blob: 7fd11ef5cb8a2c285c9a6a0d2c8396513deeadcf [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002#undef DEBUG
3
4/*
5 * ARM performance counter support.
6 *
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 *
10 * This code is based on the sparc64 perf event code, which is in turn based
11 * on the x86 code.
12 */
13#define pr_fmt(fmt) "hw perfevents: " fmt
14
15#include <linux/bitmap.h>
16#include <linux/cpumask.h>
17#include <linux/cpu_pm.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/perf/arm_pmu.h>
21#include <linux/slab.h>
22#include <linux/sched/clock.h>
23#include <linux/spinlock.h>
24#include <linux/irq.h>
25#include <linux/irqdesc.h>
26
27#include <asm/irq_regs.h>
28
Olivier Deprez157378f2022-04-04 15:47:50 +020029static int armpmu_count_irq_users(const int irq);
30
31struct pmu_irq_ops {
32 void (*enable_pmuirq)(unsigned int irq);
33 void (*disable_pmuirq)(unsigned int irq);
34 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35};
36
37static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38{
39 free_irq(irq, per_cpu_ptr(devid, cpu));
40}
41
42static const struct pmu_irq_ops pmuirq_ops = {
43 .enable_pmuirq = enable_irq,
44 .disable_pmuirq = disable_irq_nosync,
45 .free_pmuirq = armpmu_free_pmuirq
46};
47
48static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49{
50 free_nmi(irq, per_cpu_ptr(devid, cpu));
51}
52
53static const struct pmu_irq_ops pmunmi_ops = {
54 .enable_pmuirq = enable_nmi,
55 .disable_pmuirq = disable_nmi_nosync,
56 .free_pmuirq = armpmu_free_pmunmi
57};
58
59static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60{
61 enable_percpu_irq(irq, IRQ_TYPE_NONE);
62}
63
64static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 void __percpu *devid)
66{
67 if (armpmu_count_irq_users(irq) == 1)
68 free_percpu_irq(irq, devid);
69}
70
71static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 .disable_pmuirq = disable_percpu_irq,
74 .free_pmuirq = armpmu_free_percpu_pmuirq
75};
76
77static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78{
79 if (!prepare_percpu_nmi(irq))
80 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81}
82
83static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84{
85 disable_percpu_nmi(irq);
86 teardown_percpu_nmi(irq);
87}
88
89static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 void __percpu *devid)
91{
92 if (armpmu_count_irq_users(irq) == 1)
93 free_percpu_nmi(irq, devid);
94}
95
96static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 .free_pmuirq = armpmu_free_percpu_pmunmi
100};
101
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000102static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103static DEFINE_PER_CPU(int, cpu_irq);
Olivier Deprez157378f2022-04-04 15:47:50 +0200104static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106static bool has_nmi;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000107
108static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109{
110 if (event->hw.flags & ARMPMU_EVT_64BIT)
111 return GENMASK_ULL(63, 0);
112 else
113 return GENMASK_ULL(31, 0);
114}
115
116static int
117armpmu_map_cache_event(const unsigned (*cache_map)
118 [PERF_COUNT_HW_CACHE_MAX]
119 [PERF_COUNT_HW_CACHE_OP_MAX]
120 [PERF_COUNT_HW_CACHE_RESULT_MAX],
121 u64 config)
122{
123 unsigned int cache_type, cache_op, cache_result, ret;
124
125 cache_type = (config >> 0) & 0xff;
126 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
127 return -EINVAL;
128
129 cache_op = (config >> 8) & 0xff;
130 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
131 return -EINVAL;
132
133 cache_result = (config >> 16) & 0xff;
134 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
135 return -EINVAL;
136
137 if (!cache_map)
138 return -ENOENT;
139
140 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
141
142 if (ret == CACHE_OP_UNSUPPORTED)
143 return -ENOENT;
144
145 return ret;
146}
147
148static int
149armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
150{
151 int mapping;
152
153 if (config >= PERF_COUNT_HW_MAX)
154 return -EINVAL;
155
156 if (!event_map)
157 return -ENOENT;
158
159 mapping = (*event_map)[config];
160 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
161}
162
163static int
164armpmu_map_raw_event(u32 raw_event_mask, u64 config)
165{
166 return (int)(config & raw_event_mask);
167}
168
169int
170armpmu_map_event(struct perf_event *event,
171 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
172 const unsigned (*cache_map)
173 [PERF_COUNT_HW_CACHE_MAX]
174 [PERF_COUNT_HW_CACHE_OP_MAX]
175 [PERF_COUNT_HW_CACHE_RESULT_MAX],
176 u32 raw_event_mask)
177{
178 u64 config = event->attr.config;
179 int type = event->attr.type;
180
181 if (type == event->pmu->type)
182 return armpmu_map_raw_event(raw_event_mask, config);
183
184 switch (type) {
185 case PERF_TYPE_HARDWARE:
186 return armpmu_map_hw_event(event_map, config);
187 case PERF_TYPE_HW_CACHE:
188 return armpmu_map_cache_event(cache_map, config);
189 case PERF_TYPE_RAW:
190 return armpmu_map_raw_event(raw_event_mask, config);
191 }
192
193 return -ENOENT;
194}
195
196int armpmu_event_set_period(struct perf_event *event)
197{
198 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
199 struct hw_perf_event *hwc = &event->hw;
200 s64 left = local64_read(&hwc->period_left);
201 s64 period = hwc->sample_period;
202 u64 max_period;
203 int ret = 0;
204
205 max_period = arm_pmu_event_max_period(event);
206 if (unlikely(left <= -period)) {
207 left = period;
208 local64_set(&hwc->period_left, left);
209 hwc->last_period = period;
210 ret = 1;
211 }
212
213 if (unlikely(left <= 0)) {
214 left += period;
215 local64_set(&hwc->period_left, left);
216 hwc->last_period = period;
217 ret = 1;
218 }
219
220 /*
221 * Limit the maximum period to prevent the counter value
222 * from overtaking the one we are about to program. In
223 * effect we are reducing max_period to account for
224 * interrupt latency (and we are being very conservative).
225 */
226 if (left > (max_period >> 1))
227 left = (max_period >> 1);
228
229 local64_set(&hwc->prev_count, (u64)-left);
230
231 armpmu->write_counter(event, (u64)(-left) & max_period);
232
233 perf_event_update_userpage(event);
234
235 return ret;
236}
237
238u64 armpmu_event_update(struct perf_event *event)
239{
240 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241 struct hw_perf_event *hwc = &event->hw;
242 u64 delta, prev_raw_count, new_raw_count;
243 u64 max_period = arm_pmu_event_max_period(event);
244
245again:
246 prev_raw_count = local64_read(&hwc->prev_count);
247 new_raw_count = armpmu->read_counter(event);
248
249 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
250 new_raw_count) != prev_raw_count)
251 goto again;
252
253 delta = (new_raw_count - prev_raw_count) & max_period;
254
255 local64_add(delta, &event->count);
256 local64_sub(delta, &hwc->period_left);
257
258 return new_raw_count;
259}
260
261static void
262armpmu_read(struct perf_event *event)
263{
264 armpmu_event_update(event);
265}
266
267static void
268armpmu_stop(struct perf_event *event, int flags)
269{
270 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
271 struct hw_perf_event *hwc = &event->hw;
272
273 /*
274 * ARM pmu always has to update the counter, so ignore
275 * PERF_EF_UPDATE, see comments in armpmu_start().
276 */
277 if (!(hwc->state & PERF_HES_STOPPED)) {
278 armpmu->disable(event);
279 armpmu_event_update(event);
280 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
281 }
282}
283
284static void armpmu_start(struct perf_event *event, int flags)
285{
286 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
287 struct hw_perf_event *hwc = &event->hw;
288
289 /*
290 * ARM pmu always has to reprogram the period, so ignore
291 * PERF_EF_RELOAD, see the comment below.
292 */
293 if (flags & PERF_EF_RELOAD)
294 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
295
296 hwc->state = 0;
297 /*
298 * Set the period again. Some counters can't be stopped, so when we
299 * were stopped we simply disabled the IRQ source and the counter
300 * may have been left counting. If we don't do this step then we may
301 * get an interrupt too soon or *way* too late if the overflow has
302 * happened since disabling.
303 */
304 armpmu_event_set_period(event);
305 armpmu->enable(event);
306}
307
308static void
309armpmu_del(struct perf_event *event, int flags)
310{
311 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
312 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
313 struct hw_perf_event *hwc = &event->hw;
314 int idx = hwc->idx;
315
316 armpmu_stop(event, PERF_EF_UPDATE);
317 hw_events->events[idx] = NULL;
318 armpmu->clear_event_idx(hw_events, event);
319 perf_event_update_userpage(event);
320 /* Clear the allocated counter */
321 hwc->idx = -1;
322}
323
324static int
325armpmu_add(struct perf_event *event, int flags)
326{
327 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
328 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
329 struct hw_perf_event *hwc = &event->hw;
330 int idx;
331
332 /* An event following a process won't be stopped earlier */
333 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
334 return -ENOENT;
335
336 /* If we don't have a space for the counter then finish early. */
337 idx = armpmu->get_event_idx(hw_events, event);
338 if (idx < 0)
339 return idx;
340
341 /*
342 * If there is an event in the counter we are going to use then make
343 * sure it is disabled.
344 */
345 event->hw.idx = idx;
346 armpmu->disable(event);
347 hw_events->events[idx] = event;
348
349 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
350 if (flags & PERF_EF_START)
351 armpmu_start(event, PERF_EF_RELOAD);
352
353 /* Propagate our changes to the userspace mapping. */
354 perf_event_update_userpage(event);
355
356 return 0;
357}
358
359static int
360validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
361 struct perf_event *event)
362{
363 struct arm_pmu *armpmu;
364
365 if (is_software_event(event))
366 return 1;
367
368 /*
369 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
370 * core perf code won't check that the pmu->ctx == leader->ctx
371 * until after pmu->event_init(event).
372 */
373 if (event->pmu != pmu)
374 return 0;
375
376 if (event->state < PERF_EVENT_STATE_OFF)
377 return 1;
378
379 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
380 return 1;
381
382 armpmu = to_arm_pmu(event->pmu);
383 return armpmu->get_event_idx(hw_events, event) >= 0;
384}
385
386static int
387validate_group(struct perf_event *event)
388{
389 struct perf_event *sibling, *leader = event->group_leader;
390 struct pmu_hw_events fake_pmu;
391
392 /*
393 * Initialise the fake PMU. We only need to populate the
394 * used_mask for the purposes of validation.
395 */
396 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
397
398 if (!validate_event(event->pmu, &fake_pmu, leader))
399 return -EINVAL;
400
Olivier Deprez92d4c212022-12-06 15:05:30 +0100401 if (event == leader)
402 return 0;
403
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000404 for_each_sibling_event(sibling, leader) {
405 if (!validate_event(event->pmu, &fake_pmu, sibling))
406 return -EINVAL;
407 }
408
409 if (!validate_event(event->pmu, &fake_pmu, event))
410 return -EINVAL;
411
412 return 0;
413}
414
415static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
416{
417 struct arm_pmu *armpmu;
418 int ret;
419 u64 start_clock, finish_clock;
420
421 /*
422 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
423 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
424 * do any necessary shifting, we just need to perform the first
425 * dereference.
426 */
427 armpmu = *(void **)dev;
428 if (WARN_ON_ONCE(!armpmu))
429 return IRQ_NONE;
430
431 start_clock = sched_clock();
432 ret = armpmu->handle_irq(armpmu);
433 finish_clock = sched_clock();
434
435 perf_sample_event_took(finish_clock - start_clock);
436 return ret;
437}
438
439static int
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000440__hw_perf_event_init(struct perf_event *event)
441{
442 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
443 struct hw_perf_event *hwc = &event->hw;
444 int mapping;
445
446 hwc->flags = 0;
447 mapping = armpmu->map_event(event);
448
449 if (mapping < 0) {
450 pr_debug("event %x:%llx not supported\n", event->attr.type,
451 event->attr.config);
452 return mapping;
453 }
454
455 /*
456 * We don't assign an index until we actually place the event onto
457 * hardware. Use -1 to signify that we haven't decided where to put it
458 * yet. For SMP systems, each core has it's own PMU so we can't do any
459 * clever allocation or constraints checking at this point.
460 */
461 hwc->idx = -1;
462 hwc->config_base = 0;
463 hwc->config = 0;
464 hwc->event_base = 0;
465
466 /*
467 * Check whether we need to exclude the counter from certain modes.
468 */
David Brazdil0f672f62019-12-10 10:32:29 +0000469 if (armpmu->set_event_filter &&
470 armpmu->set_event_filter(hwc, &event->attr)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000471 pr_debug("ARM performance counters do not support "
472 "mode exclusion\n");
473 return -EOPNOTSUPP;
474 }
475
476 /*
477 * Store the event encoding into the config_base field.
478 */
479 hwc->config_base |= (unsigned long)mapping;
480
481 if (!is_sampling_event(event)) {
482 /*
483 * For non-sampling runs, limit the sample_period to half
484 * of the counter width. That way, the new counter value
485 * is far less likely to overtake the previous one unless
486 * you have some serious IRQ latency issues.
487 */
488 hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
489 hwc->last_period = hwc->sample_period;
490 local64_set(&hwc->period_left, hwc->sample_period);
491 }
492
Olivier Deprez92d4c212022-12-06 15:05:30 +0100493 return validate_group(event);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000494}
495
496static int armpmu_event_init(struct perf_event *event)
497{
498 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
499
500 /*
501 * Reject CPU-affine events for CPUs that are of a different class to
502 * that which this PMU handles. Process-following events (where
503 * event->cpu == -1) can be migrated between CPUs, and thus we have to
504 * reject them later (in armpmu_add) if they're scheduled on a
505 * different class of CPU.
506 */
507 if (event->cpu != -1 &&
508 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
509 return -ENOENT;
510
511 /* does not support taken branch sampling */
512 if (has_branch_stack(event))
513 return -EOPNOTSUPP;
514
515 if (armpmu->map_event(event) == -ENOENT)
516 return -ENOENT;
517
518 return __hw_perf_event_init(event);
519}
520
521static void armpmu_enable(struct pmu *pmu)
522{
523 struct arm_pmu *armpmu = to_arm_pmu(pmu);
524 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
525 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
526
527 /* For task-bound events we may be called on other CPUs */
528 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
529 return;
530
531 if (enabled)
532 armpmu->start(armpmu);
533}
534
535static void armpmu_disable(struct pmu *pmu)
536{
537 struct arm_pmu *armpmu = to_arm_pmu(pmu);
538
539 /* For task-bound events we may be called on other CPUs */
540 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541 return;
542
543 armpmu->stop(armpmu);
544}
545
546/*
547 * In heterogeneous systems, events are specific to a particular
548 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
549 * the same microarchitecture.
550 */
551static int armpmu_filter_match(struct perf_event *event)
552{
553 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
554 unsigned int cpu = smp_processor_id();
555 int ret;
556
557 ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
558 if (ret && armpmu->filter_match)
559 return armpmu->filter_match(event);
560
561 return ret;
562}
563
564static ssize_t armpmu_cpumask_show(struct device *dev,
565 struct device_attribute *attr, char *buf)
566{
567 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
568 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
569}
570
571static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
572
573static struct attribute *armpmu_common_attrs[] = {
574 &dev_attr_cpus.attr,
575 NULL,
576};
577
578static struct attribute_group armpmu_common_attr_group = {
579 .attrs = armpmu_common_attrs,
580};
581
582/* Set at runtime when we know what CPU type we are. */
583static struct arm_pmu *__oprofile_cpu_pmu;
584
585/*
586 * Despite the names, these two functions are CPU-specific and are used
587 * by the OProfile/perf code.
588 */
589const char *perf_pmu_name(void)
590{
591 if (!__oprofile_cpu_pmu)
592 return NULL;
593
594 return __oprofile_cpu_pmu->name;
595}
596EXPORT_SYMBOL_GPL(perf_pmu_name);
597
598int perf_num_counters(void)
599{
600 int max_events = 0;
601
602 if (__oprofile_cpu_pmu != NULL)
603 max_events = __oprofile_cpu_pmu->num_events;
604
605 return max_events;
606}
607EXPORT_SYMBOL_GPL(perf_num_counters);
608
609static int armpmu_count_irq_users(const int irq)
610{
611 int cpu, count = 0;
612
613 for_each_possible_cpu(cpu) {
614 if (per_cpu(cpu_irq, cpu) == irq)
615 count++;
616 }
617
618 return count;
619}
620
Olivier Deprez157378f2022-04-04 15:47:50 +0200621static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
622{
623 const struct pmu_irq_ops *ops = NULL;
624 int cpu;
625
626 for_each_possible_cpu(cpu) {
627 if (per_cpu(cpu_irq, cpu) != irq)
628 continue;
629
630 ops = per_cpu(cpu_irq_ops, cpu);
631 if (ops)
632 break;
633 }
634
635 return ops;
636}
637
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000638void armpmu_free_irq(int irq, int cpu)
639{
640 if (per_cpu(cpu_irq, cpu) == 0)
641 return;
642 if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
643 return;
644
Olivier Deprez157378f2022-04-04 15:47:50 +0200645 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000646
647 per_cpu(cpu_irq, cpu) = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +0200648 per_cpu(cpu_irq_ops, cpu) = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000649}
650
651int armpmu_request_irq(int irq, int cpu)
652{
653 int err = 0;
654 const irq_handler_t handler = armpmu_dispatch_irq;
Olivier Deprez157378f2022-04-04 15:47:50 +0200655 const struct pmu_irq_ops *irq_ops;
656
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000657 if (!irq)
658 return 0;
659
660 if (!irq_is_percpu_devid(irq)) {
661 unsigned long irq_flags;
662
663 err = irq_force_affinity(irq, cpumask_of(cpu));
664
665 if (err && num_possible_cpus() > 1) {
666 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
667 irq, cpu);
668 goto err_out;
669 }
670
671 irq_flags = IRQF_PERCPU |
672 IRQF_NOBALANCING |
673 IRQF_NO_THREAD;
674
675 irq_set_status_flags(irq, IRQ_NOAUTOEN);
Olivier Deprez157378f2022-04-04 15:47:50 +0200676
677 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000678 per_cpu_ptr(&cpu_armpmu, cpu));
Olivier Deprez157378f2022-04-04 15:47:50 +0200679
680 /* If cannot get an NMI, get a normal interrupt */
681 if (err) {
682 err = request_irq(irq, handler, irq_flags, "arm-pmu",
683 per_cpu_ptr(&cpu_armpmu, cpu));
684 irq_ops = &pmuirq_ops;
685 } else {
686 has_nmi = true;
687 irq_ops = &pmunmi_ops;
688 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000689 } else if (armpmu_count_irq_users(irq) == 0) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200690 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
691
692 /* If cannot get an NMI, get a normal interrupt */
693 if (err) {
694 err = request_percpu_irq(irq, handler, "arm-pmu",
695 &cpu_armpmu);
696 irq_ops = &percpu_pmuirq_ops;
697 } else {
698 has_nmi= true;
699 irq_ops = &percpu_pmunmi_ops;
700 }
701 } else {
702 /* Per cpudevid irq was already requested by another CPU */
703 irq_ops = armpmu_find_irq_ops(irq);
704
705 if (WARN_ON(!irq_ops))
706 err = -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000707 }
708
709 if (err)
710 goto err_out;
711
712 per_cpu(cpu_irq, cpu) = irq;
Olivier Deprez157378f2022-04-04 15:47:50 +0200713 per_cpu(cpu_irq_ops, cpu) = irq_ops;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000714 return 0;
715
716err_out:
717 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
718 return err;
719}
720
721static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
722{
723 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
724 return per_cpu(hw_events->irq, cpu);
725}
726
727/*
728 * PMU hardware loses all context when a CPU goes offline.
729 * When a CPU is hotplugged back in, since some hardware registers are
730 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
731 * junk values out of them.
732 */
733static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
734{
735 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
736 int irq;
737
738 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
739 return 0;
740 if (pmu->reset)
741 pmu->reset(pmu);
742
743 per_cpu(cpu_armpmu, cpu) = pmu;
744
745 irq = armpmu_get_cpu_irq(pmu, cpu);
Olivier Deprez157378f2022-04-04 15:47:50 +0200746 if (irq)
747 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000748
749 return 0;
750}
751
752static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
753{
754 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
755 int irq;
756
757 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
758 return 0;
759
760 irq = armpmu_get_cpu_irq(pmu, cpu);
Olivier Deprez157378f2022-04-04 15:47:50 +0200761 if (irq)
762 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000763
764 per_cpu(cpu_armpmu, cpu) = NULL;
765
766 return 0;
767}
768
769#ifdef CONFIG_CPU_PM
770static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
771{
772 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
773 struct perf_event *event;
774 int idx;
775
776 for (idx = 0; idx < armpmu->num_events; idx++) {
777 event = hw_events->events[idx];
778 if (!event)
779 continue;
780
781 switch (cmd) {
782 case CPU_PM_ENTER:
783 /*
784 * Stop and update the counter
785 */
786 armpmu_stop(event, PERF_EF_UPDATE);
787 break;
788 case CPU_PM_EXIT:
789 case CPU_PM_ENTER_FAILED:
790 /*
791 * Restore and enable the counter.
792 * armpmu_start() indirectly calls
793 *
794 * perf_event_update_userpage()
795 *
796 * that requires RCU read locking to be functional,
797 * wrap the call within RCU_NONIDLE to make the
798 * RCU subsystem aware this cpu is not idle from
799 * an RCU perspective for the armpmu_start() call
800 * duration.
801 */
802 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
803 break;
804 default:
805 break;
806 }
807 }
808}
809
810static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
811 void *v)
812{
813 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
814 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
815 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
816
817 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
818 return NOTIFY_DONE;
819
820 /*
821 * Always reset the PMU registers on power-up even if
822 * there are no events running.
823 */
824 if (cmd == CPU_PM_EXIT && armpmu->reset)
825 armpmu->reset(armpmu);
826
827 if (!enabled)
828 return NOTIFY_OK;
829
830 switch (cmd) {
831 case CPU_PM_ENTER:
832 armpmu->stop(armpmu);
833 cpu_pm_pmu_setup(armpmu, cmd);
834 break;
835 case CPU_PM_EXIT:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000836 case CPU_PM_ENTER_FAILED:
David Brazdil0f672f62019-12-10 10:32:29 +0000837 cpu_pm_pmu_setup(armpmu, cmd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000838 armpmu->start(armpmu);
839 break;
840 default:
841 return NOTIFY_DONE;
842 }
843
844 return NOTIFY_OK;
845}
846
847static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
848{
849 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
850 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
851}
852
853static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
854{
855 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
856}
857#else
858static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
859static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
860#endif
861
862static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
863{
864 int err;
865
866 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
867 &cpu_pmu->node);
868 if (err)
869 goto out;
870
871 err = cpu_pm_pmu_register(cpu_pmu);
872 if (err)
873 goto out_unregister;
874
875 return 0;
876
877out_unregister:
878 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
879 &cpu_pmu->node);
880out:
881 return err;
882}
883
884static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
885{
886 cpu_pm_pmu_unregister(cpu_pmu);
887 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
888 &cpu_pmu->node);
889}
890
891static struct arm_pmu *__armpmu_alloc(gfp_t flags)
892{
893 struct arm_pmu *pmu;
894 int cpu;
895
896 pmu = kzalloc(sizeof(*pmu), flags);
897 if (!pmu) {
898 pr_info("failed to allocate PMU device!\n");
899 goto out;
900 }
901
902 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
903 if (!pmu->hw_events) {
904 pr_info("failed to allocate per-cpu PMU data.\n");
905 goto out_free_pmu;
906 }
907
908 pmu->pmu = (struct pmu) {
909 .pmu_enable = armpmu_enable,
910 .pmu_disable = armpmu_disable,
911 .event_init = armpmu_event_init,
912 .add = armpmu_add,
913 .del = armpmu_del,
914 .start = armpmu_start,
915 .stop = armpmu_stop,
916 .read = armpmu_read,
917 .filter_match = armpmu_filter_match,
918 .attr_groups = pmu->attr_groups,
919 /*
920 * This is a CPU PMU potentially in a heterogeneous
921 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
922 * and we have taken ctx sharing into account (e.g. with our
923 * pmu::filter_match callback and pmu::event_init group
924 * validation).
925 */
926 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
927 };
928
929 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
930 &armpmu_common_attr_group;
931
932 for_each_possible_cpu(cpu) {
933 struct pmu_hw_events *events;
934
935 events = per_cpu_ptr(pmu->hw_events, cpu);
936 raw_spin_lock_init(&events->pmu_lock);
937 events->percpu_pmu = pmu;
938 }
939
940 return pmu;
941
942out_free_pmu:
943 kfree(pmu);
944out:
945 return NULL;
946}
947
948struct arm_pmu *armpmu_alloc(void)
949{
950 return __armpmu_alloc(GFP_KERNEL);
951}
952
953struct arm_pmu *armpmu_alloc_atomic(void)
954{
955 return __armpmu_alloc(GFP_ATOMIC);
956}
957
958
959void armpmu_free(struct arm_pmu *pmu)
960{
961 free_percpu(pmu->hw_events);
962 kfree(pmu);
963}
964
965int armpmu_register(struct arm_pmu *pmu)
966{
967 int ret;
968
969 ret = cpu_pmu_init(pmu);
970 if (ret)
971 return ret;
972
David Brazdil0f672f62019-12-10 10:32:29 +0000973 if (!pmu->set_event_filter)
974 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
975
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000976 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
977 if (ret)
978 goto out_destroy;
979
980 if (!__oprofile_cpu_pmu)
981 __oprofile_cpu_pmu = pmu;
982
Olivier Deprez157378f2022-04-04 15:47:50 +0200983 pr_info("enabled with %s PMU driver, %d counters available%s\n",
984 pmu->name, pmu->num_events,
985 has_nmi ? ", using NMIs" : "");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000986
987 return 0;
988
989out_destroy:
990 cpu_pmu_destroy(pmu);
991 return ret;
992}
993
994static int arm_pmu_hp_init(void)
995{
996 int ret;
997
998 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
999 "perf/arm/pmu:starting",
1000 arm_perf_starting_cpu,
1001 arm_perf_teardown_cpu);
1002 if (ret)
1003 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1004 ret);
1005 return ret;
1006}
1007subsys_initcall(arm_pmu_hp_init);