Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Utility functions for x86 operand and address decoding |
| 3 | * |
| 4 | * Copyright (C) Intel Corporation 2017 |
| 5 | */ |
| 6 | #include <linux/kernel.h> |
| 7 | #include <linux/string.h> |
| 8 | #include <linux/ratelimit.h> |
| 9 | #include <linux/mmu_context.h> |
| 10 | #include <asm/desc_defs.h> |
| 11 | #include <asm/desc.h> |
| 12 | #include <asm/inat.h> |
| 13 | #include <asm/insn.h> |
| 14 | #include <asm/insn-eval.h> |
| 15 | #include <asm/ldt.h> |
| 16 | #include <asm/vm86.h> |
| 17 | |
| 18 | #undef pr_fmt |
| 19 | #define pr_fmt(fmt) "insn: " fmt |
| 20 | |
| 21 | enum reg_type { |
| 22 | REG_TYPE_RM = 0, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 23 | REG_TYPE_REG, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 24 | REG_TYPE_INDEX, |
| 25 | REG_TYPE_BASE, |
| 26 | }; |
| 27 | |
| 28 | /** |
| 29 | * is_string_insn() - Determine if instruction is a string instruction |
| 30 | * @insn: Instruction containing the opcode to inspect |
| 31 | * |
| 32 | * Returns: |
| 33 | * |
| 34 | * true if the instruction, determined by the opcode, is any of the |
| 35 | * string instructions as defined in the Intel Software Development manual. |
| 36 | * False otherwise. |
| 37 | */ |
| 38 | static bool is_string_insn(struct insn *insn) |
| 39 | { |
| 40 | insn_get_opcode(insn); |
| 41 | |
| 42 | /* All string instructions have a 1-byte opcode. */ |
| 43 | if (insn->opcode.nbytes != 1) |
| 44 | return false; |
| 45 | |
| 46 | switch (insn->opcode.bytes[0]) { |
| 47 | case 0x6c ... 0x6f: /* INS, OUTS */ |
| 48 | case 0xa4 ... 0xa7: /* MOVS, CMPS */ |
| 49 | case 0xaa ... 0xaf: /* STOS, LODS, SCAS */ |
| 50 | return true; |
| 51 | default: |
| 52 | return false; |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | /** |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 57 | * insn_has_rep_prefix() - Determine if instruction has a REP prefix |
| 58 | * @insn: Instruction containing the prefix to inspect |
| 59 | * |
| 60 | * Returns: |
| 61 | * |
| 62 | * true if the instruction has a REP prefix, false if not. |
| 63 | */ |
| 64 | bool insn_has_rep_prefix(struct insn *insn) |
| 65 | { |
| 66 | insn_byte_t p; |
| 67 | int i; |
| 68 | |
| 69 | insn_get_prefixes(insn); |
| 70 | |
| 71 | for_each_insn_prefix(insn, i, p) { |
| 72 | if (p == 0xf2 || p == 0xf3) |
| 73 | return true; |
| 74 | } |
| 75 | |
| 76 | return false; |
| 77 | } |
| 78 | |
| 79 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 80 | * get_seg_reg_override_idx() - obtain segment register override index |
| 81 | * @insn: Valid instruction with segment override prefixes |
| 82 | * |
| 83 | * Inspect the instruction prefixes in @insn and find segment overrides, if any. |
| 84 | * |
| 85 | * Returns: |
| 86 | * |
| 87 | * A constant identifying the segment register to use, among CS, SS, DS, |
| 88 | * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override |
| 89 | * prefixes were found. |
| 90 | * |
| 91 | * -EINVAL in case of error. |
| 92 | */ |
| 93 | static int get_seg_reg_override_idx(struct insn *insn) |
| 94 | { |
| 95 | int idx = INAT_SEG_REG_DEFAULT; |
| 96 | int num_overrides = 0, i; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 97 | insn_byte_t p; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 98 | |
| 99 | insn_get_prefixes(insn); |
| 100 | |
| 101 | /* Look for any segment override prefixes. */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 102 | for_each_insn_prefix(insn, i, p) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 103 | insn_attr_t attr; |
| 104 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 105 | attr = inat_get_opcode_attribute(p); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 106 | switch (attr) { |
| 107 | case INAT_MAKE_PREFIX(INAT_PFX_CS): |
| 108 | idx = INAT_SEG_REG_CS; |
| 109 | num_overrides++; |
| 110 | break; |
| 111 | case INAT_MAKE_PREFIX(INAT_PFX_SS): |
| 112 | idx = INAT_SEG_REG_SS; |
| 113 | num_overrides++; |
| 114 | break; |
| 115 | case INAT_MAKE_PREFIX(INAT_PFX_DS): |
| 116 | idx = INAT_SEG_REG_DS; |
| 117 | num_overrides++; |
| 118 | break; |
| 119 | case INAT_MAKE_PREFIX(INAT_PFX_ES): |
| 120 | idx = INAT_SEG_REG_ES; |
| 121 | num_overrides++; |
| 122 | break; |
| 123 | case INAT_MAKE_PREFIX(INAT_PFX_FS): |
| 124 | idx = INAT_SEG_REG_FS; |
| 125 | num_overrides++; |
| 126 | break; |
| 127 | case INAT_MAKE_PREFIX(INAT_PFX_GS): |
| 128 | idx = INAT_SEG_REG_GS; |
| 129 | num_overrides++; |
| 130 | break; |
| 131 | /* No default action needed. */ |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | /* More than one segment override prefix leads to undefined behavior. */ |
| 136 | if (num_overrides > 1) |
| 137 | return -EINVAL; |
| 138 | |
| 139 | return idx; |
| 140 | } |
| 141 | |
| 142 | /** |
| 143 | * check_seg_overrides() - check if segment override prefixes are allowed |
| 144 | * @insn: Valid instruction with segment override prefixes |
| 145 | * @regoff: Operand offset, in pt_regs, for which the check is performed |
| 146 | * |
| 147 | * For a particular register used in register-indirect addressing, determine if |
| 148 | * segment override prefixes can be used. Specifically, no overrides are allowed |
| 149 | * for rDI if used with a string instruction. |
| 150 | * |
| 151 | * Returns: |
| 152 | * |
| 153 | * True if segment override prefixes can be used with the register indicated |
| 154 | * in @regoff. False if otherwise. |
| 155 | */ |
| 156 | static bool check_seg_overrides(struct insn *insn, int regoff) |
| 157 | { |
| 158 | if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn)) |
| 159 | return false; |
| 160 | |
| 161 | return true; |
| 162 | } |
| 163 | |
| 164 | /** |
| 165 | * resolve_default_seg() - resolve default segment register index for an operand |
| 166 | * @insn: Instruction with opcode and address size. Must be valid. |
| 167 | * @regs: Register values as seen when entering kernel mode |
| 168 | * @off: Operand offset, in pt_regs, for which resolution is needed |
| 169 | * |
| 170 | * Resolve the default segment register index associated with the instruction |
| 171 | * operand register indicated by @off. Such index is resolved based on defaults |
| 172 | * described in the Intel Software Development Manual. |
| 173 | * |
| 174 | * Returns: |
| 175 | * |
| 176 | * If in protected mode, a constant identifying the segment register to use, |
| 177 | * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE. |
| 178 | * |
| 179 | * -EINVAL in case of error. |
| 180 | */ |
| 181 | static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off) |
| 182 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 183 | if (any_64bit_mode(regs)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 184 | return INAT_SEG_REG_IGNORE; |
| 185 | /* |
| 186 | * Resolve the default segment register as described in Section 3.7.4 |
| 187 | * of the Intel Software Development Manual Vol. 1: |
| 188 | * |
| 189 | * + DS for all references involving r[ABCD]X, and rSI. |
| 190 | * + If used in a string instruction, ES for rDI. Otherwise, DS. |
| 191 | * + AX, CX and DX are not valid register operands in 16-bit address |
| 192 | * encodings but are valid for 32-bit and 64-bit encodings. |
| 193 | * + -EDOM is reserved to identify for cases in which no register |
| 194 | * is used (i.e., displacement-only addressing). Use DS. |
| 195 | * + SS for rSP or rBP. |
| 196 | * + CS for rIP. |
| 197 | */ |
| 198 | |
| 199 | switch (off) { |
| 200 | case offsetof(struct pt_regs, ax): |
| 201 | case offsetof(struct pt_regs, cx): |
| 202 | case offsetof(struct pt_regs, dx): |
| 203 | /* Need insn to verify address size. */ |
| 204 | if (insn->addr_bytes == 2) |
| 205 | return -EINVAL; |
| 206 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 207 | fallthrough; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 208 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 209 | case -EDOM: |
| 210 | case offsetof(struct pt_regs, bx): |
| 211 | case offsetof(struct pt_regs, si): |
| 212 | return INAT_SEG_REG_DS; |
| 213 | |
| 214 | case offsetof(struct pt_regs, di): |
| 215 | if (is_string_insn(insn)) |
| 216 | return INAT_SEG_REG_ES; |
| 217 | return INAT_SEG_REG_DS; |
| 218 | |
| 219 | case offsetof(struct pt_regs, bp): |
| 220 | case offsetof(struct pt_regs, sp): |
| 221 | return INAT_SEG_REG_SS; |
| 222 | |
| 223 | case offsetof(struct pt_regs, ip): |
| 224 | return INAT_SEG_REG_CS; |
| 225 | |
| 226 | default: |
| 227 | return -EINVAL; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | /** |
| 232 | * resolve_seg_reg() - obtain segment register index |
| 233 | * @insn: Instruction with operands |
| 234 | * @regs: Register values as seen when entering kernel mode |
| 235 | * @regoff: Operand offset, in pt_regs, used to deterimine segment register |
| 236 | * |
| 237 | * Determine the segment register associated with the operands and, if |
| 238 | * applicable, prefixes and the instruction pointed by @insn. |
| 239 | * |
| 240 | * The segment register associated to an operand used in register-indirect |
| 241 | * addressing depends on: |
| 242 | * |
| 243 | * a) Whether running in long mode (in such a case segments are ignored, except |
| 244 | * if FS or GS are used). |
| 245 | * |
| 246 | * b) Whether segment override prefixes can be used. Certain instructions and |
| 247 | * registers do not allow override prefixes. |
| 248 | * |
| 249 | * c) Whether segment overrides prefixes are found in the instruction prefixes. |
| 250 | * |
| 251 | * d) If there are not segment override prefixes or they cannot be used, the |
| 252 | * default segment register associated with the operand register is used. |
| 253 | * |
| 254 | * The function checks first if segment override prefixes can be used with the |
| 255 | * operand indicated by @regoff. If allowed, obtain such overridden segment |
| 256 | * register index. Lastly, if not prefixes were found or cannot be used, resolve |
| 257 | * the segment register index to use based on the defaults described in the |
| 258 | * Intel documentation. In long mode, all segment register indexes will be |
| 259 | * ignored, except if overrides were found for FS or GS. All these operations |
| 260 | * are done using helper functions. |
| 261 | * |
| 262 | * The operand register, @regoff, is represented as the offset from the base of |
| 263 | * pt_regs. |
| 264 | * |
| 265 | * As stated, the main use of this function is to determine the segment register |
| 266 | * index based on the instruction, its operands and prefixes. Hence, @insn |
| 267 | * must be valid. However, if @regoff indicates rIP, we don't need to inspect |
| 268 | * @insn at all as in this case CS is used in all cases. This case is checked |
| 269 | * before proceeding further. |
| 270 | * |
| 271 | * Please note that this function does not return the value in the segment |
| 272 | * register (i.e., the segment selector) but our defined index. The segment |
| 273 | * selector needs to be obtained using get_segment_selector() and passing the |
| 274 | * segment register index resolved by this function. |
| 275 | * |
| 276 | * Returns: |
| 277 | * |
| 278 | * An index identifying the segment register to use, among CS, SS, DS, |
| 279 | * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode. |
| 280 | * |
| 281 | * -EINVAL in case of error. |
| 282 | */ |
| 283 | static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff) |
| 284 | { |
| 285 | int idx; |
| 286 | |
| 287 | /* |
| 288 | * In the unlikely event of having to resolve the segment register |
| 289 | * index for rIP, do it first. Segment override prefixes should not |
| 290 | * be used. Hence, it is not necessary to inspect the instruction, |
| 291 | * which may be invalid at this point. |
| 292 | */ |
| 293 | if (regoff == offsetof(struct pt_regs, ip)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 294 | if (any_64bit_mode(regs)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 295 | return INAT_SEG_REG_IGNORE; |
| 296 | else |
| 297 | return INAT_SEG_REG_CS; |
| 298 | } |
| 299 | |
| 300 | if (!insn) |
| 301 | return -EINVAL; |
| 302 | |
| 303 | if (!check_seg_overrides(insn, regoff)) |
| 304 | return resolve_default_seg(insn, regs, regoff); |
| 305 | |
| 306 | idx = get_seg_reg_override_idx(insn); |
| 307 | if (idx < 0) |
| 308 | return idx; |
| 309 | |
| 310 | if (idx == INAT_SEG_REG_DEFAULT) |
| 311 | return resolve_default_seg(insn, regs, regoff); |
| 312 | |
| 313 | /* |
| 314 | * In long mode, segment override prefixes are ignored, except for |
| 315 | * overrides for FS and GS. |
| 316 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 317 | if (any_64bit_mode(regs)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 318 | if (idx != INAT_SEG_REG_FS && |
| 319 | idx != INAT_SEG_REG_GS) |
| 320 | idx = INAT_SEG_REG_IGNORE; |
| 321 | } |
| 322 | |
| 323 | return idx; |
| 324 | } |
| 325 | |
| 326 | /** |
| 327 | * get_segment_selector() - obtain segment selector |
| 328 | * @regs: Register values as seen when entering kernel mode |
| 329 | * @seg_reg_idx: Segment register index to use |
| 330 | * |
| 331 | * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment |
| 332 | * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or |
| 333 | * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained |
| 334 | * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU |
| 335 | * registers. This done for only for completeness as in CONFIG_X86_64 segment |
| 336 | * registers are ignored. |
| 337 | * |
| 338 | * Returns: |
| 339 | * |
| 340 | * Value of the segment selector, including null when running in |
| 341 | * long mode. |
| 342 | * |
| 343 | * -EINVAL on error. |
| 344 | */ |
| 345 | static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx) |
| 346 | { |
| 347 | #ifdef CONFIG_X86_64 |
| 348 | unsigned short sel; |
| 349 | |
| 350 | switch (seg_reg_idx) { |
| 351 | case INAT_SEG_REG_IGNORE: |
| 352 | return 0; |
| 353 | case INAT_SEG_REG_CS: |
| 354 | return (unsigned short)(regs->cs & 0xffff); |
| 355 | case INAT_SEG_REG_SS: |
| 356 | return (unsigned short)(regs->ss & 0xffff); |
| 357 | case INAT_SEG_REG_DS: |
| 358 | savesegment(ds, sel); |
| 359 | return sel; |
| 360 | case INAT_SEG_REG_ES: |
| 361 | savesegment(es, sel); |
| 362 | return sel; |
| 363 | case INAT_SEG_REG_FS: |
| 364 | savesegment(fs, sel); |
| 365 | return sel; |
| 366 | case INAT_SEG_REG_GS: |
| 367 | savesegment(gs, sel); |
| 368 | return sel; |
| 369 | default: |
| 370 | return -EINVAL; |
| 371 | } |
| 372 | #else /* CONFIG_X86_32 */ |
| 373 | struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs; |
| 374 | |
| 375 | if (v8086_mode(regs)) { |
| 376 | switch (seg_reg_idx) { |
| 377 | case INAT_SEG_REG_CS: |
| 378 | return (unsigned short)(regs->cs & 0xffff); |
| 379 | case INAT_SEG_REG_SS: |
| 380 | return (unsigned short)(regs->ss & 0xffff); |
| 381 | case INAT_SEG_REG_DS: |
| 382 | return vm86regs->ds; |
| 383 | case INAT_SEG_REG_ES: |
| 384 | return vm86regs->es; |
| 385 | case INAT_SEG_REG_FS: |
| 386 | return vm86regs->fs; |
| 387 | case INAT_SEG_REG_GS: |
| 388 | return vm86regs->gs; |
| 389 | case INAT_SEG_REG_IGNORE: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 390 | default: |
| 391 | return -EINVAL; |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | switch (seg_reg_idx) { |
| 396 | case INAT_SEG_REG_CS: |
| 397 | return (unsigned short)(regs->cs & 0xffff); |
| 398 | case INAT_SEG_REG_SS: |
| 399 | return (unsigned short)(regs->ss & 0xffff); |
| 400 | case INAT_SEG_REG_DS: |
| 401 | return (unsigned short)(regs->ds & 0xffff); |
| 402 | case INAT_SEG_REG_ES: |
| 403 | return (unsigned short)(regs->es & 0xffff); |
| 404 | case INAT_SEG_REG_FS: |
| 405 | return (unsigned short)(regs->fs & 0xffff); |
| 406 | case INAT_SEG_REG_GS: |
| 407 | /* |
| 408 | * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS. |
| 409 | * The macro below takes care of both cases. |
| 410 | */ |
| 411 | return get_user_gs(regs); |
| 412 | case INAT_SEG_REG_IGNORE: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 413 | default: |
| 414 | return -EINVAL; |
| 415 | } |
| 416 | #endif /* CONFIG_X86_64 */ |
| 417 | } |
| 418 | |
| 419 | static int get_reg_offset(struct insn *insn, struct pt_regs *regs, |
| 420 | enum reg_type type) |
| 421 | { |
| 422 | int regno = 0; |
| 423 | |
| 424 | static const int regoff[] = { |
| 425 | offsetof(struct pt_regs, ax), |
| 426 | offsetof(struct pt_regs, cx), |
| 427 | offsetof(struct pt_regs, dx), |
| 428 | offsetof(struct pt_regs, bx), |
| 429 | offsetof(struct pt_regs, sp), |
| 430 | offsetof(struct pt_regs, bp), |
| 431 | offsetof(struct pt_regs, si), |
| 432 | offsetof(struct pt_regs, di), |
| 433 | #ifdef CONFIG_X86_64 |
| 434 | offsetof(struct pt_regs, r8), |
| 435 | offsetof(struct pt_regs, r9), |
| 436 | offsetof(struct pt_regs, r10), |
| 437 | offsetof(struct pt_regs, r11), |
| 438 | offsetof(struct pt_regs, r12), |
| 439 | offsetof(struct pt_regs, r13), |
| 440 | offsetof(struct pt_regs, r14), |
| 441 | offsetof(struct pt_regs, r15), |
| 442 | #endif |
| 443 | }; |
| 444 | int nr_registers = ARRAY_SIZE(regoff); |
| 445 | /* |
| 446 | * Don't possibly decode a 32-bit instructions as |
| 447 | * reading a 64-bit-only register. |
| 448 | */ |
| 449 | if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64) |
| 450 | nr_registers -= 8; |
| 451 | |
| 452 | switch (type) { |
| 453 | case REG_TYPE_RM: |
| 454 | regno = X86_MODRM_RM(insn->modrm.value); |
| 455 | |
| 456 | /* |
| 457 | * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement |
| 458 | * follows the ModRM byte. |
| 459 | */ |
| 460 | if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5) |
| 461 | return -EDOM; |
| 462 | |
| 463 | if (X86_REX_B(insn->rex_prefix.value)) |
| 464 | regno += 8; |
| 465 | break; |
| 466 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 467 | case REG_TYPE_REG: |
| 468 | regno = X86_MODRM_REG(insn->modrm.value); |
| 469 | |
| 470 | if (X86_REX_R(insn->rex_prefix.value)) |
| 471 | regno += 8; |
| 472 | break; |
| 473 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 474 | case REG_TYPE_INDEX: |
| 475 | regno = X86_SIB_INDEX(insn->sib.value); |
| 476 | if (X86_REX_X(insn->rex_prefix.value)) |
| 477 | regno += 8; |
| 478 | |
| 479 | /* |
| 480 | * If ModRM.mod != 3 and SIB.index = 4 the scale*index |
| 481 | * portion of the address computation is null. This is |
| 482 | * true only if REX.X is 0. In such a case, the SIB index |
| 483 | * is used in the address computation. |
| 484 | */ |
| 485 | if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4) |
| 486 | return -EDOM; |
| 487 | break; |
| 488 | |
| 489 | case REG_TYPE_BASE: |
| 490 | regno = X86_SIB_BASE(insn->sib.value); |
| 491 | /* |
| 492 | * If ModRM.mod is 0 and SIB.base == 5, the base of the |
| 493 | * register-indirect addressing is 0. In this case, a |
| 494 | * 32-bit displacement follows the SIB byte. |
| 495 | */ |
| 496 | if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5) |
| 497 | return -EDOM; |
| 498 | |
| 499 | if (X86_REX_B(insn->rex_prefix.value)) |
| 500 | regno += 8; |
| 501 | break; |
| 502 | |
| 503 | default: |
| 504 | pr_err_ratelimited("invalid register type: %d\n", type); |
| 505 | return -EINVAL; |
| 506 | } |
| 507 | |
| 508 | if (regno >= nr_registers) { |
| 509 | WARN_ONCE(1, "decoded an instruction with an invalid register"); |
| 510 | return -EINVAL; |
| 511 | } |
| 512 | return regoff[regno]; |
| 513 | } |
| 514 | |
| 515 | /** |
| 516 | * get_reg_offset_16() - Obtain offset of register indicated by instruction |
| 517 | * @insn: Instruction containing ModRM byte |
| 518 | * @regs: Register values as seen when entering kernel mode |
| 519 | * @offs1: Offset of the first operand register |
| 520 | * @offs2: Offset of the second opeand register, if applicable |
| 521 | * |
| 522 | * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte |
| 523 | * in @insn. This function is to be used with 16-bit address encodings. The |
| 524 | * @offs1 and @offs2 will be written with the offset of the two registers |
| 525 | * indicated by the instruction. In cases where any of the registers is not |
| 526 | * referenced by the instruction, the value will be set to -EDOM. |
| 527 | * |
| 528 | * Returns: |
| 529 | * |
| 530 | * 0 on success, -EINVAL on error. |
| 531 | */ |
| 532 | static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs, |
| 533 | int *offs1, int *offs2) |
| 534 | { |
| 535 | /* |
| 536 | * 16-bit addressing can use one or two registers. Specifics of |
| 537 | * encodings are given in Table 2-1. "16-Bit Addressing Forms with the |
| 538 | * ModR/M Byte" of the Intel Software Development Manual. |
| 539 | */ |
| 540 | static const int regoff1[] = { |
| 541 | offsetof(struct pt_regs, bx), |
| 542 | offsetof(struct pt_regs, bx), |
| 543 | offsetof(struct pt_regs, bp), |
| 544 | offsetof(struct pt_regs, bp), |
| 545 | offsetof(struct pt_regs, si), |
| 546 | offsetof(struct pt_regs, di), |
| 547 | offsetof(struct pt_regs, bp), |
| 548 | offsetof(struct pt_regs, bx), |
| 549 | }; |
| 550 | |
| 551 | static const int regoff2[] = { |
| 552 | offsetof(struct pt_regs, si), |
| 553 | offsetof(struct pt_regs, di), |
| 554 | offsetof(struct pt_regs, si), |
| 555 | offsetof(struct pt_regs, di), |
| 556 | -EDOM, |
| 557 | -EDOM, |
| 558 | -EDOM, |
| 559 | -EDOM, |
| 560 | }; |
| 561 | |
| 562 | if (!offs1 || !offs2) |
| 563 | return -EINVAL; |
| 564 | |
| 565 | /* Operand is a register, use the generic function. */ |
| 566 | if (X86_MODRM_MOD(insn->modrm.value) == 3) { |
| 567 | *offs1 = insn_get_modrm_rm_off(insn, regs); |
| 568 | *offs2 = -EDOM; |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)]; |
| 573 | *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)]; |
| 574 | |
| 575 | /* |
| 576 | * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement- |
| 577 | * only addressing. This means that no registers are involved in |
| 578 | * computing the effective address. Thus, ensure that the first |
| 579 | * register offset is invalild. The second register offset is already |
| 580 | * invalid under the aforementioned conditions. |
| 581 | */ |
| 582 | if ((X86_MODRM_MOD(insn->modrm.value) == 0) && |
| 583 | (X86_MODRM_RM(insn->modrm.value) == 6)) |
| 584 | *offs1 = -EDOM; |
| 585 | |
| 586 | return 0; |
| 587 | } |
| 588 | |
| 589 | /** |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 590 | * get_desc() - Obtain contents of a segment descriptor |
| 591 | * @out: Segment descriptor contents on success |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 592 | * @sel: Segment selector |
| 593 | * |
| 594 | * Given a segment selector, obtain a pointer to the segment descriptor. |
| 595 | * Both global and local descriptor tables are supported. |
| 596 | * |
| 597 | * Returns: |
| 598 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 599 | * True on success, false on failure. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 600 | * |
| 601 | * NULL on error. |
| 602 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 603 | static bool get_desc(struct desc_struct *out, unsigned short sel) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 604 | { |
| 605 | struct desc_ptr gdt_desc = {0, 0}; |
| 606 | unsigned long desc_base; |
| 607 | |
| 608 | #ifdef CONFIG_MODIFY_LDT_SYSCALL |
| 609 | if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 610 | bool success = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 611 | struct ldt_struct *ldt; |
| 612 | |
| 613 | /* Bits [15:3] contain the index of the desired entry. */ |
| 614 | sel >>= 3; |
| 615 | |
| 616 | mutex_lock(¤t->active_mm->context.lock); |
| 617 | ldt = current->active_mm->context.ldt; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 618 | if (ldt && sel < ldt->nr_entries) { |
| 619 | *out = ldt->entries[sel]; |
| 620 | success = true; |
| 621 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 622 | |
| 623 | mutex_unlock(¤t->active_mm->context.lock); |
| 624 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 625 | return success; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 626 | } |
| 627 | #endif |
| 628 | native_store_gdt(&gdt_desc); |
| 629 | |
| 630 | /* |
| 631 | * Segment descriptors have a size of 8 bytes. Thus, the index is |
| 632 | * multiplied by 8 to obtain the memory offset of the desired descriptor |
| 633 | * from the base of the GDT. As bits [15:3] of the segment selector |
| 634 | * contain the index, it can be regarded as multiplied by 8 already. |
| 635 | * All that remains is to clear bits [2:0]. |
| 636 | */ |
| 637 | desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK); |
| 638 | |
| 639 | if (desc_base > gdt_desc.size) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 640 | return false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 641 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 642 | *out = *(struct desc_struct *)(gdt_desc.address + desc_base); |
| 643 | return true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 644 | } |
| 645 | |
| 646 | /** |
| 647 | * insn_get_seg_base() - Obtain base address of segment descriptor. |
| 648 | * @regs: Register values as seen when entering kernel mode |
| 649 | * @seg_reg_idx: Index of the segment register pointing to seg descriptor |
| 650 | * |
| 651 | * Obtain the base address of the segment as indicated by the segment descriptor |
| 652 | * pointed by the segment selector. The segment selector is obtained from the |
| 653 | * input segment register index @seg_reg_idx. |
| 654 | * |
| 655 | * Returns: |
| 656 | * |
| 657 | * In protected mode, base address of the segment. Zero in long mode, |
| 658 | * except when FS or GS are used. In virtual-8086 mode, the segment |
| 659 | * selector shifted 4 bits to the right. |
| 660 | * |
| 661 | * -1L in case of error. |
| 662 | */ |
| 663 | unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx) |
| 664 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 665 | struct desc_struct desc; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 666 | short sel; |
| 667 | |
| 668 | sel = get_segment_selector(regs, seg_reg_idx); |
| 669 | if (sel < 0) |
| 670 | return -1L; |
| 671 | |
| 672 | if (v8086_mode(regs)) |
| 673 | /* |
| 674 | * Base is simply the segment selector shifted 4 |
| 675 | * bits to the right. |
| 676 | */ |
| 677 | return (unsigned long)(sel << 4); |
| 678 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 679 | if (any_64bit_mode(regs)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 680 | /* |
| 681 | * Only FS or GS will have a base address, the rest of |
| 682 | * the segments' bases are forced to 0. |
| 683 | */ |
| 684 | unsigned long base; |
| 685 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 686 | if (seg_reg_idx == INAT_SEG_REG_FS) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 687 | rdmsrl(MSR_FS_BASE, base); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 688 | } else if (seg_reg_idx == INAT_SEG_REG_GS) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 689 | /* |
| 690 | * swapgs was called at the kernel entry point. Thus, |
| 691 | * MSR_KERNEL_GS_BASE will have the user-space GS base. |
| 692 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 693 | if (user_mode(regs)) |
| 694 | rdmsrl(MSR_KERNEL_GS_BASE, base); |
| 695 | else |
| 696 | rdmsrl(MSR_GS_BASE, base); |
| 697 | } else { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 698 | base = 0; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 699 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 700 | return base; |
| 701 | } |
| 702 | |
| 703 | /* In protected mode the segment selector cannot be null. */ |
| 704 | if (!sel) |
| 705 | return -1L; |
| 706 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 707 | if (!get_desc(&desc, sel)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 708 | return -1L; |
| 709 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 710 | return get_desc_base(&desc); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 711 | } |
| 712 | |
| 713 | /** |
| 714 | * get_seg_limit() - Obtain the limit of a segment descriptor |
| 715 | * @regs: Register values as seen when entering kernel mode |
| 716 | * @seg_reg_idx: Index of the segment register pointing to seg descriptor |
| 717 | * |
| 718 | * Obtain the limit of the segment as indicated by the segment descriptor |
| 719 | * pointed by the segment selector. The segment selector is obtained from the |
| 720 | * input segment register index @seg_reg_idx. |
| 721 | * |
| 722 | * Returns: |
| 723 | * |
| 724 | * In protected mode, the limit of the segment descriptor in bytes. |
| 725 | * In long mode and virtual-8086 mode, segment limits are not enforced. Thus, |
| 726 | * limit is returned as -1L to imply a limit-less segment. |
| 727 | * |
| 728 | * Zero is returned on error. |
| 729 | */ |
| 730 | static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx) |
| 731 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 732 | struct desc_struct desc; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 733 | unsigned long limit; |
| 734 | short sel; |
| 735 | |
| 736 | sel = get_segment_selector(regs, seg_reg_idx); |
| 737 | if (sel < 0) |
| 738 | return 0; |
| 739 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 740 | if (any_64bit_mode(regs) || v8086_mode(regs)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 741 | return -1L; |
| 742 | |
| 743 | if (!sel) |
| 744 | return 0; |
| 745 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 746 | if (!get_desc(&desc, sel)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 747 | return 0; |
| 748 | |
| 749 | /* |
| 750 | * If the granularity bit is set, the limit is given in multiples |
| 751 | * of 4096. This also means that the 12 least significant bits are |
| 752 | * not tested when checking the segment limits. In practice, |
| 753 | * this means that the segment ends in (limit << 12) + 0xfff. |
| 754 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 755 | limit = get_desc_limit(&desc); |
| 756 | if (desc.g) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 757 | limit = (limit << 12) + 0xfff; |
| 758 | |
| 759 | return limit; |
| 760 | } |
| 761 | |
| 762 | /** |
| 763 | * insn_get_code_seg_params() - Obtain code segment parameters |
| 764 | * @regs: Structure with register values as seen when entering kernel mode |
| 765 | * |
| 766 | * Obtain address and operand sizes of the code segment. It is obtained from the |
| 767 | * selector contained in the CS register in regs. In protected mode, the default |
| 768 | * address is determined by inspecting the L and D bits of the segment |
| 769 | * descriptor. In virtual-8086 mode, the default is always two bytes for both |
| 770 | * address and operand sizes. |
| 771 | * |
| 772 | * Returns: |
| 773 | * |
| 774 | * An int containing ORed-in default parameters on success. |
| 775 | * |
| 776 | * -EINVAL on error. |
| 777 | */ |
| 778 | int insn_get_code_seg_params(struct pt_regs *regs) |
| 779 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 780 | struct desc_struct desc; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 781 | short sel; |
| 782 | |
| 783 | if (v8086_mode(regs)) |
| 784 | /* Address and operand size are both 16-bit. */ |
| 785 | return INSN_CODE_SEG_PARAMS(2, 2); |
| 786 | |
| 787 | sel = get_segment_selector(regs, INAT_SEG_REG_CS); |
| 788 | if (sel < 0) |
| 789 | return sel; |
| 790 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 791 | if (!get_desc(&desc, sel)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 792 | return -EINVAL; |
| 793 | |
| 794 | /* |
| 795 | * The most significant byte of the Type field of the segment descriptor |
| 796 | * determines whether a segment contains data or code. If this is a data |
| 797 | * segment, return error. |
| 798 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 799 | if (!(desc.type & BIT(3))) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 800 | return -EINVAL; |
| 801 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 802 | switch ((desc.l << 1) | desc.d) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 803 | case 0: /* |
| 804 | * Legacy mode. CS.L=0, CS.D=0. Address and operand size are |
| 805 | * both 16-bit. |
| 806 | */ |
| 807 | return INSN_CODE_SEG_PARAMS(2, 2); |
| 808 | case 1: /* |
| 809 | * Legacy mode. CS.L=0, CS.D=1. Address and operand size are |
| 810 | * both 32-bit. |
| 811 | */ |
| 812 | return INSN_CODE_SEG_PARAMS(4, 4); |
| 813 | case 2: /* |
| 814 | * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit; |
| 815 | * operand size is 32-bit. |
| 816 | */ |
| 817 | return INSN_CODE_SEG_PARAMS(4, 8); |
| 818 | case 3: /* Invalid setting. CS.L=1, CS.D=1 */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 819 | fallthrough; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 820 | default: |
| 821 | return -EINVAL; |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | /** |
| 826 | * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte |
| 827 | * @insn: Instruction containing the ModRM byte |
| 828 | * @regs: Register values as seen when entering kernel mode |
| 829 | * |
| 830 | * Returns: |
| 831 | * |
| 832 | * The register indicated by the r/m part of the ModRM byte. The |
| 833 | * register is obtained as an offset from the base of pt_regs. In specific |
| 834 | * cases, the returned value can be -EDOM to indicate that the particular value |
| 835 | * of ModRM does not refer to a register and shall be ignored. |
| 836 | */ |
| 837 | int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs) |
| 838 | { |
| 839 | return get_reg_offset(insn, regs, REG_TYPE_RM); |
| 840 | } |
| 841 | |
| 842 | /** |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 843 | * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte |
| 844 | * @insn: Instruction containing the ModRM byte |
| 845 | * @regs: Register values as seen when entering kernel mode |
| 846 | * |
| 847 | * Returns: |
| 848 | * |
| 849 | * The register indicated by the reg part of the ModRM byte. The |
| 850 | * register is obtained as an offset from the base of pt_regs. |
| 851 | */ |
| 852 | int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs) |
| 853 | { |
| 854 | return get_reg_offset(insn, regs, REG_TYPE_REG); |
| 855 | } |
| 856 | |
| 857 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 858 | * get_seg_base_limit() - obtain base address and limit of a segment |
| 859 | * @insn: Instruction. Must be valid. |
| 860 | * @regs: Register values as seen when entering kernel mode |
| 861 | * @regoff: Operand offset, in pt_regs, used to resolve segment descriptor |
| 862 | * @base: Obtained segment base |
| 863 | * @limit: Obtained segment limit |
| 864 | * |
| 865 | * Obtain the base address and limit of the segment associated with the operand |
| 866 | * @regoff and, if any or allowed, override prefixes in @insn. This function is |
| 867 | * different from insn_get_seg_base() as the latter does not resolve the segment |
| 868 | * associated with the instruction operand. If a limit is not needed (e.g., |
| 869 | * when running in long mode), @limit can be NULL. |
| 870 | * |
| 871 | * Returns: |
| 872 | * |
| 873 | * 0 on success. @base and @limit will contain the base address and of the |
| 874 | * resolved segment, respectively. |
| 875 | * |
| 876 | * -EINVAL on error. |
| 877 | */ |
| 878 | static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs, |
| 879 | int regoff, unsigned long *base, |
| 880 | unsigned long *limit) |
| 881 | { |
| 882 | int seg_reg_idx; |
| 883 | |
| 884 | if (!base) |
| 885 | return -EINVAL; |
| 886 | |
| 887 | seg_reg_idx = resolve_seg_reg(insn, regs, regoff); |
| 888 | if (seg_reg_idx < 0) |
| 889 | return seg_reg_idx; |
| 890 | |
| 891 | *base = insn_get_seg_base(regs, seg_reg_idx); |
| 892 | if (*base == -1L) |
| 893 | return -EINVAL; |
| 894 | |
| 895 | if (!limit) |
| 896 | return 0; |
| 897 | |
| 898 | *limit = get_seg_limit(regs, seg_reg_idx); |
| 899 | if (!(*limit)) |
| 900 | return -EINVAL; |
| 901 | |
| 902 | return 0; |
| 903 | } |
| 904 | |
| 905 | /** |
| 906 | * get_eff_addr_reg() - Obtain effective address from register operand |
| 907 | * @insn: Instruction. Must be valid. |
| 908 | * @regs: Register values as seen when entering kernel mode |
| 909 | * @regoff: Obtained operand offset, in pt_regs, with the effective address |
| 910 | * @eff_addr: Obtained effective address |
| 911 | * |
| 912 | * Obtain the effective address stored in the register operand as indicated by |
| 913 | * the ModRM byte. This function is to be used only with register addressing |
| 914 | * (i.e., ModRM.mod is 3). The effective address is saved in @eff_addr. The |
| 915 | * register operand, as an offset from the base of pt_regs, is saved in @regoff; |
| 916 | * such offset can then be used to resolve the segment associated with the |
| 917 | * operand. This function can be used with any of the supported address sizes |
| 918 | * in x86. |
| 919 | * |
| 920 | * Returns: |
| 921 | * |
| 922 | * 0 on success. @eff_addr will have the effective address stored in the |
| 923 | * operand indicated by ModRM. @regoff will have such operand as an offset from |
| 924 | * the base of pt_regs. |
| 925 | * |
| 926 | * -EINVAL on error. |
| 927 | */ |
| 928 | static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs, |
| 929 | int *regoff, long *eff_addr) |
| 930 | { |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 931 | int ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 932 | |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 933 | ret = insn_get_modrm(insn); |
| 934 | if (ret) |
| 935 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 936 | |
| 937 | if (X86_MODRM_MOD(insn->modrm.value) != 3) |
| 938 | return -EINVAL; |
| 939 | |
| 940 | *regoff = get_reg_offset(insn, regs, REG_TYPE_RM); |
| 941 | if (*regoff < 0) |
| 942 | return -EINVAL; |
| 943 | |
| 944 | /* Ignore bytes that are outside the address size. */ |
| 945 | if (insn->addr_bytes == 2) |
| 946 | *eff_addr = regs_get_register(regs, *regoff) & 0xffff; |
| 947 | else if (insn->addr_bytes == 4) |
| 948 | *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff; |
| 949 | else /* 64-bit address */ |
| 950 | *eff_addr = regs_get_register(regs, *regoff); |
| 951 | |
| 952 | return 0; |
| 953 | } |
| 954 | |
| 955 | /** |
| 956 | * get_eff_addr_modrm() - Obtain referenced effective address via ModRM |
| 957 | * @insn: Instruction. Must be valid. |
| 958 | * @regs: Register values as seen when entering kernel mode |
| 959 | * @regoff: Obtained operand offset, in pt_regs, associated with segment |
| 960 | * @eff_addr: Obtained effective address |
| 961 | * |
| 962 | * Obtain the effective address referenced by the ModRM byte of @insn. After |
| 963 | * identifying the registers involved in the register-indirect memory reference, |
| 964 | * its value is obtained from the operands in @regs. The computed address is |
| 965 | * stored @eff_addr. Also, the register operand that indicates the associated |
| 966 | * segment is stored in @regoff, this parameter can later be used to determine |
| 967 | * such segment. |
| 968 | * |
| 969 | * Returns: |
| 970 | * |
| 971 | * 0 on success. @eff_addr will have the referenced effective address. @regoff |
| 972 | * will have a register, as an offset from the base of pt_regs, that can be used |
| 973 | * to resolve the associated segment. |
| 974 | * |
| 975 | * -EINVAL on error. |
| 976 | */ |
| 977 | static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs, |
| 978 | int *regoff, long *eff_addr) |
| 979 | { |
| 980 | long tmp; |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 981 | int ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 982 | |
| 983 | if (insn->addr_bytes != 8 && insn->addr_bytes != 4) |
| 984 | return -EINVAL; |
| 985 | |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 986 | ret = insn_get_modrm(insn); |
| 987 | if (ret) |
| 988 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 989 | |
| 990 | if (X86_MODRM_MOD(insn->modrm.value) > 2) |
| 991 | return -EINVAL; |
| 992 | |
| 993 | *regoff = get_reg_offset(insn, regs, REG_TYPE_RM); |
| 994 | |
| 995 | /* |
| 996 | * -EDOM means that we must ignore the address_offset. In such a case, |
| 997 | * in 64-bit mode the effective address relative to the rIP of the |
| 998 | * following instruction. |
| 999 | */ |
| 1000 | if (*regoff == -EDOM) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1001 | if (any_64bit_mode(regs)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1002 | tmp = regs->ip + insn->length; |
| 1003 | else |
| 1004 | tmp = 0; |
| 1005 | } else if (*regoff < 0) { |
| 1006 | return -EINVAL; |
| 1007 | } else { |
| 1008 | tmp = regs_get_register(regs, *regoff); |
| 1009 | } |
| 1010 | |
| 1011 | if (insn->addr_bytes == 4) { |
| 1012 | int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value; |
| 1013 | |
| 1014 | *eff_addr = addr32 & 0xffffffff; |
| 1015 | } else { |
| 1016 | *eff_addr = tmp + insn->displacement.value; |
| 1017 | } |
| 1018 | |
| 1019 | return 0; |
| 1020 | } |
| 1021 | |
| 1022 | /** |
| 1023 | * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM |
| 1024 | * @insn: Instruction. Must be valid. |
| 1025 | * @regs: Register values as seen when entering kernel mode |
| 1026 | * @regoff: Obtained operand offset, in pt_regs, associated with segment |
| 1027 | * @eff_addr: Obtained effective address |
| 1028 | * |
| 1029 | * Obtain the 16-bit effective address referenced by the ModRM byte of @insn. |
| 1030 | * After identifying the registers involved in the register-indirect memory |
| 1031 | * reference, its value is obtained from the operands in @regs. The computed |
| 1032 | * address is stored @eff_addr. Also, the register operand that indicates |
| 1033 | * the associated segment is stored in @regoff, this parameter can later be used |
| 1034 | * to determine such segment. |
| 1035 | * |
| 1036 | * Returns: |
| 1037 | * |
| 1038 | * 0 on success. @eff_addr will have the referenced effective address. @regoff |
| 1039 | * will have a register, as an offset from the base of pt_regs, that can be used |
| 1040 | * to resolve the associated segment. |
| 1041 | * |
| 1042 | * -EINVAL on error. |
| 1043 | */ |
| 1044 | static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs, |
| 1045 | int *regoff, short *eff_addr) |
| 1046 | { |
| 1047 | int addr_offset1, addr_offset2, ret; |
| 1048 | short addr1 = 0, addr2 = 0, displacement; |
| 1049 | |
| 1050 | if (insn->addr_bytes != 2) |
| 1051 | return -EINVAL; |
| 1052 | |
| 1053 | insn_get_modrm(insn); |
| 1054 | |
| 1055 | if (!insn->modrm.nbytes) |
| 1056 | return -EINVAL; |
| 1057 | |
| 1058 | if (X86_MODRM_MOD(insn->modrm.value) > 2) |
| 1059 | return -EINVAL; |
| 1060 | |
| 1061 | ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2); |
| 1062 | if (ret < 0) |
| 1063 | return -EINVAL; |
| 1064 | |
| 1065 | /* |
| 1066 | * Don't fail on invalid offset values. They might be invalid because |
| 1067 | * they cannot be used for this particular value of ModRM. Instead, use |
| 1068 | * them in the computation only if they contain a valid value. |
| 1069 | */ |
| 1070 | if (addr_offset1 != -EDOM) |
| 1071 | addr1 = regs_get_register(regs, addr_offset1) & 0xffff; |
| 1072 | |
| 1073 | if (addr_offset2 != -EDOM) |
| 1074 | addr2 = regs_get_register(regs, addr_offset2) & 0xffff; |
| 1075 | |
| 1076 | displacement = insn->displacement.value & 0xffff; |
| 1077 | *eff_addr = addr1 + addr2 + displacement; |
| 1078 | |
| 1079 | /* |
| 1080 | * The first operand register could indicate to use of either SS or DS |
| 1081 | * registers to obtain the segment selector. The second operand |
| 1082 | * register can only indicate the use of DS. Thus, the first operand |
| 1083 | * will be used to obtain the segment selector. |
| 1084 | */ |
| 1085 | *regoff = addr_offset1; |
| 1086 | |
| 1087 | return 0; |
| 1088 | } |
| 1089 | |
| 1090 | /** |
| 1091 | * get_eff_addr_sib() - Obtain referenced effective address via SIB |
| 1092 | * @insn: Instruction. Must be valid. |
| 1093 | * @regs: Register values as seen when entering kernel mode |
| 1094 | * @regoff: Obtained operand offset, in pt_regs, associated with segment |
| 1095 | * @eff_addr: Obtained effective address |
| 1096 | * |
| 1097 | * Obtain the effective address referenced by the SIB byte of @insn. After |
| 1098 | * identifying the registers involved in the indexed, register-indirect memory |
| 1099 | * reference, its value is obtained from the operands in @regs. The computed |
| 1100 | * address is stored @eff_addr. Also, the register operand that indicates the |
| 1101 | * associated segment is stored in @regoff, this parameter can later be used to |
| 1102 | * determine such segment. |
| 1103 | * |
| 1104 | * Returns: |
| 1105 | * |
| 1106 | * 0 on success. @eff_addr will have the referenced effective address. |
| 1107 | * @base_offset will have a register, as an offset from the base of pt_regs, |
| 1108 | * that can be used to resolve the associated segment. |
| 1109 | * |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 1110 | * Negative value on error. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1111 | */ |
| 1112 | static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs, |
| 1113 | int *base_offset, long *eff_addr) |
| 1114 | { |
| 1115 | long base, indx; |
| 1116 | int indx_offset; |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 1117 | int ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1118 | |
| 1119 | if (insn->addr_bytes != 8 && insn->addr_bytes != 4) |
| 1120 | return -EINVAL; |
| 1121 | |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 1122 | ret = insn_get_modrm(insn); |
| 1123 | if (ret) |
| 1124 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1125 | |
| 1126 | if (!insn->modrm.nbytes) |
| 1127 | return -EINVAL; |
| 1128 | |
| 1129 | if (X86_MODRM_MOD(insn->modrm.value) > 2) |
| 1130 | return -EINVAL; |
| 1131 | |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 1132 | ret = insn_get_sib(insn); |
| 1133 | if (ret) |
| 1134 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1135 | |
| 1136 | if (!insn->sib.nbytes) |
| 1137 | return -EINVAL; |
| 1138 | |
| 1139 | *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE); |
| 1140 | indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX); |
| 1141 | |
| 1142 | /* |
| 1143 | * Negative values in the base and index offset means an error when |
| 1144 | * decoding the SIB byte. Except -EDOM, which means that the registers |
| 1145 | * should not be used in the address computation. |
| 1146 | */ |
| 1147 | if (*base_offset == -EDOM) |
| 1148 | base = 0; |
| 1149 | else if (*base_offset < 0) |
| 1150 | return -EINVAL; |
| 1151 | else |
| 1152 | base = regs_get_register(regs, *base_offset); |
| 1153 | |
| 1154 | if (indx_offset == -EDOM) |
| 1155 | indx = 0; |
| 1156 | else if (indx_offset < 0) |
| 1157 | return -EINVAL; |
| 1158 | else |
| 1159 | indx = regs_get_register(regs, indx_offset); |
| 1160 | |
| 1161 | if (insn->addr_bytes == 4) { |
| 1162 | int addr32, base32, idx32; |
| 1163 | |
| 1164 | base32 = base & 0xffffffff; |
| 1165 | idx32 = indx & 0xffffffff; |
| 1166 | |
| 1167 | addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value)); |
| 1168 | addr32 += insn->displacement.value; |
| 1169 | |
| 1170 | *eff_addr = addr32 & 0xffffffff; |
| 1171 | } else { |
| 1172 | *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value)); |
| 1173 | *eff_addr += insn->displacement.value; |
| 1174 | } |
| 1175 | |
| 1176 | return 0; |
| 1177 | } |
| 1178 | |
| 1179 | /** |
| 1180 | * get_addr_ref_16() - Obtain the 16-bit address referred by instruction |
| 1181 | * @insn: Instruction containing ModRM byte and displacement |
| 1182 | * @regs: Register values as seen when entering kernel mode |
| 1183 | * |
| 1184 | * This function is to be used with 16-bit address encodings. Obtain the memory |
| 1185 | * address referred by the instruction's ModRM and displacement bytes. Also, the |
| 1186 | * segment used as base is determined by either any segment override prefixes in |
| 1187 | * @insn or the default segment of the registers involved in the address |
| 1188 | * computation. In protected mode, segment limits are enforced. |
| 1189 | * |
| 1190 | * Returns: |
| 1191 | * |
| 1192 | * Linear address referenced by the instruction operands on success. |
| 1193 | * |
| 1194 | * -1L on error. |
| 1195 | */ |
| 1196 | static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs) |
| 1197 | { |
| 1198 | unsigned long linear_addr = -1L, seg_base, seg_limit; |
| 1199 | int ret, regoff; |
| 1200 | short eff_addr; |
| 1201 | long tmp; |
| 1202 | |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 1203 | if (insn_get_displacement(insn)) |
| 1204 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1205 | |
| 1206 | if (insn->addr_bytes != 2) |
| 1207 | goto out; |
| 1208 | |
| 1209 | if (X86_MODRM_MOD(insn->modrm.value) == 3) { |
| 1210 | ret = get_eff_addr_reg(insn, regs, ®off, &tmp); |
| 1211 | if (ret) |
| 1212 | goto out; |
| 1213 | |
| 1214 | eff_addr = tmp; |
| 1215 | } else { |
| 1216 | ret = get_eff_addr_modrm_16(insn, regs, ®off, &eff_addr); |
| 1217 | if (ret) |
| 1218 | goto out; |
| 1219 | } |
| 1220 | |
| 1221 | ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit); |
| 1222 | if (ret) |
| 1223 | goto out; |
| 1224 | |
| 1225 | /* |
| 1226 | * Before computing the linear address, make sure the effective address |
| 1227 | * is within the limits of the segment. In virtual-8086 mode, segment |
| 1228 | * limits are not enforced. In such a case, the segment limit is -1L to |
| 1229 | * reflect this fact. |
| 1230 | */ |
| 1231 | if ((unsigned long)(eff_addr & 0xffff) > seg_limit) |
| 1232 | goto out; |
| 1233 | |
| 1234 | linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base; |
| 1235 | |
| 1236 | /* Limit linear address to 20 bits */ |
| 1237 | if (v8086_mode(regs)) |
| 1238 | linear_addr &= 0xfffff; |
| 1239 | |
| 1240 | out: |
| 1241 | return (void __user *)linear_addr; |
| 1242 | } |
| 1243 | |
| 1244 | /** |
| 1245 | * get_addr_ref_32() - Obtain a 32-bit linear address |
| 1246 | * @insn: Instruction with ModRM, SIB bytes and displacement |
| 1247 | * @regs: Register values as seen when entering kernel mode |
| 1248 | * |
| 1249 | * This function is to be used with 32-bit address encodings to obtain the |
| 1250 | * linear memory address referred by the instruction's ModRM, SIB, |
| 1251 | * displacement bytes and segment base address, as applicable. If in protected |
| 1252 | * mode, segment limits are enforced. |
| 1253 | * |
| 1254 | * Returns: |
| 1255 | * |
| 1256 | * Linear address referenced by instruction and registers on success. |
| 1257 | * |
| 1258 | * -1L on error. |
| 1259 | */ |
| 1260 | static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs) |
| 1261 | { |
| 1262 | unsigned long linear_addr = -1L, seg_base, seg_limit; |
| 1263 | int eff_addr, regoff; |
| 1264 | long tmp; |
| 1265 | int ret; |
| 1266 | |
| 1267 | if (insn->addr_bytes != 4) |
| 1268 | goto out; |
| 1269 | |
| 1270 | if (X86_MODRM_MOD(insn->modrm.value) == 3) { |
| 1271 | ret = get_eff_addr_reg(insn, regs, ®off, &tmp); |
| 1272 | if (ret) |
| 1273 | goto out; |
| 1274 | |
| 1275 | eff_addr = tmp; |
| 1276 | |
| 1277 | } else { |
| 1278 | if (insn->sib.nbytes) { |
| 1279 | ret = get_eff_addr_sib(insn, regs, ®off, &tmp); |
| 1280 | if (ret) |
| 1281 | goto out; |
| 1282 | |
| 1283 | eff_addr = tmp; |
| 1284 | } else { |
| 1285 | ret = get_eff_addr_modrm(insn, regs, ®off, &tmp); |
| 1286 | if (ret) |
| 1287 | goto out; |
| 1288 | |
| 1289 | eff_addr = tmp; |
| 1290 | } |
| 1291 | } |
| 1292 | |
| 1293 | ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit); |
| 1294 | if (ret) |
| 1295 | goto out; |
| 1296 | |
| 1297 | /* |
| 1298 | * In protected mode, before computing the linear address, make sure |
| 1299 | * the effective address is within the limits of the segment. |
| 1300 | * 32-bit addresses can be used in long and virtual-8086 modes if an |
| 1301 | * address override prefix is used. In such cases, segment limits are |
| 1302 | * not enforced. When in virtual-8086 mode, the segment limit is -1L |
| 1303 | * to reflect this situation. |
| 1304 | * |
| 1305 | * After computed, the effective address is treated as an unsigned |
| 1306 | * quantity. |
| 1307 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1308 | if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1309 | goto out; |
| 1310 | |
| 1311 | /* |
| 1312 | * Even though 32-bit address encodings are allowed in virtual-8086 |
| 1313 | * mode, the address range is still limited to [0x-0xffff]. |
| 1314 | */ |
| 1315 | if (v8086_mode(regs) && (eff_addr & ~0xffff)) |
| 1316 | goto out; |
| 1317 | |
| 1318 | /* |
| 1319 | * Data type long could be 64 bits in size. Ensure that our 32-bit |
| 1320 | * effective address is not sign-extended when computing the linear |
| 1321 | * address. |
| 1322 | */ |
| 1323 | linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base; |
| 1324 | |
| 1325 | /* Limit linear address to 20 bits */ |
| 1326 | if (v8086_mode(regs)) |
| 1327 | linear_addr &= 0xfffff; |
| 1328 | |
| 1329 | out: |
| 1330 | return (void __user *)linear_addr; |
| 1331 | } |
| 1332 | |
| 1333 | /** |
| 1334 | * get_addr_ref_64() - Obtain a 64-bit linear address |
| 1335 | * @insn: Instruction struct with ModRM and SIB bytes and displacement |
| 1336 | * @regs: Structure with register values as seen when entering kernel mode |
| 1337 | * |
| 1338 | * This function is to be used with 64-bit address encodings to obtain the |
| 1339 | * linear memory address referred by the instruction's ModRM, SIB, |
| 1340 | * displacement bytes and segment base address, as applicable. |
| 1341 | * |
| 1342 | * Returns: |
| 1343 | * |
| 1344 | * Linear address referenced by instruction and registers on success. |
| 1345 | * |
| 1346 | * -1L on error. |
| 1347 | */ |
| 1348 | #ifndef CONFIG_X86_64 |
| 1349 | static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs) |
| 1350 | { |
| 1351 | return (void __user *)-1L; |
| 1352 | } |
| 1353 | #else |
| 1354 | static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs) |
| 1355 | { |
| 1356 | unsigned long linear_addr = -1L, seg_base; |
| 1357 | int regoff, ret; |
| 1358 | long eff_addr; |
| 1359 | |
| 1360 | if (insn->addr_bytes != 8) |
| 1361 | goto out; |
| 1362 | |
| 1363 | if (X86_MODRM_MOD(insn->modrm.value) == 3) { |
| 1364 | ret = get_eff_addr_reg(insn, regs, ®off, &eff_addr); |
| 1365 | if (ret) |
| 1366 | goto out; |
| 1367 | |
| 1368 | } else { |
| 1369 | if (insn->sib.nbytes) { |
| 1370 | ret = get_eff_addr_sib(insn, regs, ®off, &eff_addr); |
| 1371 | if (ret) |
| 1372 | goto out; |
| 1373 | } else { |
| 1374 | ret = get_eff_addr_modrm(insn, regs, ®off, &eff_addr); |
| 1375 | if (ret) |
| 1376 | goto out; |
| 1377 | } |
| 1378 | |
| 1379 | } |
| 1380 | |
| 1381 | ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL); |
| 1382 | if (ret) |
| 1383 | goto out; |
| 1384 | |
| 1385 | linear_addr = (unsigned long)eff_addr + seg_base; |
| 1386 | |
| 1387 | out: |
| 1388 | return (void __user *)linear_addr; |
| 1389 | } |
| 1390 | #endif /* CONFIG_X86_64 */ |
| 1391 | |
| 1392 | /** |
| 1393 | * insn_get_addr_ref() - Obtain the linear address referred by instruction |
| 1394 | * @insn: Instruction structure containing ModRM byte and displacement |
| 1395 | * @regs: Structure with register values as seen when entering kernel mode |
| 1396 | * |
| 1397 | * Obtain the linear address referred by the instruction's ModRM, SIB and |
| 1398 | * displacement bytes, and segment base, as applicable. In protected mode, |
| 1399 | * segment limits are enforced. |
| 1400 | * |
| 1401 | * Returns: |
| 1402 | * |
| 1403 | * Linear address referenced by instruction and registers on success. |
| 1404 | * |
| 1405 | * -1L on error. |
| 1406 | */ |
| 1407 | void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs) |
| 1408 | { |
| 1409 | if (!insn || !regs) |
| 1410 | return (void __user *)-1L; |
| 1411 | |
| 1412 | switch (insn->addr_bytes) { |
| 1413 | case 2: |
| 1414 | return get_addr_ref_16(insn, regs); |
| 1415 | case 4: |
| 1416 | return get_addr_ref_32(insn, regs); |
| 1417 | case 8: |
| 1418 | return get_addr_ref_64(insn, regs); |
| 1419 | default: |
| 1420 | return (void __user *)-1L; |
| 1421 | } |
| 1422 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1423 | |
| 1424 | unsigned long insn_get_effective_ip(struct pt_regs *regs) |
| 1425 | { |
| 1426 | unsigned long seg_base = 0; |
| 1427 | |
| 1428 | /* |
| 1429 | * If not in user-space long mode, a custom code segment could be in |
| 1430 | * use. This is true in protected mode (if the process defined a local |
| 1431 | * descriptor table), or virtual-8086 mode. In most of the cases |
| 1432 | * seg_base will be zero as in USER_CS. |
| 1433 | */ |
| 1434 | if (!user_64bit_mode(regs)) { |
| 1435 | seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS); |
| 1436 | if (seg_base == -1L) |
| 1437 | return 0; |
| 1438 | } |
| 1439 | |
| 1440 | return seg_base + regs->ip; |
| 1441 | } |
| 1442 | |
| 1443 | /** |
| 1444 | * insn_fetch_from_user() - Copy instruction bytes from user-space memory |
| 1445 | * @regs: Structure with register values as seen when entering kernel mode |
| 1446 | * @buf: Array to store the fetched instruction |
| 1447 | * |
| 1448 | * Gets the linear address of the instruction and copies the instruction bytes |
| 1449 | * to the buf. |
| 1450 | * |
| 1451 | * Returns: |
| 1452 | * |
| 1453 | * Number of instruction bytes copied. |
| 1454 | * |
| 1455 | * 0 if nothing was copied. |
| 1456 | */ |
| 1457 | int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE]) |
| 1458 | { |
| 1459 | unsigned long ip; |
| 1460 | int not_copied; |
| 1461 | |
| 1462 | ip = insn_get_effective_ip(regs); |
| 1463 | if (!ip) |
| 1464 | return 0; |
| 1465 | |
| 1466 | not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE); |
| 1467 | |
| 1468 | return MAX_INSN_SIZE - not_copied; |
| 1469 | } |
| 1470 | |
| 1471 | /** |
| 1472 | * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory |
| 1473 | * while in atomic code |
| 1474 | * @regs: Structure with register values as seen when entering kernel mode |
| 1475 | * @buf: Array to store the fetched instruction |
| 1476 | * |
| 1477 | * Gets the linear address of the instruction and copies the instruction bytes |
| 1478 | * to the buf. This function must be used in atomic context. |
| 1479 | * |
| 1480 | * Returns: |
| 1481 | * |
| 1482 | * Number of instruction bytes copied. |
| 1483 | * |
| 1484 | * 0 if nothing was copied. |
| 1485 | */ |
| 1486 | int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE]) |
| 1487 | { |
| 1488 | unsigned long ip; |
| 1489 | int not_copied; |
| 1490 | |
| 1491 | ip = insn_get_effective_ip(regs); |
| 1492 | if (!ip) |
| 1493 | return 0; |
| 1494 | |
| 1495 | not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE); |
| 1496 | |
| 1497 | return MAX_INSN_SIZE - not_copied; |
| 1498 | } |
| 1499 | |
| 1500 | /** |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 1501 | * insn_decode_from_regs() - Decode an instruction |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1502 | * @insn: Structure to store decoded instruction |
| 1503 | * @regs: Structure with register values as seen when entering kernel mode |
| 1504 | * @buf: Buffer containing the instruction bytes |
| 1505 | * @buf_size: Number of instruction bytes available in buf |
| 1506 | * |
| 1507 | * Decodes the instruction provided in buf and stores the decoding results in |
| 1508 | * insn. Also determines the correct address and operand sizes. |
| 1509 | * |
| 1510 | * Returns: |
| 1511 | * |
| 1512 | * True if instruction was decoded, False otherwise. |
| 1513 | */ |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 1514 | bool insn_decode_from_regs(struct insn *insn, struct pt_regs *regs, |
| 1515 | unsigned char buf[MAX_INSN_SIZE], int buf_size) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1516 | { |
| 1517 | int seg_defs; |
| 1518 | |
| 1519 | insn_init(insn, buf, buf_size, user_64bit_mode(regs)); |
| 1520 | |
| 1521 | /* |
| 1522 | * Override the default operand and address sizes with what is specified |
| 1523 | * in the code segment descriptor. The instruction decoder only sets |
| 1524 | * the address size it to either 4 or 8 address bytes and does nothing |
| 1525 | * for the operand bytes. This OK for most of the cases, but we could |
| 1526 | * have special cases where, for instance, a 16-bit code segment |
| 1527 | * descriptor is used. |
| 1528 | * If there is an address override prefix, the instruction decoder |
| 1529 | * correctly updates these values, even for 16-bit defaults. |
| 1530 | */ |
| 1531 | seg_defs = insn_get_code_seg_params(regs); |
| 1532 | if (seg_defs == -EINVAL) |
| 1533 | return false; |
| 1534 | |
| 1535 | insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs); |
| 1536 | insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs); |
| 1537 | |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame^] | 1538 | if (insn_get_length(insn)) |
| 1539 | return false; |
| 1540 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1541 | if (buf_size < insn->length) |
| 1542 | return false; |
| 1543 | |
| 1544 | return true; |
| 1545 | } |