. |
| 111 | */ |
| 112 | DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID); |
| 113 | |
| 114 | /* Local APIC was disabled by the BIOS and enabled by the kernel */ |
| 115 | static int enabled_via_apicbase; |
| 116 | |
| 117 | /* |
| 118 | * Handle interrupt mode configuration register (IMCR). |
| 119 | * This register controls whether the interrupt signals |
| 120 | * that reach the BSP come from the master PIC or from the |
| 121 | * local APIC. Before entering Symmetric I/O Mode, either |
| 122 | * the BIOS or the operating system must switch out of |
| 123 | * PIC Mode by changing the IMCR. |
| 124 | */ |
| 125 | static inline void imcr_pic_to_apic(void) |
| 126 | { |
| 127 | /* select IMCR register */ |
| 128 | outb(0x70, 0x22); |
| 129 | /* NMI and 8259 INTR go through APIC */ |
| 130 | outb(0x01, 0x23); |
| 131 | } |
| 132 | |
| 133 | static inline void imcr_apic_to_pic(void) |
| 134 | { |
| 135 | /* select IMCR register */ |
| 136 | outb(0x70, 0x22); |
| 137 | /* NMI and 8259 INTR go directly to BSP */ |
| 138 | outb(0x00, 0x23); |
| 139 | } |
| 140 | #endif |
| 141 | |
| 142 | /* |
| 143 | * Knob to control our willingness to enable the local APIC. |
| 144 | * |
| 145 | * +1=force-enable |
| 146 | */ |
| 147 | static int force_enable_local_apic __initdata; |
| 148 | |
| 149 | /* |
| 150 | * APIC command line parameters |
| 151 | */ |
| 152 | static int __init parse_lapic(char *arg) |
| 153 | { |
| 154 | if (IS_ENABLED(CONFIG_X86_32) && !arg) |
| 155 | force_enable_local_apic = 1; |
| 156 | else if (arg && !strncmp(arg, "notscdeadline", 13)) |
| 157 | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); |
| 158 | return 0; |
| 159 | } |
| 160 | early_param("lapic", parse_lapic); |
| 161 | |
| 162 | #ifdef CONFIG_X86_64 |
| 163 | static int apic_calibrate_pmtmr __initdata; |
| 164 | static __init int setup_apicpmtimer(char *s) |
| 165 | { |
| 166 | apic_calibrate_pmtmr = 1; |
| 167 | notsc_setup(NULL); |
| 168 | return 0; |
| 169 | } |
| 170 | __setup("apicpmtimer", setup_apicpmtimer); |
| 171 | #endif |
| 172 | |
| 173 | unsigned long mp_lapic_addr; |
| 174 | int disable_apic; |
| 175 | /* Disable local APIC timer from the kernel commandline or via dmi quirk */ |
| 176 | static int disable_apic_timer __initdata; |
| 177 | /* Local APIC timer works in C2 */ |
| 178 | int local_apic_timer_c2_ok; |
| 179 | EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); |
| 180 | |
| 181 | /* |
| 182 | * Debug level, exported for io_apic.c |
| 183 | */ |
| 184 | unsigned int apic_verbosity; |
| 185 | |
| 186 | int pic_mode; |
| 187 | |
| 188 | /* Have we found an MP table */ |
| 189 | int smp_found_config; |
| 190 | |
| 191 | static struct resource lapic_resource = { |
| 192 | .name = "Local APIC", |
| 193 | .flags = IORESOURCE_MEM | IORESOURCE_BUSY, |
| 194 | }; |
| 195 | |
| 196 | unsigned int lapic_timer_frequency = 0; |
| 197 | |
| 198 | static void apic_pm_activate(void); |
| 199 | |
| 200 | static unsigned long apic_phys; |
| 201 | |
| 202 | /* |
| 203 | * Get the LAPIC version |
| 204 | */ |
| 205 | static inline int lapic_get_version(void) |
| 206 | { |
| 207 | return GET_APIC_VERSION(apic_read(APIC_LVR)); |
| 208 | } |
| 209 | |
| 210 | /* |
| 211 | * Check, if the APIC is integrated or a separate chip |
| 212 | */ |
| 213 | static inline int lapic_is_integrated(void) |
| 214 | { |
| 215 | return APIC_INTEGRATED(lapic_get_version()); |
| 216 | } |
| 217 | |
| 218 | /* |
| 219 | * Check, whether this is a modern or a first generation APIC |
| 220 | */ |
| 221 | static int modern_apic(void) |
| 222 | { |
| 223 | /* AMD systems use old APIC versions, so check the CPU */ |
| 224 | if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && |
| 225 | boot_cpu_data.x86 >= 0xf) |
| 226 | return 1; |
| 227 | return lapic_get_version() >= 0x14; |
| 228 | } |
| 229 | |
| 230 | /* |
| 231 | * right after this call apic become NOOP driven |
| 232 | * so apic->write/read doesn't do anything |
| 233 | */ |
| 234 | static void __init apic_disable(void) |
| 235 | { |
| 236 | pr_info("APIC: switched to apic NOOP\n"); |
| 237 | apic = &apic_noop; |
| 238 | } |
| 239 | |
| 240 | void native_apic_wait_icr_idle(void) |
| 241 | { |
| 242 | while (apic_read(APIC_ICR) & APIC_ICR_BUSY) |
| 243 | cpu_relax(); |
| 244 | } |
| 245 | |
| 246 | u32 native_safe_apic_wait_icr_idle(void) |
| 247 | { |
| 248 | u32 send_status; |
| 249 | int timeout; |
| 250 | |
| 251 | timeout = 0; |
| 252 | do { |
| 253 | send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| 254 | if (!send_status) |
| 255 | break; |
| 256 | inc_irq_stat(icr_read_retry_count); |
| 257 | udelay(100); |
| 258 | } while (timeout++ < 1000); |
| 259 | |
| 260 | return send_status; |
| 261 | } |
| 262 | |
| 263 | void native_apic_icr_write(u32 low, u32 id) |
| 264 | { |
| 265 | unsigned long flags; |
| 266 | |
| 267 | local_irq_save(flags); |
| 268 | apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id)); |
| 269 | apic_write(APIC_ICR, low); |
| 270 | local_irq_restore(flags); |
| 271 | } |
| 272 | |
| 273 | u64 native_apic_icr_read(void) |
| 274 | { |
| 275 | u32 icr1, icr2; |
| 276 | |
| 277 | icr2 = apic_read(APIC_ICR2); |
| 278 | icr1 = apic_read(APIC_ICR); |
| 279 | |
| 280 | return icr1 | ((u64)icr2 << 32); |
| 281 | } |
| 282 | |
| 283 | #ifdef CONFIG_X86_32 |
| 284 | /** |
| 285 | * get_physical_broadcast - Get number of physical broadcast IDs |
| 286 | */ |
| 287 | int get_physical_broadcast(void) |
| 288 | { |
| 289 | return modern_apic() ? 0xff : 0xf; |
| 290 | } |
| 291 | #endif |
| 292 | |
| 293 | /** |
| 294 | * lapic_get_maxlvt - get the maximum number of local vector table entries |
| 295 | */ |
| 296 | int lapic_get_maxlvt(void) |
| 297 | { |
| 298 | /* |
| 299 | * - we always have APIC integrated on 64bit mode |
| 300 | * - 82489DXs do not report # of LVT entries |
| 301 | */ |
| 302 | return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2; |
| 303 | } |
| 304 | |
| 305 | /* |
| 306 | * Local APIC timer |
| 307 | */ |
| 308 | |
| 309 | /* Clock divisor */ |
| 310 | #define APIC_DIVISOR 16 |
| 311 | #define TSC_DIVISOR 8 |
| 312 | |
| 313 | /* |
| 314 | * This function sets up the local APIC timer, with a timeout of |
| 315 | * 'clocks' APIC bus clock. During calibration we actually call |
| 316 | * this function twice on the boot CPU, once with a bogus timeout |
| 317 | * value, second time for real. The other (noncalibrating) CPUs |
| 318 | * call this function only once, with the real, calibrated value. |
| 319 | * |
| 320 | * We do reads before writes even if unnecessary, to get around the |
| 321 | * P5 APIC double write bug. |
| 322 | */ |
| 323 | static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) |
| 324 | { |
| 325 | unsigned int lvtt_value, tmp_value; |
| 326 | |
| 327 | lvtt_value = LOCAL_TIMER_VECTOR; |
| 328 | if (!oneshot) |
| 329 | lvtt_value |= APIC_LVT_TIMER_PERIODIC; |
| 330 | else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| 331 | lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE; |
| 332 | |
| 333 | if (!lapic_is_integrated()) |
| 334 | lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV); |
| 335 | |
| 336 | if (!irqen) |
| 337 | lvtt_value |= APIC_LVT_MASKED; |
| 338 | |
| 339 | apic_write(APIC_LVTT, lvtt_value); |
| 340 | |
| 341 | if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) { |
| 342 | /* |
| 343 | * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode, |
| 344 | * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized. |
| 345 | * According to Intel, MFENCE can do the serialization here. |
| 346 | */ |
| 347 | asm volatile("mfence" : : : "memory"); |
| 348 | |
| 349 | printk_once(KERN_DEBUG "TSC deadline timer enabled\n"); |
| 350 | return; |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * Divide PICLK by 16 |
| 355 | */ |
| 356 | tmp_value = apic_read(APIC_TDCR); |
| 357 | apic_write(APIC_TDCR, |
| 358 | (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) | |
| 359 | APIC_TDR_DIV_16); |
| 360 | |
| 361 | if (!oneshot) |
| 362 | apic_write(APIC_TMICT, clocks / APIC_DIVISOR); |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * Setup extended LVT, AMD specific |
| 367 | * |
| 368 | * Software should use the LVT offsets the BIOS provides. The offsets |
| 369 | * are determined by the subsystems using it like those for MCE |
| 370 | * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts |
| 371 | * are supported. Beginning with family 10h at least 4 offsets are |
| 372 | * available. |
| 373 | * |
| 374 | * Since the offsets must be consistent for all cores, we keep track |
| 375 | * of the LVT offsets in software and reserve the offset for the same |
| 376 | * vector also to be used on other cores. An offset is freed by |
| 377 | * setting the entry to APIC_EILVT_MASKED. |
| 378 | * |
| 379 | * If the BIOS is right, there should be no conflicts. Otherwise a |
| 380 | * "[Firmware Bug]: ..." error message is generated. However, if |
| 381 | * software does not properly determines the offsets, it is not |
| 382 | * necessarily a BIOS bug. |
| 383 | */ |
| 384 | |
| 385 | static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX]; |
| 386 | |
| 387 | static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new) |
| 388 | { |
| 389 | return (old & APIC_EILVT_MASKED) |
| 390 | || (new == APIC_EILVT_MASKED) |
| 391 | || ((new & ~APIC_EILVT_MASKED) == old); |
| 392 | } |
| 393 | |
| 394 | static unsigned int reserve_eilvt_offset(int offset, unsigned int new) |
| 395 | { |
| 396 | unsigned int rsvd, vector; |
| 397 | |
| 398 | if (offset >= APIC_EILVT_NR_MAX) |
| 399 | return ~0; |
| 400 | |
| 401 | rsvd = atomic_read(&eilvt_offsets[offset]); |
| 402 | do { |
| 403 | vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */ |
| 404 | if (vector && !eilvt_entry_is_changeable(vector, new)) |
| 405 | /* may not change if vectors are different */ |
| 406 | return rsvd; |
| 407 | rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new); |
| 408 | } while (rsvd != new); |
| 409 | |
| 410 | rsvd &= ~APIC_EILVT_MASKED; |
| 411 | if (rsvd && rsvd != vector) |
| 412 | pr_info("LVT offset %d assigned for vector 0x%02x\n", |
| 413 | offset, rsvd); |
| 414 | |
| 415 | return new; |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * If mask=1, the LVT entry does not generate interrupts while mask=0 |
| 420 | * enables the vector. See also the BKDGs. Must be called with |
| 421 | * preemption disabled. |
| 422 | */ |
| 423 | |
| 424 | int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask) |
| 425 | { |
| 426 | unsigned long reg = APIC_EILVTn(offset); |
| 427 | unsigned int new, old, reserved; |
| 428 | |
| 429 | new = (mask << 16) | (msg_type << 8) | vector; |
| 430 | old = apic_read(reg); |
| 431 | reserved = reserve_eilvt_offset(offset, new); |
| 432 | |
| 433 | if (reserved != new) { |
| 434 | pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " |
| 435 | "vector 0x%x, but the register is already in use for " |
| 436 | "vector 0x%x on another cpu\n", |
| 437 | smp_processor_id(), reg, offset, new, reserved); |
| 438 | return -EINVAL; |
| 439 | } |
| 440 | |
| 441 | if (!eilvt_entry_is_changeable(old, new)) { |
| 442 | pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " |
| 443 | "vector 0x%x, but the register is already in use for " |
| 444 | "vector 0x%x on this cpu\n", |
| 445 | smp_processor_id(), reg, offset, new, old); |
| 446 | return -EBUSY; |
| 447 | } |
| 448 | |
| 449 | apic_write(reg, new); |
| 450 | |
| 451 | return 0; |
| 452 | } |
| 453 | EXPORT_SYMBOL_GPL(setup_APIC_eilvt); |
| 454 | |
| 455 | /* |
| 456 | * Program the next event, relative to now |
| 457 | */ |
| 458 | static int lapic_next_event(unsigned long delta, |
| 459 | struct clock_event_device *evt) |
| 460 | { |
| 461 | apic_write(APIC_TMICT, delta); |
| 462 | return 0; |
| 463 | } |
| 464 | |
| 465 | static int lapic_next_deadline(unsigned long delta, |
| 466 | struct clock_event_device *evt) |
| 467 | { |
| 468 | u64 tsc; |
| 469 | |
| 470 | tsc = rdtsc(); |
| 471 | wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR)); |
| 472 | return 0; |
| 473 | } |
| 474 | |
| 475 | static int lapic_timer_shutdown(struct clock_event_device *evt) |
| 476 | { |
| 477 | unsigned int v; |
| 478 | |
| 479 | /* Lapic used as dummy for broadcast ? */ |
| 480 | if (evt->features & CLOCK_EVT_FEAT_DUMMY) |
| 481 | return 0; |
| 482 | |
| 483 | v = apic_read(APIC_LVTT); |
| 484 | v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); |
| 485 | apic_write(APIC_LVTT, v); |
| 486 | apic_write(APIC_TMICT, 0); |
| 487 | return 0; |
| 488 | } |
| 489 | |
| 490 | static inline int |
| 491 | lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot) |
| 492 | { |
| 493 | /* Lapic used as dummy for broadcast ? */ |
| 494 | if (evt->features & CLOCK_EVT_FEAT_DUMMY) |
| 495 | return 0; |
| 496 | |
| 497 | __setup_APIC_LVTT(lapic_timer_frequency, oneshot, 1); |
| 498 | return 0; |
| 499 | } |
| 500 | |
| 501 | static int lapic_timer_set_periodic(struct clock_event_device *evt) |
| 502 | { |
| 503 | return lapic_timer_set_periodic_oneshot(evt, false); |
| 504 | } |
| 505 | |
| 506 | static int lapic_timer_set_oneshot(struct clock_event_device *evt) |
| 507 | { |
| 508 | return lapic_timer_set_periodic_oneshot(evt, true); |
| 509 | } |
| 510 | |
| 511 | /* |
| 512 | * Local APIC timer broadcast function |
| 513 | */ |
| 514 | static void lapic_timer_broadcast(const struct cpumask *mask) |
| 515 | { |
| 516 | #ifdef CONFIG_SMP |
| 517 | apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR); |
| 518 | #endif |
| 519 | } |
| 520 | |
| 521 | |
| 522 | /* |
| 523 | * The local apic timer can be used for any function which is CPU local. |
| 524 | */ |
| 525 | static struct clock_event_device lapic_clockevent = { |
| 526 | .name = "lapic", |
| 527 | .features = CLOCK_EVT_FEAT_PERIODIC | |
| 528 | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP |
| 529 | | CLOCK_EVT_FEAT_DUMMY, |
| 530 | .shift = 32, |
| 531 | .set_state_shutdown = lapic_timer_shutdown, |
| 532 | .set_state_periodic = lapic_timer_set_periodic, |
| 533 | .set_state_oneshot = lapic_timer_set_oneshot, |
| 534 | .set_state_oneshot_stopped = lapic_timer_shutdown, |
| 535 | .set_next_event = lapic_next_event, |
| 536 | .broadcast = lapic_timer_broadcast, |
| 537 | .rating = 100, |
| 538 | .irq = -1, |
| 539 | }; |
| 540 | static DEFINE_PER_CPU(struct clock_event_device, lapic_events); |
| 541 | |
| 542 | #define DEADLINE_MODEL_MATCH_FUNC(model, func) \ |
| 543 | { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&func } |
| 544 | |
| 545 | #define DEADLINE_MODEL_MATCH_REV(model, rev) \ |
| 546 | { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)rev } |
| 547 | |
| 548 | static u32 hsx_deadline_rev(void) |
| 549 | { |
| 550 | switch (boot_cpu_data.x86_stepping) { |
| 551 | case 0x02: return 0x3a; /* EP */ |
| 552 | case 0x04: return 0x0f; /* EX */ |
| 553 | } |
| 554 | |
| 555 | return ~0U; |
| 556 | } |
| 557 | |
| 558 | static u32 bdx_deadline_rev(void) |
| 559 | { |
| 560 | switch (boot_cpu_data.x86_stepping) { |
| 561 | case 0x02: return 0x00000011; |
| 562 | case 0x03: return 0x0700000e; |
| 563 | case 0x04: return 0x0f00000c; |
| 564 | case 0x05: return 0x0e000003; |
| 565 | } |
| 566 | |
| 567 | return ~0U; |
| 568 | } |
| 569 | |
| 570 | static u32 skx_deadline_rev(void) |
| 571 | { |
| 572 | switch (boot_cpu_data.x86_stepping) { |
| 573 | case 0x03: return 0x01000136; |
| 574 | case 0x04: return 0x02000014; |
| 575 | } |
| 576 | |
| 577 | if (boot_cpu_data.x86_stepping > 4) |
| 578 | return 0; |
| 579 | |
| 580 | return ~0U; |
| 581 | } |
| 582 | |
| 583 | static const struct x86_cpu_id deadline_match[] = { |
| 584 | DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_HASWELL_X, hsx_deadline_rev), |
| 585 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_X, 0x0b000020), |
| 586 | DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_BROADWELL_XEON_D, bdx_deadline_rev), |
| 587 | DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_SKYLAKE_X, skx_deadline_rev), |
| 588 | |
| 589 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_CORE, 0x22), |
| 590 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_ULT, 0x20), |
| 591 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_GT3E, 0x17), |
| 592 | |
| 593 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_CORE, 0x25), |
| 594 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_GT3E, 0x17), |
| 595 | |
| 596 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_MOBILE, 0xb2), |
| 597 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_DESKTOP, 0xb2), |
| 598 | |
| 599 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE_MOBILE, 0x52), |
| 600 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE_DESKTOP, 0x52), |
| 601 | |
| 602 | {}, |
| 603 | }; |
| 604 | |
| 605 | static void apic_check_deadline_errata(void) |
| 606 | { |
| 607 | const struct x86_cpu_id *m; |
| 608 | u32 rev; |
| 609 | |
| 610 | if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER) || |
| 611 | boot_cpu_has(X86_FEATURE_HYPERVISOR)) |
| 612 | return; |
| 613 | |
| 614 | m = x86_match_cpu(deadline_match); |
| 615 | if (!m) |
| 616 | return; |
| 617 | |
| 618 | /* |
| 619 | * Function pointers will have the MSB set due to address layout, |
| 620 | * immediate revisions will not. |
| 621 | */ |
| 622 | if ((long)m->driver_data < 0) |
| 623 | rev = ((u32 (*)(void))(m->driver_data))(); |
| 624 | else |
| 625 | rev = (u32)m->driver_data; |
| 626 | |
| 627 | if (boot_cpu_data.microcode >= rev) |
| 628 | return; |
| 629 | |
| 630 | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); |
| 631 | pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; " |
| 632 | "please update microcode to version: 0x%x (or later)\n", rev); |
| 633 | } |
| 634 | |
| 635 | /* |
| 636 | * Setup the local APIC timer for this CPU. Copy the initialized values |
| 637 | * of the boot CPU and register the clock event in the framework. |
| 638 | */ |
| 639 | static void setup_APIC_timer(void) |
| 640 | { |
| 641 | struct clock_event_device *levt = this_cpu_ptr(&lapic_events); |
| 642 | |
| 643 | if (this_cpu_has(X86_FEATURE_ARAT)) { |
| 644 | lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP; |
| 645 | /* Make LAPIC timer preferrable over percpu HPET */ |
| 646 | lapic_clockevent.rating = 150; |
| 647 | } |
| 648 | |
| 649 | memcpy(levt, &lapic_clockevent, sizeof(*levt)); |
| 650 | levt->cpumask = cpumask_of(smp_processor_id()); |
| 651 | |
| 652 | if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { |
| 653 | levt->name = "lapic-deadline"; |
| 654 | levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC | |
| 655 | CLOCK_EVT_FEAT_DUMMY); |
| 656 | levt->set_next_event = lapic_next_deadline; |
| 657 | clockevents_config_and_register(levt, |
| 658 | tsc_khz * (1000 / TSC_DIVISOR), |
| 659 | 0xF, ~0UL); |
| 660 | } else |
| 661 | clockevents_register_device(levt); |
| 662 | } |
| 663 | |
| 664 | /* |
| 665 | * Install the updated TSC frequency from recalibration at the TSC |
| 666 | * deadline clockevent devices. |
| 667 | */ |
| 668 | static void __lapic_update_tsc_freq(void *info) |
| 669 | { |
| 670 | struct clock_event_device *levt = this_cpu_ptr(&lapic_events); |
| 671 | |
| 672 | if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| 673 | return; |
| 674 | |
| 675 | clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR)); |
| 676 | } |
| 677 | |
| 678 | void lapic_update_tsc_freq(void) |
| 679 | { |
| 680 | /* |
| 681 | * The clockevent device's ->mult and ->shift can both be |
| 682 | * changed. In order to avoid races, schedule the frequency |
| 683 | * update code on each CPU. |
| 684 | */ |
| 685 | on_each_cpu(__lapic_update_tsc_freq, NULL, 0); |
| 686 | } |
| 687 | |
| 688 | /* |
| 689 | * In this functions we calibrate APIC bus clocks to the external timer. |
| 690 | * |
| 691 | * We want to do the calibration only once since we want to have local timer |
| 692 | * irqs syncron. CPUs connected by the same APIC bus have the very same bus |
| 693 | * frequency. |
| 694 | * |
| 695 | * This was previously done by reading the PIT/HPET and waiting for a wrap |
| 696 | * around to find out, that a tick has elapsed. I have a box, where the PIT |
| 697 | * readout is broken, so it never gets out of the wait loop again. This was |
| 698 | * also reported by others. |
| 699 | * |
| 700 | * Monitoring the jiffies value is inaccurate and the clockevents |
| 701 | * infrastructure allows us to do a simple substitution of the interrupt |
| 702 | * handler. |
| 703 | * |
| 704 | * The calibration routine also uses the pm_timer when possible, as the PIT |
| 705 | * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes |
| 706 | * back to normal later in the boot process). |
| 707 | */ |
| 708 | |
| 709 | #define LAPIC_CAL_LOOPS (HZ/10) |
| 710 | |
| 711 | static __initdata int lapic_cal_loops = -1; |
| 712 | static __initdata long lapic_cal_t1, lapic_cal_t2; |
| 713 | static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2; |
| 714 | static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2; |
| 715 | static __initdata unsigned long lapic_cal_j1, lapic_cal_j2; |
| 716 | |
| 717 | /* |
| 718 | * Temporary interrupt handler. |
| 719 | */ |
| 720 | static void __init lapic_cal_handler(struct clock_event_device *dev) |
| 721 | { |
| 722 | unsigned long long tsc = 0; |
| 723 | long tapic = apic_read(APIC_TMCCT); |
| 724 | unsigned long pm = acpi_pm_read_early(); |
| 725 | |
| 726 | if (boot_cpu_has(X86_FEATURE_TSC)) |
| 727 | tsc = rdtsc(); |
| 728 | |
| 729 | switch (lapic_cal_loops++) { |
| 730 | case 0: |
| 731 | lapic_cal_t1 = tapic; |
| 732 | lapic_cal_tsc1 = tsc; |
| 733 | lapic_cal_pm1 = pm; |
| 734 | lapic_cal_j1 = jiffies; |
| 735 | break; |
| 736 | |
| 737 | case LAPIC_CAL_LOOPS: |
| 738 | lapic_cal_t2 = tapic; |
| 739 | lapic_cal_tsc2 = tsc; |
| 740 | if (pm < lapic_cal_pm1) |
| 741 | pm += ACPI_PM_OVRRUN; |
| 742 | lapic_cal_pm2 = pm; |
| 743 | lapic_cal_j2 = jiffies; |
| 744 | break; |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | static int __init |
| 749 | calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc) |
| 750 | { |
| 751 | const long pm_100ms = PMTMR_TICKS_PER_SEC / 10; |
| 752 | const long pm_thresh = pm_100ms / 100; |
| 753 | unsigned long mult; |
| 754 | u64 res; |
| 755 | |
| 756 | #ifndef CONFIG_X86_PM_TIMER |
| 757 | return -1; |
| 758 | #endif |
| 759 | |
| 760 | apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm); |
| 761 | |
| 762 | /* Check, if the PM timer is available */ |
| 763 | if (!deltapm) |
| 764 | return -1; |
| 765 | |
| 766 | mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22); |
| 767 | |
| 768 | if (deltapm > (pm_100ms - pm_thresh) && |
| 769 | deltapm < (pm_100ms + pm_thresh)) { |
| 770 | apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n"); |
| 771 | return 0; |
| 772 | } |
| 773 | |
| 774 | res = (((u64)deltapm) * mult) >> 22; |
| 775 | do_div(res, 1000000); |
| 776 | pr_warning("APIC calibration not consistent " |
| 777 | "with PM-Timer: %ldms instead of 100ms\n",(long)res); |
| 778 | |
| 779 | /* Correct the lapic counter value */ |
| 780 | res = (((u64)(*delta)) * pm_100ms); |
| 781 | do_div(res, deltapm); |
| 782 | pr_info("APIC delta adjusted to PM-Timer: " |
| 783 | "%lu (%ld)\n", (unsigned long)res, *delta); |
| 784 | *delta = (long)res; |
| 785 | |
| 786 | /* Correct the tsc counter value */ |
| 787 | if (boot_cpu_has(X86_FEATURE_TSC)) { |
| 788 | res = (((u64)(*deltatsc)) * pm_100ms); |
| 789 | do_div(res, deltapm); |
| 790 | apic_printk(APIC_VERBOSE, "TSC delta adjusted to " |
| 791 | "PM-Timer: %lu (%ld)\n", |
| 792 | (unsigned long)res, *deltatsc); |
| 793 | *deltatsc = (long)res; |
| 794 | } |
| 795 | |
| 796 | return 0; |
| 797 | } |
| 798 | |
| 799 | static int __init calibrate_APIC_clock(void) |
| 800 | { |
| 801 | struct clock_event_device *levt = this_cpu_ptr(&lapic_events); |
| 802 | void (*real_handler)(struct clock_event_device *dev); |
| 803 | unsigned long deltaj; |
| 804 | long delta, deltatsc; |
| 805 | int pm_referenced = 0; |
| 806 | |
| 807 | /** |
| 808 | * check if lapic timer has already been calibrated by platform |
| 809 | * specific routine, such as tsc calibration code. if so, we just fill |
| 810 | * in the clockevent structure and return. |
| 811 | */ |
| 812 | |
| 813 | if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { |
| 814 | return 0; |
| 815 | } else if (lapic_timer_frequency) { |
| 816 | apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n", |
| 817 | lapic_timer_frequency); |
| 818 | lapic_clockevent.mult = div_sc(lapic_timer_frequency/APIC_DIVISOR, |
| 819 | TICK_NSEC, lapic_clockevent.shift); |
| 820 | lapic_clockevent.max_delta_ns = |
| 821 | clockevent_delta2ns(0x7FFFFF, &lapic_clockevent); |
| 822 | lapic_clockevent.max_delta_ticks = 0x7FFFFF; |
| 823 | lapic_clockevent.min_delta_ns = |
| 824 | clockevent_delta2ns(0xF, &lapic_clockevent); |
| 825 | lapic_clockevent.min_delta_ticks = 0xF; |
| 826 | lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; |
| 827 | return 0; |
| 828 | } |
| 829 | |
| 830 | apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n" |
| 831 | "calibrating APIC timer ...\n"); |
| 832 | |
| 833 | local_irq_disable(); |
| 834 | |
| 835 | /* Replace the global interrupt handler */ |
| 836 | real_handler = global_clock_event->event_handler; |
| 837 | global_clock_event->event_handler = lapic_cal_handler; |
| 838 | |
| 839 | /* |
| 840 | * Setup the APIC counter to maximum. There is no way the lapic |
| 841 | * can underflow in the 100ms detection time frame |
| 842 | */ |
| 843 | __setup_APIC_LVTT(0xffffffff, 0, 0); |
| 844 | |
| 845 | /* Let the interrupts run */ |
| 846 | local_irq_enable(); |
| 847 | |
| 848 | while (lapic_cal_loops <= LAPIC_CAL_LOOPS) |
| 849 | cpu_relax(); |
| 850 | |
| 851 | local_irq_disable(); |
| 852 | |
| 853 | /* Restore the real event handler */ |
| 854 | global_clock_event->event_handler = real_handler; |
| 855 | |
| 856 | /* Build delta t1-t2 as apic timer counts down */ |
| 857 | delta = lapic_cal_t1 - lapic_cal_t2; |
| 858 | apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta); |
| 859 | |
| 860 | deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1); |
| 861 | |
| 862 | /* we trust the PM based calibration if possible */ |
| 863 | pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1, |
| 864 | &delta, &deltatsc); |
| 865 | |
| 866 | /* Calculate the scaled math multiplication factor */ |
| 867 | lapic_clockevent.mult = div_sc(delta, TICK_NSEC * LAPIC_CAL_LOOPS, |
| 868 | lapic_clockevent.shift); |
| 869 | lapic_clockevent.max_delta_ns = |
| 870 | clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent); |
| 871 | lapic_clockevent.max_delta_ticks = 0x7FFFFFFF; |
| 872 | lapic_clockevent.min_delta_ns = |
| 873 | clockevent_delta2ns(0xF, &lapic_clockevent); |
| 874 | lapic_clockevent.min_delta_ticks = 0xF; |
| 875 | |
| 876 | lapic_timer_frequency = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS; |
| 877 | |
| 878 | apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta); |
| 879 | apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult); |
| 880 | apic_printk(APIC_VERBOSE, "..... calibration result: %u\n", |
| 881 | lapic_timer_frequency); |
| 882 | |
| 883 | if (boot_cpu_has(X86_FEATURE_TSC)) { |
| 884 | apic_printk(APIC_VERBOSE, "..... CPU clock speed is " |
| 885 | "%ld.%04ld MHz.\n", |
| 886 | (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ), |
| 887 | (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ)); |
| 888 | } |
| 889 | |
| 890 | apic_printk(APIC_VERBOSE, "..... host bus clock speed is " |
| 891 | "%u.%04u MHz.\n", |
| 892 | lapic_timer_frequency / (1000000 / HZ), |
| 893 | lapic_timer_frequency % (1000000 / HZ)); |
| 894 | |
| 895 | /* |
| 896 | * Do a sanity check on the APIC calibration result |
| 897 | */ |
| 898 | if (lapic_timer_frequency < (1000000 / HZ)) { |
| 899 | local_irq_enable(); |
| 900 | pr_warning("APIC frequency too slow, disabling apic timer\n"); |
| 901 | return -1; |
| 902 | } |
| 903 | |
| 904 | levt->features &= ~CLOCK_EVT_FEAT_DUMMY; |
| 905 | |
| 906 | /* |
| 907 | * PM timer calibration failed or not turned on |
| 908 | * so lets try APIC timer based calibration |
| 909 | */ |
| 910 | if (!pm_referenced) { |
| 911 | apic_printk(APIC_VERBOSE, "... verify APIC timer\n"); |
| 912 | |
| 913 | /* |
| 914 | * Setup the apic timer manually |
| 915 | */ |
| 916 | levt->event_handler = lapic_cal_handler; |
| 917 | lapic_timer_set_periodic(levt); |
| 918 | lapic_cal_loops = -1; |
| 919 | |
| 920 | /* Let the interrupts run */ |
| 921 | local_irq_enable(); |
| 922 | |
| 923 | while (lapic_cal_loops <= LAPIC_CAL_LOOPS) |
| 924 | cpu_relax(); |
| 925 | |
| 926 | /* Stop the lapic timer */ |
| 927 | local_irq_disable(); |
| 928 | lapic_timer_shutdown(levt); |
| 929 | |
| 930 | /* Jiffies delta */ |
| 931 | deltaj = lapic_cal_j2 - lapic_cal_j1; |
| 932 | apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj); |
| 933 | |
| 934 | /* Check, if the jiffies result is consistent */ |
| 935 | if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2) |
| 936 | apic_printk(APIC_VERBOSE, "... jiffies result ok\n"); |
| 937 | else |
| 938 | levt->features |= CLOCK_EVT_FEAT_DUMMY; |
| 939 | } |
| 940 | local_irq_enable(); |
| 941 | |
| 942 | if (levt->features & CLOCK_EVT_FEAT_DUMMY) { |
| 943 | pr_warning("APIC timer disabled due to verification failure\n"); |
| 944 | return -1; |
| 945 | } |
| 946 | |
| 947 | return 0; |
| 948 | } |
| 949 | |
| 950 | /* |
| 951 | * Setup the boot APIC |
| 952 | * |
| 953 | * Calibrate and verify the result. |
| 954 | */ |
| 955 | void __init setup_boot_APIC_clock(void) |
| 956 | { |
| 957 | /* |
| 958 | * The local apic timer can be disabled via the kernel |
| 959 | * commandline or from the CPU detection code. Register the lapic |
| 960 | * timer as a dummy clock event source on SMP systems, so the |
| 961 | * broadcast mechanism is used. On UP systems simply ignore it. |
| 962 | */ |
| 963 | if (disable_apic_timer) { |
| 964 | pr_info("Disabling APIC timer\n"); |
| 965 | /* No broadcast on UP ! */ |
| 966 | if (num_possible_cpus() > 1) { |
| 967 | lapic_clockevent.mult = 1; |
| 968 | setup_APIC_timer(); |
| 969 | } |
| 970 | return; |
| 971 | } |
| 972 | |
| 973 | if (calibrate_APIC_clock()) { |
| 974 | /* No broadcast on UP ! */ |
| 975 | if (num_possible_cpus() > 1) |
| 976 | setup_APIC_timer(); |
| 977 | return; |
| 978 | } |
| 979 | |
| 980 | /* |
| 981 | * If nmi_watchdog is set to IO_APIC, we need the |
| 982 | * PIT/HPET going. Otherwise register lapic as a dummy |
| 983 | * device. |
| 984 | */ |
| 985 | lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; |
| 986 | |
| 987 | /* Setup the lapic or request the broadcast */ |
| 988 | setup_APIC_timer(); |
| 989 | amd_e400_c1e_apic_setup(); |
| 990 | } |
| 991 | |
| 992 | void setup_secondary_APIC_clock(void) |
| 993 | { |
| 994 | setup_APIC_timer(); |
| 995 | amd_e400_c1e_apic_setup(); |
| 996 | } |
| 997 | |
| 998 | /* |
| 999 | * The guts of the apic timer interrupt |
| 1000 | */ |
| 1001 | static void local_apic_timer_interrupt(void) |
| 1002 | { |
| 1003 | struct clock_event_device *evt = this_cpu_ptr(&lapic_events); |
| 1004 | |
| 1005 | /* |
| 1006 | * Normally we should not be here till LAPIC has been initialized but |
| 1007 | * in some cases like kdump, its possible that there is a pending LAPIC |
| 1008 | * timer interrupt from previous kernel's context and is delivered in |
| 1009 | * new kernel the moment interrupts are enabled. |
| 1010 | * |
| 1011 | * Interrupts are enabled early and LAPIC is setup much later, hence |
| 1012 | * its possible that when we get here evt->event_handler is NULL. |
| 1013 | * Check for event_handler being NULL and discard the interrupt as |
| 1014 | * spurious. |
| 1015 | */ |
| 1016 | if (!evt->event_handler) { |
| 1017 | pr_warning("Spurious LAPIC timer interrupt on cpu %d\n", |
| 1018 | smp_processor_id()); |
| 1019 | /* Switch it off */ |
| 1020 | lapic_timer_shutdown(evt); |
| 1021 | return; |
| 1022 | } |
| 1023 | |
| 1024 | /* |
| 1025 | * the NMI deadlock-detector uses this. |
| 1026 | */ |
| 1027 | inc_irq_stat(apic_timer_irqs); |
| 1028 | |
| 1029 | evt->event_handler(evt); |
| 1030 | } |
| 1031 | |
| 1032 | /* |
| 1033 | * Local APIC timer interrupt. This is the most natural way for doing |
| 1034 | * local interrupts, but local timer interrupts can be emulated by |
| 1035 | * broadcast interrupts too. [in case the hw doesn't support APIC timers] |
| 1036 | * |
| 1037 | * [ if a single-CPU system runs an SMP kernel then we call the local |
| 1038 | * interrupt as well. Thus we cannot inline the local irq ... ] |
| 1039 | */ |
| 1040 | __visible void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs) |
| 1041 | { |
| 1042 | struct pt_regs *old_regs = set_irq_regs(regs); |
| 1043 | |
| 1044 | /* |
| 1045 | * NOTE! We'd better ACK the irq immediately, |
| 1046 | * because timer handling can be slow. |
| 1047 | * |
| 1048 | * update_process_times() expects us to have done irq_enter(). |
| 1049 | * Besides, if we don't timer interrupts ignore the global |
| 1050 | * interrupt lock, which is the WrongThing (tm) to do. |
| 1051 | */ |
| 1052 | entering_ack_irq(); |
| 1053 | trace_local_timer_entry(LOCAL_TIMER_VECTOR); |
| 1054 | local_apic_timer_interrupt(); |
| 1055 | trace_local_timer_exit(LOCAL_TIMER_VECTOR); |
| 1056 | exiting_irq(); |
| 1057 | |
| 1058 | set_irq_regs(old_regs); |
| 1059 | } |
| 1060 | |
| 1061 | int setup_profiling_timer(unsigned int multiplier) |
| 1062 | { |
| 1063 | return -EINVAL; |
| 1064 | } |
| 1065 | |
| 1066 | /* |
| 1067 | * Local APIC start and shutdown |
| 1068 | */ |
| 1069 | |
| 1070 | /** |
| 1071 | * clear_local_APIC - shutdown the local APIC |
| 1072 | * |
| 1073 | * This is called, when a CPU is disabled and before rebooting, so the state of |
| 1074 | * the local APIC has no dangling leftovers. Also used to cleanout any BIOS |
| 1075 | * leftovers during boot. |
| 1076 | */ |
| 1077 | void clear_local_APIC(void) |
| 1078 | { |
| 1079 | int maxlvt; |
| 1080 | u32 v; |
| 1081 | |
| 1082 | /* APIC hasn't been mapped yet */ |
| 1083 | if (!x2apic_mode && !apic_phys) |
| 1084 | return; |
| 1085 | |
| 1086 | maxlvt = lapic_get_maxlvt(); |
| 1087 | /* |
| 1088 | * Masking an LVT entry can trigger a local APIC error |
| 1089 | * if the vector is zero. Mask LVTERR first to prevent this. |
| 1090 | */ |
| 1091 | if (maxlvt >= 3) { |
| 1092 | v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ |
| 1093 | apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); |
| 1094 | } |
| 1095 | /* |
| 1096 | * Careful: we have to set masks only first to deassert |
| 1097 | * any level-triggered sources. |
| 1098 | */ |
| 1099 | v = apic_read(APIC_LVTT); |
| 1100 | apic_write(APIC_LVTT, v | APIC_LVT_MASKED); |
| 1101 | v = apic_read(APIC_LVT0); |
| 1102 | apic_write(APIC_LVT0, v | APIC_LVT_MASKED); |
| 1103 | v = apic_read(APIC_LVT1); |
| 1104 | apic_write(APIC_LVT1, v | APIC_LVT_MASKED); |
| 1105 | if (maxlvt >= 4) { |
| 1106 | v = apic_read(APIC_LVTPC); |
| 1107 | apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); |
| 1108 | } |
| 1109 | |
| 1110 | /* lets not touch this if we didn't frob it */ |
| 1111 | #ifdef CONFIG_X86_THERMAL_VECTOR |
| 1112 | if (maxlvt >= 5) { |
| 1113 | v = apic_read(APIC_LVTTHMR); |
| 1114 | apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED); |
| 1115 | } |
| 1116 | #endif |
| 1117 | #ifdef CONFIG_X86_MCE_INTEL |
| 1118 | if (maxlvt >= 6) { |
| 1119 | v = apic_read(APIC_LVTCMCI); |
| 1120 | if (!(v & APIC_LVT_MASKED)) |
| 1121 | apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED); |
| 1122 | } |
| 1123 | #endif |
| 1124 | |
| 1125 | /* |
| 1126 | * Clean APIC state for other OSs: |
| 1127 | */ |
| 1128 | apic_write(APIC_LVTT, APIC_LVT_MASKED); |
| 1129 | apic_write(APIC_LVT0, APIC_LVT_MASKED); |
| 1130 | apic_write(APIC_LVT1, APIC_LVT_MASKED); |
| 1131 | if (maxlvt >= 3) |
| 1132 | apic_write(APIC_LVTERR, APIC_LVT_MASKED); |
| 1133 | if (maxlvt >= 4) |
| 1134 | apic_write(APIC_LVTPC, APIC_LVT_MASKED); |
| 1135 | |
| 1136 | /* Integrated APIC (!82489DX) ? */ |
| 1137 | if (lapic_is_integrated()) { |
| 1138 | if (maxlvt > 3) |
| 1139 | /* Clear ESR due to Pentium errata 3AP and 11AP */ |
| 1140 | apic_write(APIC_ESR, 0); |
| 1141 | apic_read(APIC_ESR); |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | /** |
| 1146 | * disable_local_APIC - clear and disable the local APIC |
| 1147 | */ |
| 1148 | void disable_local_APIC(void) |
| 1149 | { |
| 1150 | unsigned int value; |
| 1151 | |
| 1152 | /* APIC hasn't been mapped yet */ |
| 1153 | if (!x2apic_mode && !apic_phys) |
| 1154 | return; |
| 1155 | |
| 1156 | clear_local_APIC(); |
| 1157 | |
| 1158 | /* |
| 1159 | * Disable APIC (implies clearing of registers |
| 1160 | * for 82489DX!). |
| 1161 | */ |
| 1162 | value = apic_read(APIC_SPIV); |
| 1163 | value &= ~APIC_SPIV_APIC_ENABLED; |
| 1164 | apic_write(APIC_SPIV, value); |
| 1165 | |
| 1166 | #ifdef CONFIG_X86_32 |
| 1167 | /* |
| 1168 | * When LAPIC was disabled by the BIOS and enabled by the kernel, |
| 1169 | * restore the disabled state. |
| 1170 | */ |
| 1171 | if (enabled_via_apicbase) { |
| 1172 | unsigned int l, h; |
| 1173 | |
| 1174 | rdmsr(MSR_IA32_APICBASE, l, h); |
| 1175 | l &= ~MSR_IA32_APICBASE_ENABLE; |
| 1176 | wrmsr(MSR_IA32_APICBASE, l, h); |
| 1177 | } |
| 1178 | #endif |
| 1179 | } |
| 1180 | |
| 1181 | /* |
| 1182 | * If Linux enabled the LAPIC against the BIOS default disable it down before |
| 1183 | * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and |
| 1184 | * not power-off. Additionally clear all LVT entries before disable_local_APIC |
| 1185 | * for the case where Linux didn't enable the LAPIC. |
| 1186 | */ |
| 1187 | void lapic_shutdown(void) |
| 1188 | { |
| 1189 | unsigned long flags; |
| 1190 | |
| 1191 | if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) |
| 1192 | return; |
| 1193 | |
| 1194 | local_irq_save(flags); |
| 1195 | |
| 1196 | #ifdef CONFIG_X86_32 |
| 1197 | if (!enabled_via_apicbase) |
| 1198 | clear_local_APIC(); |
| 1199 | else |
| 1200 | #endif |
| 1201 | disable_local_APIC(); |
| 1202 | |
| 1203 | |
| 1204 | local_irq_restore(flags); |
| 1205 | } |
| 1206 | |
| 1207 | /** |
| 1208 | * sync_Arb_IDs - synchronize APIC bus arbitration IDs |
| 1209 | */ |
| 1210 | void __init sync_Arb_IDs(void) |
| 1211 | { |
| 1212 | /* |
| 1213 | * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not |
| 1214 | * needed on AMD. |
| 1215 | */ |
| 1216 | if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD) |
| 1217 | return; |
| 1218 | |
| 1219 | /* |
| 1220 | * Wait for idle. |
| 1221 | */ |
| 1222 | apic_wait_icr_idle(); |
| 1223 | |
| 1224 | apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); |
| 1225 | apic_write(APIC_ICR, APIC_DEST_ALLINC | |
| 1226 | APIC_INT_LEVELTRIG | APIC_DM_INIT); |
| 1227 | } |
| 1228 | |
| 1229 | enum apic_intr_mode_id apic_intr_mode; |
| 1230 | |
| 1231 | static int __init apic_intr_mode_select(void) |
| 1232 | { |
| 1233 | /* Check kernel option */ |
| 1234 | if (disable_apic) { |
| 1235 | pr_info("APIC disabled via kernel command line\n"); |
| 1236 | return APIC_PIC; |
| 1237 | } |
| 1238 | |
| 1239 | /* Check BIOS */ |
| 1240 | #ifdef CONFIG_X86_64 |
| 1241 | /* On 64-bit, the APIC must be integrated, Check local APIC only */ |
| 1242 | if (!boot_cpu_has(X86_FEATURE_APIC)) { |
| 1243 | disable_apic = 1; |
| 1244 | pr_info("APIC disabled by BIOS\n"); |
| 1245 | return APIC_PIC; |
| 1246 | } |
| 1247 | #else |
| 1248 | /* On 32-bit, the APIC may be integrated APIC or 82489DX */ |
| 1249 | |
| 1250 | /* Neither 82489DX nor integrated APIC ? */ |
| 1251 | if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) { |
| 1252 | disable_apic = 1; |
| 1253 | return APIC_PIC; |
| 1254 | } |
| 1255 | |
| 1256 | /* If the BIOS pretends there is an integrated APIC ? */ |
| 1257 | if (!boot_cpu_has(X86_FEATURE_APIC) && |
| 1258 | APIC_INTEGRATED(boot_cpu_apic_version)) { |
| 1259 | disable_apic = 1; |
| 1260 | pr_err(FW_BUG "Local APIC %d not detected, force emulation\n", |
| 1261 | boot_cpu_physical_apicid); |
| 1262 | return APIC_PIC; |
| 1263 | } |
| 1264 | #endif |
| 1265 | |
| 1266 | /* Check MP table or ACPI MADT configuration */ |
| 1267 | if (!smp_found_config) { |
| 1268 | disable_ioapic_support(); |
| 1269 | if (!acpi_lapic) { |
| 1270 | pr_info("APIC: ACPI MADT or MP tables are not detected\n"); |
| 1271 | return APIC_VIRTUAL_WIRE_NO_CONFIG; |
| 1272 | } |
| 1273 | return APIC_VIRTUAL_WIRE; |
| 1274 | } |
| 1275 | |
| 1276 | #ifdef CONFIG_SMP |
| 1277 | /* If SMP should be disabled, then really disable it! */ |
| 1278 | if (!setup_max_cpus) { |
| 1279 | pr_info("APIC: SMP mode deactivated\n"); |
| 1280 | return APIC_SYMMETRIC_IO_NO_ROUTING; |
| 1281 | } |
| 1282 | |
| 1283 | if (read_apic_id() != boot_cpu_physical_apicid) { |
| 1284 | panic("Boot APIC ID in local APIC unexpected (%d vs %d)", |
| 1285 | read_apic_id(), boot_cpu_physical_apicid); |
| 1286 | /* Or can we switch back to PIC here? */ |
| 1287 | } |
| 1288 | #endif |
| 1289 | |
| 1290 | return APIC_SYMMETRIC_IO; |
| 1291 | } |
| 1292 | |
| 1293 | /* |
| 1294 | * An initial setup of the virtual wire mode. |
| 1295 | */ |
| 1296 | void __init init_bsp_APIC(void) |
| 1297 | { |
| 1298 | unsigned int value; |
| 1299 | |
| 1300 | /* |
| 1301 | * Don't do the setup now if we have a SMP BIOS as the |
| 1302 | * through-I/O-APIC virtual wire mode might be active. |
| 1303 | */ |
| 1304 | if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC)) |
| 1305 | return; |
| 1306 | |
| 1307 | /* |
| 1308 | * Do not trust the local APIC being empty at bootup. |
| 1309 | */ |
| 1310 | clear_local_APIC(); |
| 1311 | |
| 1312 | /* |
| 1313 | * Enable APIC. |
| 1314 | */ |
| 1315 | value = apic_read(APIC_SPIV); |
| 1316 | value &= ~APIC_VECTOR_MASK; |
| 1317 | value |= APIC_SPIV_APIC_ENABLED; |
| 1318 | |
| 1319 | #ifdef CONFIG_X86_32 |
| 1320 | /* This bit is reserved on P4/Xeon and should be cleared */ |
| 1321 | if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && |
| 1322 | (boot_cpu_data.x86 == 15)) |
| 1323 | value &= ~APIC_SPIV_FOCUS_DISABLED; |
| 1324 | else |
| 1325 | #endif |
| 1326 | value |= APIC_SPIV_FOCUS_DISABLED; |
| 1327 | value |= SPURIOUS_APIC_VECTOR; |
| 1328 | apic_write(APIC_SPIV, value); |
| 1329 | |
| 1330 | /* |
| 1331 | * Set up the virtual wire mode. |
| 1332 | */ |
| 1333 | apic_write(APIC_LVT0, APIC_DM_EXTINT); |
| 1334 | value = APIC_DM_NMI; |
| 1335 | if (!lapic_is_integrated()) /* 82489DX */ |
| 1336 | value |= APIC_LVT_LEVEL_TRIGGER; |
| 1337 | if (apic_extnmi == APIC_EXTNMI_NONE) |
| 1338 | value |= APIC_LVT_MASKED; |
| 1339 | apic_write(APIC_LVT1, value); |
| 1340 | } |
| 1341 | |
| 1342 | /* Init the interrupt delivery mode for the BSP */ |
| 1343 | void __init apic_intr_mode_init(void) |
| 1344 | { |
| 1345 | bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT); |
| 1346 | |
| 1347 | apic_intr_mode = apic_intr_mode_select(); |
| 1348 | |
| 1349 | switch (apic_intr_mode) { |
| 1350 | case APIC_PIC: |
| 1351 | pr_info("APIC: Keep in PIC mode(8259)\n"); |
| 1352 | return; |
| 1353 | case APIC_VIRTUAL_WIRE: |
| 1354 | pr_info("APIC: Switch to virtual wire mode setup\n"); |
| 1355 | default_setup_apic_routing(); |
| 1356 | break; |
| 1357 | case APIC_VIRTUAL_WIRE_NO_CONFIG: |
| 1358 | pr_info("APIC: Switch to virtual wire mode setup with no configuration\n"); |
| 1359 | upmode = true; |
| 1360 | default_setup_apic_routing(); |
| 1361 | break; |
| 1362 | case APIC_SYMMETRIC_IO: |
| 1363 | pr_info("APIC: Switch to symmetric I/O mode setup\n"); |
| 1364 | default_setup_apic_routing(); |
| 1365 | break; |
| 1366 | case APIC_SYMMETRIC_IO_NO_ROUTING: |
| 1367 | pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n"); |
| 1368 | break; |
| 1369 | } |
| 1370 | |
| 1371 | apic_bsp_setup(upmode); |
| 1372 | } |
| 1373 | |
| 1374 | static void lapic_setup_esr(void) |
| 1375 | { |
| 1376 | unsigned int oldvalue, value, maxlvt; |
| 1377 | |
| 1378 | if (!lapic_is_integrated()) { |
| 1379 | pr_info("No ESR for 82489DX.\n"); |
| 1380 | return; |
| 1381 | } |
| 1382 | |
| 1383 | if (apic->disable_esr) { |
| 1384 | /* |
| 1385 | * Something untraceable is creating bad interrupts on |
| 1386 | * secondary quads ... for the moment, just leave the |
| 1387 | * ESR disabled - we can't do anything useful with the |
| 1388 | * errors anyway - mbligh |
| 1389 | */ |
| 1390 | pr_info("Leaving ESR disabled.\n"); |
| 1391 | return; |
| 1392 | } |
| 1393 | |
| 1394 | maxlvt = lapic_get_maxlvt(); |
| 1395 | if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ |
| 1396 | apic_write(APIC_ESR, 0); |
| 1397 | oldvalue = apic_read(APIC_ESR); |
| 1398 | |
| 1399 | /* enables sending errors */ |
| 1400 | value = ERROR_APIC_VECTOR; |
| 1401 | apic_write(APIC_LVTERR, value); |
| 1402 | |
| 1403 | /* |
| 1404 | * spec says clear errors after enabling vector. |
| 1405 | */ |
| 1406 | if (maxlvt > 3) |
| 1407 | apic_write(APIC_ESR, 0); |
| 1408 | value = apic_read(APIC_ESR); |
| 1409 | if (value != oldvalue) |
| 1410 | apic_printk(APIC_VERBOSE, "ESR value before enabling " |
| 1411 | "vector: 0x%08x after: 0x%08x\n", |
| 1412 | oldvalue, value); |
| 1413 | } |
| 1414 | |
| 1415 | static void apic_pending_intr_clear(void) |
| 1416 | { |
| 1417 | long long max_loops = cpu_khz ? cpu_khz : 1000000; |
| 1418 | unsigned long long tsc = 0, ntsc; |
| 1419 | unsigned int queued; |
| 1420 | unsigned long value; |
| 1421 | int i, j, acked = 0; |
| 1422 | |
| 1423 | if (boot_cpu_has(X86_FEATURE_TSC)) |
| 1424 | tsc = rdtsc(); |
| 1425 | /* |
| 1426 | * After a crash, we no longer service the interrupts and a pending |
| 1427 | * interrupt from previous kernel might still have ISR bit set. |
| 1428 | * |
| 1429 | * Most probably by now CPU has serviced that pending interrupt and |
| 1430 | * it might not have done the ack_APIC_irq() because it thought, |
| 1431 | * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it |
| 1432 | * does not clear the ISR bit and cpu thinks it has already serivced |
| 1433 | * the interrupt. Hence a vector might get locked. It was noticed |
| 1434 | * for timer irq (vector 0x31). Issue an extra EOI to clear ISR. |
| 1435 | */ |
| 1436 | do { |
| 1437 | queued = 0; |
| 1438 | for (i = APIC_ISR_NR - 1; i >= 0; i--) |
| 1439 | queued |= apic_read(APIC_IRR + i*0x10); |
| 1440 | |
| 1441 | for (i = APIC_ISR_NR - 1; i >= 0; i--) { |
| 1442 | value = apic_read(APIC_ISR + i*0x10); |
| 1443 | for_each_set_bit(j, &value, 32) { |
| 1444 | ack_APIC_irq(); |
| 1445 | acked++; |
| 1446 | } |
| 1447 | } |
| 1448 | if (acked > 256) { |
| 1449 | pr_err("LAPIC pending interrupts after %d EOI\n", acked); |
| 1450 | break; |
| 1451 | } |
| 1452 | if (queued) { |
| 1453 | if (boot_cpu_has(X86_FEATURE_TSC) && cpu_khz) { |
| 1454 | ntsc = rdtsc(); |
| 1455 | max_loops = (cpu_khz << 10) - (ntsc - tsc); |
| 1456 | } else { |
| 1457 | max_loops--; |
| 1458 | } |
| 1459 | } |
| 1460 | } while (queued && max_loops > 0); |
| 1461 | WARN_ON(max_loops <= 0); |
| 1462 | } |
| 1463 | |
| 1464 | /** |
| 1465 | * setup_local_APIC - setup the local APIC |
| 1466 | * |
| 1467 | * Used to setup local APIC while initializing BSP or bringing up APs. |
| 1468 | * Always called with preemption disabled. |
| 1469 | */ |
| 1470 | static void setup_local_APIC(void) |
| 1471 | { |
| 1472 | int cpu = smp_processor_id(); |
| 1473 | unsigned int value; |
| 1474 | #ifdef CONFIG_X86_32 |
| 1475 | int logical_apicid, ldr_apicid; |
| 1476 | #endif |
| 1477 | |
| 1478 | |
| 1479 | if (disable_apic) { |
| 1480 | disable_ioapic_support(); |
| 1481 | return; |
| 1482 | } |
| 1483 | |
| 1484 | #ifdef CONFIG_X86_32 |
| 1485 | /* Pound the ESR really hard over the head with a big hammer - mbligh */ |
| 1486 | if (lapic_is_integrated() && apic->disable_esr) { |
| 1487 | apic_write(APIC_ESR, 0); |
| 1488 | apic_write(APIC_ESR, 0); |
| 1489 | apic_write(APIC_ESR, 0); |
| 1490 | apic_write(APIC_ESR, 0); |
| 1491 | } |
| 1492 | #endif |
| 1493 | perf_events_lapic_init(); |
| 1494 | |
| 1495 | /* |
| 1496 | * Double-check whether this APIC is really registered. |
| 1497 | * This is meaningless in clustered apic mode, so we skip it. |
| 1498 | */ |
| 1499 | BUG_ON(!apic->apic_id_registered()); |
| 1500 | |
| 1501 | /* |
| 1502 | * Intel recommends to set DFR, LDR and TPR before enabling |
| 1503 | * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel |
| 1504 | * document number 292116). So here it goes... |
| 1505 | */ |
| 1506 | apic->init_apic_ldr(); |
| 1507 | |
| 1508 | #ifdef CONFIG_X86_32 |
| 1509 | /* |
| 1510 | * APIC LDR is initialized. If logical_apicid mapping was |
| 1511 | * initialized during get_smp_config(), make sure it matches the |
| 1512 | * actual value. |
| 1513 | */ |
| 1514 | logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu); |
| 1515 | ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); |
| 1516 | WARN_ON(logical_apicid != BAD_APICID && logical_apicid != ldr_apicid); |
| 1517 | /* always use the value from LDR */ |
| 1518 | early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid; |
| 1519 | #endif |
| 1520 | |
| 1521 | /* |
| 1522 | * Set Task Priority to 'accept all'. We never change this |
| 1523 | * later on. |
| 1524 | */ |
| 1525 | value = apic_read(APIC_TASKPRI); |
| 1526 | value &= ~APIC_TPRI_MASK; |
| 1527 | apic_write(APIC_TASKPRI, value); |
| 1528 | |
| 1529 | apic_pending_intr_clear(); |
| 1530 | |
| 1531 | /* |
| 1532 | * Now that we are all set up, enable the APIC |
| 1533 | */ |
| 1534 | value = apic_read(APIC_SPIV); |
| 1535 | value &= ~APIC_VECTOR_MASK; |
| 1536 | /* |
| 1537 | * Enable APIC |
| 1538 | */ |
| 1539 | value |= APIC_SPIV_APIC_ENABLED; |
| 1540 | |
| 1541 | #ifdef CONFIG_X86_32 |
| 1542 | /* |
| 1543 | * Some unknown Intel IO/APIC (or APIC) errata is biting us with |
| 1544 | * certain networking cards. If high frequency interrupts are |
| 1545 | * happening on a particular IOAPIC pin, plus the IOAPIC routing |
| 1546 | * entry is masked/unmasked at a high rate as well then sooner or |
| 1547 | * later IOAPIC line gets 'stuck', no more interrupts are received |
| 1548 | * from the device. If focus CPU is disabled then the hang goes |
| 1549 | * away, oh well :-( |
| 1550 | * |
| 1551 | * [ This bug can be reproduced easily with a level-triggered |
| 1552 | * PCI Ne2000 networking cards and PII/PIII processors, dual |
| 1553 | * BX chipset. ] |
| 1554 | */ |
| 1555 | /* |
| 1556 | * Actually disabling the focus CPU check just makes the hang less |
| 1557 | * frequent as it makes the interrupt distributon model be more |
| 1558 | * like LRU than MRU (the short-term load is more even across CPUs). |
| 1559 | */ |
| 1560 | |
| 1561 | /* |
| 1562 | * - enable focus processor (bit==0) |
| 1563 | * - 64bit mode always use processor focus |
| 1564 | * so no need to set it |
| 1565 | */ |
| 1566 | value &= ~APIC_SPIV_FOCUS_DISABLED; |
| 1567 | #endif |
| 1568 | |
| 1569 | /* |
| 1570 | * Set spurious IRQ vector |
| 1571 | */ |
| 1572 | value |= SPURIOUS_APIC_VECTOR; |
| 1573 | apic_write(APIC_SPIV, value); |
| 1574 | |
| 1575 | /* |
| 1576 | * Set up LVT0, LVT1: |
| 1577 | * |
| 1578 | * set up through-local-APIC on the boot CPU's LINT0. This is not |
| 1579 | * strictly necessary in pure symmetric-IO mode, but sometimes |
| 1580 | * we delegate interrupts to the 8259A. |
| 1581 | */ |
| 1582 | /* |
| 1583 | * TODO: set up through-local-APIC from through-I/O-APIC? --macro |
| 1584 | */ |
| 1585 | value = apic_read(APIC_LVT0) & APIC_LVT_MASKED; |
| 1586 | if (!cpu && (pic_mode || !value || skip_ioapic_setup)) { |
| 1587 | value = APIC_DM_EXTINT; |
| 1588 | apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu); |
| 1589 | } else { |
| 1590 | value = APIC_DM_EXTINT | APIC_LVT_MASKED; |
| 1591 | apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu); |
| 1592 | } |
| 1593 | apic_write(APIC_LVT0, value); |
| 1594 | |
| 1595 | /* |
| 1596 | * Only the BSP sees the LINT1 NMI signal by default. This can be |
| 1597 | * modified by apic_extnmi= boot option. |
| 1598 | */ |
| 1599 | if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) || |
| 1600 | apic_extnmi == APIC_EXTNMI_ALL) |
| 1601 | value = APIC_DM_NMI; |
| 1602 | else |
| 1603 | value = APIC_DM_NMI | APIC_LVT_MASKED; |
| 1604 | |
| 1605 | /* Is 82489DX ? */ |
| 1606 | if (!lapic_is_integrated()) |
| 1607 | value |= APIC_LVT_LEVEL_TRIGGER; |
| 1608 | apic_write(APIC_LVT1, value); |
| 1609 | |
| 1610 | #ifdef CONFIG_X86_MCE_INTEL |
| 1611 | /* Recheck CMCI information after local APIC is up on CPU #0 */ |
| 1612 | if (!cpu) |
| 1613 | cmci_recheck(); |
| 1614 | #endif |
| 1615 | } |
| 1616 | |
| 1617 | static void end_local_APIC_setup(void) |
| 1618 | { |
| 1619 | lapic_setup_esr(); |
| 1620 | |
| 1621 | #ifdef CONFIG_X86_32 |
| 1622 | { |
| 1623 | unsigned int value; |
| 1624 | /* Disable the local apic timer */ |
| 1625 | value = apic_read(APIC_LVTT); |
| 1626 | value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); |
| 1627 | apic_write(APIC_LVTT, value); |
| 1628 | } |
| 1629 | #endif |
| 1630 | |
| 1631 | apic_pm_activate(); |
| 1632 | } |
| 1633 | |
| 1634 | /* |
| 1635 | * APIC setup function for application processors. Called from smpboot.c |
| 1636 | */ |
| 1637 | void apic_ap_setup(void) |
| 1638 | { |
| 1639 | setup_local_APIC(); |
| 1640 | end_local_APIC_setup(); |
| 1641 | } |
| 1642 | |
| 1643 | #ifdef CONFIG_X86_X2APIC |
| 1644 | int x2apic_mode; |
| 1645 | |
| 1646 | enum { |
| 1647 | X2APIC_OFF, |
| 1648 | X2APIC_ON, |
| 1649 | X2APIC_DISABLED, |
| 1650 | }; |
| 1651 | static int x2apic_state; |
| 1652 | |
| 1653 | static void __x2apic_disable(void) |
| 1654 | { |
| 1655 | u64 msr; |
| 1656 | |
| 1657 | if (!boot_cpu_has(X86_FEATURE_APIC)) |
| 1658 | return; |
| 1659 | |
| 1660 | rdmsrl(MSR_IA32_APICBASE, msr); |
| 1661 | if (!(msr & X2APIC_ENABLE)) |
| 1662 | return; |
| 1663 | /* Disable xapic and x2apic first and then reenable xapic mode */ |
| 1664 | wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE)); |
| 1665 | wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE); |
| 1666 | printk_once(KERN_INFO "x2apic disabled\n"); |
| 1667 | } |
| 1668 | |
| 1669 | static void __x2apic_enable(void) |
| 1670 | { |
| 1671 | u64 msr; |
| 1672 | |
| 1673 | rdmsrl(MSR_IA32_APICBASE, msr); |
| 1674 | if (msr & X2APIC_ENABLE) |
| 1675 | return; |
| 1676 | wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE); |
| 1677 | printk_once(KERN_INFO "x2apic enabled\n"); |
| 1678 | } |
| 1679 | |
| 1680 | static int __init setup_nox2apic(char *str) |
| 1681 | { |
| 1682 | if (x2apic_enabled()) { |
| 1683 | int apicid = native_apic_msr_read(APIC_ID); |
| 1684 | |
| 1685 | if (apicid >= 255) { |
| 1686 | pr_warning("Apicid: %08x, cannot enforce nox2apic\n", |
| 1687 | apicid); |
| 1688 | return 0; |
| 1689 | } |
| 1690 | pr_warning("x2apic already enabled.\n"); |
| 1691 | __x2apic_disable(); |
| 1692 | } |
| 1693 | setup_clear_cpu_cap(X86_FEATURE_X2APIC); |
| 1694 | x2apic_state = X2APIC_DISABLED; |
| 1695 | x2apic_mode = 0; |
| 1696 | return 0; |
| 1697 | } |
| 1698 | early_param("nox2apic", setup_nox2apic); |
| 1699 | |
| 1700 | /* Called from cpu_init() to enable x2apic on (secondary) cpus */ |
| 1701 | void x2apic_setup(void) |
| 1702 | { |
| 1703 | /* |
| 1704 | * If x2apic is not in ON state, disable it if already enabled |
| 1705 | * from BIOS. |
| 1706 | */ |
| 1707 | if (x2apic_state != X2APIC_ON) { |
| 1708 | __x2apic_disable(); |
| 1709 | return; |
| 1710 | } |
| 1711 | __x2apic_enable(); |
| 1712 | } |
| 1713 | |
| 1714 | static __init void x2apic_disable(void) |
| 1715 | { |
| 1716 | u32 x2apic_id, state = x2apic_state; |
| 1717 | |
| 1718 | x2apic_mode = 0; |
| 1719 | x2apic_state = X2APIC_DISABLED; |
| 1720 | |
| 1721 | if (state != X2APIC_ON) |
| 1722 | return; |
| 1723 | |
| 1724 | x2apic_id = read_apic_id(); |
| 1725 | if (x2apic_id >= 255) |
| 1726 | panic("Cannot disable x2apic, id: %08x\n", x2apic_id); |
| 1727 | |
| 1728 | __x2apic_disable(); |
| 1729 | register_lapic_address(mp_lapic_addr); |
| 1730 | } |
| 1731 | |
| 1732 | static __init void x2apic_enable(void) |
| 1733 | { |
| 1734 | if (x2apic_state != X2APIC_OFF) |
| 1735 | return; |
| 1736 | |
| 1737 | x2apic_mode = 1; |
| 1738 | x2apic_state = X2APIC_ON; |
| 1739 | __x2apic_enable(); |
| 1740 | } |
| 1741 | |
| 1742 | static __init void try_to_enable_x2apic(int remap_mode) |
| 1743 | { |
| 1744 | if (x2apic_state == X2APIC_DISABLED) |
| 1745 | return; |
| 1746 | |
| 1747 | if (remap_mode != IRQ_REMAP_X2APIC_MODE) { |
| 1748 | /* IR is required if there is APIC ID > 255 even when running |
| 1749 | * under KVM |
| 1750 | */ |
| 1751 | if (max_physical_apicid > 255 || |
| 1752 | !x86_init.hyper.x2apic_available()) { |
| 1753 | pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n"); |
| 1754 | x2apic_disable(); |
| 1755 | return; |
| 1756 | } |
| 1757 | |
| 1758 | /* |
| 1759 | * without IR all CPUs can be addressed by IOAPIC/MSI |
| 1760 | * only in physical mode |
| 1761 | */ |
| 1762 | x2apic_phys = 1; |
| 1763 | } |
| 1764 | x2apic_enable(); |
| 1765 | } |
| 1766 | |
| 1767 | void __init check_x2apic(void) |
| 1768 | { |
| 1769 | if (x2apic_enabled()) { |
| 1770 | pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n"); |
| 1771 | x2apic_mode = 1; |
| 1772 | x2apic_state = X2APIC_ON; |
| 1773 | } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) { |
| 1774 | x2apic_state = X2APIC_DISABLED; |
| 1775 | } |
| 1776 | } |
| 1777 | #else /* CONFIG_X86_X2APIC */ |
| 1778 | static int __init validate_x2apic(void) |
| 1779 | { |
| 1780 | if (!apic_is_x2apic_enabled()) |
| 1781 | return 0; |
| 1782 | /* |
| 1783 | * Checkme: Can we simply turn off x2apic here instead of panic? |
| 1784 | */ |
| 1785 | panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n"); |
| 1786 | } |
| 1787 | early_initcall(validate_x2apic); |
| 1788 | |
| 1789 | static inline void try_to_enable_x2apic(int remap_mode) { } |
| 1790 | static inline void __x2apic_enable(void) { } |
| 1791 | #endif /* !CONFIG_X86_X2APIC */ |
| 1792 | |
| 1793 | void __init enable_IR_x2apic(void) |
| 1794 | { |
| 1795 | unsigned long flags; |
| 1796 | int ret, ir_stat; |
| 1797 | |
| 1798 | if (skip_ioapic_setup) { |
| 1799 | pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n"); |
| 1800 | return; |
| 1801 | } |
| 1802 | |
| 1803 | ir_stat = irq_remapping_prepare(); |
| 1804 | if (ir_stat < 0 && !x2apic_supported()) |
| 1805 | return; |
| 1806 | |
| 1807 | ret = save_ioapic_entries(); |
| 1808 | if (ret) { |
| 1809 | pr_info("Saving IO-APIC state failed: %d\n", ret); |
| 1810 | return; |
| 1811 | } |
| 1812 | |
| 1813 | local_irq_save(flags); |
| 1814 | legacy_pic->mask_all(); |
| 1815 | mask_ioapic_entries(); |
| 1816 | |
| 1817 | /* If irq_remapping_prepare() succeeded, try to enable it */ |
| 1818 | if (ir_stat >= 0) |
| 1819 | ir_stat = irq_remapping_enable(); |
| 1820 | /* ir_stat contains the remap mode or an error code */ |
| 1821 | try_to_enable_x2apic(ir_stat); |
| 1822 | |
| 1823 | if (ir_stat < 0) |
| 1824 | restore_ioapic_entries(); |
| 1825 | legacy_pic->restore_mask(); |
| 1826 | local_irq_restore(flags); |
| 1827 | } |
| 1828 | |
| 1829 | #ifdef CONFIG_X86_64 |
| 1830 | /* |
| 1831 | * Detect and enable local APICs on non-SMP boards. |
| 1832 | * Original code written by Keir Fraser. |
| 1833 | * On AMD64 we trust the BIOS - if it says no APIC it is likely |
| 1834 | * not correctly set up (usually the APIC timer won't work etc.) |
| 1835 | */ |
| 1836 | static int __init detect_init_APIC(void) |
| 1837 | { |
| 1838 | if (!boot_cpu_has(X86_FEATURE_APIC)) { |
| 1839 | pr_info("No local APIC present\n"); |
| 1840 | return -1; |
| 1841 | } |
| 1842 | |
| 1843 | mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; |
| 1844 | return 0; |
| 1845 | } |
| 1846 | #else |
| 1847 | |
| 1848 | static int __init apic_verify(void) |
| 1849 | { |
| 1850 | u32 features, h, l; |
| 1851 | |
| 1852 | /* |
| 1853 | * The APIC feature bit should now be enabled |
| 1854 | * in `cpuid' |
| 1855 | */ |
| 1856 | features = cpuid_edx(1); |
| 1857 | if (!(features & (1 << X86_FEATURE_APIC))) { |
| 1858 | pr_warning("Could not enable APIC!\n"); |
| 1859 | return -1; |
| 1860 | } |
| 1861 | set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC); |
| 1862 | mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; |
| 1863 | |
| 1864 | /* The BIOS may have set up the APIC at some other address */ |
| 1865 | if (boot_cpu_data.x86 >= 6) { |
| 1866 | rdmsr(MSR_IA32_APICBASE, l, h); |
| 1867 | if (l & MSR_IA32_APICBASE_ENABLE) |
| 1868 | mp_lapic_addr = l & MSR_IA32_APICBASE_BASE; |
| 1869 | } |
| 1870 | |
| 1871 | pr_info("Found and enabled local APIC!\n"); |
| 1872 | return 0; |
| 1873 | } |
| 1874 | |
| 1875 | int __init apic_force_enable(unsigned long addr) |
| 1876 | { |
| 1877 | u32 h, l; |
| 1878 | |
| 1879 | if (disable_apic) |
| 1880 | return -1; |
| 1881 | |
| 1882 | /* |
| 1883 | * Some BIOSes disable the local APIC in the APIC_BASE |
| 1884 | * MSR. This can only be done in software for Intel P6 or later |
| 1885 | * and AMD K7 (Model > 1) or later. |
| 1886 | */ |
| 1887 | if (boot_cpu_data.x86 >= 6) { |
| 1888 | rdmsr(MSR_IA32_APICBASE, l, h); |
| 1889 | if (!(l & MSR_IA32_APICBASE_ENABLE)) { |
| 1890 | pr_info("Local APIC disabled by BIOS -- reenabling.\n"); |
| 1891 | l &= ~MSR_IA32_APICBASE_BASE; |
| 1892 | l |= MSR_IA32_APICBASE_ENABLE | addr; |
| 1893 | wrmsr(MSR_IA32_APICBASE, l, h); |
| 1894 | enabled_via_apicbase = 1; |
| 1895 | } |
| 1896 | } |
| 1897 | return apic_verify(); |
| 1898 | } |
| 1899 | |
| 1900 | /* |
| 1901 | * Detect and initialize APIC |
| 1902 | */ |
| 1903 | static int __init detect_init_APIC(void) |
| 1904 | { |
| 1905 | /* Disabled by kernel option? */ |
| 1906 | if (disable_apic) |
| 1907 | return -1; |
| 1908 | |
| 1909 | switch (boot_cpu_data.x86_vendor) { |
| 1910 | case X86_VENDOR_AMD: |
| 1911 | if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) || |
| 1912 | (boot_cpu_data.x86 >= 15)) |
| 1913 | break; |
| 1914 | goto no_apic; |
| 1915 | case X86_VENDOR_INTEL: |
| 1916 | if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 || |
| 1917 | (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC))) |
| 1918 | break; |
| 1919 | goto no_apic; |
| 1920 | default: |
| 1921 | goto no_apic; |
| 1922 | } |
| 1923 | |
| 1924 | if (!boot_cpu_has(X86_FEATURE_APIC)) { |
| 1925 | /* |
| 1926 | * Over-ride BIOS and try to enable the local APIC only if |
| 1927 | * "lapic" specified. |
| 1928 | */ |
| 1929 | if (!force_enable_local_apic) { |
| 1930 | pr_info("Local APIC disabled by BIOS -- " |
| 1931 | "you can enable it with \"lapic\"\n"); |
| 1932 | return -1; |
| 1933 | } |
| 1934 | if (apic_force_enable(APIC_DEFAULT_PHYS_BASE)) |
| 1935 | return -1; |
| 1936 | } else { |
| 1937 | if (apic_verify()) |
| 1938 | return -1; |
| 1939 | } |
| 1940 | |
| 1941 | apic_pm_activate(); |
| 1942 | |
| 1943 | return 0; |
| 1944 | |
| 1945 | no_apic: |
| 1946 | pr_info("No local APIC present or hardware disabled\n"); |
| 1947 | return -1; |
| 1948 | } |
| 1949 | #endif |
| 1950 | |
| 1951 | /** |
| 1952 | * init_apic_mappings - initialize APIC mappings |
| 1953 | */ |
| 1954 | void __init init_apic_mappings(void) |
| 1955 | { |
| 1956 | unsigned int new_apicid; |
| 1957 | |
| 1958 | apic_check_deadline_errata(); |
| 1959 | |
| 1960 | if (x2apic_mode) { |
| 1961 | boot_cpu_physical_apicid = read_apic_id(); |
| 1962 | return; |
| 1963 | } |
| 1964 | |
| 1965 | /* If no local APIC can be found return early */ |
| 1966 | if (!smp_found_config && detect_init_APIC()) { |
| 1967 | /* lets NOP'ify apic operations */ |
| 1968 | pr_info("APIC: disable apic facility\n"); |
| 1969 | apic_disable(); |
| 1970 | } else { |
| 1971 | apic_phys = mp_lapic_addr; |
| 1972 | |
| 1973 | /* |
| 1974 | * If the system has ACPI MADT tables or MP info, the LAPIC |
| 1975 | * address is already registered. |
| 1976 | */ |
| 1977 | if (!acpi_lapic && !smp_found_config) |
| 1978 | register_lapic_address(apic_phys); |
| 1979 | } |
| 1980 | |
| 1981 | /* |
| 1982 | * Fetch the APIC ID of the BSP in case we have a |
| 1983 | * default configuration (or the MP table is broken). |
| 1984 | */ |
| 1985 | new_apicid = read_apic_id(); |
| 1986 | if (boot_cpu_physical_apicid != new_apicid) { |
| 1987 | boot_cpu_physical_apicid = new_apicid; |
| 1988 | /* |
| 1989 | * yeah -- we lie about apic_version |
| 1990 | * in case if apic was disabled via boot option |
| 1991 | * but it's not a problem for SMP compiled kernel |
| 1992 | * since apic_intr_mode_select is prepared for such |
| 1993 | * a case and disable smp mode |
| 1994 | */ |
| 1995 | boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); |
| 1996 | } |
| 1997 | } |
| 1998 | |
| 1999 | void __init register_lapic_address(unsigned long address) |
| 2000 | { |
| 2001 | mp_lapic_addr = address; |
| 2002 | |
| 2003 | if (!x2apic_mode) { |
| 2004 | set_fixmap_nocache(FIX_APIC_BASE, address); |
| 2005 | apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", |
| 2006 | APIC_BASE, address); |
| 2007 | } |
| 2008 | if (boot_cpu_physical_apicid == -1U) { |
| 2009 | boot_cpu_physical_apicid = read_apic_id(); |
| 2010 | boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); |
| 2011 | } |
| 2012 | } |
| 2013 | |
| 2014 | /* |
| 2015 | * Local APIC interrupts |
| 2016 | */ |
| 2017 | |
| 2018 | /* |
| 2019 | * This interrupt should _never_ happen with our APIC/SMP architecture |
| 2020 | */ |
| 2021 | __visible void __irq_entry smp_spurious_interrupt(struct pt_regs *regs) |
| 2022 | { |
| 2023 | u8 vector = ~regs->orig_ax; |
| 2024 | u32 v; |
| 2025 | |
| 2026 | entering_irq(); |
| 2027 | trace_spurious_apic_entry(vector); |
| 2028 | |
| 2029 | /* |
| 2030 | * Check if this really is a spurious interrupt and ACK it |
| 2031 | * if it is a vectored one. Just in case... |
| 2032 | * Spurious interrupts should not be ACKed. |
| 2033 | */ |
| 2034 | v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1)); |
| 2035 | if (v & (1 << (vector & 0x1f))) |
| 2036 | ack_APIC_irq(); |
| 2037 | |
| 2038 | inc_irq_stat(irq_spurious_count); |
| 2039 | |
| 2040 | /* see sw-dev-man vol 3, chapter 7.4.13.5 */ |
| 2041 | pr_info("spurious APIC interrupt through vector %02x on CPU#%d, " |
| 2042 | "should never happen.\n", vector, smp_processor_id()); |
| 2043 | |
| 2044 | trace_spurious_apic_exit(vector); |
| 2045 | exiting_irq(); |
| 2046 | } |
| 2047 | |
| 2048 | /* |
| 2049 | * This interrupt should never happen with our APIC/SMP architecture |
| 2050 | */ |
| 2051 | __visible void __irq_entry smp_error_interrupt(struct pt_regs *regs) |
| 2052 | { |
| 2053 | static const char * const error_interrupt_reason[] = { |
| 2054 | "Send CS error", /* APIC Error Bit 0 */ |
| 2055 | "Receive CS error", /* APIC Error Bit 1 */ |
| 2056 | "Send accept error", /* APIC Error Bit 2 */ |
| 2057 | "Receive accept error", /* APIC Error Bit 3 */ |
| 2058 | "Redirectable IPI", /* APIC Error Bit 4 */ |
| 2059 | "Send illegal vector", /* APIC Error Bit 5 */ |
| 2060 | "Received illegal vector", /* APIC Error Bit 6 */ |
| 2061 | "Illegal register address", /* APIC Error Bit 7 */ |
| 2062 | }; |
| 2063 | u32 v, i = 0; |
| 2064 | |
| 2065 | entering_irq(); |
| 2066 | trace_error_apic_entry(ERROR_APIC_VECTOR); |
| 2067 | |
| 2068 | /* First tickle the hardware, only then report what went on. -- REW */ |
| 2069 | if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */ |
| 2070 | apic_write(APIC_ESR, 0); |
| 2071 | v = apic_read(APIC_ESR); |
| 2072 | ack_APIC_irq(); |
| 2073 | atomic_inc(&irq_err_count); |
| 2074 | |
| 2075 | apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x", |
| 2076 | smp_processor_id(), v); |
| 2077 | |
| 2078 | v &= 0xff; |
| 2079 | while (v) { |
| 2080 | if (v & 0x1) |
| 2081 | apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]); |
| 2082 | i++; |
| 2083 | v >>= 1; |
| 2084 | } |
| 2085 | |
| 2086 | apic_printk(APIC_DEBUG, KERN_CONT "\n"); |
| 2087 | |
| 2088 | trace_error_apic_exit(ERROR_APIC_VECTOR); |
| 2089 | exiting_irq(); |
| 2090 | } |
| 2091 | |
| 2092 | /** |
| 2093 | * connect_bsp_APIC - attach the APIC to the interrupt system |
| 2094 | */ |
| 2095 | static void __init connect_bsp_APIC(void) |
| 2096 | { |
| 2097 | #ifdef CONFIG_X86_32 |
| 2098 | if (pic_mode) { |
| 2099 | /* |
| 2100 | * Do not trust the local APIC being empty at bootup. |
| 2101 | */ |
| 2102 | clear_local_APIC(); |
| 2103 | /* |
| 2104 | * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's |
| 2105 | * local APIC to INT and NMI lines. |
| 2106 | */ |
| 2107 | apic_printk(APIC_VERBOSE, "leaving PIC mode, " |
| 2108 | "enabling APIC mode.\n"); |
| 2109 | imcr_pic_to_apic(); |
| 2110 | } |
| 2111 | #endif |
| 2112 | } |
| 2113 | |
| 2114 | /** |
| 2115 | * disconnect_bsp_APIC - detach the APIC from the interrupt system |
| 2116 | * @virt_wire_setup: indicates, whether virtual wire mode is selected |
| 2117 | * |
| 2118 | * Virtual wire mode is necessary to deliver legacy interrupts even when the |
| 2119 | * APIC is disabled. |
| 2120 | */ |
| 2121 | void disconnect_bsp_APIC(int virt_wire_setup) |
| 2122 | { |
| 2123 | unsigned int value; |
| 2124 | |
| 2125 | #ifdef CONFIG_X86_32 |
| 2126 | if (pic_mode) { |
| 2127 | /* |
| 2128 | * Put the board back into PIC mode (has an effect only on |
| 2129 | * certain older boards). Note that APIC interrupts, including |
| 2130 | * IPIs, won't work beyond this point! The only exception are |
| 2131 | * INIT IPIs. |
| 2132 | */ |
| 2133 | apic_printk(APIC_VERBOSE, "disabling APIC mode, " |
| 2134 | "entering PIC mode.\n"); |
| 2135 | imcr_apic_to_pic(); |
| 2136 | return; |
| 2137 | } |
| 2138 | #endif |
| 2139 | |
| 2140 | /* Go back to Virtual Wire compatibility mode */ |
| 2141 | |
| 2142 | /* For the spurious interrupt use vector F, and enable it */ |
| 2143 | value = apic_read(APIC_SPIV); |
| 2144 | value &= ~APIC_VECTOR_MASK; |
| 2145 | value |= APIC_SPIV_APIC_ENABLED; |
| 2146 | value |= 0xf; |
| 2147 | apic_write(APIC_SPIV, value); |
| 2148 | |
| 2149 | if (!virt_wire_setup) { |
| 2150 | /* |
| 2151 | * For LVT0 make it edge triggered, active high, |
| 2152 | * external and enabled |
| 2153 | */ |
| 2154 | value = apic_read(APIC_LVT0); |
| 2155 | value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | |
| 2156 | APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | |
| 2157 | APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); |
| 2158 | value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; |
| 2159 | value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); |
| 2160 | apic_write(APIC_LVT0, value); |
| 2161 | } else { |
| 2162 | /* Disable LVT0 */ |
| 2163 | apic_write(APIC_LVT0, APIC_LVT_MASKED); |
| 2164 | } |
| 2165 | |
| 2166 | /* |
| 2167 | * For LVT1 make it edge triggered, active high, |
| 2168 | * nmi and enabled |
| 2169 | */ |
| 2170 | value = apic_read(APIC_LVT1); |
| 2171 | value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | |
| 2172 | APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | |
| 2173 | APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); |
| 2174 | value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; |
| 2175 | value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); |
| 2176 | apic_write(APIC_LVT1, value); |
| 2177 | } |
| 2178 | |
| 2179 | /* |
| 2180 | * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated |
| 2181 | * contiguously, it equals to current allocated max logical CPU ID plus 1. |
| 2182 | * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range, |
| 2183 | * so the maximum of nr_logical_cpuids is nr_cpu_ids. |
| 2184 | * |
| 2185 | * NOTE: Reserve 0 for BSP. |
| 2186 | */ |
| 2187 | static int nr_logical_cpuids = 1; |
| 2188 | |
| 2189 | /* |
| 2190 | * Used to store mapping between logical CPU IDs and APIC IDs. |
| 2191 | */ |
| 2192 | static int cpuid_to_apicid[] = { |
| 2193 | [0 ... NR_CPUS - 1] = -1, |
| 2194 | }; |
| 2195 | |
| 2196 | #ifdef CONFIG_SMP |
| 2197 | /** |
| 2198 | * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread |
| 2199 | * @id: APIC ID to check |
| 2200 | */ |
| 2201 | bool apic_id_is_primary_thread(unsigned int apicid) |
| 2202 | { |
| 2203 | u32 mask; |
| 2204 | |
| 2205 | if (smp_num_siblings == 1) |
| 2206 | return true; |
| 2207 | /* Isolate the SMT bit(s) in the APICID and check for 0 */ |
| 2208 | mask = (1U << (fls(smp_num_siblings) - 1)) - 1; |
| 2209 | return !(apicid & mask); |
| 2210 | } |
| 2211 | #endif |
| 2212 | |
| 2213 | /* |
| 2214 | * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids |
| 2215 | * and cpuid_to_apicid[] synchronized. |
| 2216 | */ |
| 2217 | static int allocate_logical_cpuid(int apicid) |
| 2218 | { |
| 2219 | int i; |
| 2220 | |
| 2221 | /* |
| 2222 | * cpuid <-> apicid mapping is persistent, so when a cpu is up, |
| 2223 | * check if the kernel has allocated a cpuid for it. |
| 2224 | */ |
| 2225 | for (i = 0; i < nr_logical_cpuids; i++) { |
| 2226 | if (cpuid_to_apicid[i] == apicid) |
| 2227 | return i; |
| 2228 | } |
| 2229 | |
| 2230 | /* Allocate a new cpuid. */ |
| 2231 | if (nr_logical_cpuids >= nr_cpu_ids) { |
| 2232 | WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. " |
| 2233 | "Processor %d/0x%x and the rest are ignored.\n", |
| 2234 | nr_cpu_ids, nr_logical_cpuids, apicid); |
| 2235 | return -EINVAL; |
| 2236 | } |
| 2237 | |
| 2238 | cpuid_to_apicid[nr_logical_cpuids] = apicid; |
| 2239 | return nr_logical_cpuids++; |
| 2240 | } |
| 2241 | |
| 2242 | int generic_processor_info(int apicid, int version) |
| 2243 | { |
| 2244 | int cpu, max = nr_cpu_ids; |
| 2245 | bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid, |
| 2246 | phys_cpu_present_map); |
| 2247 | |
| 2248 | /* |
| 2249 | * boot_cpu_physical_apicid is designed to have the apicid |
| 2250 | * returned by read_apic_id(), i.e, the apicid of the |
| 2251 | * currently booting-up processor. However, on some platforms, |
| 2252 | * it is temporarily modified by the apicid reported as BSP |
| 2253 | * through MP table. Concretely: |
| 2254 | * |
| 2255 | * - arch/x86/kernel/mpparse.c: MP_processor_info() |
| 2256 | * - arch/x86/mm/amdtopology.c: amd_numa_init() |
| 2257 | * |
| 2258 | * This function is executed with the modified |
| 2259 | * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel |
| 2260 | * parameter doesn't work to disable APs on kdump 2nd kernel. |
| 2261 | * |
| 2262 | * Since fixing handling of boot_cpu_physical_apicid requires |
| 2263 | * another discussion and tests on each platform, we leave it |
| 2264 | * for now and here we use read_apic_id() directly in this |
| 2265 | * function, generic_processor_info(). |
| 2266 | */ |
| 2267 | if (disabled_cpu_apicid != BAD_APICID && |
| 2268 | disabled_cpu_apicid != read_apic_id() && |
| 2269 | disabled_cpu_apicid == apicid) { |
| 2270 | int thiscpu = num_processors + disabled_cpus; |
| 2271 | |
| 2272 | pr_warning("APIC: Disabling requested cpu." |
| 2273 | " Processor %d/0x%x ignored.\n", |
| 2274 | thiscpu, apicid); |
| 2275 | |
| 2276 | disabled_cpus++; |
| 2277 | return -ENODEV; |
| 2278 | } |
| 2279 | |
| 2280 | /* |
| 2281 | * If boot cpu has not been detected yet, then only allow upto |
| 2282 | * nr_cpu_ids - 1 processors and keep one slot free for boot cpu |
| 2283 | */ |
| 2284 | if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 && |
| 2285 | apicid != boot_cpu_physical_apicid) { |
| 2286 | int thiscpu = max + disabled_cpus - 1; |
| 2287 | |
| 2288 | pr_warning( |
| 2289 | "APIC: NR_CPUS/possible_cpus limit of %i almost" |
| 2290 | " reached. Keeping one slot for boot cpu." |
| 2291 | " Processor %d/0x%x ignored.\n", max, thiscpu, apicid); |
| 2292 | |
| 2293 | disabled_cpus++; |
| 2294 | return -ENODEV; |
| 2295 | } |
| 2296 | |
| 2297 | if (num_processors >= nr_cpu_ids) { |
| 2298 | int thiscpu = max + disabled_cpus; |
| 2299 | |
| 2300 | pr_warning("APIC: NR_CPUS/possible_cpus limit of %i " |
| 2301 | "reached. Processor %d/0x%x ignored.\n", |
| 2302 | max, thiscpu, apicid); |
| 2303 | |
| 2304 | disabled_cpus++; |
| 2305 | return -EINVAL; |
| 2306 | } |
| 2307 | |
| 2308 | if (apicid == boot_cpu_physical_apicid) { |
| 2309 | /* |
| 2310 | * x86_bios_cpu_apicid is required to have processors listed |
| 2311 | * in same order as logical cpu numbers. Hence the first |
| 2312 | * entry is BSP, and so on. |
| 2313 | * boot_cpu_init() already hold bit 0 in cpu_present_mask |
| 2314 | * for BSP. |
| 2315 | */ |
| 2316 | cpu = 0; |
| 2317 | |
| 2318 | /* Logical cpuid 0 is reserved for BSP. */ |
| 2319 | cpuid_to_apicid[0] = apicid; |
| 2320 | } else { |
| 2321 | cpu = allocate_logical_cpuid(apicid); |
| 2322 | if (cpu < 0) { |
| 2323 | disabled_cpus++; |
| 2324 | return -EINVAL; |
| 2325 | } |
| 2326 | } |
| 2327 | |
| 2328 | /* |
| 2329 | * Validate version |
| 2330 | */ |
| 2331 | if (version == 0x0) { |
| 2332 | pr_warning("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n", |
| 2333 | cpu, apicid); |
| 2334 | version = 0x10; |
| 2335 | } |
| 2336 | |
| 2337 | if (version != boot_cpu_apic_version) { |
| 2338 | pr_warning("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n", |
| 2339 | boot_cpu_apic_version, cpu, version); |
| 2340 | } |
| 2341 | |
| 2342 | if (apicid > max_physical_apicid) |
| 2343 | max_physical_apicid = apicid; |
| 2344 | |
| 2345 | #if defined(CONFIG_SMP) || defined(CONFIG_X86_64) |
| 2346 | early_per_cpu(x86_cpu_to_apicid, cpu) = apicid; |
| 2347 | early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid; |
| 2348 | #endif |
| 2349 | #ifdef CONFIG_X86_32 |
| 2350 | early_per_cpu(x86_cpu_to_logical_apicid, cpu) = |
| 2351 | apic->x86_32_early_logical_apicid(cpu); |
| 2352 | #endif |
| 2353 | set_cpu_possible(cpu, true); |
| 2354 | physid_set(apicid, phys_cpu_present_map); |
| 2355 | set_cpu_present(cpu, true); |
| 2356 | num_processors++; |
| 2357 | |
| 2358 | return cpu; |
| 2359 | } |
| 2360 | |
| 2361 | int hard_smp_processor_id(void) |
| 2362 | { |
| 2363 | return read_apic_id(); |
| 2364 | } |
| 2365 | |
| 2366 | /* |
| 2367 | * Override the generic EOI implementation with an optimized version. |
| 2368 | * Only called during early boot when only one CPU is active and with |
| 2369 | * interrupts disabled, so we know this does not race with actual APIC driver |
| 2370 | * use. |
| 2371 | */ |
| 2372 | void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)) |
| 2373 | { |
| 2374 | struct apic **drv; |
| 2375 | |
| 2376 | for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) { |
| 2377 | /* Should happen once for each apic */ |
| 2378 | WARN_ON((*drv)->eoi_write == eoi_write); |
| 2379 | (*drv)->native_eoi_write = (*drv)->eoi_write; |
| 2380 | (*drv)->eoi_write = eoi_write; |
| 2381 | } |
| 2382 | } |
| 2383 | |
| 2384 | static void __init apic_bsp_up_setup(void) |
| 2385 | { |
| 2386 | #ifdef CONFIG_X86_64 |
| 2387 | apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid)); |
| 2388 | #else |
| 2389 | /* |
| 2390 | * Hack: In case of kdump, after a crash, kernel might be booting |
| 2391 | * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid |
| 2392 | * might be zero if read from MP tables. Get it from LAPIC. |
| 2393 | */ |
| 2394 | # ifdef CONFIG_CRASH_DUMP |
| 2395 | boot_cpu_physical_apicid = read_apic_id(); |
| 2396 | # endif |
| 2397 | #endif |
| 2398 | physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); |
| 2399 | } |
| 2400 | |
| 2401 | /** |
| 2402 | * apic_bsp_setup - Setup function for local apic and io-apic |
| 2403 | * @upmode: Force UP mode (for APIC_init_uniprocessor) |
| 2404 | * |
| 2405 | * Returns: |
| 2406 | * apic_id of BSP APIC |
| 2407 | */ |
| 2408 | void __init apic_bsp_setup(bool upmode) |
| 2409 | { |
| 2410 | connect_bsp_APIC(); |
| 2411 | if (upmode) |
| 2412 | apic_bsp_up_setup(); |
| 2413 | setup_local_APIC(); |
| 2414 | |
| 2415 | enable_IO_APIC(); |
| 2416 | end_local_APIC_setup(); |
| 2417 | irq_remap_enable_fault_handling(); |
| 2418 | setup_IO_APIC(); |
| 2419 | } |
| 2420 | |
| 2421 | #ifdef CONFIG_UP_LATE_INIT |
| 2422 | void __init up_late_init(void) |
| 2423 | { |
| 2424 | if (apic_intr_mode == APIC_PIC) |
| 2425 | return; |
| 2426 | |
| 2427 | /* Setup local timer */ |
| 2428 | x86_init.timers.setup_percpu_clockev(); |
| 2429 | } |
| 2430 | #endif |
| 2431 | |
| 2432 | /* |
| 2433 | * Power management |
| 2434 | */ |
| 2435 | #ifdef CONFIG_PM |
| 2436 | |
| 2437 | static struct { |
| 2438 | /* |
| 2439 | * 'active' is true if the local APIC was enabled by us and |
| 2440 | * not the BIOS; this signifies that we are also responsible |
| 2441 | * for disabling it before entering apm/acpi suspend |
| 2442 | */ |
| 2443 | int active; |
| 2444 | /* r/w apic fields */ |
| 2445 | unsigned int apic_id; |
| 2446 | unsigned int apic_taskpri; |
| 2447 | unsigned int apic_ldr; |
| 2448 | unsigned int apic_dfr; |
| 2449 | unsigned int apic_spiv; |
| 2450 | unsigned int apic_lvtt; |
| 2451 | unsigned int apic_lvtpc; |
| 2452 | unsigned int apic_lvt0; |
| 2453 | unsigned int apic_lvt1; |
| 2454 | unsigned int apic_lvterr; |
| 2455 | unsigned int apic_tmict; |
| 2456 | unsigned int apic_tdcr; |
| 2457 | unsigned int apic_thmr; |
| 2458 | unsigned int apic_cmci; |
| 2459 | } apic_pm_state; |
| 2460 | |
| 2461 | static int lapic_suspend(void) |
| 2462 | { |
| 2463 | unsigned long flags; |
| 2464 | int maxlvt; |
| 2465 | |
| 2466 | if (!apic_pm_state.active) |
| 2467 | return 0; |
| 2468 | |
| 2469 | maxlvt = lapic_get_maxlvt(); |
| 2470 | |
| 2471 | apic_pm_state.apic_id = apic_read(APIC_ID); |
| 2472 | apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); |
| 2473 | apic_pm_state.apic_ldr = apic_read(APIC_LDR); |
| 2474 | apic_pm_state.apic_dfr = apic_read(APIC_DFR); |
| 2475 | apic_pm_state.apic_spiv = apic_read(APIC_SPIV); |
| 2476 | apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); |
| 2477 | if (maxlvt >= 4) |
| 2478 | apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); |
| 2479 | apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); |
| 2480 | apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); |
| 2481 | apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); |
| 2482 | apic_pm_state.apic_tmict = apic_read(APIC_TMICT); |
| 2483 | apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); |
| 2484 | #ifdef CONFIG_X86_THERMAL_VECTOR |
| 2485 | if (maxlvt >= 5) |
| 2486 | apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); |
| 2487 | #endif |
| 2488 | #ifdef CONFIG_X86_MCE_INTEL |
| 2489 | if (maxlvt >= 6) |
| 2490 | apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI); |
| 2491 | #endif |
| 2492 | |
| 2493 | local_irq_save(flags); |
| 2494 | disable_local_APIC(); |
| 2495 | |
| 2496 | irq_remapping_disable(); |
| 2497 | |
| 2498 | local_irq_restore(flags); |
| 2499 | return 0; |
| 2500 | } |
| 2501 | |
| 2502 | static void lapic_resume(void) |
| 2503 | { |
| 2504 | unsigned int l, h; |
| 2505 | unsigned long flags; |
| 2506 | int maxlvt; |
| 2507 | |
| 2508 | if (!apic_pm_state.active) |
| 2509 | return; |
| 2510 | |
| 2511 | local_irq_save(flags); |
| 2512 | |
| 2513 | /* |
| 2514 | * IO-APIC and PIC have their own resume routines. |
| 2515 | * We just mask them here to make sure the interrupt |
| 2516 | * subsystem is completely quiet while we enable x2apic |
| 2517 | * and interrupt-remapping. |
| 2518 | */ |
| 2519 | mask_ioapic_entries(); |
| 2520 | legacy_pic->mask_all(); |
| 2521 | |
| 2522 | if (x2apic_mode) { |
| 2523 | __x2apic_enable(); |
| 2524 | } else { |
| 2525 | /* |
| 2526 | * Make sure the APICBASE points to the right address |
| 2527 | * |
| 2528 | * FIXME! This will be wrong if we ever support suspend on |
| 2529 | * SMP! We'll need to do this as part of the CPU restore! |
| 2530 | */ |
| 2531 | if (boot_cpu_data.x86 >= 6) { |
| 2532 | rdmsr(MSR_IA32_APICBASE, l, h); |
| 2533 | l &= ~MSR_IA32_APICBASE_BASE; |
| 2534 | l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; |
| 2535 | wrmsr(MSR_IA32_APICBASE, l, h); |
| 2536 | } |
| 2537 | } |
| 2538 | |
| 2539 | maxlvt = lapic_get_maxlvt(); |
| 2540 | apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); |
| 2541 | apic_write(APIC_ID, apic_pm_state.apic_id); |
| 2542 | apic_write(APIC_DFR, apic_pm_state.apic_dfr); |
| 2543 | apic_write(APIC_LDR, apic_pm_state.apic_ldr); |
| 2544 | apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); |
| 2545 | apic_write(APIC_SPIV, apic_pm_state.apic_spiv); |
| 2546 | apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); |
| 2547 | apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); |
| 2548 | #ifdef CONFIG_X86_THERMAL_VECTOR |
| 2549 | if (maxlvt >= 5) |
| 2550 | apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); |
| 2551 | #endif |
| 2552 | #ifdef CONFIG_X86_MCE_INTEL |
| 2553 | if (maxlvt >= 6) |
| 2554 | apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci); |
| 2555 | #endif |
| 2556 | if (maxlvt >= 4) |
| 2557 | apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); |
| 2558 | apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); |
| 2559 | apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); |
| 2560 | apic_write(APIC_TMICT, apic_pm_state.apic_tmict); |
| 2561 | apic_write(APIC_ESR, 0); |
| 2562 | apic_read(APIC_ESR); |
| 2563 | apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); |
| 2564 | apic_write(APIC_ESR, 0); |
| 2565 | apic_read(APIC_ESR); |
| 2566 | |
| 2567 | irq_remapping_reenable(x2apic_mode); |
| 2568 | |
| 2569 | local_irq_restore(flags); |
| 2570 | } |
| 2571 | |
| 2572 | /* |
| 2573 | * This device has no shutdown method - fully functioning local APICs |
| 2574 | * are needed on every CPU up until machine_halt/restart/poweroff. |
| 2575 | */ |
| 2576 | |
| 2577 | static struct syscore_ops lapic_syscore_ops = { |
| 2578 | .resume = lapic_resume, |
| 2579 | .suspend = lapic_suspend, |
| 2580 | }; |
| 2581 | |
| 2582 | static void apic_pm_activate(void) |
| 2583 | { |
| 2584 | apic_pm_state.active = 1; |
| 2585 | } |
| 2586 | |
| 2587 | static int __init init_lapic_sysfs(void) |
| 2588 | { |
| 2589 | /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ |
| 2590 | if (boot_cpu_has(X86_FEATURE_APIC)) |
| 2591 | register_syscore_ops(&lapic_syscore_ops); |
| 2592 | |
| 2593 | return 0; |
| 2594 | } |
| 2595 | |
| 2596 | /* local apic needs to resume before other devices access its registers. */ |
| 2597 | core_initcall(init_lapic_sysfs); |
| 2598 | |
| 2599 | #else /* CONFIG_PM */ |
| 2600 | |
| 2601 | static void apic_pm_activate(void) { } |
| 2602 | |
| 2603 | #endif /* CONFIG_PM */ |
| 2604 | |
| 2605 | #ifdef CONFIG_X86_64 |
| 2606 | |
| 2607 | static int multi_checked; |
| 2608 | static int multi; |
| 2609 | |
| 2610 | static int set_multi(const struct dmi_system_id *d) |
| 2611 | { |
| 2612 | if (multi) |
| 2613 | return 0; |
| 2614 | pr_info("APIC: %s detected, Multi Chassis\n", d->ident); |
| 2615 | multi = 1; |
| 2616 | return 0; |
| 2617 | } |
| 2618 | |
| 2619 | static const struct dmi_system_id multi_dmi_table[] = { |
| 2620 | { |
| 2621 | .callback = set_multi, |
| 2622 | .ident = "IBM System Summit2", |
| 2623 | .matches = { |
| 2624 | DMI_MATCH(DMI_SYS_VENDOR, "IBM"), |
| 2625 | DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"), |
| 2626 | }, |
| 2627 | }, |
| 2628 | {} |
| 2629 | }; |
| 2630 | |
| 2631 | static void dmi_check_multi(void) |
| 2632 | { |
| 2633 | if (multi_checked) |
| 2634 | return; |
| 2635 | |
| 2636 | dmi_check_system(multi_dmi_table); |
| 2637 | multi_checked = 1; |
| 2638 | } |
| 2639 | |
| 2640 | /* |
| 2641 | * apic_is_clustered_box() -- Check if we can expect good TSC |
| 2642 | * |
| 2643 | * Thus far, the major user of this is IBM's Summit2 series: |
| 2644 | * Clustered boxes may have unsynced TSC problems if they are |
| 2645 | * multi-chassis. |
| 2646 | * Use DMI to check them |
| 2647 | */ |
| 2648 | int apic_is_clustered_box(void) |
| 2649 | { |
| 2650 | dmi_check_multi(); |
| 2651 | return multi; |
| 2652 | } |
| 2653 | #endif |
| 2654 | |
| 2655 | /* |
| 2656 | * APIC command line parameters |
| 2657 | */ |
| 2658 | static int __init setup_disableapic(char *arg) |
| 2659 | { |
| 2660 | disable_apic = 1; |
| 2661 | setup_clear_cpu_cap(X86_FEATURE_APIC); |
| 2662 | return 0; |
| 2663 | } |
| 2664 | early_param("disableapic", setup_disableapic); |
| 2665 | |
| 2666 | /* same as disableapic, for compatibility */ |
| 2667 | static int __init setup_nolapic(char *arg) |
| 2668 | { |
| 2669 | return setup_disableapic(arg); |
| 2670 | } |
| 2671 | early_param("nolapic", setup_nolapic); |
| 2672 | |
| 2673 | static int __init parse_lapic_timer_c2_ok(char *arg) |
| 2674 | { |
| 2675 | local_apic_timer_c2_ok = 1; |
| 2676 | return 0; |
| 2677 | } |
| 2678 | early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); |
| 2679 | |
| 2680 | static int __init parse_disable_apic_timer(char *arg) |
| 2681 | { |
| 2682 | disable_apic_timer = 1; |
| 2683 | return 0; |
| 2684 | } |
| 2685 | early_param("noapictimer", parse_disable_apic_timer); |
| 2686 | |
| 2687 | static int __init parse_nolapic_timer(char *arg) |
| 2688 | { |
| 2689 | disable_apic_timer = 1; |
| 2690 | return 0; |
| 2691 | } |
| 2692 | early_param("nolapic_timer", parse_nolapic_timer); |
| 2693 | |
| 2694 | static int __init apic_set_verbosity(char *arg) |
| 2695 | { |
| 2696 | if (!arg) { |
| 2697 | #ifdef CONFIG_X86_64 |
| 2698 | skip_ioapic_setup = 0; |
| 2699 | return 0; |
| 2700 | #endif |
| 2701 | return -EINVAL; |
| 2702 | } |
| 2703 | |
| 2704 | if (strcmp("debug", arg) == 0) |
| 2705 | apic_verbosity = APIC_DEBUG; |
| 2706 | else if (strcmp("verbose", arg) == 0) |
| 2707 | apic_verbosity = APIC_VERBOSE; |
| 2708 | #ifdef CONFIG_X86_64 |
| 2709 | else { |
| 2710 | pr_warning("APIC Verbosity level %s not recognised" |
| 2711 | " use apic=verbose or apic=debug\n", arg); |
| 2712 | return -EINVAL; |
| 2713 | } |
| 2714 | #endif |
| 2715 | |
| 2716 | return 0; |
| 2717 | } |
| 2718 | early_param("apic", apic_set_verbosity); |
| 2719 | |
| 2720 | static int __init lapic_insert_resource(void) |
| 2721 | { |
| 2722 | if (!apic_phys) |
| 2723 | return -1; |
| 2724 | |
| 2725 | /* Put local APIC into the resource map. */ |
| 2726 | lapic_resource.start = apic_phys; |
| 2727 | lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; |
| 2728 | insert_resource(&iomem_resource, &lapic_resource); |
| 2729 | |
| 2730 | return 0; |
| 2731 | } |
| 2732 | |
| 2733 | /* |
| 2734 | * need call insert after e820__reserve_resources() |
| 2735 | * that is using request_resource |
| 2736 | */ |
| 2737 | late_initcall(lapic_insert_resource); |
| 2738 | |
| 2739 | static int __init apic_set_disabled_cpu_apicid(char *arg) |
| 2740 | { |
| 2741 | if (!arg || !get_option(&arg, &disabled_cpu_apicid)) |
| 2742 | return -EINVAL; |
| 2743 | |
| 2744 | return 0; |
| 2745 | } |
| 2746 | early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid); |
| 2747 | |
| 2748 | static int __init apic_set_extnmi(char *arg) |
| 2749 | { |
| 2750 | if (!arg) |
| 2751 | return -EINVAL; |
| 2752 | |
| 2753 | if (!strncmp("all", arg, 3)) |
| 2754 | apic_extnmi = APIC_EXTNMI_ALL; |
| 2755 | else if (!strncmp("none", arg, 4)) |
| 2756 | apic_extnmi = APIC_EXTNMI_NONE; |
| 2757 | else if (!strncmp("bsp", arg, 3)) |
| 2758 | apic_extnmi = APIC_EXTNMI_BSP; |
| 2759 | else { |
| 2760 | pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg); |
| 2761 | return -EINVAL; |
| 2762 | } |
| 2763 | |
| 2764 | return 0; |
| 2765 | } |
| 2766 | early_param("apic_extnmi", apic_set_extnmi); |