David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3 | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
| 4 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
| 5 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
| 6 | * |
| 7 | * High-resolution kernel timers |
| 8 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 9 | * In contrast to the low-resolution timeout API, aka timer wheel, |
| 10 | * hrtimers provide finer resolution and accuracy depending on system |
| 11 | * configuration and capabilities. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 12 | * |
| 13 | * Started by: Thomas Gleixner and Ingo Molnar |
| 14 | * |
| 15 | * Credits: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 16 | * Based on the original timer wheel code |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 17 | * |
| 18 | * Help, testing, suggestions, bugfixes, improvements were |
| 19 | * provided by: |
| 20 | * |
| 21 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel |
| 22 | * et. al. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 23 | */ |
| 24 | |
| 25 | #include <linux/cpu.h> |
| 26 | #include <linux/export.h> |
| 27 | #include <linux/percpu.h> |
| 28 | #include <linux/hrtimer.h> |
| 29 | #include <linux/notifier.h> |
| 30 | #include <linux/syscalls.h> |
| 31 | #include <linux/interrupt.h> |
| 32 | #include <linux/tick.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 33 | #include <linux/err.h> |
| 34 | #include <linux/debugobjects.h> |
| 35 | #include <linux/sched/signal.h> |
| 36 | #include <linux/sched/sysctl.h> |
| 37 | #include <linux/sched/rt.h> |
| 38 | #include <linux/sched/deadline.h> |
| 39 | #include <linux/sched/nohz.h> |
| 40 | #include <linux/sched/debug.h> |
| 41 | #include <linux/timer.h> |
| 42 | #include <linux/freezer.h> |
| 43 | #include <linux/compat.h> |
| 44 | |
| 45 | #include <linux/uaccess.h> |
| 46 | |
| 47 | #include <trace/events/timer.h> |
| 48 | |
| 49 | #include "tick-internal.h" |
| 50 | |
| 51 | /* |
| 52 | * Masks for selecting the soft and hard context timers from |
| 53 | * cpu_base->active |
| 54 | */ |
| 55 | #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) |
| 56 | #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) |
| 57 | #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) |
| 58 | #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) |
| 59 | |
| 60 | /* |
| 61 | * The timer bases: |
| 62 | * |
| 63 | * There are more clockids than hrtimer bases. Thus, we index |
| 64 | * into the timer bases by the hrtimer_base_type enum. When trying |
| 65 | * to reach a base using a clockid, hrtimer_clockid_to_base() |
| 66 | * is used to convert from clockid to the proper hrtimer_base_type. |
| 67 | */ |
| 68 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
| 69 | { |
| 70 | .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), |
| 71 | .clock_base = |
| 72 | { |
| 73 | { |
| 74 | .index = HRTIMER_BASE_MONOTONIC, |
| 75 | .clockid = CLOCK_MONOTONIC, |
| 76 | .get_time = &ktime_get, |
| 77 | }, |
| 78 | { |
| 79 | .index = HRTIMER_BASE_REALTIME, |
| 80 | .clockid = CLOCK_REALTIME, |
| 81 | .get_time = &ktime_get_real, |
| 82 | }, |
| 83 | { |
| 84 | .index = HRTIMER_BASE_BOOTTIME, |
| 85 | .clockid = CLOCK_BOOTTIME, |
| 86 | .get_time = &ktime_get_boottime, |
| 87 | }, |
| 88 | { |
| 89 | .index = HRTIMER_BASE_TAI, |
| 90 | .clockid = CLOCK_TAI, |
| 91 | .get_time = &ktime_get_clocktai, |
| 92 | }, |
| 93 | { |
| 94 | .index = HRTIMER_BASE_MONOTONIC_SOFT, |
| 95 | .clockid = CLOCK_MONOTONIC, |
| 96 | .get_time = &ktime_get, |
| 97 | }, |
| 98 | { |
| 99 | .index = HRTIMER_BASE_REALTIME_SOFT, |
| 100 | .clockid = CLOCK_REALTIME, |
| 101 | .get_time = &ktime_get_real, |
| 102 | }, |
| 103 | { |
| 104 | .index = HRTIMER_BASE_BOOTTIME_SOFT, |
| 105 | .clockid = CLOCK_BOOTTIME, |
| 106 | .get_time = &ktime_get_boottime, |
| 107 | }, |
| 108 | { |
| 109 | .index = HRTIMER_BASE_TAI_SOFT, |
| 110 | .clockid = CLOCK_TAI, |
| 111 | .get_time = &ktime_get_clocktai, |
| 112 | }, |
| 113 | } |
| 114 | }; |
| 115 | |
| 116 | static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { |
| 117 | /* Make sure we catch unsupported clockids */ |
| 118 | [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, |
| 119 | |
| 120 | [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, |
| 121 | [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, |
| 122 | [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, |
| 123 | [CLOCK_TAI] = HRTIMER_BASE_TAI, |
| 124 | }; |
| 125 | |
| 126 | /* |
| 127 | * Functions and macros which are different for UP/SMP systems are kept in a |
| 128 | * single place |
| 129 | */ |
| 130 | #ifdef CONFIG_SMP |
| 131 | |
| 132 | /* |
| 133 | * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() |
| 134 | * such that hrtimer_callback_running() can unconditionally dereference |
| 135 | * timer->base->cpu_base |
| 136 | */ |
| 137 | static struct hrtimer_cpu_base migration_cpu_base = { |
| 138 | .clock_base = { { .cpu_base = &migration_cpu_base, }, }, |
| 139 | }; |
| 140 | |
| 141 | #define migration_base migration_cpu_base.clock_base[0] |
| 142 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 143 | static inline bool is_migration_base(struct hrtimer_clock_base *base) |
| 144 | { |
| 145 | return base == &migration_base; |
| 146 | } |
| 147 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 148 | /* |
| 149 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock |
| 150 | * means that all timers which are tied to this base via timer->base are |
| 151 | * locked, and the base itself is locked too. |
| 152 | * |
| 153 | * So __run_timers/migrate_timers can safely modify all timers which could |
| 154 | * be found on the lists/queues. |
| 155 | * |
| 156 | * When the timer's base is locked, and the timer removed from list, it is |
| 157 | * possible to set timer->base = &migration_base and drop the lock: the timer |
| 158 | * remains locked. |
| 159 | */ |
| 160 | static |
| 161 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, |
| 162 | unsigned long *flags) |
| 163 | { |
| 164 | struct hrtimer_clock_base *base; |
| 165 | |
| 166 | for (;;) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 167 | base = READ_ONCE(timer->base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 168 | if (likely(base != &migration_base)) { |
| 169 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
| 170 | if (likely(base == timer->base)) |
| 171 | return base; |
| 172 | /* The timer has migrated to another CPU: */ |
| 173 | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
| 174 | } |
| 175 | cpu_relax(); |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * We do not migrate the timer when it is expiring before the next |
| 181 | * event on the target cpu. When high resolution is enabled, we cannot |
| 182 | * reprogram the target cpu hardware and we would cause it to fire |
| 183 | * late. To keep it simple, we handle the high resolution enabled and |
| 184 | * disabled case similar. |
| 185 | * |
| 186 | * Called with cpu_base->lock of target cpu held. |
| 187 | */ |
| 188 | static int |
| 189 | hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) |
| 190 | { |
| 191 | ktime_t expires; |
| 192 | |
| 193 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); |
| 194 | return expires < new_base->cpu_base->expires_next; |
| 195 | } |
| 196 | |
| 197 | static inline |
| 198 | struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, |
| 199 | int pinned) |
| 200 | { |
| 201 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
| 202 | if (static_branch_likely(&timers_migration_enabled) && !pinned) |
| 203 | return &per_cpu(hrtimer_bases, get_nohz_timer_target()); |
| 204 | #endif |
| 205 | return base; |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | * We switch the timer base to a power-optimized selected CPU target, |
| 210 | * if: |
| 211 | * - NO_HZ_COMMON is enabled |
| 212 | * - timer migration is enabled |
| 213 | * - the timer callback is not running |
| 214 | * - the timer is not the first expiring timer on the new target |
| 215 | * |
| 216 | * If one of the above requirements is not fulfilled we move the timer |
| 217 | * to the current CPU or leave it on the previously assigned CPU if |
| 218 | * the timer callback is currently running. |
| 219 | */ |
| 220 | static inline struct hrtimer_clock_base * |
| 221 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, |
| 222 | int pinned) |
| 223 | { |
| 224 | struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; |
| 225 | struct hrtimer_clock_base *new_base; |
| 226 | int basenum = base->index; |
| 227 | |
| 228 | this_cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 229 | new_cpu_base = get_target_base(this_cpu_base, pinned); |
| 230 | again: |
| 231 | new_base = &new_cpu_base->clock_base[basenum]; |
| 232 | |
| 233 | if (base != new_base) { |
| 234 | /* |
| 235 | * We are trying to move timer to new_base. |
| 236 | * However we can't change timer's base while it is running, |
| 237 | * so we keep it on the same CPU. No hassle vs. reprogramming |
| 238 | * the event source in the high resolution case. The softirq |
| 239 | * code will take care of this when the timer function has |
| 240 | * completed. There is no conflict as we hold the lock until |
| 241 | * the timer is enqueued. |
| 242 | */ |
| 243 | if (unlikely(hrtimer_callback_running(timer))) |
| 244 | return base; |
| 245 | |
| 246 | /* See the comment in lock_hrtimer_base() */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 247 | WRITE_ONCE(timer->base, &migration_base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 248 | raw_spin_unlock(&base->cpu_base->lock); |
| 249 | raw_spin_lock(&new_base->cpu_base->lock); |
| 250 | |
| 251 | if (new_cpu_base != this_cpu_base && |
| 252 | hrtimer_check_target(timer, new_base)) { |
| 253 | raw_spin_unlock(&new_base->cpu_base->lock); |
| 254 | raw_spin_lock(&base->cpu_base->lock); |
| 255 | new_cpu_base = this_cpu_base; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 256 | WRITE_ONCE(timer->base, base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 257 | goto again; |
| 258 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 259 | WRITE_ONCE(timer->base, new_base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 260 | } else { |
| 261 | if (new_cpu_base != this_cpu_base && |
| 262 | hrtimer_check_target(timer, new_base)) { |
| 263 | new_cpu_base = this_cpu_base; |
| 264 | goto again; |
| 265 | } |
| 266 | } |
| 267 | return new_base; |
| 268 | } |
| 269 | |
| 270 | #else /* CONFIG_SMP */ |
| 271 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 272 | static inline bool is_migration_base(struct hrtimer_clock_base *base) |
| 273 | { |
| 274 | return false; |
| 275 | } |
| 276 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 277 | static inline struct hrtimer_clock_base * |
| 278 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| 279 | { |
| 280 | struct hrtimer_clock_base *base = timer->base; |
| 281 | |
| 282 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
| 283 | |
| 284 | return base; |
| 285 | } |
| 286 | |
| 287 | # define switch_hrtimer_base(t, b, p) (b) |
| 288 | |
| 289 | #endif /* !CONFIG_SMP */ |
| 290 | |
| 291 | /* |
| 292 | * Functions for the union type storage format of ktime_t which are |
| 293 | * too large for inlining: |
| 294 | */ |
| 295 | #if BITS_PER_LONG < 64 |
| 296 | /* |
| 297 | * Divide a ktime value by a nanosecond value |
| 298 | */ |
| 299 | s64 __ktime_divns(const ktime_t kt, s64 div) |
| 300 | { |
| 301 | int sft = 0; |
| 302 | s64 dclc; |
| 303 | u64 tmp; |
| 304 | |
| 305 | dclc = ktime_to_ns(kt); |
| 306 | tmp = dclc < 0 ? -dclc : dclc; |
| 307 | |
| 308 | /* Make sure the divisor is less than 2^32: */ |
| 309 | while (div >> 32) { |
| 310 | sft++; |
| 311 | div >>= 1; |
| 312 | } |
| 313 | tmp >>= sft; |
| 314 | do_div(tmp, (unsigned long) div); |
| 315 | return dclc < 0 ? -tmp : tmp; |
| 316 | } |
| 317 | EXPORT_SYMBOL_GPL(__ktime_divns); |
| 318 | #endif /* BITS_PER_LONG >= 64 */ |
| 319 | |
| 320 | /* |
| 321 | * Add two ktime values and do a safety check for overflow: |
| 322 | */ |
| 323 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) |
| 324 | { |
| 325 | ktime_t res = ktime_add_unsafe(lhs, rhs); |
| 326 | |
| 327 | /* |
| 328 | * We use KTIME_SEC_MAX here, the maximum timeout which we can |
| 329 | * return to user space in a timespec: |
| 330 | */ |
| 331 | if (res < 0 || res < lhs || res < rhs) |
| 332 | res = ktime_set(KTIME_SEC_MAX, 0); |
| 333 | |
| 334 | return res; |
| 335 | } |
| 336 | |
| 337 | EXPORT_SYMBOL_GPL(ktime_add_safe); |
| 338 | |
| 339 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
| 340 | |
| 341 | static struct debug_obj_descr hrtimer_debug_descr; |
| 342 | |
| 343 | static void *hrtimer_debug_hint(void *addr) |
| 344 | { |
| 345 | return ((struct hrtimer *) addr)->function; |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * fixup_init is called when: |
| 350 | * - an active object is initialized |
| 351 | */ |
| 352 | static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) |
| 353 | { |
| 354 | struct hrtimer *timer = addr; |
| 355 | |
| 356 | switch (state) { |
| 357 | case ODEBUG_STATE_ACTIVE: |
| 358 | hrtimer_cancel(timer); |
| 359 | debug_object_init(timer, &hrtimer_debug_descr); |
| 360 | return true; |
| 361 | default: |
| 362 | return false; |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | /* |
| 367 | * fixup_activate is called when: |
| 368 | * - an active object is activated |
| 369 | * - an unknown non-static object is activated |
| 370 | */ |
| 371 | static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) |
| 372 | { |
| 373 | switch (state) { |
| 374 | case ODEBUG_STATE_ACTIVE: |
| 375 | WARN_ON(1); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 376 | /* fall through */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 377 | default: |
| 378 | return false; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * fixup_free is called when: |
| 384 | * - an active object is freed |
| 385 | */ |
| 386 | static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) |
| 387 | { |
| 388 | struct hrtimer *timer = addr; |
| 389 | |
| 390 | switch (state) { |
| 391 | case ODEBUG_STATE_ACTIVE: |
| 392 | hrtimer_cancel(timer); |
| 393 | debug_object_free(timer, &hrtimer_debug_descr); |
| 394 | return true; |
| 395 | default: |
| 396 | return false; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | static struct debug_obj_descr hrtimer_debug_descr = { |
| 401 | .name = "hrtimer", |
| 402 | .debug_hint = hrtimer_debug_hint, |
| 403 | .fixup_init = hrtimer_fixup_init, |
| 404 | .fixup_activate = hrtimer_fixup_activate, |
| 405 | .fixup_free = hrtimer_fixup_free, |
| 406 | }; |
| 407 | |
| 408 | static inline void debug_hrtimer_init(struct hrtimer *timer) |
| 409 | { |
| 410 | debug_object_init(timer, &hrtimer_debug_descr); |
| 411 | } |
| 412 | |
| 413 | static inline void debug_hrtimer_activate(struct hrtimer *timer, |
| 414 | enum hrtimer_mode mode) |
| 415 | { |
| 416 | debug_object_activate(timer, &hrtimer_debug_descr); |
| 417 | } |
| 418 | |
| 419 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) |
| 420 | { |
| 421 | debug_object_deactivate(timer, &hrtimer_debug_descr); |
| 422 | } |
| 423 | |
| 424 | static inline void debug_hrtimer_free(struct hrtimer *timer) |
| 425 | { |
| 426 | debug_object_free(timer, &hrtimer_debug_descr); |
| 427 | } |
| 428 | |
| 429 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| 430 | enum hrtimer_mode mode); |
| 431 | |
| 432 | void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, |
| 433 | enum hrtimer_mode mode) |
| 434 | { |
| 435 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); |
| 436 | __hrtimer_init(timer, clock_id, mode); |
| 437 | } |
| 438 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); |
| 439 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 440 | static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, |
| 441 | clockid_t clock_id, enum hrtimer_mode mode); |
| 442 | |
| 443 | void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, |
| 444 | clockid_t clock_id, enum hrtimer_mode mode) |
| 445 | { |
| 446 | debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); |
| 447 | __hrtimer_init_sleeper(sl, clock_id, mode); |
| 448 | } |
| 449 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); |
| 450 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 451 | void destroy_hrtimer_on_stack(struct hrtimer *timer) |
| 452 | { |
| 453 | debug_object_free(timer, &hrtimer_debug_descr); |
| 454 | } |
| 455 | EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); |
| 456 | |
| 457 | #else |
| 458 | |
| 459 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } |
| 460 | static inline void debug_hrtimer_activate(struct hrtimer *timer, |
| 461 | enum hrtimer_mode mode) { } |
| 462 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
| 463 | #endif |
| 464 | |
| 465 | static inline void |
| 466 | debug_init(struct hrtimer *timer, clockid_t clockid, |
| 467 | enum hrtimer_mode mode) |
| 468 | { |
| 469 | debug_hrtimer_init(timer); |
| 470 | trace_hrtimer_init(timer, clockid, mode); |
| 471 | } |
| 472 | |
| 473 | static inline void debug_activate(struct hrtimer *timer, |
| 474 | enum hrtimer_mode mode) |
| 475 | { |
| 476 | debug_hrtimer_activate(timer, mode); |
| 477 | trace_hrtimer_start(timer, mode); |
| 478 | } |
| 479 | |
| 480 | static inline void debug_deactivate(struct hrtimer *timer) |
| 481 | { |
| 482 | debug_hrtimer_deactivate(timer); |
| 483 | trace_hrtimer_cancel(timer); |
| 484 | } |
| 485 | |
| 486 | static struct hrtimer_clock_base * |
| 487 | __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) |
| 488 | { |
| 489 | unsigned int idx; |
| 490 | |
| 491 | if (!*active) |
| 492 | return NULL; |
| 493 | |
| 494 | idx = __ffs(*active); |
| 495 | *active &= ~(1U << idx); |
| 496 | |
| 497 | return &cpu_base->clock_base[idx]; |
| 498 | } |
| 499 | |
| 500 | #define for_each_active_base(base, cpu_base, active) \ |
| 501 | while ((base = __next_base((cpu_base), &(active)))) |
| 502 | |
| 503 | static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, |
| 504 | const struct hrtimer *exclude, |
| 505 | unsigned int active, |
| 506 | ktime_t expires_next) |
| 507 | { |
| 508 | struct hrtimer_clock_base *base; |
| 509 | ktime_t expires; |
| 510 | |
| 511 | for_each_active_base(base, cpu_base, active) { |
| 512 | struct timerqueue_node *next; |
| 513 | struct hrtimer *timer; |
| 514 | |
| 515 | next = timerqueue_getnext(&base->active); |
| 516 | timer = container_of(next, struct hrtimer, node); |
| 517 | if (timer == exclude) { |
| 518 | /* Get to the next timer in the queue. */ |
| 519 | next = timerqueue_iterate_next(next); |
| 520 | if (!next) |
| 521 | continue; |
| 522 | |
| 523 | timer = container_of(next, struct hrtimer, node); |
| 524 | } |
| 525 | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
| 526 | if (expires < expires_next) { |
| 527 | expires_next = expires; |
| 528 | |
| 529 | /* Skip cpu_base update if a timer is being excluded. */ |
| 530 | if (exclude) |
| 531 | continue; |
| 532 | |
| 533 | if (timer->is_soft) |
| 534 | cpu_base->softirq_next_timer = timer; |
| 535 | else |
| 536 | cpu_base->next_timer = timer; |
| 537 | } |
| 538 | } |
| 539 | /* |
| 540 | * clock_was_set() might have changed base->offset of any of |
| 541 | * the clock bases so the result might be negative. Fix it up |
| 542 | * to prevent a false positive in clockevents_program_event(). |
| 543 | */ |
| 544 | if (expires_next < 0) |
| 545 | expires_next = 0; |
| 546 | return expires_next; |
| 547 | } |
| 548 | |
| 549 | /* |
| 550 | * Recomputes cpu_base::*next_timer and returns the earliest expires_next but |
| 551 | * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. |
| 552 | * |
| 553 | * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, |
| 554 | * those timers will get run whenever the softirq gets handled, at the end of |
| 555 | * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. |
| 556 | * |
| 557 | * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. |
| 558 | * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual |
| 559 | * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. |
| 560 | * |
| 561 | * @active_mask must be one of: |
| 562 | * - HRTIMER_ACTIVE_ALL, |
| 563 | * - HRTIMER_ACTIVE_SOFT, or |
| 564 | * - HRTIMER_ACTIVE_HARD. |
| 565 | */ |
| 566 | static ktime_t |
| 567 | __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) |
| 568 | { |
| 569 | unsigned int active; |
| 570 | struct hrtimer *next_timer = NULL; |
| 571 | ktime_t expires_next = KTIME_MAX; |
| 572 | |
| 573 | if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { |
| 574 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; |
| 575 | cpu_base->softirq_next_timer = NULL; |
| 576 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, |
| 577 | active, KTIME_MAX); |
| 578 | |
| 579 | next_timer = cpu_base->softirq_next_timer; |
| 580 | } |
| 581 | |
| 582 | if (active_mask & HRTIMER_ACTIVE_HARD) { |
| 583 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; |
| 584 | cpu_base->next_timer = next_timer; |
| 585 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, |
| 586 | expires_next); |
| 587 | } |
| 588 | |
| 589 | return expires_next; |
| 590 | } |
| 591 | |
| 592 | static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) |
| 593 | { |
| 594 | ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; |
| 595 | ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; |
| 596 | ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; |
| 597 | |
| 598 | ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, |
| 599 | offs_real, offs_boot, offs_tai); |
| 600 | |
| 601 | base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; |
| 602 | base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; |
| 603 | base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; |
| 604 | |
| 605 | return now; |
| 606 | } |
| 607 | |
| 608 | /* |
| 609 | * Is the high resolution mode active ? |
| 610 | */ |
| 611 | static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) |
| 612 | { |
| 613 | return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? |
| 614 | cpu_base->hres_active : 0; |
| 615 | } |
| 616 | |
| 617 | static inline int hrtimer_hres_active(void) |
| 618 | { |
| 619 | return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); |
| 620 | } |
| 621 | |
| 622 | /* |
| 623 | * Reprogram the event source with checking both queues for the |
| 624 | * next event |
| 625 | * Called with interrupts disabled and base->lock held |
| 626 | */ |
| 627 | static void |
| 628 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) |
| 629 | { |
| 630 | ktime_t expires_next; |
| 631 | |
| 632 | /* |
| 633 | * Find the current next expiration time. |
| 634 | */ |
| 635 | expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
| 636 | |
| 637 | if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { |
| 638 | /* |
| 639 | * When the softirq is activated, hrtimer has to be |
| 640 | * programmed with the first hard hrtimer because soft |
| 641 | * timer interrupt could occur too late. |
| 642 | */ |
| 643 | if (cpu_base->softirq_activated) |
| 644 | expires_next = __hrtimer_get_next_event(cpu_base, |
| 645 | HRTIMER_ACTIVE_HARD); |
| 646 | else |
| 647 | cpu_base->softirq_expires_next = expires_next; |
| 648 | } |
| 649 | |
| 650 | if (skip_equal && expires_next == cpu_base->expires_next) |
| 651 | return; |
| 652 | |
| 653 | cpu_base->expires_next = expires_next; |
| 654 | |
| 655 | /* |
| 656 | * If hres is not active, hardware does not have to be |
| 657 | * reprogrammed yet. |
| 658 | * |
| 659 | * If a hang was detected in the last timer interrupt then we |
| 660 | * leave the hang delay active in the hardware. We want the |
| 661 | * system to make progress. That also prevents the following |
| 662 | * scenario: |
| 663 | * T1 expires 50ms from now |
| 664 | * T2 expires 5s from now |
| 665 | * |
| 666 | * T1 is removed, so this code is called and would reprogram |
| 667 | * the hardware to 5s from now. Any hrtimer_start after that |
| 668 | * will not reprogram the hardware due to hang_detected being |
| 669 | * set. So we'd effectivly block all timers until the T2 event |
| 670 | * fires. |
| 671 | */ |
| 672 | if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
| 673 | return; |
| 674 | |
| 675 | tick_program_event(cpu_base->expires_next, 1); |
| 676 | } |
| 677 | |
| 678 | /* High resolution timer related functions */ |
| 679 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 680 | |
| 681 | /* |
| 682 | * High resolution timer enabled ? |
| 683 | */ |
| 684 | static bool hrtimer_hres_enabled __read_mostly = true; |
| 685 | unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; |
| 686 | EXPORT_SYMBOL_GPL(hrtimer_resolution); |
| 687 | |
| 688 | /* |
| 689 | * Enable / Disable high resolution mode |
| 690 | */ |
| 691 | static int __init setup_hrtimer_hres(char *str) |
| 692 | { |
| 693 | return (kstrtobool(str, &hrtimer_hres_enabled) == 0); |
| 694 | } |
| 695 | |
| 696 | __setup("highres=", setup_hrtimer_hres); |
| 697 | |
| 698 | /* |
| 699 | * hrtimer_high_res_enabled - query, if the highres mode is enabled |
| 700 | */ |
| 701 | static inline int hrtimer_is_hres_enabled(void) |
| 702 | { |
| 703 | return hrtimer_hres_enabled; |
| 704 | } |
| 705 | |
| 706 | /* |
| 707 | * Retrigger next event is called after clock was set |
| 708 | * |
| 709 | * Called with interrupts disabled via on_each_cpu() |
| 710 | */ |
| 711 | static void retrigger_next_event(void *arg) |
| 712 | { |
| 713 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
| 714 | |
| 715 | if (!__hrtimer_hres_active(base)) |
| 716 | return; |
| 717 | |
| 718 | raw_spin_lock(&base->lock); |
| 719 | hrtimer_update_base(base); |
| 720 | hrtimer_force_reprogram(base, 0); |
| 721 | raw_spin_unlock(&base->lock); |
| 722 | } |
| 723 | |
| 724 | /* |
| 725 | * Switch to high resolution mode |
| 726 | */ |
| 727 | static void hrtimer_switch_to_hres(void) |
| 728 | { |
| 729 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
| 730 | |
| 731 | if (tick_init_highres()) { |
| 732 | pr_warn("Could not switch to high resolution mode on CPU %u\n", |
| 733 | base->cpu); |
| 734 | return; |
| 735 | } |
| 736 | base->hres_active = 1; |
| 737 | hrtimer_resolution = HIGH_RES_NSEC; |
| 738 | |
| 739 | tick_setup_sched_timer(); |
| 740 | /* "Retrigger" the interrupt to get things going */ |
| 741 | retrigger_next_event(NULL); |
| 742 | } |
| 743 | |
| 744 | static void clock_was_set_work(struct work_struct *work) |
| 745 | { |
| 746 | clock_was_set(); |
| 747 | } |
| 748 | |
| 749 | static DECLARE_WORK(hrtimer_work, clock_was_set_work); |
| 750 | |
| 751 | /* |
| 752 | * Called from timekeeping and resume code to reprogram the hrtimer |
| 753 | * interrupt device on all cpus. |
| 754 | */ |
| 755 | void clock_was_set_delayed(void) |
| 756 | { |
| 757 | schedule_work(&hrtimer_work); |
| 758 | } |
| 759 | |
| 760 | #else |
| 761 | |
| 762 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
| 763 | static inline void hrtimer_switch_to_hres(void) { } |
| 764 | static inline void retrigger_next_event(void *arg) { } |
| 765 | |
| 766 | #endif /* CONFIG_HIGH_RES_TIMERS */ |
| 767 | |
| 768 | /* |
| 769 | * When a timer is enqueued and expires earlier than the already enqueued |
| 770 | * timers, we have to check, whether it expires earlier than the timer for |
| 771 | * which the clock event device was armed. |
| 772 | * |
| 773 | * Called with interrupts disabled and base->cpu_base.lock held |
| 774 | */ |
| 775 | static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) |
| 776 | { |
| 777 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 778 | struct hrtimer_clock_base *base = timer->base; |
| 779 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
| 780 | |
| 781 | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); |
| 782 | |
| 783 | /* |
| 784 | * CLOCK_REALTIME timer might be requested with an absolute |
| 785 | * expiry time which is less than base->offset. Set it to 0. |
| 786 | */ |
| 787 | if (expires < 0) |
| 788 | expires = 0; |
| 789 | |
| 790 | if (timer->is_soft) { |
| 791 | /* |
| 792 | * soft hrtimer could be started on a remote CPU. In this |
| 793 | * case softirq_expires_next needs to be updated on the |
| 794 | * remote CPU. The soft hrtimer will not expire before the |
| 795 | * first hard hrtimer on the remote CPU - |
| 796 | * hrtimer_check_target() prevents this case. |
| 797 | */ |
| 798 | struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; |
| 799 | |
| 800 | if (timer_cpu_base->softirq_activated) |
| 801 | return; |
| 802 | |
| 803 | if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) |
| 804 | return; |
| 805 | |
| 806 | timer_cpu_base->softirq_next_timer = timer; |
| 807 | timer_cpu_base->softirq_expires_next = expires; |
| 808 | |
| 809 | if (!ktime_before(expires, timer_cpu_base->expires_next) || |
| 810 | !reprogram) |
| 811 | return; |
| 812 | } |
| 813 | |
| 814 | /* |
| 815 | * If the timer is not on the current cpu, we cannot reprogram |
| 816 | * the other cpus clock event device. |
| 817 | */ |
| 818 | if (base->cpu_base != cpu_base) |
| 819 | return; |
| 820 | |
| 821 | /* |
| 822 | * If the hrtimer interrupt is running, then it will |
| 823 | * reevaluate the clock bases and reprogram the clock event |
| 824 | * device. The callbacks are always executed in hard interrupt |
| 825 | * context so we don't need an extra check for a running |
| 826 | * callback. |
| 827 | */ |
| 828 | if (cpu_base->in_hrtirq) |
| 829 | return; |
| 830 | |
| 831 | if (expires >= cpu_base->expires_next) |
| 832 | return; |
| 833 | |
| 834 | /* Update the pointer to the next expiring timer */ |
| 835 | cpu_base->next_timer = timer; |
| 836 | cpu_base->expires_next = expires; |
| 837 | |
| 838 | /* |
| 839 | * If hres is not active, hardware does not have to be |
| 840 | * programmed yet. |
| 841 | * |
| 842 | * If a hang was detected in the last timer interrupt then we |
| 843 | * do not schedule a timer which is earlier than the expiry |
| 844 | * which we enforced in the hang detection. We want the system |
| 845 | * to make progress. |
| 846 | */ |
| 847 | if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
| 848 | return; |
| 849 | |
| 850 | /* |
| 851 | * Program the timer hardware. We enforce the expiry for |
| 852 | * events which are already in the past. |
| 853 | */ |
| 854 | tick_program_event(expires, 1); |
| 855 | } |
| 856 | |
| 857 | /* |
| 858 | * Clock realtime was set |
| 859 | * |
| 860 | * Change the offset of the realtime clock vs. the monotonic |
| 861 | * clock. |
| 862 | * |
| 863 | * We might have to reprogram the high resolution timer interrupt. On |
| 864 | * SMP we call the architecture specific code to retrigger _all_ high |
| 865 | * resolution timer interrupts. On UP we just disable interrupts and |
| 866 | * call the high resolution interrupt code. |
| 867 | */ |
| 868 | void clock_was_set(void) |
| 869 | { |
| 870 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 871 | /* Retrigger the CPU local events everywhere */ |
| 872 | on_each_cpu(retrigger_next_event, NULL, 1); |
| 873 | #endif |
| 874 | timerfd_clock_was_set(); |
| 875 | } |
| 876 | |
| 877 | /* |
| 878 | * During resume we might have to reprogram the high resolution timer |
| 879 | * interrupt on all online CPUs. However, all other CPUs will be |
| 880 | * stopped with IRQs interrupts disabled so the clock_was_set() call |
| 881 | * must be deferred. |
| 882 | */ |
| 883 | void hrtimers_resume(void) |
| 884 | { |
| 885 | lockdep_assert_irqs_disabled(); |
| 886 | /* Retrigger on the local CPU */ |
| 887 | retrigger_next_event(NULL); |
| 888 | /* And schedule a retrigger for all others */ |
| 889 | clock_was_set_delayed(); |
| 890 | } |
| 891 | |
| 892 | /* |
| 893 | * Counterpart to lock_hrtimer_base above: |
| 894 | */ |
| 895 | static inline |
| 896 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| 897 | { |
| 898 | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
| 899 | } |
| 900 | |
| 901 | /** |
| 902 | * hrtimer_forward - forward the timer expiry |
| 903 | * @timer: hrtimer to forward |
| 904 | * @now: forward past this time |
| 905 | * @interval: the interval to forward |
| 906 | * |
| 907 | * Forward the timer expiry so it will expire in the future. |
| 908 | * Returns the number of overruns. |
| 909 | * |
| 910 | * Can be safely called from the callback function of @timer. If |
| 911 | * called from other contexts @timer must neither be enqueued nor |
| 912 | * running the callback and the caller needs to take care of |
| 913 | * serialization. |
| 914 | * |
| 915 | * Note: This only updates the timer expiry value and does not requeue |
| 916 | * the timer. |
| 917 | */ |
| 918 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
| 919 | { |
| 920 | u64 orun = 1; |
| 921 | ktime_t delta; |
| 922 | |
| 923 | delta = ktime_sub(now, hrtimer_get_expires(timer)); |
| 924 | |
| 925 | if (delta < 0) |
| 926 | return 0; |
| 927 | |
| 928 | if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) |
| 929 | return 0; |
| 930 | |
| 931 | if (interval < hrtimer_resolution) |
| 932 | interval = hrtimer_resolution; |
| 933 | |
| 934 | if (unlikely(delta >= interval)) { |
| 935 | s64 incr = ktime_to_ns(interval); |
| 936 | |
| 937 | orun = ktime_divns(delta, incr); |
| 938 | hrtimer_add_expires_ns(timer, incr * orun); |
| 939 | if (hrtimer_get_expires_tv64(timer) > now) |
| 940 | return orun; |
| 941 | /* |
| 942 | * This (and the ktime_add() below) is the |
| 943 | * correction for exact: |
| 944 | */ |
| 945 | orun++; |
| 946 | } |
| 947 | hrtimer_add_expires(timer, interval); |
| 948 | |
| 949 | return orun; |
| 950 | } |
| 951 | EXPORT_SYMBOL_GPL(hrtimer_forward); |
| 952 | |
| 953 | /* |
| 954 | * enqueue_hrtimer - internal function to (re)start a timer |
| 955 | * |
| 956 | * The timer is inserted in expiry order. Insertion into the |
| 957 | * red black tree is O(log(n)). Must hold the base lock. |
| 958 | * |
| 959 | * Returns 1 when the new timer is the leftmost timer in the tree. |
| 960 | */ |
| 961 | static int enqueue_hrtimer(struct hrtimer *timer, |
| 962 | struct hrtimer_clock_base *base, |
| 963 | enum hrtimer_mode mode) |
| 964 | { |
| 965 | debug_activate(timer, mode); |
| 966 | |
| 967 | base->cpu_base->active_bases |= 1 << base->index; |
| 968 | |
| 969 | timer->state = HRTIMER_STATE_ENQUEUED; |
| 970 | |
| 971 | return timerqueue_add(&base->active, &timer->node); |
| 972 | } |
| 973 | |
| 974 | /* |
| 975 | * __remove_hrtimer - internal function to remove a timer |
| 976 | * |
| 977 | * Caller must hold the base lock. |
| 978 | * |
| 979 | * High resolution timer mode reprograms the clock event device when the |
| 980 | * timer is the one which expires next. The caller can disable this by setting |
| 981 | * reprogram to zero. This is useful, when the context does a reprogramming |
| 982 | * anyway (e.g. timer interrupt) |
| 983 | */ |
| 984 | static void __remove_hrtimer(struct hrtimer *timer, |
| 985 | struct hrtimer_clock_base *base, |
| 986 | u8 newstate, int reprogram) |
| 987 | { |
| 988 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
| 989 | u8 state = timer->state; |
| 990 | |
| 991 | timer->state = newstate; |
| 992 | if (!(state & HRTIMER_STATE_ENQUEUED)) |
| 993 | return; |
| 994 | |
| 995 | if (!timerqueue_del(&base->active, &timer->node)) |
| 996 | cpu_base->active_bases &= ~(1 << base->index); |
| 997 | |
| 998 | /* |
| 999 | * Note: If reprogram is false we do not update |
| 1000 | * cpu_base->next_timer. This happens when we remove the first |
| 1001 | * timer on a remote cpu. No harm as we never dereference |
| 1002 | * cpu_base->next_timer. So the worst thing what can happen is |
| 1003 | * an superflous call to hrtimer_force_reprogram() on the |
| 1004 | * remote cpu later on if the same timer gets enqueued again. |
| 1005 | */ |
| 1006 | if (reprogram && timer == cpu_base->next_timer) |
| 1007 | hrtimer_force_reprogram(cpu_base, 1); |
| 1008 | } |
| 1009 | |
| 1010 | /* |
| 1011 | * remove hrtimer, called with base lock held |
| 1012 | */ |
| 1013 | static inline int |
| 1014 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) |
| 1015 | { |
| 1016 | if (hrtimer_is_queued(timer)) { |
| 1017 | u8 state = timer->state; |
| 1018 | int reprogram; |
| 1019 | |
| 1020 | /* |
| 1021 | * Remove the timer and force reprogramming when high |
| 1022 | * resolution mode is active and the timer is on the current |
| 1023 | * CPU. If we remove a timer on another CPU, reprogramming is |
| 1024 | * skipped. The interrupt event on this CPU is fired and |
| 1025 | * reprogramming happens in the interrupt handler. This is a |
| 1026 | * rare case and less expensive than a smp call. |
| 1027 | */ |
| 1028 | debug_deactivate(timer); |
| 1029 | reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); |
| 1030 | |
| 1031 | if (!restart) |
| 1032 | state = HRTIMER_STATE_INACTIVE; |
| 1033 | |
| 1034 | __remove_hrtimer(timer, base, state, reprogram); |
| 1035 | return 1; |
| 1036 | } |
| 1037 | return 0; |
| 1038 | } |
| 1039 | |
| 1040 | static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, |
| 1041 | const enum hrtimer_mode mode) |
| 1042 | { |
| 1043 | #ifdef CONFIG_TIME_LOW_RES |
| 1044 | /* |
| 1045 | * CONFIG_TIME_LOW_RES indicates that the system has no way to return |
| 1046 | * granular time values. For relative timers we add hrtimer_resolution |
| 1047 | * (i.e. one jiffie) to prevent short timeouts. |
| 1048 | */ |
| 1049 | timer->is_rel = mode & HRTIMER_MODE_REL; |
| 1050 | if (timer->is_rel) |
| 1051 | tim = ktime_add_safe(tim, hrtimer_resolution); |
| 1052 | #endif |
| 1053 | return tim; |
| 1054 | } |
| 1055 | |
| 1056 | static void |
| 1057 | hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) |
| 1058 | { |
| 1059 | ktime_t expires; |
| 1060 | |
| 1061 | /* |
| 1062 | * Find the next SOFT expiration. |
| 1063 | */ |
| 1064 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); |
| 1065 | |
| 1066 | /* |
| 1067 | * reprogramming needs to be triggered, even if the next soft |
| 1068 | * hrtimer expires at the same time than the next hard |
| 1069 | * hrtimer. cpu_base->softirq_expires_next needs to be updated! |
| 1070 | */ |
| 1071 | if (expires == KTIME_MAX) |
| 1072 | return; |
| 1073 | |
| 1074 | /* |
| 1075 | * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() |
| 1076 | * cpu_base->*expires_next is only set by hrtimer_reprogram() |
| 1077 | */ |
| 1078 | hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); |
| 1079 | } |
| 1080 | |
| 1081 | static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
| 1082 | u64 delta_ns, const enum hrtimer_mode mode, |
| 1083 | struct hrtimer_clock_base *base) |
| 1084 | { |
| 1085 | struct hrtimer_clock_base *new_base; |
| 1086 | |
| 1087 | /* Remove an active timer from the queue: */ |
| 1088 | remove_hrtimer(timer, base, true); |
| 1089 | |
| 1090 | if (mode & HRTIMER_MODE_REL) |
| 1091 | tim = ktime_add_safe(tim, base->get_time()); |
| 1092 | |
| 1093 | tim = hrtimer_update_lowres(timer, tim, mode); |
| 1094 | |
| 1095 | hrtimer_set_expires_range_ns(timer, tim, delta_ns); |
| 1096 | |
| 1097 | /* Switch the timer base, if necessary: */ |
| 1098 | new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); |
| 1099 | |
| 1100 | return enqueue_hrtimer(timer, new_base, mode); |
| 1101 | } |
| 1102 | |
| 1103 | /** |
| 1104 | * hrtimer_start_range_ns - (re)start an hrtimer |
| 1105 | * @timer: the timer to be added |
| 1106 | * @tim: expiry time |
| 1107 | * @delta_ns: "slack" range for the timer |
| 1108 | * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or |
| 1109 | * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); |
| 1110 | * softirq based mode is considered for debug purpose only! |
| 1111 | */ |
| 1112 | void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
| 1113 | u64 delta_ns, const enum hrtimer_mode mode) |
| 1114 | { |
| 1115 | struct hrtimer_clock_base *base; |
| 1116 | unsigned long flags; |
| 1117 | |
| 1118 | /* |
| 1119 | * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1120 | * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard |
| 1121 | * expiry mode because unmarked timers are moved to softirq expiry. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1122 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1123 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| 1124 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); |
| 1125 | else |
| 1126 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1127 | |
| 1128 | base = lock_hrtimer_base(timer, &flags); |
| 1129 | |
| 1130 | if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) |
| 1131 | hrtimer_reprogram(timer, true); |
| 1132 | |
| 1133 | unlock_hrtimer_base(timer, &flags); |
| 1134 | } |
| 1135 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); |
| 1136 | |
| 1137 | /** |
| 1138 | * hrtimer_try_to_cancel - try to deactivate a timer |
| 1139 | * @timer: hrtimer to stop |
| 1140 | * |
| 1141 | * Returns: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1142 | * |
| 1143 | * * 0 when the timer was not active |
| 1144 | * * 1 when the timer was active |
| 1145 | * * -1 when the timer is currently executing the callback function and |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1146 | * cannot be stopped |
| 1147 | */ |
| 1148 | int hrtimer_try_to_cancel(struct hrtimer *timer) |
| 1149 | { |
| 1150 | struct hrtimer_clock_base *base; |
| 1151 | unsigned long flags; |
| 1152 | int ret = -1; |
| 1153 | |
| 1154 | /* |
| 1155 | * Check lockless first. If the timer is not active (neither |
| 1156 | * enqueued nor running the callback, nothing to do here. The |
| 1157 | * base lock does not serialize against a concurrent enqueue, |
| 1158 | * so we can avoid taking it. |
| 1159 | */ |
| 1160 | if (!hrtimer_active(timer)) |
| 1161 | return 0; |
| 1162 | |
| 1163 | base = lock_hrtimer_base(timer, &flags); |
| 1164 | |
| 1165 | if (!hrtimer_callback_running(timer)) |
| 1166 | ret = remove_hrtimer(timer, base, false); |
| 1167 | |
| 1168 | unlock_hrtimer_base(timer, &flags); |
| 1169 | |
| 1170 | return ret; |
| 1171 | |
| 1172 | } |
| 1173 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
| 1174 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1175 | #ifdef CONFIG_PREEMPT_RT |
| 1176 | static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) |
| 1177 | { |
| 1178 | spin_lock_init(&base->softirq_expiry_lock); |
| 1179 | } |
| 1180 | |
| 1181 | static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) |
| 1182 | { |
| 1183 | spin_lock(&base->softirq_expiry_lock); |
| 1184 | } |
| 1185 | |
| 1186 | static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) |
| 1187 | { |
| 1188 | spin_unlock(&base->softirq_expiry_lock); |
| 1189 | } |
| 1190 | |
| 1191 | /* |
| 1192 | * The counterpart to hrtimer_cancel_wait_running(). |
| 1193 | * |
| 1194 | * If there is a waiter for cpu_base->expiry_lock, then it was waiting for |
| 1195 | * the timer callback to finish. Drop expiry_lock and reaquire it. That |
| 1196 | * allows the waiter to acquire the lock and make progress. |
| 1197 | */ |
| 1198 | static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, |
| 1199 | unsigned long flags) |
| 1200 | { |
| 1201 | if (atomic_read(&cpu_base->timer_waiters)) { |
| 1202 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| 1203 | spin_unlock(&cpu_base->softirq_expiry_lock); |
| 1204 | spin_lock(&cpu_base->softirq_expiry_lock); |
| 1205 | raw_spin_lock_irq(&cpu_base->lock); |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | /* |
| 1210 | * This function is called on PREEMPT_RT kernels when the fast path |
| 1211 | * deletion of a timer failed because the timer callback function was |
| 1212 | * running. |
| 1213 | * |
| 1214 | * This prevents priority inversion: if the soft irq thread is preempted |
| 1215 | * in the middle of a timer callback, then calling del_timer_sync() can |
| 1216 | * lead to two issues: |
| 1217 | * |
| 1218 | * - If the caller is on a remote CPU then it has to spin wait for the timer |
| 1219 | * handler to complete. This can result in unbound priority inversion. |
| 1220 | * |
| 1221 | * - If the caller originates from the task which preempted the timer |
| 1222 | * handler on the same CPU, then spin waiting for the timer handler to |
| 1223 | * complete is never going to end. |
| 1224 | */ |
| 1225 | void hrtimer_cancel_wait_running(const struct hrtimer *timer) |
| 1226 | { |
| 1227 | /* Lockless read. Prevent the compiler from reloading it below */ |
| 1228 | struct hrtimer_clock_base *base = READ_ONCE(timer->base); |
| 1229 | |
| 1230 | /* |
| 1231 | * Just relax if the timer expires in hard interrupt context or if |
| 1232 | * it is currently on the migration base. |
| 1233 | */ |
| 1234 | if (!timer->is_soft || is_migration_base(base)) { |
| 1235 | cpu_relax(); |
| 1236 | return; |
| 1237 | } |
| 1238 | |
| 1239 | /* |
| 1240 | * Mark the base as contended and grab the expiry lock, which is |
| 1241 | * held by the softirq across the timer callback. Drop the lock |
| 1242 | * immediately so the softirq can expire the next timer. In theory |
| 1243 | * the timer could already be running again, but that's more than |
| 1244 | * unlikely and just causes another wait loop. |
| 1245 | */ |
| 1246 | atomic_inc(&base->cpu_base->timer_waiters); |
| 1247 | spin_lock_bh(&base->cpu_base->softirq_expiry_lock); |
| 1248 | atomic_dec(&base->cpu_base->timer_waiters); |
| 1249 | spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); |
| 1250 | } |
| 1251 | #else |
| 1252 | static inline void |
| 1253 | hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } |
| 1254 | static inline void |
| 1255 | hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } |
| 1256 | static inline void |
| 1257 | hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } |
| 1258 | static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, |
| 1259 | unsigned long flags) { } |
| 1260 | #endif |
| 1261 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1262 | /** |
| 1263 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. |
| 1264 | * @timer: the timer to be cancelled |
| 1265 | * |
| 1266 | * Returns: |
| 1267 | * 0 when the timer was not active |
| 1268 | * 1 when the timer was active |
| 1269 | */ |
| 1270 | int hrtimer_cancel(struct hrtimer *timer) |
| 1271 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1272 | int ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1273 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1274 | do { |
| 1275 | ret = hrtimer_try_to_cancel(timer); |
| 1276 | |
| 1277 | if (ret < 0) |
| 1278 | hrtimer_cancel_wait_running(timer); |
| 1279 | } while (ret < 0); |
| 1280 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1281 | } |
| 1282 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
| 1283 | |
| 1284 | /** |
| 1285 | * hrtimer_get_remaining - get remaining time for the timer |
| 1286 | * @timer: the timer to read |
| 1287 | * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y |
| 1288 | */ |
| 1289 | ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) |
| 1290 | { |
| 1291 | unsigned long flags; |
| 1292 | ktime_t rem; |
| 1293 | |
| 1294 | lock_hrtimer_base(timer, &flags); |
| 1295 | if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) |
| 1296 | rem = hrtimer_expires_remaining_adjusted(timer); |
| 1297 | else |
| 1298 | rem = hrtimer_expires_remaining(timer); |
| 1299 | unlock_hrtimer_base(timer, &flags); |
| 1300 | |
| 1301 | return rem; |
| 1302 | } |
| 1303 | EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); |
| 1304 | |
| 1305 | #ifdef CONFIG_NO_HZ_COMMON |
| 1306 | /** |
| 1307 | * hrtimer_get_next_event - get the time until next expiry event |
| 1308 | * |
| 1309 | * Returns the next expiry time or KTIME_MAX if no timer is pending. |
| 1310 | */ |
| 1311 | u64 hrtimer_get_next_event(void) |
| 1312 | { |
| 1313 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 1314 | u64 expires = KTIME_MAX; |
| 1315 | unsigned long flags; |
| 1316 | |
| 1317 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| 1318 | |
| 1319 | if (!__hrtimer_hres_active(cpu_base)) |
| 1320 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
| 1321 | |
| 1322 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| 1323 | |
| 1324 | return expires; |
| 1325 | } |
| 1326 | |
| 1327 | /** |
| 1328 | * hrtimer_next_event_without - time until next expiry event w/o one timer |
| 1329 | * @exclude: timer to exclude |
| 1330 | * |
| 1331 | * Returns the next expiry time over all timers except for the @exclude one or |
| 1332 | * KTIME_MAX if none of them is pending. |
| 1333 | */ |
| 1334 | u64 hrtimer_next_event_without(const struct hrtimer *exclude) |
| 1335 | { |
| 1336 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 1337 | u64 expires = KTIME_MAX; |
| 1338 | unsigned long flags; |
| 1339 | |
| 1340 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| 1341 | |
| 1342 | if (__hrtimer_hres_active(cpu_base)) { |
| 1343 | unsigned int active; |
| 1344 | |
| 1345 | if (!cpu_base->softirq_activated) { |
| 1346 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; |
| 1347 | expires = __hrtimer_next_event_base(cpu_base, exclude, |
| 1348 | active, KTIME_MAX); |
| 1349 | } |
| 1350 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; |
| 1351 | expires = __hrtimer_next_event_base(cpu_base, exclude, active, |
| 1352 | expires); |
| 1353 | } |
| 1354 | |
| 1355 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| 1356 | |
| 1357 | return expires; |
| 1358 | } |
| 1359 | #endif |
| 1360 | |
| 1361 | static inline int hrtimer_clockid_to_base(clockid_t clock_id) |
| 1362 | { |
| 1363 | if (likely(clock_id < MAX_CLOCKS)) { |
| 1364 | int base = hrtimer_clock_to_base_table[clock_id]; |
| 1365 | |
| 1366 | if (likely(base != HRTIMER_MAX_CLOCK_BASES)) |
| 1367 | return base; |
| 1368 | } |
| 1369 | WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); |
| 1370 | return HRTIMER_BASE_MONOTONIC; |
| 1371 | } |
| 1372 | |
| 1373 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| 1374 | enum hrtimer_mode mode) |
| 1375 | { |
| 1376 | bool softtimer = !!(mode & HRTIMER_MODE_SOFT); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1377 | struct hrtimer_cpu_base *cpu_base; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1378 | int base; |
| 1379 | |
| 1380 | /* |
| 1381 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitely |
| 1382 | * marked for hard interrupt expiry mode are moved into soft |
| 1383 | * interrupt context for latency reasons and because the callbacks |
| 1384 | * can invoke functions which might sleep on RT, e.g. spin_lock(). |
| 1385 | */ |
| 1386 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) |
| 1387 | softtimer = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1388 | |
| 1389 | memset(timer, 0, sizeof(struct hrtimer)); |
| 1390 | |
| 1391 | cpu_base = raw_cpu_ptr(&hrtimer_bases); |
| 1392 | |
| 1393 | /* |
| 1394 | * POSIX magic: Relative CLOCK_REALTIME timers are not affected by |
| 1395 | * clock modifications, so they needs to become CLOCK_MONOTONIC to |
| 1396 | * ensure POSIX compliance. |
| 1397 | */ |
| 1398 | if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) |
| 1399 | clock_id = CLOCK_MONOTONIC; |
| 1400 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1401 | base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1402 | base += hrtimer_clockid_to_base(clock_id); |
| 1403 | timer->is_soft = softtimer; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1404 | timer->is_hard = !softtimer; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1405 | timer->base = &cpu_base->clock_base[base]; |
| 1406 | timerqueue_init(&timer->node); |
| 1407 | } |
| 1408 | |
| 1409 | /** |
| 1410 | * hrtimer_init - initialize a timer to the given clock |
| 1411 | * @timer: the timer to be initialized |
| 1412 | * @clock_id: the clock to be used |
| 1413 | * @mode: The modes which are relevant for intitialization: |
| 1414 | * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, |
| 1415 | * HRTIMER_MODE_REL_SOFT |
| 1416 | * |
| 1417 | * The PINNED variants of the above can be handed in, |
| 1418 | * but the PINNED bit is ignored as pinning happens |
| 1419 | * when the hrtimer is started |
| 1420 | */ |
| 1421 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| 1422 | enum hrtimer_mode mode) |
| 1423 | { |
| 1424 | debug_init(timer, clock_id, mode); |
| 1425 | __hrtimer_init(timer, clock_id, mode); |
| 1426 | } |
| 1427 | EXPORT_SYMBOL_GPL(hrtimer_init); |
| 1428 | |
| 1429 | /* |
| 1430 | * A timer is active, when it is enqueued into the rbtree or the |
| 1431 | * callback function is running or it's in the state of being migrated |
| 1432 | * to another cpu. |
| 1433 | * |
| 1434 | * It is important for this function to not return a false negative. |
| 1435 | */ |
| 1436 | bool hrtimer_active(const struct hrtimer *timer) |
| 1437 | { |
| 1438 | struct hrtimer_clock_base *base; |
| 1439 | unsigned int seq; |
| 1440 | |
| 1441 | do { |
| 1442 | base = READ_ONCE(timer->base); |
| 1443 | seq = raw_read_seqcount_begin(&base->seq); |
| 1444 | |
| 1445 | if (timer->state != HRTIMER_STATE_INACTIVE || |
| 1446 | base->running == timer) |
| 1447 | return true; |
| 1448 | |
| 1449 | } while (read_seqcount_retry(&base->seq, seq) || |
| 1450 | base != READ_ONCE(timer->base)); |
| 1451 | |
| 1452 | return false; |
| 1453 | } |
| 1454 | EXPORT_SYMBOL_GPL(hrtimer_active); |
| 1455 | |
| 1456 | /* |
| 1457 | * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 |
| 1458 | * distinct sections: |
| 1459 | * |
| 1460 | * - queued: the timer is queued |
| 1461 | * - callback: the timer is being ran |
| 1462 | * - post: the timer is inactive or (re)queued |
| 1463 | * |
| 1464 | * On the read side we ensure we observe timer->state and cpu_base->running |
| 1465 | * from the same section, if anything changed while we looked at it, we retry. |
| 1466 | * This includes timer->base changing because sequence numbers alone are |
| 1467 | * insufficient for that. |
| 1468 | * |
| 1469 | * The sequence numbers are required because otherwise we could still observe |
| 1470 | * a false negative if the read side got smeared over multiple consequtive |
| 1471 | * __run_hrtimer() invocations. |
| 1472 | */ |
| 1473 | |
| 1474 | static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, |
| 1475 | struct hrtimer_clock_base *base, |
| 1476 | struct hrtimer *timer, ktime_t *now, |
| 1477 | unsigned long flags) |
| 1478 | { |
| 1479 | enum hrtimer_restart (*fn)(struct hrtimer *); |
| 1480 | int restart; |
| 1481 | |
| 1482 | lockdep_assert_held(&cpu_base->lock); |
| 1483 | |
| 1484 | debug_deactivate(timer); |
| 1485 | base->running = timer; |
| 1486 | |
| 1487 | /* |
| 1488 | * Separate the ->running assignment from the ->state assignment. |
| 1489 | * |
| 1490 | * As with a regular write barrier, this ensures the read side in |
| 1491 | * hrtimer_active() cannot observe base->running == NULL && |
| 1492 | * timer->state == INACTIVE. |
| 1493 | */ |
| 1494 | raw_write_seqcount_barrier(&base->seq); |
| 1495 | |
| 1496 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); |
| 1497 | fn = timer->function; |
| 1498 | |
| 1499 | /* |
| 1500 | * Clear the 'is relative' flag for the TIME_LOW_RES case. If the |
| 1501 | * timer is restarted with a period then it becomes an absolute |
| 1502 | * timer. If its not restarted it does not matter. |
| 1503 | */ |
| 1504 | if (IS_ENABLED(CONFIG_TIME_LOW_RES)) |
| 1505 | timer->is_rel = false; |
| 1506 | |
| 1507 | /* |
| 1508 | * The timer is marked as running in the CPU base, so it is |
| 1509 | * protected against migration to a different CPU even if the lock |
| 1510 | * is dropped. |
| 1511 | */ |
| 1512 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| 1513 | trace_hrtimer_expire_entry(timer, now); |
| 1514 | restart = fn(timer); |
| 1515 | trace_hrtimer_expire_exit(timer); |
| 1516 | raw_spin_lock_irq(&cpu_base->lock); |
| 1517 | |
| 1518 | /* |
| 1519 | * Note: We clear the running state after enqueue_hrtimer and |
| 1520 | * we do not reprogram the event hardware. Happens either in |
| 1521 | * hrtimer_start_range_ns() or in hrtimer_interrupt() |
| 1522 | * |
| 1523 | * Note: Because we dropped the cpu_base->lock above, |
| 1524 | * hrtimer_start_range_ns() can have popped in and enqueued the timer |
| 1525 | * for us already. |
| 1526 | */ |
| 1527 | if (restart != HRTIMER_NORESTART && |
| 1528 | !(timer->state & HRTIMER_STATE_ENQUEUED)) |
| 1529 | enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); |
| 1530 | |
| 1531 | /* |
| 1532 | * Separate the ->running assignment from the ->state assignment. |
| 1533 | * |
| 1534 | * As with a regular write barrier, this ensures the read side in |
| 1535 | * hrtimer_active() cannot observe base->running.timer == NULL && |
| 1536 | * timer->state == INACTIVE. |
| 1537 | */ |
| 1538 | raw_write_seqcount_barrier(&base->seq); |
| 1539 | |
| 1540 | WARN_ON_ONCE(base->running != timer); |
| 1541 | base->running = NULL; |
| 1542 | } |
| 1543 | |
| 1544 | static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, |
| 1545 | unsigned long flags, unsigned int active_mask) |
| 1546 | { |
| 1547 | struct hrtimer_clock_base *base; |
| 1548 | unsigned int active = cpu_base->active_bases & active_mask; |
| 1549 | |
| 1550 | for_each_active_base(base, cpu_base, active) { |
| 1551 | struct timerqueue_node *node; |
| 1552 | ktime_t basenow; |
| 1553 | |
| 1554 | basenow = ktime_add(now, base->offset); |
| 1555 | |
| 1556 | while ((node = timerqueue_getnext(&base->active))) { |
| 1557 | struct hrtimer *timer; |
| 1558 | |
| 1559 | timer = container_of(node, struct hrtimer, node); |
| 1560 | |
| 1561 | /* |
| 1562 | * The immediate goal for using the softexpires is |
| 1563 | * minimizing wakeups, not running timers at the |
| 1564 | * earliest interrupt after their soft expiration. |
| 1565 | * This allows us to avoid using a Priority Search |
| 1566 | * Tree, which can answer a stabbing querry for |
| 1567 | * overlapping intervals and instead use the simple |
| 1568 | * BST we already have. |
| 1569 | * We don't add extra wakeups by delaying timers that |
| 1570 | * are right-of a not yet expired timer, because that |
| 1571 | * timer will have to trigger a wakeup anyway. |
| 1572 | */ |
| 1573 | if (basenow < hrtimer_get_softexpires_tv64(timer)) |
| 1574 | break; |
| 1575 | |
| 1576 | __run_hrtimer(cpu_base, base, timer, &basenow, flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1577 | if (active_mask == HRTIMER_ACTIVE_SOFT) |
| 1578 | hrtimer_sync_wait_running(cpu_base, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1579 | } |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) |
| 1584 | { |
| 1585 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 1586 | unsigned long flags; |
| 1587 | ktime_t now; |
| 1588 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1589 | hrtimer_cpu_base_lock_expiry(cpu_base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1590 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| 1591 | |
| 1592 | now = hrtimer_update_base(cpu_base); |
| 1593 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); |
| 1594 | |
| 1595 | cpu_base->softirq_activated = 0; |
| 1596 | hrtimer_update_softirq_timer(cpu_base, true); |
| 1597 | |
| 1598 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1599 | hrtimer_cpu_base_unlock_expiry(cpu_base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1600 | } |
| 1601 | |
| 1602 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 1603 | |
| 1604 | /* |
| 1605 | * High resolution timer interrupt |
| 1606 | * Called with interrupts disabled |
| 1607 | */ |
| 1608 | void hrtimer_interrupt(struct clock_event_device *dev) |
| 1609 | { |
| 1610 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 1611 | ktime_t expires_next, now, entry_time, delta; |
| 1612 | unsigned long flags; |
| 1613 | int retries = 0; |
| 1614 | |
| 1615 | BUG_ON(!cpu_base->hres_active); |
| 1616 | cpu_base->nr_events++; |
| 1617 | dev->next_event = KTIME_MAX; |
| 1618 | |
| 1619 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| 1620 | entry_time = now = hrtimer_update_base(cpu_base); |
| 1621 | retry: |
| 1622 | cpu_base->in_hrtirq = 1; |
| 1623 | /* |
| 1624 | * We set expires_next to KTIME_MAX here with cpu_base->lock |
| 1625 | * held to prevent that a timer is enqueued in our queue via |
| 1626 | * the migration code. This does not affect enqueueing of |
| 1627 | * timers which run their callback and need to be requeued on |
| 1628 | * this CPU. |
| 1629 | */ |
| 1630 | cpu_base->expires_next = KTIME_MAX; |
| 1631 | |
| 1632 | if (!ktime_before(now, cpu_base->softirq_expires_next)) { |
| 1633 | cpu_base->softirq_expires_next = KTIME_MAX; |
| 1634 | cpu_base->softirq_activated = 1; |
| 1635 | raise_softirq_irqoff(HRTIMER_SOFTIRQ); |
| 1636 | } |
| 1637 | |
| 1638 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
| 1639 | |
| 1640 | /* Reevaluate the clock bases for the next expiry */ |
| 1641 | expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
| 1642 | /* |
| 1643 | * Store the new expiry value so the migration code can verify |
| 1644 | * against it. |
| 1645 | */ |
| 1646 | cpu_base->expires_next = expires_next; |
| 1647 | cpu_base->in_hrtirq = 0; |
| 1648 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| 1649 | |
| 1650 | /* Reprogramming necessary ? */ |
| 1651 | if (!tick_program_event(expires_next, 0)) { |
| 1652 | cpu_base->hang_detected = 0; |
| 1653 | return; |
| 1654 | } |
| 1655 | |
| 1656 | /* |
| 1657 | * The next timer was already expired due to: |
| 1658 | * - tracing |
| 1659 | * - long lasting callbacks |
| 1660 | * - being scheduled away when running in a VM |
| 1661 | * |
| 1662 | * We need to prevent that we loop forever in the hrtimer |
| 1663 | * interrupt routine. We give it 3 attempts to avoid |
| 1664 | * overreacting on some spurious event. |
| 1665 | * |
| 1666 | * Acquire base lock for updating the offsets and retrieving |
| 1667 | * the current time. |
| 1668 | */ |
| 1669 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| 1670 | now = hrtimer_update_base(cpu_base); |
| 1671 | cpu_base->nr_retries++; |
| 1672 | if (++retries < 3) |
| 1673 | goto retry; |
| 1674 | /* |
| 1675 | * Give the system a chance to do something else than looping |
| 1676 | * here. We stored the entry time, so we know exactly how long |
| 1677 | * we spent here. We schedule the next event this amount of |
| 1678 | * time away. |
| 1679 | */ |
| 1680 | cpu_base->nr_hangs++; |
| 1681 | cpu_base->hang_detected = 1; |
| 1682 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| 1683 | |
| 1684 | delta = ktime_sub(now, entry_time); |
| 1685 | if ((unsigned int)delta > cpu_base->max_hang_time) |
| 1686 | cpu_base->max_hang_time = (unsigned int) delta; |
| 1687 | /* |
| 1688 | * Limit it to a sensible value as we enforce a longer |
| 1689 | * delay. Give the CPU at least 100ms to catch up. |
| 1690 | */ |
| 1691 | if (delta > 100 * NSEC_PER_MSEC) |
| 1692 | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); |
| 1693 | else |
| 1694 | expires_next = ktime_add(now, delta); |
| 1695 | tick_program_event(expires_next, 1); |
| 1696 | pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); |
| 1697 | } |
| 1698 | |
| 1699 | /* called with interrupts disabled */ |
| 1700 | static inline void __hrtimer_peek_ahead_timers(void) |
| 1701 | { |
| 1702 | struct tick_device *td; |
| 1703 | |
| 1704 | if (!hrtimer_hres_active()) |
| 1705 | return; |
| 1706 | |
| 1707 | td = this_cpu_ptr(&tick_cpu_device); |
| 1708 | if (td && td->evtdev) |
| 1709 | hrtimer_interrupt(td->evtdev); |
| 1710 | } |
| 1711 | |
| 1712 | #else /* CONFIG_HIGH_RES_TIMERS */ |
| 1713 | |
| 1714 | static inline void __hrtimer_peek_ahead_timers(void) { } |
| 1715 | |
| 1716 | #endif /* !CONFIG_HIGH_RES_TIMERS */ |
| 1717 | |
| 1718 | /* |
| 1719 | * Called from run_local_timers in hardirq context every jiffy |
| 1720 | */ |
| 1721 | void hrtimer_run_queues(void) |
| 1722 | { |
| 1723 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 1724 | unsigned long flags; |
| 1725 | ktime_t now; |
| 1726 | |
| 1727 | if (__hrtimer_hres_active(cpu_base)) |
| 1728 | return; |
| 1729 | |
| 1730 | /* |
| 1731 | * This _is_ ugly: We have to check periodically, whether we |
| 1732 | * can switch to highres and / or nohz mode. The clocksource |
| 1733 | * switch happens with xtime_lock held. Notification from |
| 1734 | * there only sets the check bit in the tick_oneshot code, |
| 1735 | * otherwise we might deadlock vs. xtime_lock. |
| 1736 | */ |
| 1737 | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { |
| 1738 | hrtimer_switch_to_hres(); |
| 1739 | return; |
| 1740 | } |
| 1741 | |
| 1742 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| 1743 | now = hrtimer_update_base(cpu_base); |
| 1744 | |
| 1745 | if (!ktime_before(now, cpu_base->softirq_expires_next)) { |
| 1746 | cpu_base->softirq_expires_next = KTIME_MAX; |
| 1747 | cpu_base->softirq_activated = 1; |
| 1748 | raise_softirq_irqoff(HRTIMER_SOFTIRQ); |
| 1749 | } |
| 1750 | |
| 1751 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
| 1752 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| 1753 | } |
| 1754 | |
| 1755 | /* |
| 1756 | * Sleep related functions: |
| 1757 | */ |
| 1758 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
| 1759 | { |
| 1760 | struct hrtimer_sleeper *t = |
| 1761 | container_of(timer, struct hrtimer_sleeper, timer); |
| 1762 | struct task_struct *task = t->task; |
| 1763 | |
| 1764 | t->task = NULL; |
| 1765 | if (task) |
| 1766 | wake_up_process(task); |
| 1767 | |
| 1768 | return HRTIMER_NORESTART; |
| 1769 | } |
| 1770 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1771 | /** |
| 1772 | * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer |
| 1773 | * @sl: sleeper to be started |
| 1774 | * @mode: timer mode abs/rel |
| 1775 | * |
| 1776 | * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers |
| 1777 | * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) |
| 1778 | */ |
| 1779 | void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, |
| 1780 | enum hrtimer_mode mode) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1781 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1782 | /* |
| 1783 | * Make the enqueue delivery mode check work on RT. If the sleeper |
| 1784 | * was initialized for hard interrupt delivery, force the mode bit. |
| 1785 | * This is a special case for hrtimer_sleepers because |
| 1786 | * hrtimer_init_sleeper() determines the delivery mode on RT so the |
| 1787 | * fiddling with this decision is avoided at the call sites. |
| 1788 | */ |
| 1789 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) |
| 1790 | mode |= HRTIMER_MODE_HARD; |
| 1791 | |
| 1792 | hrtimer_start_expires(&sl->timer, mode); |
| 1793 | } |
| 1794 | EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); |
| 1795 | |
| 1796 | static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, |
| 1797 | clockid_t clock_id, enum hrtimer_mode mode) |
| 1798 | { |
| 1799 | /* |
| 1800 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitely |
| 1801 | * marked for hard interrupt expiry mode are moved into soft |
| 1802 | * interrupt context either for latency reasons or because the |
| 1803 | * hrtimer callback takes regular spinlocks or invokes other |
| 1804 | * functions which are not suitable for hard interrupt context on |
| 1805 | * PREEMPT_RT. |
| 1806 | * |
| 1807 | * The hrtimer_sleeper callback is RT compatible in hard interrupt |
| 1808 | * context, but there is a latency concern: Untrusted userspace can |
| 1809 | * spawn many threads which arm timers for the same expiry time on |
| 1810 | * the same CPU. That causes a latency spike due to the wakeup of |
| 1811 | * a gazillion threads. |
| 1812 | * |
| 1813 | * OTOH, priviledged real-time user space applications rely on the |
| 1814 | * low latency of hard interrupt wakeups. If the current task is in |
| 1815 | * a real-time scheduling class, mark the mode for hard interrupt |
| 1816 | * expiry. |
| 1817 | */ |
| 1818 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) { |
| 1819 | if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) |
| 1820 | mode |= HRTIMER_MODE_HARD; |
| 1821 | } |
| 1822 | |
| 1823 | __hrtimer_init(&sl->timer, clock_id, mode); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1824 | sl->timer.function = hrtimer_wakeup; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1825 | sl->task = current; |
| 1826 | } |
| 1827 | |
| 1828 | /** |
| 1829 | * hrtimer_init_sleeper - initialize sleeper to the given clock |
| 1830 | * @sl: sleeper to be initialized |
| 1831 | * @clock_id: the clock to be used |
| 1832 | * @mode: timer mode abs/rel |
| 1833 | */ |
| 1834 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, |
| 1835 | enum hrtimer_mode mode) |
| 1836 | { |
| 1837 | debug_init(&sl->timer, clock_id, mode); |
| 1838 | __hrtimer_init_sleeper(sl, clock_id, mode); |
| 1839 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1840 | } |
| 1841 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); |
| 1842 | |
| 1843 | int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) |
| 1844 | { |
| 1845 | switch(restart->nanosleep.type) { |
| 1846 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 1847 | case TT_COMPAT: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1848 | if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1849 | return -EFAULT; |
| 1850 | break; |
| 1851 | #endif |
| 1852 | case TT_NATIVE: |
| 1853 | if (put_timespec64(ts, restart->nanosleep.rmtp)) |
| 1854 | return -EFAULT; |
| 1855 | break; |
| 1856 | default: |
| 1857 | BUG(); |
| 1858 | } |
| 1859 | return -ERESTART_RESTARTBLOCK; |
| 1860 | } |
| 1861 | |
| 1862 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
| 1863 | { |
| 1864 | struct restart_block *restart; |
| 1865 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1866 | do { |
| 1867 | set_current_state(TASK_INTERRUPTIBLE); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1868 | hrtimer_sleeper_start_expires(t, mode); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1869 | |
| 1870 | if (likely(t->task)) |
| 1871 | freezable_schedule(); |
| 1872 | |
| 1873 | hrtimer_cancel(&t->timer); |
| 1874 | mode = HRTIMER_MODE_ABS; |
| 1875 | |
| 1876 | } while (t->task && !signal_pending(current)); |
| 1877 | |
| 1878 | __set_current_state(TASK_RUNNING); |
| 1879 | |
| 1880 | if (!t->task) |
| 1881 | return 0; |
| 1882 | |
| 1883 | restart = ¤t->restart_block; |
| 1884 | if (restart->nanosleep.type != TT_NONE) { |
| 1885 | ktime_t rem = hrtimer_expires_remaining(&t->timer); |
| 1886 | struct timespec64 rmt; |
| 1887 | |
| 1888 | if (rem <= 0) |
| 1889 | return 0; |
| 1890 | rmt = ktime_to_timespec64(rem); |
| 1891 | |
| 1892 | return nanosleep_copyout(restart, &rmt); |
| 1893 | } |
| 1894 | return -ERESTART_RESTARTBLOCK; |
| 1895 | } |
| 1896 | |
| 1897 | static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
| 1898 | { |
| 1899 | struct hrtimer_sleeper t; |
| 1900 | int ret; |
| 1901 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1902 | hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, |
| 1903 | HRTIMER_MODE_ABS); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1904 | hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1905 | ret = do_nanosleep(&t, HRTIMER_MODE_ABS); |
| 1906 | destroy_hrtimer_on_stack(&t.timer); |
| 1907 | return ret; |
| 1908 | } |
| 1909 | |
| 1910 | long hrtimer_nanosleep(const struct timespec64 *rqtp, |
| 1911 | const enum hrtimer_mode mode, const clockid_t clockid) |
| 1912 | { |
| 1913 | struct restart_block *restart; |
| 1914 | struct hrtimer_sleeper t; |
| 1915 | int ret = 0; |
| 1916 | u64 slack; |
| 1917 | |
| 1918 | slack = current->timer_slack_ns; |
| 1919 | if (dl_task(current) || rt_task(current)) |
| 1920 | slack = 0; |
| 1921 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1922 | hrtimer_init_sleeper_on_stack(&t, clockid, mode); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1923 | hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack); |
| 1924 | ret = do_nanosleep(&t, mode); |
| 1925 | if (ret != -ERESTART_RESTARTBLOCK) |
| 1926 | goto out; |
| 1927 | |
| 1928 | /* Absolute timers do not update the rmtp value and restart: */ |
| 1929 | if (mode == HRTIMER_MODE_ABS) { |
| 1930 | ret = -ERESTARTNOHAND; |
| 1931 | goto out; |
| 1932 | } |
| 1933 | |
| 1934 | restart = ¤t->restart_block; |
| 1935 | restart->fn = hrtimer_nanosleep_restart; |
| 1936 | restart->nanosleep.clockid = t.timer.base->clockid; |
| 1937 | restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); |
| 1938 | out: |
| 1939 | destroy_hrtimer_on_stack(&t.timer); |
| 1940 | return ret; |
| 1941 | } |
| 1942 | |
| 1943 | #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT) |
| 1944 | |
| 1945 | SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, |
| 1946 | struct __kernel_timespec __user *, rmtp) |
| 1947 | { |
| 1948 | struct timespec64 tu; |
| 1949 | |
| 1950 | if (get_timespec64(&tu, rqtp)) |
| 1951 | return -EFAULT; |
| 1952 | |
| 1953 | if (!timespec64_valid(&tu)) |
| 1954 | return -EINVAL; |
| 1955 | |
| 1956 | current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
| 1957 | current->restart_block.nanosleep.rmtp = rmtp; |
| 1958 | return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); |
| 1959 | } |
| 1960 | |
| 1961 | #endif |
| 1962 | |
| 1963 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 1964 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1965 | SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, |
| 1966 | struct old_timespec32 __user *, rmtp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1967 | { |
| 1968 | struct timespec64 tu; |
| 1969 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1970 | if (get_old_timespec32(&tu, rqtp)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1971 | return -EFAULT; |
| 1972 | |
| 1973 | if (!timespec64_valid(&tu)) |
| 1974 | return -EINVAL; |
| 1975 | |
| 1976 | current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; |
| 1977 | current->restart_block.nanosleep.compat_rmtp = rmtp; |
| 1978 | return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); |
| 1979 | } |
| 1980 | #endif |
| 1981 | |
| 1982 | /* |
| 1983 | * Functions related to boot-time initialization: |
| 1984 | */ |
| 1985 | int hrtimers_prepare_cpu(unsigned int cpu) |
| 1986 | { |
| 1987 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
| 1988 | int i; |
| 1989 | |
| 1990 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
| 1991 | cpu_base->clock_base[i].cpu_base = cpu_base; |
| 1992 | timerqueue_init_head(&cpu_base->clock_base[i].active); |
| 1993 | } |
| 1994 | |
| 1995 | cpu_base->cpu = cpu; |
| 1996 | cpu_base->active_bases = 0; |
| 1997 | cpu_base->hres_active = 0; |
| 1998 | cpu_base->hang_detected = 0; |
| 1999 | cpu_base->next_timer = NULL; |
| 2000 | cpu_base->softirq_next_timer = NULL; |
| 2001 | cpu_base->expires_next = KTIME_MAX; |
| 2002 | cpu_base->softirq_expires_next = KTIME_MAX; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2003 | hrtimer_cpu_base_init_expiry_lock(cpu_base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2004 | return 0; |
| 2005 | } |
| 2006 | |
| 2007 | #ifdef CONFIG_HOTPLUG_CPU |
| 2008 | |
| 2009 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
| 2010 | struct hrtimer_clock_base *new_base) |
| 2011 | { |
| 2012 | struct hrtimer *timer; |
| 2013 | struct timerqueue_node *node; |
| 2014 | |
| 2015 | while ((node = timerqueue_getnext(&old_base->active))) { |
| 2016 | timer = container_of(node, struct hrtimer, node); |
| 2017 | BUG_ON(hrtimer_callback_running(timer)); |
| 2018 | debug_deactivate(timer); |
| 2019 | |
| 2020 | /* |
| 2021 | * Mark it as ENQUEUED not INACTIVE otherwise the |
| 2022 | * timer could be seen as !active and just vanish away |
| 2023 | * under us on another CPU |
| 2024 | */ |
| 2025 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); |
| 2026 | timer->base = new_base; |
| 2027 | /* |
| 2028 | * Enqueue the timers on the new cpu. This does not |
| 2029 | * reprogram the event device in case the timer |
| 2030 | * expires before the earliest on this CPU, but we run |
| 2031 | * hrtimer_interrupt after we migrated everything to |
| 2032 | * sort out already expired timers and reprogram the |
| 2033 | * event device. |
| 2034 | */ |
| 2035 | enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); |
| 2036 | } |
| 2037 | } |
| 2038 | |
| 2039 | int hrtimers_dead_cpu(unsigned int scpu) |
| 2040 | { |
| 2041 | struct hrtimer_cpu_base *old_base, *new_base; |
| 2042 | int i; |
| 2043 | |
| 2044 | BUG_ON(cpu_online(scpu)); |
| 2045 | tick_cancel_sched_timer(scpu); |
| 2046 | |
| 2047 | /* |
| 2048 | * this BH disable ensures that raise_softirq_irqoff() does |
| 2049 | * not wakeup ksoftirqd (and acquire the pi-lock) while |
| 2050 | * holding the cpu_base lock |
| 2051 | */ |
| 2052 | local_bh_disable(); |
| 2053 | local_irq_disable(); |
| 2054 | old_base = &per_cpu(hrtimer_bases, scpu); |
| 2055 | new_base = this_cpu_ptr(&hrtimer_bases); |
| 2056 | /* |
| 2057 | * The caller is globally serialized and nobody else |
| 2058 | * takes two locks at once, deadlock is not possible. |
| 2059 | */ |
| 2060 | raw_spin_lock(&new_base->lock); |
| 2061 | raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
| 2062 | |
| 2063 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
| 2064 | migrate_hrtimer_list(&old_base->clock_base[i], |
| 2065 | &new_base->clock_base[i]); |
| 2066 | } |
| 2067 | |
| 2068 | /* |
| 2069 | * The migration might have changed the first expiring softirq |
| 2070 | * timer on this CPU. Update it. |
| 2071 | */ |
| 2072 | hrtimer_update_softirq_timer(new_base, false); |
| 2073 | |
| 2074 | raw_spin_unlock(&old_base->lock); |
| 2075 | raw_spin_unlock(&new_base->lock); |
| 2076 | |
| 2077 | /* Check, if we got expired work to do */ |
| 2078 | __hrtimer_peek_ahead_timers(); |
| 2079 | local_irq_enable(); |
| 2080 | local_bh_enable(); |
| 2081 | return 0; |
| 2082 | } |
| 2083 | |
| 2084 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 2085 | |
| 2086 | void __init hrtimers_init(void) |
| 2087 | { |
| 2088 | hrtimers_prepare_cpu(smp_processor_id()); |
| 2089 | open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); |
| 2090 | } |
| 2091 | |
| 2092 | /** |
| 2093 | * schedule_hrtimeout_range_clock - sleep until timeout |
| 2094 | * @expires: timeout value (ktime_t) |
| 2095 | * @delta: slack in expires timeout (ktime_t) |
| 2096 | * @mode: timer mode |
| 2097 | * @clock_id: timer clock to be used |
| 2098 | */ |
| 2099 | int __sched |
| 2100 | schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, |
| 2101 | const enum hrtimer_mode mode, clockid_t clock_id) |
| 2102 | { |
| 2103 | struct hrtimer_sleeper t; |
| 2104 | |
| 2105 | /* |
| 2106 | * Optimize when a zero timeout value is given. It does not |
| 2107 | * matter whether this is an absolute or a relative time. |
| 2108 | */ |
| 2109 | if (expires && *expires == 0) { |
| 2110 | __set_current_state(TASK_RUNNING); |
| 2111 | return 0; |
| 2112 | } |
| 2113 | |
| 2114 | /* |
| 2115 | * A NULL parameter means "infinite" |
| 2116 | */ |
| 2117 | if (!expires) { |
| 2118 | schedule(); |
| 2119 | return -EINTR; |
| 2120 | } |
| 2121 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2122 | hrtimer_init_sleeper_on_stack(&t, clock_id, mode); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2123 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2124 | hrtimer_sleeper_start_expires(&t, mode); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2125 | |
| 2126 | if (likely(t.task)) |
| 2127 | schedule(); |
| 2128 | |
| 2129 | hrtimer_cancel(&t.timer); |
| 2130 | destroy_hrtimer_on_stack(&t.timer); |
| 2131 | |
| 2132 | __set_current_state(TASK_RUNNING); |
| 2133 | |
| 2134 | return !t.task ? 0 : -EINTR; |
| 2135 | } |
| 2136 | |
| 2137 | /** |
| 2138 | * schedule_hrtimeout_range - sleep until timeout |
| 2139 | * @expires: timeout value (ktime_t) |
| 2140 | * @delta: slack in expires timeout (ktime_t) |
| 2141 | * @mode: timer mode |
| 2142 | * |
| 2143 | * Make the current task sleep until the given expiry time has |
| 2144 | * elapsed. The routine will return immediately unless |
| 2145 | * the current task state has been set (see set_current_state()). |
| 2146 | * |
| 2147 | * The @delta argument gives the kernel the freedom to schedule the |
| 2148 | * actual wakeup to a time that is both power and performance friendly. |
| 2149 | * The kernel give the normal best effort behavior for "@expires+@delta", |
| 2150 | * but may decide to fire the timer earlier, but no earlier than @expires. |
| 2151 | * |
| 2152 | * You can set the task state as follows - |
| 2153 | * |
| 2154 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to |
| 2155 | * pass before the routine returns unless the current task is explicitly |
| 2156 | * woken up, (e.g. by wake_up_process()). |
| 2157 | * |
| 2158 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
| 2159 | * delivered to the current task or the current task is explicitly woken |
| 2160 | * up. |
| 2161 | * |
| 2162 | * The current task state is guaranteed to be TASK_RUNNING when this |
| 2163 | * routine returns. |
| 2164 | * |
| 2165 | * Returns 0 when the timer has expired. If the task was woken before the |
| 2166 | * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or |
| 2167 | * by an explicit wakeup, it returns -EINTR. |
| 2168 | */ |
| 2169 | int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, |
| 2170 | const enum hrtimer_mode mode) |
| 2171 | { |
| 2172 | return schedule_hrtimeout_range_clock(expires, delta, mode, |
| 2173 | CLOCK_MONOTONIC); |
| 2174 | } |
| 2175 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
| 2176 | |
| 2177 | /** |
| 2178 | * schedule_hrtimeout - sleep until timeout |
| 2179 | * @expires: timeout value (ktime_t) |
| 2180 | * @mode: timer mode |
| 2181 | * |
| 2182 | * Make the current task sleep until the given expiry time has |
| 2183 | * elapsed. The routine will return immediately unless |
| 2184 | * the current task state has been set (see set_current_state()). |
| 2185 | * |
| 2186 | * You can set the task state as follows - |
| 2187 | * |
| 2188 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to |
| 2189 | * pass before the routine returns unless the current task is explicitly |
| 2190 | * woken up, (e.g. by wake_up_process()). |
| 2191 | * |
| 2192 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
| 2193 | * delivered to the current task or the current task is explicitly woken |
| 2194 | * up. |
| 2195 | * |
| 2196 | * The current task state is guaranteed to be TASK_RUNNING when this |
| 2197 | * routine returns. |
| 2198 | * |
| 2199 | * Returns 0 when the timer has expired. If the task was woken before the |
| 2200 | * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or |
| 2201 | * by an explicit wakeup, it returns -EINTR. |
| 2202 | */ |
| 2203 | int __sched schedule_hrtimeout(ktime_t *expires, |
| 2204 | const enum hrtimer_mode mode) |
| 2205 | { |
| 2206 | return schedule_hrtimeout_range(expires, 0, mode); |
| 2207 | } |
| 2208 | EXPORT_SYMBOL_GPL(schedule_hrtimeout); |