blob: 0182b291248ace8e4cb2bbbe7ce3422524de322c [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001/* SPDX-License-Identifier: GPL-2.0-or-later */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002#ifndef _ASM_POWERPC_IO_H
3#define _ASM_POWERPC_IO_H
4#ifdef __KERNEL__
5
6#define ARCH_HAS_IOREMAP_WC
David Brazdil0f672f62019-12-10 10:32:29 +00007#ifdef CONFIG_PPC32
8#define ARCH_HAS_IOREMAP_WT
9#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010
11/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012 */
13
14/* Check of existence of legacy devices */
15extern int check_legacy_ioport(unsigned long base_port);
16#define I8042_DATA_REG 0x60
17#define FDC_BASE 0x3f0
18
19#if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20extern struct pci_dev *isa_bridge_pcidev;
21/*
22 * has legacy ISA devices ?
23 */
24#define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special)
25#endif
26
27#include <linux/device.h>
28#include <linux/compiler.h>
David Brazdil0f672f62019-12-10 10:32:29 +000029#include <linux/mm.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000030#include <asm/page.h>
31#include <asm/byteorder.h>
32#include <asm/synch.h>
33#include <asm/delay.h>
David Brazdil0f672f62019-12-10 10:32:29 +000034#include <asm/mmiowb.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000035#include <asm/mmu.h>
36#include <asm/ppc_asm.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000037
38#define SIO_CONFIG_RA 0x398
39#define SIO_CONFIG_RD 0x399
40
41#define SLOW_DOWN_IO
42
43/* 32 bits uses slightly different variables for the various IO
44 * bases. Most of this file only uses _IO_BASE though which we
45 * define properly based on the platform
46 */
47#ifndef CONFIG_PCI
48#define _IO_BASE 0
49#define _ISA_MEM_BASE 0
50#define PCI_DRAM_OFFSET 0
51#elif defined(CONFIG_PPC32)
52#define _IO_BASE isa_io_base
53#define _ISA_MEM_BASE isa_mem_base
54#define PCI_DRAM_OFFSET pci_dram_offset
55#else
56#define _IO_BASE pci_io_base
57#define _ISA_MEM_BASE isa_mem_base
58#define PCI_DRAM_OFFSET 0
59#endif
60
61extern unsigned long isa_io_base;
62extern unsigned long pci_io_base;
63extern unsigned long pci_dram_offset;
64
65extern resource_size_t isa_mem_base;
66
67/* Boolean set by platform if PIO accesses are suppored while _IO_BASE
68 * is not set or addresses cannot be translated to MMIO. This is typically
69 * set when the platform supports "special" PIO accesses via a non memory
70 * mapped mechanism, and allows things like the early udbg UART code to
71 * function.
72 */
73extern bool isa_io_special;
74
75#ifdef CONFIG_PPC32
76#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
77#error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
78#endif
79#endif
80
81/*
82 *
83 * Low level MMIO accessors
84 *
85 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
86 * specific and thus shouldn't be used in generic code. The accessors
87 * provided here are:
88 *
89 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
90 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
91 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
92 *
93 * Those operate directly on a kernel virtual address. Note that the prototype
94 * for the out_* accessors has the arguments in opposite order from the usual
95 * linux PCI accessors. Unlike those, they take the address first and the value
96 * next.
97 *
98 * Note: I might drop the _ns suffix on the stream operations soon as it is
99 * simply normal for stream operations to not swap in the first place.
100 *
101 */
102
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000103#define DEF_MMIO_IN_X(name, size, insn) \
104static inline u##size name(const volatile u##size __iomem *addr) \
105{ \
106 u##size ret; \
107 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \
108 : "=r" (ret) : "Z" (*addr) : "memory"); \
109 return ret; \
110}
111
112#define DEF_MMIO_OUT_X(name, size, insn) \
113static inline void name(volatile u##size __iomem *addr, u##size val) \
114{ \
115 __asm__ __volatile__("sync;"#insn" %1,%y0" \
116 : "=Z" (*addr) : "r" (val) : "memory"); \
David Brazdil0f672f62019-12-10 10:32:29 +0000117 mmiowb_set_pending(); \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000118}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000119
120#define DEF_MMIO_IN_D(name, size, insn) \
121static inline u##size name(const volatile u##size __iomem *addr) \
122{ \
123 u##size ret; \
124 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
125 : "=r" (ret) : "m" (*addr) : "memory"); \
126 return ret; \
127}
128
129#define DEF_MMIO_OUT_D(name, size, insn) \
130static inline void name(volatile u##size __iomem *addr, u##size val) \
131{ \
132 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \
133 : "=m" (*addr) : "r" (val) : "memory"); \
David Brazdil0f672f62019-12-10 10:32:29 +0000134 mmiowb_set_pending(); \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000135}
136
137DEF_MMIO_IN_D(in_8, 8, lbz);
138DEF_MMIO_OUT_D(out_8, 8, stb);
139
140#ifdef __BIG_ENDIAN__
141DEF_MMIO_IN_D(in_be16, 16, lhz);
142DEF_MMIO_IN_D(in_be32, 32, lwz);
143DEF_MMIO_IN_X(in_le16, 16, lhbrx);
144DEF_MMIO_IN_X(in_le32, 32, lwbrx);
145
146DEF_MMIO_OUT_D(out_be16, 16, sth);
147DEF_MMIO_OUT_D(out_be32, 32, stw);
148DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
149DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
150#else
151DEF_MMIO_IN_X(in_be16, 16, lhbrx);
152DEF_MMIO_IN_X(in_be32, 32, lwbrx);
153DEF_MMIO_IN_D(in_le16, 16, lhz);
154DEF_MMIO_IN_D(in_le32, 32, lwz);
155
156DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
157DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
158DEF_MMIO_OUT_D(out_le16, 16, sth);
159DEF_MMIO_OUT_D(out_le32, 32, stw);
160
161#endif /* __BIG_ENDIAN */
162
163#ifdef __powerpc64__
164
165#ifdef __BIG_ENDIAN__
166DEF_MMIO_OUT_D(out_be64, 64, std);
167DEF_MMIO_IN_D(in_be64, 64, ld);
168
169/* There is no asm instructions for 64 bits reverse loads and stores */
170static inline u64 in_le64(const volatile u64 __iomem *addr)
171{
172 return swab64(in_be64(addr));
173}
174
175static inline void out_le64(volatile u64 __iomem *addr, u64 val)
176{
177 out_be64(addr, swab64(val));
178}
179#else
180DEF_MMIO_OUT_D(out_le64, 64, std);
181DEF_MMIO_IN_D(in_le64, 64, ld);
182
183/* There is no asm instructions for 64 bits reverse loads and stores */
184static inline u64 in_be64(const volatile u64 __iomem *addr)
185{
186 return swab64(in_le64(addr));
187}
188
189static inline void out_be64(volatile u64 __iomem *addr, u64 val)
190{
191 out_le64(addr, swab64(val));
192}
193
194#endif
195#endif /* __powerpc64__ */
196
197/*
198 * Low level IO stream instructions are defined out of line for now
199 */
200extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
201extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
202extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
203extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
204extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
205extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
206
207/* The _ns naming is historical and will be removed. For now, just #define
208 * the non _ns equivalent names
209 */
210#define _insw _insw_ns
211#define _insl _insl_ns
212#define _outsw _outsw_ns
213#define _outsl _outsl_ns
214
215
216/*
217 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
218 */
219
220extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
221extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
222 unsigned long n);
223extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
224 unsigned long n);
225
226/*
227 *
228 * PCI and standard ISA accessors
229 *
230 * Those are globally defined linux accessors for devices on PCI or ISA
231 * busses. They follow the Linux defined semantics. The current implementation
232 * for PowerPC is as close as possible to the x86 version of these, and thus
233 * provides fairly heavy weight barriers for the non-raw versions
234 *
235 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
236 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
237 * own implementation of some or all of the accessors.
238 */
239
240/*
241 * Include the EEH definitions when EEH is enabled only so they don't get
242 * in the way when building for 32 bits
243 */
244#ifdef CONFIG_EEH
245#include <asm/eeh.h>
246#endif
247
248/* Shortcut to the MMIO argument pointer */
249#define PCI_IO_ADDR volatile void __iomem *
250
251/* Indirect IO address tokens:
252 *
253 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
254 * on all MMIOs. (Note that this is all 64 bits only for now)
255 *
256 * To help platforms who may need to differentiate MMIO addresses in
257 * their hooks, a bitfield is reserved for use by the platform near the
258 * top of MMIO addresses (not PIO, those have to cope the hard way).
259 *
260 * The highest address in the kernel virtual space are:
261 *
262 * d0003fffffffffff # with Hash MMU
263 * c00fffffffffffff # with Radix MMU
264 *
265 * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
266 * that can be used for the field.
267 *
268 * The direct IO mapping operations will then mask off those bits
269 * before doing the actual access, though that only happen when
270 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
271 * mechanism
272 *
273 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
274 * all PIO functions call through a hook.
275 */
276
277#ifdef CONFIG_PPC_INDIRECT_MMIO
278#define PCI_IO_IND_TOKEN_SHIFT 52
279#define PCI_IO_IND_TOKEN_MASK (0xfful << PCI_IO_IND_TOKEN_SHIFT)
280#define PCI_FIX_ADDR(addr) \
281 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
282#define PCI_GET_ADDR_TOKEN(addr) \
283 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
284 PCI_IO_IND_TOKEN_SHIFT)
285#define PCI_SET_ADDR_TOKEN(addr, token) \
286do { \
287 unsigned long __a = (unsigned long)(addr); \
288 __a &= ~PCI_IO_IND_TOKEN_MASK; \
289 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
290 (addr) = (void __iomem *)__a; \
291} while(0)
292#else
293#define PCI_FIX_ADDR(addr) (addr)
294#endif
295
296
297/*
298 * Non ordered and non-swapping "raw" accessors
299 */
300
301static inline unsigned char __raw_readb(const volatile void __iomem *addr)
302{
303 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
304}
305static inline unsigned short __raw_readw(const volatile void __iomem *addr)
306{
307 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
308}
309static inline unsigned int __raw_readl(const volatile void __iomem *addr)
310{
311 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
312}
313static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
314{
315 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
316}
317static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
318{
319 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
320}
321static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
322{
323 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
324}
325
326#ifdef __powerpc64__
327static inline unsigned long __raw_readq(const volatile void __iomem *addr)
328{
329 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
330}
331static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
332{
333 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
334}
335
336static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
337{
338 __raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
339}
340
341/*
342 * Real mode versions of the above. Those instructions are only supposed
343 * to be used in hypervisor real mode as per the architecture spec.
344 */
345static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
346{
Olivier Deprez92d4c212022-12-06 15:05:30 +0100347 __asm__ __volatile__(".machine push; \
348 .machine power6; \
349 stbcix %0,0,%1; \
350 .machine pop;"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000351 : : "r" (val), "r" (paddr) : "memory");
352}
353
354static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
355{
Olivier Deprez92d4c212022-12-06 15:05:30 +0100356 __asm__ __volatile__(".machine push; \
357 .machine power6; \
358 sthcix %0,0,%1; \
359 .machine pop;"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000360 : : "r" (val), "r" (paddr) : "memory");
361}
362
363static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
364{
Olivier Deprez92d4c212022-12-06 15:05:30 +0100365 __asm__ __volatile__(".machine push; \
366 .machine power6; \
367 stwcix %0,0,%1; \
368 .machine pop;"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000369 : : "r" (val), "r" (paddr) : "memory");
370}
371
372static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
373{
Olivier Deprez92d4c212022-12-06 15:05:30 +0100374 __asm__ __volatile__(".machine push; \
375 .machine power6; \
376 stdcix %0,0,%1; \
377 .machine pop;"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000378 : : "r" (val), "r" (paddr) : "memory");
379}
380
381static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
382{
383 __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
384}
385
386static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
387{
388 u8 ret;
Olivier Deprez92d4c212022-12-06 15:05:30 +0100389 __asm__ __volatile__(".machine push; \
390 .machine power6; \
391 lbzcix %0,0, %1; \
392 .machine pop;"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000393 : "=r" (ret) : "r" (paddr) : "memory");
394 return ret;
395}
396
397static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
398{
399 u16 ret;
Olivier Deprez92d4c212022-12-06 15:05:30 +0100400 __asm__ __volatile__(".machine push; \
401 .machine power6; \
402 lhzcix %0,0, %1; \
403 .machine pop;"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000404 : "=r" (ret) : "r" (paddr) : "memory");
405 return ret;
406}
407
408static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
409{
410 u32 ret;
Olivier Deprez92d4c212022-12-06 15:05:30 +0100411 __asm__ __volatile__(".machine push; \
412 .machine power6; \
413 lwzcix %0,0, %1; \
414 .machine pop;"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000415 : "=r" (ret) : "r" (paddr) : "memory");
416 return ret;
417}
418
419static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
420{
421 u64 ret;
Olivier Deprez92d4c212022-12-06 15:05:30 +0100422 __asm__ __volatile__(".machine push; \
423 .machine power6; \
424 ldcix %0,0, %1; \
425 .machine pop;"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000426 : "=r" (ret) : "r" (paddr) : "memory");
427 return ret;
428}
429#endif /* __powerpc64__ */
430
431/*
432 *
433 * PCI PIO and MMIO accessors.
434 *
435 *
436 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
437 * machine checks (which they occasionally do when probing non existing
438 * IO ports on some platforms, like PowerMac and 8xx).
439 * I always found it to be of dubious reliability and I am tempted to get
440 * rid of it one of these days. So if you think it's important to keep it,
441 * please voice up asap. We never had it for 64 bits and I do not intend
442 * to port it over
443 */
444
445#ifdef CONFIG_PPC32
446
447#define __do_in_asm(name, op) \
448static inline unsigned int name(unsigned int port) \
449{ \
450 unsigned int x; \
451 __asm__ __volatile__( \
452 "sync\n" \
453 "0:" op " %0,0,%1\n" \
454 "1: twi 0,%0,0\n" \
455 "2: isync\n" \
456 "3: nop\n" \
457 "4:\n" \
458 ".section .fixup,\"ax\"\n" \
459 "5: li %0,-1\n" \
460 " b 4b\n" \
461 ".previous\n" \
462 EX_TABLE(0b, 5b) \
463 EX_TABLE(1b, 5b) \
464 EX_TABLE(2b, 5b) \
465 EX_TABLE(3b, 5b) \
466 : "=&r" (x) \
467 : "r" (port + _IO_BASE) \
468 : "memory"); \
469 return x; \
470}
471
472#define __do_out_asm(name, op) \
473static inline void name(unsigned int val, unsigned int port) \
474{ \
475 __asm__ __volatile__( \
476 "sync\n" \
477 "0:" op " %0,0,%1\n" \
478 "1: sync\n" \
479 "2:\n" \
480 EX_TABLE(0b, 2b) \
481 EX_TABLE(1b, 2b) \
482 : : "r" (val), "r" (port + _IO_BASE) \
483 : "memory"); \
484}
485
486__do_in_asm(_rec_inb, "lbzx")
487__do_in_asm(_rec_inw, "lhbrx")
488__do_in_asm(_rec_inl, "lwbrx")
489__do_out_asm(_rec_outb, "stbx")
490__do_out_asm(_rec_outw, "sthbrx")
491__do_out_asm(_rec_outl, "stwbrx")
492
493#endif /* CONFIG_PPC32 */
494
495/* The "__do_*" operations below provide the actual "base" implementation
496 * for each of the defined accessors. Some of them use the out_* functions
497 * directly, some of them still use EEH, though we might change that in the
498 * future. Those macros below provide the necessary argument swapping and
499 * handling of the IO base for PIO.
500 *
501 * They are themselves used by the macros that define the actual accessors
502 * and can be used by the hooks if any.
503 *
504 * Note that PIO operations are always defined in terms of their corresonding
505 * MMIO operations. That allows platforms like iSeries who want to modify the
506 * behaviour of both to only hook on the MMIO version and get both. It's also
507 * possible to hook directly at the toplevel PIO operation if they have to
508 * be handled differently
509 */
510#define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
511#define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
512#define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
513#define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
514#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
515#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
516#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
517
518#ifdef CONFIG_EEH
519#define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
520#define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
521#define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
522#define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
523#define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
524#define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
525#define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
526#else /* CONFIG_EEH */
527#define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
528#define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
529#define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
530#define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
531#define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
532#define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
533#define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
534#endif /* !defined(CONFIG_EEH) */
535
536#ifdef CONFIG_PPC32
537#define __do_outb(val, port) _rec_outb(val, port)
538#define __do_outw(val, port) _rec_outw(val, port)
539#define __do_outl(val, port) _rec_outl(val, port)
540#define __do_inb(port) _rec_inb(port)
541#define __do_inw(port) _rec_inw(port)
542#define __do_inl(port) _rec_inl(port)
543#else /* CONFIG_PPC32 */
544#define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
545#define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
546#define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
547#define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
548#define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
549#define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
550#endif /* !CONFIG_PPC32 */
551
552#ifdef CONFIG_EEH
553#define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
554#define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
555#define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
556#else /* CONFIG_EEH */
557#define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
558#define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
559#define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
560#endif /* !CONFIG_EEH */
561#define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
562#define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
563#define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
564
565#define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
566#define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
567#define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
568#define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
569#define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
570#define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
571
572#define __do_memset_io(addr, c, n) \
573 _memset_io(PCI_FIX_ADDR(addr), c, n)
574#define __do_memcpy_toio(dst, src, n) \
575 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
576
577#ifdef CONFIG_EEH
578#define __do_memcpy_fromio(dst, src, n) \
579 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
580#else /* CONFIG_EEH */
581#define __do_memcpy_fromio(dst, src, n) \
582 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
583#endif /* !CONFIG_EEH */
584
585#ifdef CONFIG_PPC_INDIRECT_PIO
586#define DEF_PCI_HOOK_pio(x) x
587#else
588#define DEF_PCI_HOOK_pio(x) NULL
589#endif
590
591#ifdef CONFIG_PPC_INDIRECT_MMIO
592#define DEF_PCI_HOOK_mem(x) x
593#else
594#define DEF_PCI_HOOK_mem(x) NULL
595#endif
596
597/* Structure containing all the hooks */
598extern struct ppc_pci_io {
599
600#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
601#define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
602
603#include <asm/io-defs.h>
604
605#undef DEF_PCI_AC_RET
606#undef DEF_PCI_AC_NORET
607
608} ppc_pci_io;
609
610/* The inline wrappers */
611#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
612static inline ret name at \
613{ \
614 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
615 return ppc_pci_io.name al; \
616 return __do_##name al; \
617}
618
619#define DEF_PCI_AC_NORET(name, at, al, space, aa) \
620static inline void name at \
621{ \
622 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
623 ppc_pci_io.name al; \
624 else \
625 __do_##name al; \
626}
627
628#include <asm/io-defs.h>
629
630#undef DEF_PCI_AC_RET
631#undef DEF_PCI_AC_NORET
632
633/* Some drivers check for the presence of readq & writeq with
634 * a #ifdef, so we make them happy here.
635 */
636#ifdef __powerpc64__
637#define readq readq
638#define writeq writeq
639#endif
640
641/*
642 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
643 * access
644 */
645#define xlate_dev_mem_ptr(p) __va(p)
646
647/*
648 * Convert a virtual cached pointer to an uncached pointer
649 */
650#define xlate_dev_kmem_ptr(p) p
651
652/*
653 * We don't do relaxed operations yet, at least not with this semantic
654 */
655#define readb_relaxed(addr) readb(addr)
656#define readw_relaxed(addr) readw(addr)
657#define readl_relaxed(addr) readl(addr)
658#define readq_relaxed(addr) readq(addr)
659#define writeb_relaxed(v, addr) writeb(v, addr)
660#define writew_relaxed(v, addr) writew(v, addr)
661#define writel_relaxed(v, addr) writel(v, addr)
662#define writeq_relaxed(v, addr) writeq(v, addr)
663
664#include <asm-generic/iomap.h>
665
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000666static inline void iosync(void)
667{
668 __asm__ __volatile__ ("sync" : : : "memory");
669}
670
671/* Enforce in-order execution of data I/O.
672 * No distinction between read/write on PPC; use eieio for all three.
673 * Those are fairly week though. They don't provide a barrier between
674 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
675 * they only provide barriers between 2 __raw MMIO operations and
676 * possibly break write combining.
677 */
678#define iobarrier_rw() eieio()
679#define iobarrier_r() eieio()
680#define iobarrier_w() eieio()
681
682
683/*
684 * output pause versions need a delay at least for the
685 * w83c105 ide controller in a p610.
686 */
687#define inb_p(port) inb(port)
688#define outb_p(val, port) (udelay(1), outb((val), (port)))
689#define inw_p(port) inw(port)
690#define outw_p(val, port) (udelay(1), outw((val), (port)))
691#define inl_p(port) inl(port)
692#define outl_p(val, port) (udelay(1), outl((val), (port)))
693
694
695#define IO_SPACE_LIMIT ~(0UL)
696
697
698/**
699 * ioremap - map bus memory into CPU space
700 * @address: bus address of the memory
701 * @size: size of the resource to map
702 *
703 * ioremap performs a platform specific sequence of operations to
704 * make bus memory CPU accessible via the readb/readw/readl/writeb/
705 * writew/writel functions and the other mmio helpers. The returned
706 * address is not guaranteed to be usable directly as a virtual
707 * address.
708 *
709 * We provide a few variations of it:
710 *
711 * * ioremap is the standard one and provides non-cacheable guarded mappings
712 * and can be hooked by the platform via ppc_md
713 *
714 * * ioremap_prot allows to specify the page flags as an argument and can
715 * also be hooked by the platform via ppc_md.
716 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000717 * * ioremap_wc enables write combining
718 *
David Brazdil0f672f62019-12-10 10:32:29 +0000719 * * ioremap_wt enables write through
720 *
721 * * ioremap_coherent maps coherent cached memory
722 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000723 * * iounmap undoes such a mapping and can be hooked
724 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000725 * * __ioremap_caller is the same as above but takes an explicit caller
726 * reference rather than using __builtin_return_address(0)
727 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000728 */
729extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
730extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
731 unsigned long flags);
732extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
David Brazdil0f672f62019-12-10 10:32:29 +0000733void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
734void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000735#define ioremap_uc(addr, size) ioremap((addr), (size))
736#define ioremap_cache(addr, size) \
737 ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
738
739extern void iounmap(volatile void __iomem *addr);
740
Olivier Deprez157378f2022-04-04 15:47:50 +0200741void __iomem *ioremap_phb(phys_addr_t paddr, unsigned long size);
742
David Brazdil0f672f62019-12-10 10:32:29 +0000743int early_ioremap_range(unsigned long ea, phys_addr_t pa,
744 unsigned long size, pgprot_t prot);
745void __iomem *do_ioremap(phys_addr_t pa, phys_addr_t offset, unsigned long size,
746 pgprot_t prot, void *caller);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000747
David Brazdil0f672f62019-12-10 10:32:29 +0000748extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
749 pgprot_t prot, void *caller);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000750
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000751/*
752 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
753 * which needs some additional definitions here. They basically allow PIO
754 * space overall to be 1GB. This will work as long as we never try to use
755 * iomap to map MMIO below 1GB which should be fine on ppc64
756 */
757#define HAVE_ARCH_PIO_SIZE 1
758#define PIO_OFFSET 0x00000000UL
759#define PIO_MASK (FULL_IO_SIZE - 1)
760#define PIO_RESERVED (FULL_IO_SIZE)
761
762#define mmio_read16be(addr) readw_be(addr)
763#define mmio_read32be(addr) readl_be(addr)
David Brazdil0f672f62019-12-10 10:32:29 +0000764#define mmio_read64be(addr) readq_be(addr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000765#define mmio_write16be(val, addr) writew_be(val, addr)
766#define mmio_write32be(val, addr) writel_be(val, addr)
David Brazdil0f672f62019-12-10 10:32:29 +0000767#define mmio_write64be(val, addr) writeq_be(val, addr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000768#define mmio_insb(addr, dst, count) readsb(addr, dst, count)
769#define mmio_insw(addr, dst, count) readsw(addr, dst, count)
770#define mmio_insl(addr, dst, count) readsl(addr, dst, count)
771#define mmio_outsb(addr, src, count) writesb(addr, src, count)
772#define mmio_outsw(addr, src, count) writesw(addr, src, count)
773#define mmio_outsl(addr, src, count) writesl(addr, src, count)
774
775/**
776 * virt_to_phys - map virtual addresses to physical
777 * @address: address to remap
778 *
779 * The returned physical address is the physical (CPU) mapping for
780 * the memory address given. It is only valid to use this function on
781 * addresses directly mapped or allocated via kmalloc.
782 *
783 * This function does not give bus mappings for DMA transfers. In
784 * almost all conceivable cases a device driver should not be using
785 * this function
786 */
787static inline unsigned long virt_to_phys(volatile void * address)
788{
David Brazdil0f672f62019-12-10 10:32:29 +0000789 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
790
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000791 return __pa((unsigned long)address);
792}
793
794/**
795 * phys_to_virt - map physical address to virtual
796 * @address: address to remap
797 *
798 * The returned virtual address is a current CPU mapping for
799 * the memory address given. It is only valid to use this function on
800 * addresses that have a kernel mapping
801 *
802 * This function does not handle bus mappings for DMA transfers. In
803 * almost all conceivable cases a device driver should not be using
804 * this function
805 */
806static inline void * phys_to_virt(unsigned long address)
807{
808 return (void *)__va(address);
809}
810
811/*
812 * Change "struct page" to physical address.
813 */
David Brazdil0f672f62019-12-10 10:32:29 +0000814static inline phys_addr_t page_to_phys(struct page *page)
815{
816 unsigned long pfn = page_to_pfn(page);
817
818 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
819
820 return PFN_PHYS(pfn);
821}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000822
823/*
824 * 32 bits still uses virt_to_bus() for it's implementation of DMA
825 * mappings se we have to keep it defined here. We also have some old
826 * drivers (shame shame shame) that use bus_to_virt() and haven't been
827 * fixed yet so I need to define it here.
828 */
829#ifdef CONFIG_PPC32
830
831static inline unsigned long virt_to_bus(volatile void * address)
832{
833 if (address == NULL)
834 return 0;
835 return __pa(address) + PCI_DRAM_OFFSET;
836}
837
838static inline void * bus_to_virt(unsigned long address)
839{
840 if (address == 0)
841 return NULL;
842 return __va(address - PCI_DRAM_OFFSET);
843}
844
845#define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
846
847#endif /* CONFIG_PPC32 */
848
849/* access ports */
850#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
851#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
852
853#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
854#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
855
856#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
857#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
858
859/* Clear and set bits in one shot. These macros can be used to clear and
860 * set multiple bits in a register using a single read-modify-write. These
861 * macros can also be used to set a multiple-bit bit pattern using a mask,
862 * by specifying the mask in the 'clear' parameter and the new bit pattern
863 * in the 'set' parameter.
864 */
865
866#define clrsetbits(type, addr, clear, set) \
867 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
868
869#ifdef __powerpc64__
870#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
871#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
872#endif
873
874#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
875#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
876
877#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
878#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
879
880#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
881
882#endif /* __KERNEL__ */
883
884#endif /* _ASM_POWERPC_IO_H */