Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | // Copyright (C) 2005-2017 Andes Technology Corporation |
| 3 | |
| 4 | #include <linux/types.h> |
| 5 | #include <linux/mm.h> |
| 6 | #include <linux/string.h> |
| 7 | #include <linux/dma-noncoherent.h> |
| 8 | #include <linux/io.h> |
| 9 | #include <linux/cache.h> |
| 10 | #include <linux/highmem.h> |
| 11 | #include <linux/slab.h> |
| 12 | #include <asm/cacheflush.h> |
| 13 | #include <asm/tlbflush.h> |
| 14 | #include <asm/proc-fns.h> |
| 15 | |
| 16 | /* |
| 17 | * This is the page table (2MB) covering uncached, DMA consistent allocations |
| 18 | */ |
| 19 | static pte_t *consistent_pte; |
| 20 | static DEFINE_RAW_SPINLOCK(consistent_lock); |
| 21 | |
| 22 | /* |
| 23 | * VM region handling support. |
| 24 | * |
| 25 | * This should become something generic, handling VM region allocations for |
| 26 | * vmalloc and similar (ioremap, module space, etc). |
| 27 | * |
| 28 | * I envisage vmalloc()'s supporting vm_struct becoming: |
| 29 | * |
| 30 | * struct vm_struct { |
| 31 | * struct vm_region region; |
| 32 | * unsigned long flags; |
| 33 | * struct page **pages; |
| 34 | * unsigned int nr_pages; |
| 35 | * unsigned long phys_addr; |
| 36 | * }; |
| 37 | * |
| 38 | * get_vm_area() would then call vm_region_alloc with an appropriate |
| 39 | * struct vm_region head (eg): |
| 40 | * |
| 41 | * struct vm_region vmalloc_head = { |
| 42 | * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list), |
| 43 | * .vm_start = VMALLOC_START, |
| 44 | * .vm_end = VMALLOC_END, |
| 45 | * }; |
| 46 | * |
| 47 | * However, vmalloc_head.vm_start is variable (typically, it is dependent on |
| 48 | * the amount of RAM found at boot time.) I would imagine that get_vm_area() |
| 49 | * would have to initialise this each time prior to calling vm_region_alloc(). |
| 50 | */ |
| 51 | struct arch_vm_region { |
| 52 | struct list_head vm_list; |
| 53 | unsigned long vm_start; |
| 54 | unsigned long vm_end; |
| 55 | struct page *vm_pages; |
| 56 | }; |
| 57 | |
| 58 | static struct arch_vm_region consistent_head = { |
| 59 | .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), |
| 60 | .vm_start = CONSISTENT_BASE, |
| 61 | .vm_end = CONSISTENT_END, |
| 62 | }; |
| 63 | |
| 64 | static struct arch_vm_region *vm_region_alloc(struct arch_vm_region *head, |
| 65 | size_t size, int gfp) |
| 66 | { |
| 67 | unsigned long addr = head->vm_start, end = head->vm_end - size; |
| 68 | unsigned long flags; |
| 69 | struct arch_vm_region *c, *new; |
| 70 | |
| 71 | new = kmalloc(sizeof(struct arch_vm_region), gfp); |
| 72 | if (!new) |
| 73 | goto out; |
| 74 | |
| 75 | raw_spin_lock_irqsave(&consistent_lock, flags); |
| 76 | |
| 77 | list_for_each_entry(c, &head->vm_list, vm_list) { |
| 78 | if ((addr + size) < addr) |
| 79 | goto nospc; |
| 80 | if ((addr + size) <= c->vm_start) |
| 81 | goto found; |
| 82 | addr = c->vm_end; |
| 83 | if (addr > end) |
| 84 | goto nospc; |
| 85 | } |
| 86 | |
| 87 | found: |
| 88 | /* |
| 89 | * Insert this entry _before_ the one we found. |
| 90 | */ |
| 91 | list_add_tail(&new->vm_list, &c->vm_list); |
| 92 | new->vm_start = addr; |
| 93 | new->vm_end = addr + size; |
| 94 | |
| 95 | raw_spin_unlock_irqrestore(&consistent_lock, flags); |
| 96 | return new; |
| 97 | |
| 98 | nospc: |
| 99 | raw_spin_unlock_irqrestore(&consistent_lock, flags); |
| 100 | kfree(new); |
| 101 | out: |
| 102 | return NULL; |
| 103 | } |
| 104 | |
| 105 | static struct arch_vm_region *vm_region_find(struct arch_vm_region *head, |
| 106 | unsigned long addr) |
| 107 | { |
| 108 | struct arch_vm_region *c; |
| 109 | |
| 110 | list_for_each_entry(c, &head->vm_list, vm_list) { |
| 111 | if (c->vm_start == addr) |
| 112 | goto out; |
| 113 | } |
| 114 | c = NULL; |
| 115 | out: |
| 116 | return c; |
| 117 | } |
| 118 | |
| 119 | void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, |
| 120 | gfp_t gfp, unsigned long attrs) |
| 121 | { |
| 122 | struct page *page; |
| 123 | struct arch_vm_region *c; |
| 124 | unsigned long order; |
| 125 | u64 mask = ~0ULL, limit; |
| 126 | pgprot_t prot = pgprot_noncached(PAGE_KERNEL); |
| 127 | |
| 128 | if (!consistent_pte) { |
| 129 | pr_err("%s: not initialized\n", __func__); |
| 130 | dump_stack(); |
| 131 | return NULL; |
| 132 | } |
| 133 | |
| 134 | if (dev) { |
| 135 | mask = dev->coherent_dma_mask; |
| 136 | |
| 137 | /* |
| 138 | * Sanity check the DMA mask - it must be non-zero, and |
| 139 | * must be able to be satisfied by a DMA allocation. |
| 140 | */ |
| 141 | if (mask == 0) { |
| 142 | dev_warn(dev, "coherent DMA mask is unset\n"); |
| 143 | goto no_page; |
| 144 | } |
| 145 | |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * Sanity check the allocation size. |
| 150 | */ |
| 151 | size = PAGE_ALIGN(size); |
| 152 | limit = (mask + 1) & ~mask; |
| 153 | if ((limit && size >= limit) || |
| 154 | size >= (CONSISTENT_END - CONSISTENT_BASE)) { |
| 155 | pr_warn("coherent allocation too big " |
| 156 | "(requested %#x mask %#llx)\n", size, mask); |
| 157 | goto no_page; |
| 158 | } |
| 159 | |
| 160 | order = get_order(size); |
| 161 | |
| 162 | if (mask != 0xffffffff) |
| 163 | gfp |= GFP_DMA; |
| 164 | |
| 165 | page = alloc_pages(gfp, order); |
| 166 | if (!page) |
| 167 | goto no_page; |
| 168 | |
| 169 | /* |
| 170 | * Invalidate any data that might be lurking in the |
| 171 | * kernel direct-mapped region for device DMA. |
| 172 | */ |
| 173 | { |
| 174 | unsigned long kaddr = (unsigned long)page_address(page); |
| 175 | memset(page_address(page), 0, size); |
| 176 | cpu_dma_wbinval_range(kaddr, kaddr + size); |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * Allocate a virtual address in the consistent mapping region. |
| 181 | */ |
| 182 | c = vm_region_alloc(&consistent_head, size, |
| 183 | gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); |
| 184 | if (c) { |
| 185 | pte_t *pte = consistent_pte + CONSISTENT_OFFSET(c->vm_start); |
| 186 | struct page *end = page + (1 << order); |
| 187 | |
| 188 | c->vm_pages = page; |
| 189 | |
| 190 | /* |
| 191 | * Set the "dma handle" |
| 192 | */ |
| 193 | *handle = page_to_phys(page); |
| 194 | |
| 195 | do { |
| 196 | BUG_ON(!pte_none(*pte)); |
| 197 | |
| 198 | /* |
| 199 | * x86 does not mark the pages reserved... |
| 200 | */ |
| 201 | SetPageReserved(page); |
| 202 | set_pte(pte, mk_pte(page, prot)); |
| 203 | page++; |
| 204 | pte++; |
| 205 | } while (size -= PAGE_SIZE); |
| 206 | |
| 207 | /* |
| 208 | * Free the otherwise unused pages. |
| 209 | */ |
| 210 | while (page < end) { |
| 211 | __free_page(page); |
| 212 | page++; |
| 213 | } |
| 214 | |
| 215 | return (void *)c->vm_start; |
| 216 | } |
| 217 | |
| 218 | if (page) |
| 219 | __free_pages(page, order); |
| 220 | no_page: |
| 221 | *handle = ~0; |
| 222 | return NULL; |
| 223 | } |
| 224 | |
| 225 | void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| 226 | dma_addr_t handle, unsigned long attrs) |
| 227 | { |
| 228 | struct arch_vm_region *c; |
| 229 | unsigned long flags, addr; |
| 230 | pte_t *ptep; |
| 231 | |
| 232 | size = PAGE_ALIGN(size); |
| 233 | |
| 234 | raw_spin_lock_irqsave(&consistent_lock, flags); |
| 235 | |
| 236 | c = vm_region_find(&consistent_head, (unsigned long)cpu_addr); |
| 237 | if (!c) |
| 238 | goto no_area; |
| 239 | |
| 240 | if ((c->vm_end - c->vm_start) != size) { |
| 241 | pr_err("%s: freeing wrong coherent size (%ld != %d)\n", |
| 242 | __func__, c->vm_end - c->vm_start, size); |
| 243 | dump_stack(); |
| 244 | size = c->vm_end - c->vm_start; |
| 245 | } |
| 246 | |
| 247 | ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start); |
| 248 | addr = c->vm_start; |
| 249 | do { |
| 250 | pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); |
| 251 | unsigned long pfn; |
| 252 | |
| 253 | ptep++; |
| 254 | addr += PAGE_SIZE; |
| 255 | |
| 256 | if (!pte_none(pte) && pte_present(pte)) { |
| 257 | pfn = pte_pfn(pte); |
| 258 | |
| 259 | if (pfn_valid(pfn)) { |
| 260 | struct page *page = pfn_to_page(pfn); |
| 261 | |
| 262 | /* |
| 263 | * x86 does not mark the pages reserved... |
| 264 | */ |
| 265 | ClearPageReserved(page); |
| 266 | |
| 267 | __free_page(page); |
| 268 | continue; |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | pr_crit("%s: bad page in kernel page table\n", __func__); |
| 273 | } while (size -= PAGE_SIZE); |
| 274 | |
| 275 | flush_tlb_kernel_range(c->vm_start, c->vm_end); |
| 276 | |
| 277 | list_del(&c->vm_list); |
| 278 | |
| 279 | raw_spin_unlock_irqrestore(&consistent_lock, flags); |
| 280 | |
| 281 | kfree(c); |
| 282 | return; |
| 283 | |
| 284 | no_area: |
| 285 | raw_spin_unlock_irqrestore(&consistent_lock, flags); |
| 286 | pr_err("%s: trying to free invalid coherent area: %p\n", |
| 287 | __func__, cpu_addr); |
| 288 | dump_stack(); |
| 289 | } |
| 290 | |
| 291 | /* |
| 292 | * Initialise the consistent memory allocation. |
| 293 | */ |
| 294 | static int __init consistent_init(void) |
| 295 | { |
| 296 | pgd_t *pgd; |
| 297 | pmd_t *pmd; |
| 298 | pte_t *pte; |
| 299 | int ret = 0; |
| 300 | |
| 301 | do { |
| 302 | pgd = pgd_offset(&init_mm, CONSISTENT_BASE); |
| 303 | pmd = pmd_alloc(&init_mm, pgd, CONSISTENT_BASE); |
| 304 | if (!pmd) { |
| 305 | pr_err("%s: no pmd tables\n", __func__); |
| 306 | ret = -ENOMEM; |
| 307 | break; |
| 308 | } |
| 309 | /* The first level mapping may be created in somewhere. |
| 310 | * It's not necessary to warn here. */ |
| 311 | /* WARN_ON(!pmd_none(*pmd)); */ |
| 312 | |
| 313 | pte = pte_alloc_kernel(pmd, CONSISTENT_BASE); |
| 314 | if (!pte) { |
| 315 | ret = -ENOMEM; |
| 316 | break; |
| 317 | } |
| 318 | |
| 319 | consistent_pte = pte; |
| 320 | } while (0); |
| 321 | |
| 322 | return ret; |
| 323 | } |
| 324 | |
| 325 | core_initcall(consistent_init); |
| 326 | |
| 327 | static inline void cache_op(phys_addr_t paddr, size_t size, |
| 328 | void (*fn)(unsigned long start, unsigned long end)) |
| 329 | { |
| 330 | struct page *page = pfn_to_page(paddr >> PAGE_SHIFT); |
| 331 | unsigned offset = paddr & ~PAGE_MASK; |
| 332 | size_t left = size; |
| 333 | unsigned long start; |
| 334 | |
| 335 | do { |
| 336 | size_t len = left; |
| 337 | |
| 338 | if (PageHighMem(page)) { |
| 339 | void *addr; |
| 340 | |
| 341 | if (offset + len > PAGE_SIZE) { |
| 342 | if (offset >= PAGE_SIZE) { |
| 343 | page += offset >> PAGE_SHIFT; |
| 344 | offset &= ~PAGE_MASK; |
| 345 | } |
| 346 | len = PAGE_SIZE - offset; |
| 347 | } |
| 348 | |
| 349 | addr = kmap_atomic(page); |
| 350 | start = (unsigned long)(addr + offset); |
| 351 | fn(start, start + len); |
| 352 | kunmap_atomic(addr); |
| 353 | } else { |
| 354 | start = (unsigned long)phys_to_virt(paddr); |
| 355 | fn(start, start + size); |
| 356 | } |
| 357 | offset = 0; |
| 358 | page++; |
| 359 | left -= len; |
| 360 | } while (left); |
| 361 | } |
| 362 | |
| 363 | void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, |
| 364 | size_t size, enum dma_data_direction dir) |
| 365 | { |
| 366 | switch (dir) { |
| 367 | case DMA_FROM_DEVICE: |
| 368 | break; |
| 369 | case DMA_TO_DEVICE: |
| 370 | case DMA_BIDIRECTIONAL: |
| 371 | cache_op(paddr, size, cpu_dma_wb_range); |
| 372 | break; |
| 373 | default: |
| 374 | BUG(); |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, |
| 379 | size_t size, enum dma_data_direction dir) |
| 380 | { |
| 381 | switch (dir) { |
| 382 | case DMA_TO_DEVICE: |
| 383 | break; |
| 384 | case DMA_FROM_DEVICE: |
| 385 | case DMA_BIDIRECTIONAL: |
| 386 | cache_op(paddr, size, cpu_dma_inval_range); |
| 387 | break; |
| 388 | default: |
| 389 | BUG(); |
| 390 | } |
| 391 | } |