Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * linux/kernel/posix-timers.c |
| 3 | * |
| 4 | * |
| 5 | * 2002-10-15 Posix Clocks & timers |
| 6 | * by George Anzinger george@mvista.com |
| 7 | * |
| 8 | * Copyright (C) 2002 2003 by MontaVista Software. |
| 9 | * |
| 10 | * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. |
| 11 | * Copyright (C) 2004 Boris Hu |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or modify |
| 14 | * it under the terms of the GNU General Public License as published by |
| 15 | * the Free Software Foundation; either version 2 of the License, or (at |
| 16 | * your option) any later version. |
| 17 | * |
| 18 | * This program is distributed in the hope that it will be useful, but |
| 19 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 21 | * General Public License for more details. |
| 22 | |
| 23 | * You should have received a copy of the GNU General Public License |
| 24 | * along with this program; if not, write to the Free Software |
| 25 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 26 | * |
| 27 | * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA |
| 28 | */ |
| 29 | |
| 30 | /* These are all the functions necessary to implement |
| 31 | * POSIX clocks & timers |
| 32 | */ |
| 33 | #include <linux/mm.h> |
| 34 | #include <linux/interrupt.h> |
| 35 | #include <linux/slab.h> |
| 36 | #include <linux/time.h> |
| 37 | #include <linux/mutex.h> |
| 38 | #include <linux/sched/task.h> |
| 39 | |
| 40 | #include <linux/uaccess.h> |
| 41 | #include <linux/list.h> |
| 42 | #include <linux/init.h> |
| 43 | #include <linux/compiler.h> |
| 44 | #include <linux/hash.h> |
| 45 | #include <linux/posix-clock.h> |
| 46 | #include <linux/posix-timers.h> |
| 47 | #include <linux/syscalls.h> |
| 48 | #include <linux/wait.h> |
| 49 | #include <linux/workqueue.h> |
| 50 | #include <linux/export.h> |
| 51 | #include <linux/hashtable.h> |
| 52 | #include <linux/compat.h> |
| 53 | #include <linux/nospec.h> |
| 54 | |
| 55 | #include "timekeeping.h" |
| 56 | #include "posix-timers.h" |
| 57 | |
| 58 | /* |
| 59 | * Management arrays for POSIX timers. Timers are now kept in static hash table |
| 60 | * with 512 entries. |
| 61 | * Timer ids are allocated by local routine, which selects proper hash head by |
| 62 | * key, constructed from current->signal address and per signal struct counter. |
| 63 | * This keeps timer ids unique per process, but now they can intersect between |
| 64 | * processes. |
| 65 | */ |
| 66 | |
| 67 | /* |
| 68 | * Lets keep our timers in a slab cache :-) |
| 69 | */ |
| 70 | static struct kmem_cache *posix_timers_cache; |
| 71 | |
| 72 | static DEFINE_HASHTABLE(posix_timers_hashtable, 9); |
| 73 | static DEFINE_SPINLOCK(hash_lock); |
| 74 | |
| 75 | static const struct k_clock * const posix_clocks[]; |
| 76 | static const struct k_clock *clockid_to_kclock(const clockid_t id); |
| 77 | static const struct k_clock clock_realtime, clock_monotonic; |
| 78 | |
| 79 | /* |
| 80 | * we assume that the new SIGEV_THREAD_ID shares no bits with the other |
| 81 | * SIGEV values. Here we put out an error if this assumption fails. |
| 82 | */ |
| 83 | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ |
| 84 | ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) |
| 85 | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" |
| 86 | #endif |
| 87 | |
| 88 | /* |
| 89 | * The timer ID is turned into a timer address by idr_find(). |
| 90 | * Verifying a valid ID consists of: |
| 91 | * |
| 92 | * a) checking that idr_find() returns other than -1. |
| 93 | * b) checking that the timer id matches the one in the timer itself. |
| 94 | * c) that the timer owner is in the callers thread group. |
| 95 | */ |
| 96 | |
| 97 | /* |
| 98 | * CLOCKs: The POSIX standard calls for a couple of clocks and allows us |
| 99 | * to implement others. This structure defines the various |
| 100 | * clocks. |
| 101 | * |
| 102 | * RESOLUTION: Clock resolution is used to round up timer and interval |
| 103 | * times, NOT to report clock times, which are reported with as |
| 104 | * much resolution as the system can muster. In some cases this |
| 105 | * resolution may depend on the underlying clock hardware and |
| 106 | * may not be quantifiable until run time, and only then is the |
| 107 | * necessary code is written. The standard says we should say |
| 108 | * something about this issue in the documentation... |
| 109 | * |
| 110 | * FUNCTIONS: The CLOCKs structure defines possible functions to |
| 111 | * handle various clock functions. |
| 112 | * |
| 113 | * The standard POSIX timer management code assumes the |
| 114 | * following: 1.) The k_itimer struct (sched.h) is used for |
| 115 | * the timer. 2.) The list, it_lock, it_clock, it_id and |
| 116 | * it_pid fields are not modified by timer code. |
| 117 | * |
| 118 | * Permissions: It is assumed that the clock_settime() function defined |
| 119 | * for each clock will take care of permission checks. Some |
| 120 | * clocks may be set able by any user (i.e. local process |
| 121 | * clocks) others not. Currently the only set able clock we |
| 122 | * have is CLOCK_REALTIME and its high res counter part, both of |
| 123 | * which we beg off on and pass to do_sys_settimeofday(). |
| 124 | */ |
| 125 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); |
| 126 | |
| 127 | #define lock_timer(tid, flags) \ |
| 128 | ({ struct k_itimer *__timr; \ |
| 129 | __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ |
| 130 | __timr; \ |
| 131 | }) |
| 132 | |
| 133 | static int hash(struct signal_struct *sig, unsigned int nr) |
| 134 | { |
| 135 | return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); |
| 136 | } |
| 137 | |
| 138 | static struct k_itimer *__posix_timers_find(struct hlist_head *head, |
| 139 | struct signal_struct *sig, |
| 140 | timer_t id) |
| 141 | { |
| 142 | struct k_itimer *timer; |
| 143 | |
| 144 | hlist_for_each_entry_rcu(timer, head, t_hash) { |
| 145 | if ((timer->it_signal == sig) && (timer->it_id == id)) |
| 146 | return timer; |
| 147 | } |
| 148 | return NULL; |
| 149 | } |
| 150 | |
| 151 | static struct k_itimer *posix_timer_by_id(timer_t id) |
| 152 | { |
| 153 | struct signal_struct *sig = current->signal; |
| 154 | struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; |
| 155 | |
| 156 | return __posix_timers_find(head, sig, id); |
| 157 | } |
| 158 | |
| 159 | static int posix_timer_add(struct k_itimer *timer) |
| 160 | { |
| 161 | struct signal_struct *sig = current->signal; |
| 162 | int first_free_id = sig->posix_timer_id; |
| 163 | struct hlist_head *head; |
| 164 | int ret = -ENOENT; |
| 165 | |
| 166 | do { |
| 167 | spin_lock(&hash_lock); |
| 168 | head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; |
| 169 | if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { |
| 170 | hlist_add_head_rcu(&timer->t_hash, head); |
| 171 | ret = sig->posix_timer_id; |
| 172 | } |
| 173 | if (++sig->posix_timer_id < 0) |
| 174 | sig->posix_timer_id = 0; |
| 175 | if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) |
| 176 | /* Loop over all possible ids completed */ |
| 177 | ret = -EAGAIN; |
| 178 | spin_unlock(&hash_lock); |
| 179 | } while (ret == -ENOENT); |
| 180 | return ret; |
| 181 | } |
| 182 | |
| 183 | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) |
| 184 | { |
| 185 | spin_unlock_irqrestore(&timr->it_lock, flags); |
| 186 | } |
| 187 | |
| 188 | /* Get clock_realtime */ |
| 189 | static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp) |
| 190 | { |
| 191 | ktime_get_real_ts64(tp); |
| 192 | return 0; |
| 193 | } |
| 194 | |
| 195 | /* Set clock_realtime */ |
| 196 | static int posix_clock_realtime_set(const clockid_t which_clock, |
| 197 | const struct timespec64 *tp) |
| 198 | { |
| 199 | return do_sys_settimeofday64(tp, NULL); |
| 200 | } |
| 201 | |
| 202 | static int posix_clock_realtime_adj(const clockid_t which_clock, |
| 203 | struct timex *t) |
| 204 | { |
| 205 | return do_adjtimex(t); |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | * Get monotonic time for posix timers |
| 210 | */ |
| 211 | static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp) |
| 212 | { |
| 213 | ktime_get_ts64(tp); |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Get monotonic-raw time for posix timers |
| 219 | */ |
| 220 | static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) |
| 221 | { |
| 222 | ktime_get_raw_ts64(tp); |
| 223 | return 0; |
| 224 | } |
| 225 | |
| 226 | |
| 227 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) |
| 228 | { |
| 229 | ktime_get_coarse_real_ts64(tp); |
| 230 | return 0; |
| 231 | } |
| 232 | |
| 233 | static int posix_get_monotonic_coarse(clockid_t which_clock, |
| 234 | struct timespec64 *tp) |
| 235 | { |
| 236 | ktime_get_coarse_ts64(tp); |
| 237 | return 0; |
| 238 | } |
| 239 | |
| 240 | static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) |
| 241 | { |
| 242 | *tp = ktime_to_timespec64(KTIME_LOW_RES); |
| 243 | return 0; |
| 244 | } |
| 245 | |
| 246 | static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp) |
| 247 | { |
| 248 | ktime_get_boottime_ts64(tp); |
| 249 | return 0; |
| 250 | } |
| 251 | |
| 252 | static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp) |
| 253 | { |
| 254 | ktime_get_clocktai_ts64(tp); |
| 255 | return 0; |
| 256 | } |
| 257 | |
| 258 | static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) |
| 259 | { |
| 260 | tp->tv_sec = 0; |
| 261 | tp->tv_nsec = hrtimer_resolution; |
| 262 | return 0; |
| 263 | } |
| 264 | |
| 265 | /* |
| 266 | * Initialize everything, well, just everything in Posix clocks/timers ;) |
| 267 | */ |
| 268 | static __init int init_posix_timers(void) |
| 269 | { |
| 270 | posix_timers_cache = kmem_cache_create("posix_timers_cache", |
| 271 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
| 272 | NULL); |
| 273 | return 0; |
| 274 | } |
| 275 | __initcall(init_posix_timers); |
| 276 | |
| 277 | /* |
| 278 | * The siginfo si_overrun field and the return value of timer_getoverrun(2) |
| 279 | * are of type int. Clamp the overrun value to INT_MAX |
| 280 | */ |
| 281 | static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) |
| 282 | { |
| 283 | s64 sum = timr->it_overrun_last + (s64)baseval; |
| 284 | |
| 285 | return sum > (s64)INT_MAX ? INT_MAX : (int)sum; |
| 286 | } |
| 287 | |
| 288 | static void common_hrtimer_rearm(struct k_itimer *timr) |
| 289 | { |
| 290 | struct hrtimer *timer = &timr->it.real.timer; |
| 291 | |
| 292 | timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), |
| 293 | timr->it_interval); |
| 294 | hrtimer_restart(timer); |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * This function is exported for use by the signal deliver code. It is |
| 299 | * called just prior to the info block being released and passes that |
| 300 | * block to us. It's function is to update the overrun entry AND to |
| 301 | * restart the timer. It should only be called if the timer is to be |
| 302 | * restarted (i.e. we have flagged this in the sys_private entry of the |
| 303 | * info block). |
| 304 | * |
| 305 | * To protect against the timer going away while the interrupt is queued, |
| 306 | * we require that the it_requeue_pending flag be set. |
| 307 | */ |
| 308 | void posixtimer_rearm(struct siginfo *info) |
| 309 | { |
| 310 | struct k_itimer *timr; |
| 311 | unsigned long flags; |
| 312 | |
| 313 | timr = lock_timer(info->si_tid, &flags); |
| 314 | if (!timr) |
| 315 | return; |
| 316 | |
| 317 | if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) { |
| 318 | timr->kclock->timer_rearm(timr); |
| 319 | |
| 320 | timr->it_active = 1; |
| 321 | timr->it_overrun_last = timr->it_overrun; |
| 322 | timr->it_overrun = -1LL; |
| 323 | ++timr->it_requeue_pending; |
| 324 | |
| 325 | info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); |
| 326 | } |
| 327 | |
| 328 | unlock_timer(timr, flags); |
| 329 | } |
| 330 | |
| 331 | int posix_timer_event(struct k_itimer *timr, int si_private) |
| 332 | { |
| 333 | enum pid_type type; |
| 334 | int ret = -1; |
| 335 | /* |
| 336 | * FIXME: if ->sigq is queued we can race with |
| 337 | * dequeue_signal()->posixtimer_rearm(). |
| 338 | * |
| 339 | * If dequeue_signal() sees the "right" value of |
| 340 | * si_sys_private it calls posixtimer_rearm(). |
| 341 | * We re-queue ->sigq and drop ->it_lock(). |
| 342 | * posixtimer_rearm() locks the timer |
| 343 | * and re-schedules it while ->sigq is pending. |
| 344 | * Not really bad, but not that we want. |
| 345 | */ |
| 346 | timr->sigq->info.si_sys_private = si_private; |
| 347 | |
| 348 | type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID; |
| 349 | ret = send_sigqueue(timr->sigq, timr->it_pid, type); |
| 350 | /* If we failed to send the signal the timer stops. */ |
| 351 | return ret > 0; |
| 352 | } |
| 353 | |
| 354 | /* |
| 355 | * This function gets called when a POSIX.1b interval timer expires. It |
| 356 | * is used as a callback from the kernel internal timer. The |
| 357 | * run_timer_list code ALWAYS calls with interrupts on. |
| 358 | |
| 359 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. |
| 360 | */ |
| 361 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) |
| 362 | { |
| 363 | struct k_itimer *timr; |
| 364 | unsigned long flags; |
| 365 | int si_private = 0; |
| 366 | enum hrtimer_restart ret = HRTIMER_NORESTART; |
| 367 | |
| 368 | timr = container_of(timer, struct k_itimer, it.real.timer); |
| 369 | spin_lock_irqsave(&timr->it_lock, flags); |
| 370 | |
| 371 | timr->it_active = 0; |
| 372 | if (timr->it_interval != 0) |
| 373 | si_private = ++timr->it_requeue_pending; |
| 374 | |
| 375 | if (posix_timer_event(timr, si_private)) { |
| 376 | /* |
| 377 | * signal was not sent because of sig_ignor |
| 378 | * we will not get a call back to restart it AND |
| 379 | * it should be restarted. |
| 380 | */ |
| 381 | if (timr->it_interval != 0) { |
| 382 | ktime_t now = hrtimer_cb_get_time(timer); |
| 383 | |
| 384 | /* |
| 385 | * FIXME: What we really want, is to stop this |
| 386 | * timer completely and restart it in case the |
| 387 | * SIG_IGN is removed. This is a non trivial |
| 388 | * change which involves sighand locking |
| 389 | * (sigh !), which we don't want to do late in |
| 390 | * the release cycle. |
| 391 | * |
| 392 | * For now we just let timers with an interval |
| 393 | * less than a jiffie expire every jiffie to |
| 394 | * avoid softirq starvation in case of SIG_IGN |
| 395 | * and a very small interval, which would put |
| 396 | * the timer right back on the softirq pending |
| 397 | * list. By moving now ahead of time we trick |
| 398 | * hrtimer_forward() to expire the timer |
| 399 | * later, while we still maintain the overrun |
| 400 | * accuracy, but have some inconsistency in |
| 401 | * the timer_gettime() case. This is at least |
| 402 | * better than a starved softirq. A more |
| 403 | * complex fix which solves also another related |
| 404 | * inconsistency is already in the pipeline. |
| 405 | */ |
| 406 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 407 | { |
| 408 | ktime_t kj = NSEC_PER_SEC / HZ; |
| 409 | |
| 410 | if (timr->it_interval < kj) |
| 411 | now = ktime_add(now, kj); |
| 412 | } |
| 413 | #endif |
| 414 | timr->it_overrun += hrtimer_forward(timer, now, |
| 415 | timr->it_interval); |
| 416 | ret = HRTIMER_RESTART; |
| 417 | ++timr->it_requeue_pending; |
| 418 | timr->it_active = 1; |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | unlock_timer(timr, flags); |
| 423 | return ret; |
| 424 | } |
| 425 | |
| 426 | static struct pid *good_sigevent(sigevent_t * event) |
| 427 | { |
| 428 | struct pid *pid = task_tgid(current); |
| 429 | struct task_struct *rtn; |
| 430 | |
| 431 | switch (event->sigev_notify) { |
| 432 | case SIGEV_SIGNAL | SIGEV_THREAD_ID: |
| 433 | pid = find_vpid(event->sigev_notify_thread_id); |
| 434 | rtn = pid_task(pid, PIDTYPE_PID); |
| 435 | if (!rtn || !same_thread_group(rtn, current)) |
| 436 | return NULL; |
| 437 | /* FALLTHRU */ |
| 438 | case SIGEV_SIGNAL: |
| 439 | case SIGEV_THREAD: |
| 440 | if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) |
| 441 | return NULL; |
| 442 | /* FALLTHRU */ |
| 443 | case SIGEV_NONE: |
| 444 | return pid; |
| 445 | default: |
| 446 | return NULL; |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | static struct k_itimer * alloc_posix_timer(void) |
| 451 | { |
| 452 | struct k_itimer *tmr; |
| 453 | tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); |
| 454 | if (!tmr) |
| 455 | return tmr; |
| 456 | if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { |
| 457 | kmem_cache_free(posix_timers_cache, tmr); |
| 458 | return NULL; |
| 459 | } |
| 460 | clear_siginfo(&tmr->sigq->info); |
| 461 | return tmr; |
| 462 | } |
| 463 | |
| 464 | static void k_itimer_rcu_free(struct rcu_head *head) |
| 465 | { |
| 466 | struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); |
| 467 | |
| 468 | kmem_cache_free(posix_timers_cache, tmr); |
| 469 | } |
| 470 | |
| 471 | #define IT_ID_SET 1 |
| 472 | #define IT_ID_NOT_SET 0 |
| 473 | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) |
| 474 | { |
| 475 | if (it_id_set) { |
| 476 | unsigned long flags; |
| 477 | spin_lock_irqsave(&hash_lock, flags); |
| 478 | hlist_del_rcu(&tmr->t_hash); |
| 479 | spin_unlock_irqrestore(&hash_lock, flags); |
| 480 | } |
| 481 | put_pid(tmr->it_pid); |
| 482 | sigqueue_free(tmr->sigq); |
| 483 | call_rcu(&tmr->it.rcu, k_itimer_rcu_free); |
| 484 | } |
| 485 | |
| 486 | static int common_timer_create(struct k_itimer *new_timer) |
| 487 | { |
| 488 | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); |
| 489 | return 0; |
| 490 | } |
| 491 | |
| 492 | /* Create a POSIX.1b interval timer. */ |
| 493 | static int do_timer_create(clockid_t which_clock, struct sigevent *event, |
| 494 | timer_t __user *created_timer_id) |
| 495 | { |
| 496 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 497 | struct k_itimer *new_timer; |
| 498 | int error, new_timer_id; |
| 499 | int it_id_set = IT_ID_NOT_SET; |
| 500 | |
| 501 | if (!kc) |
| 502 | return -EINVAL; |
| 503 | if (!kc->timer_create) |
| 504 | return -EOPNOTSUPP; |
| 505 | |
| 506 | new_timer = alloc_posix_timer(); |
| 507 | if (unlikely(!new_timer)) |
| 508 | return -EAGAIN; |
| 509 | |
| 510 | spin_lock_init(&new_timer->it_lock); |
| 511 | new_timer_id = posix_timer_add(new_timer); |
| 512 | if (new_timer_id < 0) { |
| 513 | error = new_timer_id; |
| 514 | goto out; |
| 515 | } |
| 516 | |
| 517 | it_id_set = IT_ID_SET; |
| 518 | new_timer->it_id = (timer_t) new_timer_id; |
| 519 | new_timer->it_clock = which_clock; |
| 520 | new_timer->kclock = kc; |
| 521 | new_timer->it_overrun = -1LL; |
| 522 | |
| 523 | if (event) { |
| 524 | rcu_read_lock(); |
| 525 | new_timer->it_pid = get_pid(good_sigevent(event)); |
| 526 | rcu_read_unlock(); |
| 527 | if (!new_timer->it_pid) { |
| 528 | error = -EINVAL; |
| 529 | goto out; |
| 530 | } |
| 531 | new_timer->it_sigev_notify = event->sigev_notify; |
| 532 | new_timer->sigq->info.si_signo = event->sigev_signo; |
| 533 | new_timer->sigq->info.si_value = event->sigev_value; |
| 534 | } else { |
| 535 | new_timer->it_sigev_notify = SIGEV_SIGNAL; |
| 536 | new_timer->sigq->info.si_signo = SIGALRM; |
| 537 | memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); |
| 538 | new_timer->sigq->info.si_value.sival_int = new_timer->it_id; |
| 539 | new_timer->it_pid = get_pid(task_tgid(current)); |
| 540 | } |
| 541 | |
| 542 | new_timer->sigq->info.si_tid = new_timer->it_id; |
| 543 | new_timer->sigq->info.si_code = SI_TIMER; |
| 544 | |
| 545 | if (copy_to_user(created_timer_id, |
| 546 | &new_timer_id, sizeof (new_timer_id))) { |
| 547 | error = -EFAULT; |
| 548 | goto out; |
| 549 | } |
| 550 | |
| 551 | error = kc->timer_create(new_timer); |
| 552 | if (error) |
| 553 | goto out; |
| 554 | |
| 555 | spin_lock_irq(¤t->sighand->siglock); |
| 556 | new_timer->it_signal = current->signal; |
| 557 | list_add(&new_timer->list, ¤t->signal->posix_timers); |
| 558 | spin_unlock_irq(¤t->sighand->siglock); |
| 559 | |
| 560 | return 0; |
| 561 | /* |
| 562 | * In the case of the timer belonging to another task, after |
| 563 | * the task is unlocked, the timer is owned by the other task |
| 564 | * and may cease to exist at any time. Don't use or modify |
| 565 | * new_timer after the unlock call. |
| 566 | */ |
| 567 | out: |
| 568 | release_posix_timer(new_timer, it_id_set); |
| 569 | return error; |
| 570 | } |
| 571 | |
| 572 | SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, |
| 573 | struct sigevent __user *, timer_event_spec, |
| 574 | timer_t __user *, created_timer_id) |
| 575 | { |
| 576 | if (timer_event_spec) { |
| 577 | sigevent_t event; |
| 578 | |
| 579 | if (copy_from_user(&event, timer_event_spec, sizeof (event))) |
| 580 | return -EFAULT; |
| 581 | return do_timer_create(which_clock, &event, created_timer_id); |
| 582 | } |
| 583 | return do_timer_create(which_clock, NULL, created_timer_id); |
| 584 | } |
| 585 | |
| 586 | #ifdef CONFIG_COMPAT |
| 587 | COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, |
| 588 | struct compat_sigevent __user *, timer_event_spec, |
| 589 | timer_t __user *, created_timer_id) |
| 590 | { |
| 591 | if (timer_event_spec) { |
| 592 | sigevent_t event; |
| 593 | |
| 594 | if (get_compat_sigevent(&event, timer_event_spec)) |
| 595 | return -EFAULT; |
| 596 | return do_timer_create(which_clock, &event, created_timer_id); |
| 597 | } |
| 598 | return do_timer_create(which_clock, NULL, created_timer_id); |
| 599 | } |
| 600 | #endif |
| 601 | |
| 602 | /* |
| 603 | * Locking issues: We need to protect the result of the id look up until |
| 604 | * we get the timer locked down so it is not deleted under us. The |
| 605 | * removal is done under the idr spinlock so we use that here to bridge |
| 606 | * the find to the timer lock. To avoid a dead lock, the timer id MUST |
| 607 | * be release with out holding the timer lock. |
| 608 | */ |
| 609 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) |
| 610 | { |
| 611 | struct k_itimer *timr; |
| 612 | |
| 613 | /* |
| 614 | * timer_t could be any type >= int and we want to make sure any |
| 615 | * @timer_id outside positive int range fails lookup. |
| 616 | */ |
| 617 | if ((unsigned long long)timer_id > INT_MAX) |
| 618 | return NULL; |
| 619 | |
| 620 | rcu_read_lock(); |
| 621 | timr = posix_timer_by_id(timer_id); |
| 622 | if (timr) { |
| 623 | spin_lock_irqsave(&timr->it_lock, *flags); |
| 624 | if (timr->it_signal == current->signal) { |
| 625 | rcu_read_unlock(); |
| 626 | return timr; |
| 627 | } |
| 628 | spin_unlock_irqrestore(&timr->it_lock, *flags); |
| 629 | } |
| 630 | rcu_read_unlock(); |
| 631 | |
| 632 | return NULL; |
| 633 | } |
| 634 | |
| 635 | static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) |
| 636 | { |
| 637 | struct hrtimer *timer = &timr->it.real.timer; |
| 638 | |
| 639 | return __hrtimer_expires_remaining_adjusted(timer, now); |
| 640 | } |
| 641 | |
| 642 | static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) |
| 643 | { |
| 644 | struct hrtimer *timer = &timr->it.real.timer; |
| 645 | |
| 646 | return hrtimer_forward(timer, now, timr->it_interval); |
| 647 | } |
| 648 | |
| 649 | /* |
| 650 | * Get the time remaining on a POSIX.1b interval timer. This function |
| 651 | * is ALWAYS called with spin_lock_irq on the timer, thus it must not |
| 652 | * mess with irq. |
| 653 | * |
| 654 | * We have a couple of messes to clean up here. First there is the case |
| 655 | * of a timer that has a requeue pending. These timers should appear to |
| 656 | * be in the timer list with an expiry as if we were to requeue them |
| 657 | * now. |
| 658 | * |
| 659 | * The second issue is the SIGEV_NONE timer which may be active but is |
| 660 | * not really ever put in the timer list (to save system resources). |
| 661 | * This timer may be expired, and if so, we will do it here. Otherwise |
| 662 | * it is the same as a requeue pending timer WRT to what we should |
| 663 | * report. |
| 664 | */ |
| 665 | void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) |
| 666 | { |
| 667 | const struct k_clock *kc = timr->kclock; |
| 668 | ktime_t now, remaining, iv; |
| 669 | struct timespec64 ts64; |
| 670 | bool sig_none; |
| 671 | |
| 672 | sig_none = timr->it_sigev_notify == SIGEV_NONE; |
| 673 | iv = timr->it_interval; |
| 674 | |
| 675 | /* interval timer ? */ |
| 676 | if (iv) { |
| 677 | cur_setting->it_interval = ktime_to_timespec64(iv); |
| 678 | } else if (!timr->it_active) { |
| 679 | /* |
| 680 | * SIGEV_NONE oneshot timers are never queued. Check them |
| 681 | * below. |
| 682 | */ |
| 683 | if (!sig_none) |
| 684 | return; |
| 685 | } |
| 686 | |
| 687 | /* |
| 688 | * The timespec64 based conversion is suboptimal, but it's not |
| 689 | * worth to implement yet another callback. |
| 690 | */ |
| 691 | kc->clock_get(timr->it_clock, &ts64); |
| 692 | now = timespec64_to_ktime(ts64); |
| 693 | |
| 694 | /* |
| 695 | * When a requeue is pending or this is a SIGEV_NONE timer move the |
| 696 | * expiry time forward by intervals, so expiry is > now. |
| 697 | */ |
| 698 | if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) |
| 699 | timr->it_overrun += kc->timer_forward(timr, now); |
| 700 | |
| 701 | remaining = kc->timer_remaining(timr, now); |
| 702 | /* Return 0 only, when the timer is expired and not pending */ |
| 703 | if (remaining <= 0) { |
| 704 | /* |
| 705 | * A single shot SIGEV_NONE timer must return 0, when |
| 706 | * it is expired ! |
| 707 | */ |
| 708 | if (!sig_none) |
| 709 | cur_setting->it_value.tv_nsec = 1; |
| 710 | } else { |
| 711 | cur_setting->it_value = ktime_to_timespec64(remaining); |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | /* Get the time remaining on a POSIX.1b interval timer. */ |
| 716 | static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) |
| 717 | { |
| 718 | struct k_itimer *timr; |
| 719 | const struct k_clock *kc; |
| 720 | unsigned long flags; |
| 721 | int ret = 0; |
| 722 | |
| 723 | timr = lock_timer(timer_id, &flags); |
| 724 | if (!timr) |
| 725 | return -EINVAL; |
| 726 | |
| 727 | memset(setting, 0, sizeof(*setting)); |
| 728 | kc = timr->kclock; |
| 729 | if (WARN_ON_ONCE(!kc || !kc->timer_get)) |
| 730 | ret = -EINVAL; |
| 731 | else |
| 732 | kc->timer_get(timr, setting); |
| 733 | |
| 734 | unlock_timer(timr, flags); |
| 735 | return ret; |
| 736 | } |
| 737 | |
| 738 | /* Get the time remaining on a POSIX.1b interval timer. */ |
| 739 | SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, |
| 740 | struct __kernel_itimerspec __user *, setting) |
| 741 | { |
| 742 | struct itimerspec64 cur_setting; |
| 743 | |
| 744 | int ret = do_timer_gettime(timer_id, &cur_setting); |
| 745 | if (!ret) { |
| 746 | if (put_itimerspec64(&cur_setting, setting)) |
| 747 | ret = -EFAULT; |
| 748 | } |
| 749 | return ret; |
| 750 | } |
| 751 | |
| 752 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 753 | |
| 754 | COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, |
| 755 | struct compat_itimerspec __user *, setting) |
| 756 | { |
| 757 | struct itimerspec64 cur_setting; |
| 758 | |
| 759 | int ret = do_timer_gettime(timer_id, &cur_setting); |
| 760 | if (!ret) { |
| 761 | if (put_compat_itimerspec64(&cur_setting, setting)) |
| 762 | ret = -EFAULT; |
| 763 | } |
| 764 | return ret; |
| 765 | } |
| 766 | |
| 767 | #endif |
| 768 | |
| 769 | /* |
| 770 | * Get the number of overruns of a POSIX.1b interval timer. This is to |
| 771 | * be the overrun of the timer last delivered. At the same time we are |
| 772 | * accumulating overruns on the next timer. The overrun is frozen when |
| 773 | * the signal is delivered, either at the notify time (if the info block |
| 774 | * is not queued) or at the actual delivery time (as we are informed by |
| 775 | * the call back to posixtimer_rearm(). So all we need to do is |
| 776 | * to pick up the frozen overrun. |
| 777 | */ |
| 778 | SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) |
| 779 | { |
| 780 | struct k_itimer *timr; |
| 781 | int overrun; |
| 782 | unsigned long flags; |
| 783 | |
| 784 | timr = lock_timer(timer_id, &flags); |
| 785 | if (!timr) |
| 786 | return -EINVAL; |
| 787 | |
| 788 | overrun = timer_overrun_to_int(timr, 0); |
| 789 | unlock_timer(timr, flags); |
| 790 | |
| 791 | return overrun; |
| 792 | } |
| 793 | |
| 794 | static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, |
| 795 | bool absolute, bool sigev_none) |
| 796 | { |
| 797 | struct hrtimer *timer = &timr->it.real.timer; |
| 798 | enum hrtimer_mode mode; |
| 799 | |
| 800 | mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; |
| 801 | /* |
| 802 | * Posix magic: Relative CLOCK_REALTIME timers are not affected by |
| 803 | * clock modifications, so they become CLOCK_MONOTONIC based under the |
| 804 | * hood. See hrtimer_init(). Update timr->kclock, so the generic |
| 805 | * functions which use timr->kclock->clock_get() work. |
| 806 | * |
| 807 | * Note: it_clock stays unmodified, because the next timer_set() might |
| 808 | * use ABSTIME, so it needs to switch back. |
| 809 | */ |
| 810 | if (timr->it_clock == CLOCK_REALTIME) |
| 811 | timr->kclock = absolute ? &clock_realtime : &clock_monotonic; |
| 812 | |
| 813 | hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); |
| 814 | timr->it.real.timer.function = posix_timer_fn; |
| 815 | |
| 816 | if (!absolute) |
| 817 | expires = ktime_add_safe(expires, timer->base->get_time()); |
| 818 | hrtimer_set_expires(timer, expires); |
| 819 | |
| 820 | if (!sigev_none) |
| 821 | hrtimer_start_expires(timer, HRTIMER_MODE_ABS); |
| 822 | } |
| 823 | |
| 824 | static int common_hrtimer_try_to_cancel(struct k_itimer *timr) |
| 825 | { |
| 826 | return hrtimer_try_to_cancel(&timr->it.real.timer); |
| 827 | } |
| 828 | |
| 829 | /* Set a POSIX.1b interval timer. */ |
| 830 | int common_timer_set(struct k_itimer *timr, int flags, |
| 831 | struct itimerspec64 *new_setting, |
| 832 | struct itimerspec64 *old_setting) |
| 833 | { |
| 834 | const struct k_clock *kc = timr->kclock; |
| 835 | bool sigev_none; |
| 836 | ktime_t expires; |
| 837 | |
| 838 | if (old_setting) |
| 839 | common_timer_get(timr, old_setting); |
| 840 | |
| 841 | /* Prevent rearming by clearing the interval */ |
| 842 | timr->it_interval = 0; |
| 843 | /* |
| 844 | * Careful here. On SMP systems the timer expiry function could be |
| 845 | * active and spinning on timr->it_lock. |
| 846 | */ |
| 847 | if (kc->timer_try_to_cancel(timr) < 0) |
| 848 | return TIMER_RETRY; |
| 849 | |
| 850 | timr->it_active = 0; |
| 851 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & |
| 852 | ~REQUEUE_PENDING; |
| 853 | timr->it_overrun_last = 0; |
| 854 | |
| 855 | /* Switch off the timer when it_value is zero */ |
| 856 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) |
| 857 | return 0; |
| 858 | |
| 859 | timr->it_interval = timespec64_to_ktime(new_setting->it_interval); |
| 860 | expires = timespec64_to_ktime(new_setting->it_value); |
| 861 | sigev_none = timr->it_sigev_notify == SIGEV_NONE; |
| 862 | |
| 863 | kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); |
| 864 | timr->it_active = !sigev_none; |
| 865 | return 0; |
| 866 | } |
| 867 | |
| 868 | static int do_timer_settime(timer_t timer_id, int flags, |
| 869 | struct itimerspec64 *new_spec64, |
| 870 | struct itimerspec64 *old_spec64) |
| 871 | { |
| 872 | const struct k_clock *kc; |
| 873 | struct k_itimer *timr; |
| 874 | unsigned long flag; |
| 875 | int error = 0; |
| 876 | |
| 877 | if (!timespec64_valid(&new_spec64->it_interval) || |
| 878 | !timespec64_valid(&new_spec64->it_value)) |
| 879 | return -EINVAL; |
| 880 | |
| 881 | if (old_spec64) |
| 882 | memset(old_spec64, 0, sizeof(*old_spec64)); |
| 883 | retry: |
| 884 | timr = lock_timer(timer_id, &flag); |
| 885 | if (!timr) |
| 886 | return -EINVAL; |
| 887 | |
| 888 | kc = timr->kclock; |
| 889 | if (WARN_ON_ONCE(!kc || !kc->timer_set)) |
| 890 | error = -EINVAL; |
| 891 | else |
| 892 | error = kc->timer_set(timr, flags, new_spec64, old_spec64); |
| 893 | |
| 894 | unlock_timer(timr, flag); |
| 895 | if (error == TIMER_RETRY) { |
| 896 | old_spec64 = NULL; // We already got the old time... |
| 897 | goto retry; |
| 898 | } |
| 899 | |
| 900 | return error; |
| 901 | } |
| 902 | |
| 903 | /* Set a POSIX.1b interval timer */ |
| 904 | SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, |
| 905 | const struct __kernel_itimerspec __user *, new_setting, |
| 906 | struct __kernel_itimerspec __user *, old_setting) |
| 907 | { |
| 908 | struct itimerspec64 new_spec, old_spec; |
| 909 | struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; |
| 910 | int error = 0; |
| 911 | |
| 912 | if (!new_setting) |
| 913 | return -EINVAL; |
| 914 | |
| 915 | if (get_itimerspec64(&new_spec, new_setting)) |
| 916 | return -EFAULT; |
| 917 | |
| 918 | error = do_timer_settime(timer_id, flags, &new_spec, rtn); |
| 919 | if (!error && old_setting) { |
| 920 | if (put_itimerspec64(&old_spec, old_setting)) |
| 921 | error = -EFAULT; |
| 922 | } |
| 923 | return error; |
| 924 | } |
| 925 | |
| 926 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 927 | COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, |
| 928 | struct compat_itimerspec __user *, new, |
| 929 | struct compat_itimerspec __user *, old) |
| 930 | { |
| 931 | struct itimerspec64 new_spec, old_spec; |
| 932 | struct itimerspec64 *rtn = old ? &old_spec : NULL; |
| 933 | int error = 0; |
| 934 | |
| 935 | if (!new) |
| 936 | return -EINVAL; |
| 937 | if (get_compat_itimerspec64(&new_spec, new)) |
| 938 | return -EFAULT; |
| 939 | |
| 940 | error = do_timer_settime(timer_id, flags, &new_spec, rtn); |
| 941 | if (!error && old) { |
| 942 | if (put_compat_itimerspec64(&old_spec, old)) |
| 943 | error = -EFAULT; |
| 944 | } |
| 945 | return error; |
| 946 | } |
| 947 | #endif |
| 948 | |
| 949 | int common_timer_del(struct k_itimer *timer) |
| 950 | { |
| 951 | const struct k_clock *kc = timer->kclock; |
| 952 | |
| 953 | timer->it_interval = 0; |
| 954 | if (kc->timer_try_to_cancel(timer) < 0) |
| 955 | return TIMER_RETRY; |
| 956 | timer->it_active = 0; |
| 957 | return 0; |
| 958 | } |
| 959 | |
| 960 | static inline int timer_delete_hook(struct k_itimer *timer) |
| 961 | { |
| 962 | const struct k_clock *kc = timer->kclock; |
| 963 | |
| 964 | if (WARN_ON_ONCE(!kc || !kc->timer_del)) |
| 965 | return -EINVAL; |
| 966 | return kc->timer_del(timer); |
| 967 | } |
| 968 | |
| 969 | /* Delete a POSIX.1b interval timer. */ |
| 970 | SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) |
| 971 | { |
| 972 | struct k_itimer *timer; |
| 973 | unsigned long flags; |
| 974 | |
| 975 | retry_delete: |
| 976 | timer = lock_timer(timer_id, &flags); |
| 977 | if (!timer) |
| 978 | return -EINVAL; |
| 979 | |
| 980 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
| 981 | unlock_timer(timer, flags); |
| 982 | goto retry_delete; |
| 983 | } |
| 984 | |
| 985 | spin_lock(¤t->sighand->siglock); |
| 986 | list_del(&timer->list); |
| 987 | spin_unlock(¤t->sighand->siglock); |
| 988 | /* |
| 989 | * This keeps any tasks waiting on the spin lock from thinking |
| 990 | * they got something (see the lock code above). |
| 991 | */ |
| 992 | timer->it_signal = NULL; |
| 993 | |
| 994 | unlock_timer(timer, flags); |
| 995 | release_posix_timer(timer, IT_ID_SET); |
| 996 | return 0; |
| 997 | } |
| 998 | |
| 999 | /* |
| 1000 | * return timer owned by the process, used by exit_itimers |
| 1001 | */ |
| 1002 | static void itimer_delete(struct k_itimer *timer) |
| 1003 | { |
| 1004 | unsigned long flags; |
| 1005 | |
| 1006 | retry_delete: |
| 1007 | spin_lock_irqsave(&timer->it_lock, flags); |
| 1008 | |
| 1009 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
| 1010 | unlock_timer(timer, flags); |
| 1011 | goto retry_delete; |
| 1012 | } |
| 1013 | list_del(&timer->list); |
| 1014 | /* |
| 1015 | * This keeps any tasks waiting on the spin lock from thinking |
| 1016 | * they got something (see the lock code above). |
| 1017 | */ |
| 1018 | timer->it_signal = NULL; |
| 1019 | |
| 1020 | unlock_timer(timer, flags); |
| 1021 | release_posix_timer(timer, IT_ID_SET); |
| 1022 | } |
| 1023 | |
| 1024 | /* |
| 1025 | * This is called by do_exit or de_thread, only when there are no more |
| 1026 | * references to the shared signal_struct. |
| 1027 | */ |
| 1028 | void exit_itimers(struct signal_struct *sig) |
| 1029 | { |
| 1030 | struct k_itimer *tmr; |
| 1031 | |
| 1032 | while (!list_empty(&sig->posix_timers)) { |
| 1033 | tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); |
| 1034 | itimer_delete(tmr); |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, |
| 1039 | const struct __kernel_timespec __user *, tp) |
| 1040 | { |
| 1041 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1042 | struct timespec64 new_tp; |
| 1043 | |
| 1044 | if (!kc || !kc->clock_set) |
| 1045 | return -EINVAL; |
| 1046 | |
| 1047 | if (get_timespec64(&new_tp, tp)) |
| 1048 | return -EFAULT; |
| 1049 | |
| 1050 | return kc->clock_set(which_clock, &new_tp); |
| 1051 | } |
| 1052 | |
| 1053 | SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, |
| 1054 | struct __kernel_timespec __user *, tp) |
| 1055 | { |
| 1056 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1057 | struct timespec64 kernel_tp; |
| 1058 | int error; |
| 1059 | |
| 1060 | if (!kc) |
| 1061 | return -EINVAL; |
| 1062 | |
| 1063 | error = kc->clock_get(which_clock, &kernel_tp); |
| 1064 | |
| 1065 | if (!error && put_timespec64(&kernel_tp, tp)) |
| 1066 | error = -EFAULT; |
| 1067 | |
| 1068 | return error; |
| 1069 | } |
| 1070 | |
| 1071 | SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, |
| 1072 | struct timex __user *, utx) |
| 1073 | { |
| 1074 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1075 | struct timex ktx; |
| 1076 | int err; |
| 1077 | |
| 1078 | if (!kc) |
| 1079 | return -EINVAL; |
| 1080 | if (!kc->clock_adj) |
| 1081 | return -EOPNOTSUPP; |
| 1082 | |
| 1083 | if (copy_from_user(&ktx, utx, sizeof(ktx))) |
| 1084 | return -EFAULT; |
| 1085 | |
| 1086 | err = kc->clock_adj(which_clock, &ktx); |
| 1087 | |
| 1088 | if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) |
| 1089 | return -EFAULT; |
| 1090 | |
| 1091 | return err; |
| 1092 | } |
| 1093 | |
| 1094 | SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, |
| 1095 | struct __kernel_timespec __user *, tp) |
| 1096 | { |
| 1097 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1098 | struct timespec64 rtn_tp; |
| 1099 | int error; |
| 1100 | |
| 1101 | if (!kc) |
| 1102 | return -EINVAL; |
| 1103 | |
| 1104 | error = kc->clock_getres(which_clock, &rtn_tp); |
| 1105 | |
| 1106 | if (!error && tp && put_timespec64(&rtn_tp, tp)) |
| 1107 | error = -EFAULT; |
| 1108 | |
| 1109 | return error; |
| 1110 | } |
| 1111 | |
| 1112 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 1113 | |
| 1114 | COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock, |
| 1115 | struct compat_timespec __user *, tp) |
| 1116 | { |
| 1117 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1118 | struct timespec64 ts; |
| 1119 | |
| 1120 | if (!kc || !kc->clock_set) |
| 1121 | return -EINVAL; |
| 1122 | |
| 1123 | if (compat_get_timespec64(&ts, tp)) |
| 1124 | return -EFAULT; |
| 1125 | |
| 1126 | return kc->clock_set(which_clock, &ts); |
| 1127 | } |
| 1128 | |
| 1129 | COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock, |
| 1130 | struct compat_timespec __user *, tp) |
| 1131 | { |
| 1132 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1133 | struct timespec64 ts; |
| 1134 | int err; |
| 1135 | |
| 1136 | if (!kc) |
| 1137 | return -EINVAL; |
| 1138 | |
| 1139 | err = kc->clock_get(which_clock, &ts); |
| 1140 | |
| 1141 | if (!err && compat_put_timespec64(&ts, tp)) |
| 1142 | err = -EFAULT; |
| 1143 | |
| 1144 | return err; |
| 1145 | } |
| 1146 | |
| 1147 | #endif |
| 1148 | |
| 1149 | #ifdef CONFIG_COMPAT |
| 1150 | |
| 1151 | COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock, |
| 1152 | struct compat_timex __user *, utp) |
| 1153 | { |
| 1154 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1155 | struct timex ktx; |
| 1156 | int err; |
| 1157 | |
| 1158 | if (!kc) |
| 1159 | return -EINVAL; |
| 1160 | if (!kc->clock_adj) |
| 1161 | return -EOPNOTSUPP; |
| 1162 | |
| 1163 | err = compat_get_timex(&ktx, utp); |
| 1164 | if (err) |
| 1165 | return err; |
| 1166 | |
| 1167 | err = kc->clock_adj(which_clock, &ktx); |
| 1168 | |
| 1169 | if (err >= 0) |
| 1170 | err = compat_put_timex(utp, &ktx); |
| 1171 | |
| 1172 | return err; |
| 1173 | } |
| 1174 | |
| 1175 | #endif |
| 1176 | |
| 1177 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 1178 | |
| 1179 | COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock, |
| 1180 | struct compat_timespec __user *, tp) |
| 1181 | { |
| 1182 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1183 | struct timespec64 ts; |
| 1184 | int err; |
| 1185 | |
| 1186 | if (!kc) |
| 1187 | return -EINVAL; |
| 1188 | |
| 1189 | err = kc->clock_getres(which_clock, &ts); |
| 1190 | if (!err && tp && compat_put_timespec64(&ts, tp)) |
| 1191 | return -EFAULT; |
| 1192 | |
| 1193 | return err; |
| 1194 | } |
| 1195 | |
| 1196 | #endif |
| 1197 | |
| 1198 | /* |
| 1199 | * nanosleep for monotonic and realtime clocks |
| 1200 | */ |
| 1201 | static int common_nsleep(const clockid_t which_clock, int flags, |
| 1202 | const struct timespec64 *rqtp) |
| 1203 | { |
| 1204 | return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ? |
| 1205 | HRTIMER_MODE_ABS : HRTIMER_MODE_REL, |
| 1206 | which_clock); |
| 1207 | } |
| 1208 | |
| 1209 | SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, |
| 1210 | const struct __kernel_timespec __user *, rqtp, |
| 1211 | struct __kernel_timespec __user *, rmtp) |
| 1212 | { |
| 1213 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1214 | struct timespec64 t; |
| 1215 | |
| 1216 | if (!kc) |
| 1217 | return -EINVAL; |
| 1218 | if (!kc->nsleep) |
| 1219 | return -EOPNOTSUPP; |
| 1220 | |
| 1221 | if (get_timespec64(&t, rqtp)) |
| 1222 | return -EFAULT; |
| 1223 | |
| 1224 | if (!timespec64_valid(&t)) |
| 1225 | return -EINVAL; |
| 1226 | if (flags & TIMER_ABSTIME) |
| 1227 | rmtp = NULL; |
| 1228 | current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
| 1229 | current->restart_block.nanosleep.rmtp = rmtp; |
| 1230 | |
| 1231 | return kc->nsleep(which_clock, flags, &t); |
| 1232 | } |
| 1233 | |
| 1234 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 1235 | |
| 1236 | COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags, |
| 1237 | struct compat_timespec __user *, rqtp, |
| 1238 | struct compat_timespec __user *, rmtp) |
| 1239 | { |
| 1240 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
| 1241 | struct timespec64 t; |
| 1242 | |
| 1243 | if (!kc) |
| 1244 | return -EINVAL; |
| 1245 | if (!kc->nsleep) |
| 1246 | return -EOPNOTSUPP; |
| 1247 | |
| 1248 | if (compat_get_timespec64(&t, rqtp)) |
| 1249 | return -EFAULT; |
| 1250 | |
| 1251 | if (!timespec64_valid(&t)) |
| 1252 | return -EINVAL; |
| 1253 | if (flags & TIMER_ABSTIME) |
| 1254 | rmtp = NULL; |
| 1255 | current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; |
| 1256 | current->restart_block.nanosleep.compat_rmtp = rmtp; |
| 1257 | |
| 1258 | return kc->nsleep(which_clock, flags, &t); |
| 1259 | } |
| 1260 | |
| 1261 | #endif |
| 1262 | |
| 1263 | static const struct k_clock clock_realtime = { |
| 1264 | .clock_getres = posix_get_hrtimer_res, |
| 1265 | .clock_get = posix_clock_realtime_get, |
| 1266 | .clock_set = posix_clock_realtime_set, |
| 1267 | .clock_adj = posix_clock_realtime_adj, |
| 1268 | .nsleep = common_nsleep, |
| 1269 | .timer_create = common_timer_create, |
| 1270 | .timer_set = common_timer_set, |
| 1271 | .timer_get = common_timer_get, |
| 1272 | .timer_del = common_timer_del, |
| 1273 | .timer_rearm = common_hrtimer_rearm, |
| 1274 | .timer_forward = common_hrtimer_forward, |
| 1275 | .timer_remaining = common_hrtimer_remaining, |
| 1276 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| 1277 | .timer_arm = common_hrtimer_arm, |
| 1278 | }; |
| 1279 | |
| 1280 | static const struct k_clock clock_monotonic = { |
| 1281 | .clock_getres = posix_get_hrtimer_res, |
| 1282 | .clock_get = posix_ktime_get_ts, |
| 1283 | .nsleep = common_nsleep, |
| 1284 | .timer_create = common_timer_create, |
| 1285 | .timer_set = common_timer_set, |
| 1286 | .timer_get = common_timer_get, |
| 1287 | .timer_del = common_timer_del, |
| 1288 | .timer_rearm = common_hrtimer_rearm, |
| 1289 | .timer_forward = common_hrtimer_forward, |
| 1290 | .timer_remaining = common_hrtimer_remaining, |
| 1291 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| 1292 | .timer_arm = common_hrtimer_arm, |
| 1293 | }; |
| 1294 | |
| 1295 | static const struct k_clock clock_monotonic_raw = { |
| 1296 | .clock_getres = posix_get_hrtimer_res, |
| 1297 | .clock_get = posix_get_monotonic_raw, |
| 1298 | }; |
| 1299 | |
| 1300 | static const struct k_clock clock_realtime_coarse = { |
| 1301 | .clock_getres = posix_get_coarse_res, |
| 1302 | .clock_get = posix_get_realtime_coarse, |
| 1303 | }; |
| 1304 | |
| 1305 | static const struct k_clock clock_monotonic_coarse = { |
| 1306 | .clock_getres = posix_get_coarse_res, |
| 1307 | .clock_get = posix_get_monotonic_coarse, |
| 1308 | }; |
| 1309 | |
| 1310 | static const struct k_clock clock_tai = { |
| 1311 | .clock_getres = posix_get_hrtimer_res, |
| 1312 | .clock_get = posix_get_tai, |
| 1313 | .nsleep = common_nsleep, |
| 1314 | .timer_create = common_timer_create, |
| 1315 | .timer_set = common_timer_set, |
| 1316 | .timer_get = common_timer_get, |
| 1317 | .timer_del = common_timer_del, |
| 1318 | .timer_rearm = common_hrtimer_rearm, |
| 1319 | .timer_forward = common_hrtimer_forward, |
| 1320 | .timer_remaining = common_hrtimer_remaining, |
| 1321 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| 1322 | .timer_arm = common_hrtimer_arm, |
| 1323 | }; |
| 1324 | |
| 1325 | static const struct k_clock clock_boottime = { |
| 1326 | .clock_getres = posix_get_hrtimer_res, |
| 1327 | .clock_get = posix_get_boottime, |
| 1328 | .nsleep = common_nsleep, |
| 1329 | .timer_create = common_timer_create, |
| 1330 | .timer_set = common_timer_set, |
| 1331 | .timer_get = common_timer_get, |
| 1332 | .timer_del = common_timer_del, |
| 1333 | .timer_rearm = common_hrtimer_rearm, |
| 1334 | .timer_forward = common_hrtimer_forward, |
| 1335 | .timer_remaining = common_hrtimer_remaining, |
| 1336 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| 1337 | .timer_arm = common_hrtimer_arm, |
| 1338 | }; |
| 1339 | |
| 1340 | static const struct k_clock * const posix_clocks[] = { |
| 1341 | [CLOCK_REALTIME] = &clock_realtime, |
| 1342 | [CLOCK_MONOTONIC] = &clock_monotonic, |
| 1343 | [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, |
| 1344 | [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, |
| 1345 | [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, |
| 1346 | [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, |
| 1347 | [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, |
| 1348 | [CLOCK_BOOTTIME] = &clock_boottime, |
| 1349 | [CLOCK_REALTIME_ALARM] = &alarm_clock, |
| 1350 | [CLOCK_BOOTTIME_ALARM] = &alarm_clock, |
| 1351 | [CLOCK_TAI] = &clock_tai, |
| 1352 | }; |
| 1353 | |
| 1354 | static const struct k_clock *clockid_to_kclock(const clockid_t id) |
| 1355 | { |
| 1356 | clockid_t idx = id; |
| 1357 | |
| 1358 | if (id < 0) { |
| 1359 | return (id & CLOCKFD_MASK) == CLOCKFD ? |
| 1360 | &clock_posix_dynamic : &clock_posix_cpu; |
| 1361 | } |
| 1362 | |
| 1363 | if (id >= ARRAY_SIZE(posix_clocks)) |
| 1364 | return NULL; |
| 1365 | |
| 1366 | return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; |
| 1367 | } |