blob: 5a01c4fdbfef40337a5a06b9944391820df8d5cd [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
37#include <linux/mutex.h>
38#include <linux/sched/task.h>
39
40#include <linux/uaccess.h>
41#include <linux/list.h>
42#include <linux/init.h>
43#include <linux/compiler.h>
44#include <linux/hash.h>
45#include <linux/posix-clock.h>
46#include <linux/posix-timers.h>
47#include <linux/syscalls.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
50#include <linux/export.h>
51#include <linux/hashtable.h>
52#include <linux/compat.h>
53#include <linux/nospec.h>
54
55#include "timekeeping.h"
56#include "posix-timers.h"
57
58/*
59 * Management arrays for POSIX timers. Timers are now kept in static hash table
60 * with 512 entries.
61 * Timer ids are allocated by local routine, which selects proper hash head by
62 * key, constructed from current->signal address and per signal struct counter.
63 * This keeps timer ids unique per process, but now they can intersect between
64 * processes.
65 */
66
67/*
68 * Lets keep our timers in a slab cache :-)
69 */
70static struct kmem_cache *posix_timers_cache;
71
72static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73static DEFINE_SPINLOCK(hash_lock);
74
75static const struct k_clock * const posix_clocks[];
76static const struct k_clock *clockid_to_kclock(const clockid_t id);
77static const struct k_clock clock_realtime, clock_monotonic;
78
79/*
80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81 * SIGEV values. Here we put out an error if this assumption fails.
82 */
83#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86#endif
87
88/*
89 * The timer ID is turned into a timer address by idr_find().
90 * Verifying a valid ID consists of:
91 *
92 * a) checking that idr_find() returns other than -1.
93 * b) checking that the timer id matches the one in the timer itself.
94 * c) that the timer owner is in the callers thread group.
95 */
96
97/*
98 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
99 * to implement others. This structure defines the various
100 * clocks.
101 *
102 * RESOLUTION: Clock resolution is used to round up timer and interval
103 * times, NOT to report clock times, which are reported with as
104 * much resolution as the system can muster. In some cases this
105 * resolution may depend on the underlying clock hardware and
106 * may not be quantifiable until run time, and only then is the
107 * necessary code is written. The standard says we should say
108 * something about this issue in the documentation...
109 *
110 * FUNCTIONS: The CLOCKs structure defines possible functions to
111 * handle various clock functions.
112 *
113 * The standard POSIX timer management code assumes the
114 * following: 1.) The k_itimer struct (sched.h) is used for
115 * the timer. 2.) The list, it_lock, it_clock, it_id and
116 * it_pid fields are not modified by timer code.
117 *
118 * Permissions: It is assumed that the clock_settime() function defined
119 * for each clock will take care of permission checks. Some
120 * clocks may be set able by any user (i.e. local process
121 * clocks) others not. Currently the only set able clock we
122 * have is CLOCK_REALTIME and its high res counter part, both of
123 * which we beg off on and pass to do_sys_settimeofday().
124 */
125static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
126
127#define lock_timer(tid, flags) \
128({ struct k_itimer *__timr; \
129 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
130 __timr; \
131})
132
133static int hash(struct signal_struct *sig, unsigned int nr)
134{
135 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
136}
137
138static struct k_itimer *__posix_timers_find(struct hlist_head *head,
139 struct signal_struct *sig,
140 timer_t id)
141{
142 struct k_itimer *timer;
143
144 hlist_for_each_entry_rcu(timer, head, t_hash) {
145 if ((timer->it_signal == sig) && (timer->it_id == id))
146 return timer;
147 }
148 return NULL;
149}
150
151static struct k_itimer *posix_timer_by_id(timer_t id)
152{
153 struct signal_struct *sig = current->signal;
154 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
155
156 return __posix_timers_find(head, sig, id);
157}
158
159static int posix_timer_add(struct k_itimer *timer)
160{
161 struct signal_struct *sig = current->signal;
162 int first_free_id = sig->posix_timer_id;
163 struct hlist_head *head;
164 int ret = -ENOENT;
165
166 do {
167 spin_lock(&hash_lock);
168 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
169 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
170 hlist_add_head_rcu(&timer->t_hash, head);
171 ret = sig->posix_timer_id;
172 }
173 if (++sig->posix_timer_id < 0)
174 sig->posix_timer_id = 0;
175 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
176 /* Loop over all possible ids completed */
177 ret = -EAGAIN;
178 spin_unlock(&hash_lock);
179 } while (ret == -ENOENT);
180 return ret;
181}
182
183static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
184{
185 spin_unlock_irqrestore(&timr->it_lock, flags);
186}
187
188/* Get clock_realtime */
189static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
190{
191 ktime_get_real_ts64(tp);
192 return 0;
193}
194
195/* Set clock_realtime */
196static int posix_clock_realtime_set(const clockid_t which_clock,
197 const struct timespec64 *tp)
198{
199 return do_sys_settimeofday64(tp, NULL);
200}
201
202static int posix_clock_realtime_adj(const clockid_t which_clock,
203 struct timex *t)
204{
205 return do_adjtimex(t);
206}
207
208/*
209 * Get monotonic time for posix timers
210 */
211static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
212{
213 ktime_get_ts64(tp);
214 return 0;
215}
216
217/*
218 * Get monotonic-raw time for posix timers
219 */
220static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
221{
222 ktime_get_raw_ts64(tp);
223 return 0;
224}
225
226
227static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
228{
229 ktime_get_coarse_real_ts64(tp);
230 return 0;
231}
232
233static int posix_get_monotonic_coarse(clockid_t which_clock,
234 struct timespec64 *tp)
235{
236 ktime_get_coarse_ts64(tp);
237 return 0;
238}
239
240static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
241{
242 *tp = ktime_to_timespec64(KTIME_LOW_RES);
243 return 0;
244}
245
246static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
247{
248 ktime_get_boottime_ts64(tp);
249 return 0;
250}
251
252static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
253{
254 ktime_get_clocktai_ts64(tp);
255 return 0;
256}
257
258static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
259{
260 tp->tv_sec = 0;
261 tp->tv_nsec = hrtimer_resolution;
262 return 0;
263}
264
265/*
266 * Initialize everything, well, just everything in Posix clocks/timers ;)
267 */
268static __init int init_posix_timers(void)
269{
270 posix_timers_cache = kmem_cache_create("posix_timers_cache",
271 sizeof (struct k_itimer), 0, SLAB_PANIC,
272 NULL);
273 return 0;
274}
275__initcall(init_posix_timers);
276
277/*
278 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
279 * are of type int. Clamp the overrun value to INT_MAX
280 */
281static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
282{
283 s64 sum = timr->it_overrun_last + (s64)baseval;
284
285 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
286}
287
288static void common_hrtimer_rearm(struct k_itimer *timr)
289{
290 struct hrtimer *timer = &timr->it.real.timer;
291
292 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
293 timr->it_interval);
294 hrtimer_restart(timer);
295}
296
297/*
298 * This function is exported for use by the signal deliver code. It is
299 * called just prior to the info block being released and passes that
300 * block to us. It's function is to update the overrun entry AND to
301 * restart the timer. It should only be called if the timer is to be
302 * restarted (i.e. we have flagged this in the sys_private entry of the
303 * info block).
304 *
305 * To protect against the timer going away while the interrupt is queued,
306 * we require that the it_requeue_pending flag be set.
307 */
308void posixtimer_rearm(struct siginfo *info)
309{
310 struct k_itimer *timr;
311 unsigned long flags;
312
313 timr = lock_timer(info->si_tid, &flags);
314 if (!timr)
315 return;
316
317 if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
318 timr->kclock->timer_rearm(timr);
319
320 timr->it_active = 1;
321 timr->it_overrun_last = timr->it_overrun;
322 timr->it_overrun = -1LL;
323 ++timr->it_requeue_pending;
324
325 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
326 }
327
328 unlock_timer(timr, flags);
329}
330
331int posix_timer_event(struct k_itimer *timr, int si_private)
332{
333 enum pid_type type;
334 int ret = -1;
335 /*
336 * FIXME: if ->sigq is queued we can race with
337 * dequeue_signal()->posixtimer_rearm().
338 *
339 * If dequeue_signal() sees the "right" value of
340 * si_sys_private it calls posixtimer_rearm().
341 * We re-queue ->sigq and drop ->it_lock().
342 * posixtimer_rearm() locks the timer
343 * and re-schedules it while ->sigq is pending.
344 * Not really bad, but not that we want.
345 */
346 timr->sigq->info.si_sys_private = si_private;
347
348 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
349 ret = send_sigqueue(timr->sigq, timr->it_pid, type);
350 /* If we failed to send the signal the timer stops. */
351 return ret > 0;
352}
353
354/*
355 * This function gets called when a POSIX.1b interval timer expires. It
356 * is used as a callback from the kernel internal timer. The
357 * run_timer_list code ALWAYS calls with interrupts on.
358
359 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
360 */
361static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
362{
363 struct k_itimer *timr;
364 unsigned long flags;
365 int si_private = 0;
366 enum hrtimer_restart ret = HRTIMER_NORESTART;
367
368 timr = container_of(timer, struct k_itimer, it.real.timer);
369 spin_lock_irqsave(&timr->it_lock, flags);
370
371 timr->it_active = 0;
372 if (timr->it_interval != 0)
373 si_private = ++timr->it_requeue_pending;
374
375 if (posix_timer_event(timr, si_private)) {
376 /*
377 * signal was not sent because of sig_ignor
378 * we will not get a call back to restart it AND
379 * it should be restarted.
380 */
381 if (timr->it_interval != 0) {
382 ktime_t now = hrtimer_cb_get_time(timer);
383
384 /*
385 * FIXME: What we really want, is to stop this
386 * timer completely and restart it in case the
387 * SIG_IGN is removed. This is a non trivial
388 * change which involves sighand locking
389 * (sigh !), which we don't want to do late in
390 * the release cycle.
391 *
392 * For now we just let timers with an interval
393 * less than a jiffie expire every jiffie to
394 * avoid softirq starvation in case of SIG_IGN
395 * and a very small interval, which would put
396 * the timer right back on the softirq pending
397 * list. By moving now ahead of time we trick
398 * hrtimer_forward() to expire the timer
399 * later, while we still maintain the overrun
400 * accuracy, but have some inconsistency in
401 * the timer_gettime() case. This is at least
402 * better than a starved softirq. A more
403 * complex fix which solves also another related
404 * inconsistency is already in the pipeline.
405 */
406#ifdef CONFIG_HIGH_RES_TIMERS
407 {
408 ktime_t kj = NSEC_PER_SEC / HZ;
409
410 if (timr->it_interval < kj)
411 now = ktime_add(now, kj);
412 }
413#endif
414 timr->it_overrun += hrtimer_forward(timer, now,
415 timr->it_interval);
416 ret = HRTIMER_RESTART;
417 ++timr->it_requeue_pending;
418 timr->it_active = 1;
419 }
420 }
421
422 unlock_timer(timr, flags);
423 return ret;
424}
425
426static struct pid *good_sigevent(sigevent_t * event)
427{
428 struct pid *pid = task_tgid(current);
429 struct task_struct *rtn;
430
431 switch (event->sigev_notify) {
432 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
433 pid = find_vpid(event->sigev_notify_thread_id);
434 rtn = pid_task(pid, PIDTYPE_PID);
435 if (!rtn || !same_thread_group(rtn, current))
436 return NULL;
437 /* FALLTHRU */
438 case SIGEV_SIGNAL:
439 case SIGEV_THREAD:
440 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
441 return NULL;
442 /* FALLTHRU */
443 case SIGEV_NONE:
444 return pid;
445 default:
446 return NULL;
447 }
448}
449
450static struct k_itimer * alloc_posix_timer(void)
451{
452 struct k_itimer *tmr;
453 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
454 if (!tmr)
455 return tmr;
456 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
457 kmem_cache_free(posix_timers_cache, tmr);
458 return NULL;
459 }
460 clear_siginfo(&tmr->sigq->info);
461 return tmr;
462}
463
464static void k_itimer_rcu_free(struct rcu_head *head)
465{
466 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
467
468 kmem_cache_free(posix_timers_cache, tmr);
469}
470
471#define IT_ID_SET 1
472#define IT_ID_NOT_SET 0
473static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
474{
475 if (it_id_set) {
476 unsigned long flags;
477 spin_lock_irqsave(&hash_lock, flags);
478 hlist_del_rcu(&tmr->t_hash);
479 spin_unlock_irqrestore(&hash_lock, flags);
480 }
481 put_pid(tmr->it_pid);
482 sigqueue_free(tmr->sigq);
483 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
484}
485
486static int common_timer_create(struct k_itimer *new_timer)
487{
488 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
489 return 0;
490}
491
492/* Create a POSIX.1b interval timer. */
493static int do_timer_create(clockid_t which_clock, struct sigevent *event,
494 timer_t __user *created_timer_id)
495{
496 const struct k_clock *kc = clockid_to_kclock(which_clock);
497 struct k_itimer *new_timer;
498 int error, new_timer_id;
499 int it_id_set = IT_ID_NOT_SET;
500
501 if (!kc)
502 return -EINVAL;
503 if (!kc->timer_create)
504 return -EOPNOTSUPP;
505
506 new_timer = alloc_posix_timer();
507 if (unlikely(!new_timer))
508 return -EAGAIN;
509
510 spin_lock_init(&new_timer->it_lock);
511 new_timer_id = posix_timer_add(new_timer);
512 if (new_timer_id < 0) {
513 error = new_timer_id;
514 goto out;
515 }
516
517 it_id_set = IT_ID_SET;
518 new_timer->it_id = (timer_t) new_timer_id;
519 new_timer->it_clock = which_clock;
520 new_timer->kclock = kc;
521 new_timer->it_overrun = -1LL;
522
523 if (event) {
524 rcu_read_lock();
525 new_timer->it_pid = get_pid(good_sigevent(event));
526 rcu_read_unlock();
527 if (!new_timer->it_pid) {
528 error = -EINVAL;
529 goto out;
530 }
531 new_timer->it_sigev_notify = event->sigev_notify;
532 new_timer->sigq->info.si_signo = event->sigev_signo;
533 new_timer->sigq->info.si_value = event->sigev_value;
534 } else {
535 new_timer->it_sigev_notify = SIGEV_SIGNAL;
536 new_timer->sigq->info.si_signo = SIGALRM;
537 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
538 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
539 new_timer->it_pid = get_pid(task_tgid(current));
540 }
541
542 new_timer->sigq->info.si_tid = new_timer->it_id;
543 new_timer->sigq->info.si_code = SI_TIMER;
544
545 if (copy_to_user(created_timer_id,
546 &new_timer_id, sizeof (new_timer_id))) {
547 error = -EFAULT;
548 goto out;
549 }
550
551 error = kc->timer_create(new_timer);
552 if (error)
553 goto out;
554
555 spin_lock_irq(&current->sighand->siglock);
556 new_timer->it_signal = current->signal;
557 list_add(&new_timer->list, &current->signal->posix_timers);
558 spin_unlock_irq(&current->sighand->siglock);
559
560 return 0;
561 /*
562 * In the case of the timer belonging to another task, after
563 * the task is unlocked, the timer is owned by the other task
564 * and may cease to exist at any time. Don't use or modify
565 * new_timer after the unlock call.
566 */
567out:
568 release_posix_timer(new_timer, it_id_set);
569 return error;
570}
571
572SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
573 struct sigevent __user *, timer_event_spec,
574 timer_t __user *, created_timer_id)
575{
576 if (timer_event_spec) {
577 sigevent_t event;
578
579 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
580 return -EFAULT;
581 return do_timer_create(which_clock, &event, created_timer_id);
582 }
583 return do_timer_create(which_clock, NULL, created_timer_id);
584}
585
586#ifdef CONFIG_COMPAT
587COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
588 struct compat_sigevent __user *, timer_event_spec,
589 timer_t __user *, created_timer_id)
590{
591 if (timer_event_spec) {
592 sigevent_t event;
593
594 if (get_compat_sigevent(&event, timer_event_spec))
595 return -EFAULT;
596 return do_timer_create(which_clock, &event, created_timer_id);
597 }
598 return do_timer_create(which_clock, NULL, created_timer_id);
599}
600#endif
601
602/*
603 * Locking issues: We need to protect the result of the id look up until
604 * we get the timer locked down so it is not deleted under us. The
605 * removal is done under the idr spinlock so we use that here to bridge
606 * the find to the timer lock. To avoid a dead lock, the timer id MUST
607 * be release with out holding the timer lock.
608 */
609static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
610{
611 struct k_itimer *timr;
612
613 /*
614 * timer_t could be any type >= int and we want to make sure any
615 * @timer_id outside positive int range fails lookup.
616 */
617 if ((unsigned long long)timer_id > INT_MAX)
618 return NULL;
619
620 rcu_read_lock();
621 timr = posix_timer_by_id(timer_id);
622 if (timr) {
623 spin_lock_irqsave(&timr->it_lock, *flags);
624 if (timr->it_signal == current->signal) {
625 rcu_read_unlock();
626 return timr;
627 }
628 spin_unlock_irqrestore(&timr->it_lock, *flags);
629 }
630 rcu_read_unlock();
631
632 return NULL;
633}
634
635static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
636{
637 struct hrtimer *timer = &timr->it.real.timer;
638
639 return __hrtimer_expires_remaining_adjusted(timer, now);
640}
641
642static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
643{
644 struct hrtimer *timer = &timr->it.real.timer;
645
646 return hrtimer_forward(timer, now, timr->it_interval);
647}
648
649/*
650 * Get the time remaining on a POSIX.1b interval timer. This function
651 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
652 * mess with irq.
653 *
654 * We have a couple of messes to clean up here. First there is the case
655 * of a timer that has a requeue pending. These timers should appear to
656 * be in the timer list with an expiry as if we were to requeue them
657 * now.
658 *
659 * The second issue is the SIGEV_NONE timer which may be active but is
660 * not really ever put in the timer list (to save system resources).
661 * This timer may be expired, and if so, we will do it here. Otherwise
662 * it is the same as a requeue pending timer WRT to what we should
663 * report.
664 */
665void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
666{
667 const struct k_clock *kc = timr->kclock;
668 ktime_t now, remaining, iv;
669 struct timespec64 ts64;
670 bool sig_none;
671
672 sig_none = timr->it_sigev_notify == SIGEV_NONE;
673 iv = timr->it_interval;
674
675 /* interval timer ? */
676 if (iv) {
677 cur_setting->it_interval = ktime_to_timespec64(iv);
678 } else if (!timr->it_active) {
679 /*
680 * SIGEV_NONE oneshot timers are never queued. Check them
681 * below.
682 */
683 if (!sig_none)
684 return;
685 }
686
687 /*
688 * The timespec64 based conversion is suboptimal, but it's not
689 * worth to implement yet another callback.
690 */
691 kc->clock_get(timr->it_clock, &ts64);
692 now = timespec64_to_ktime(ts64);
693
694 /*
695 * When a requeue is pending or this is a SIGEV_NONE timer move the
696 * expiry time forward by intervals, so expiry is > now.
697 */
698 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
699 timr->it_overrun += kc->timer_forward(timr, now);
700
701 remaining = kc->timer_remaining(timr, now);
702 /* Return 0 only, when the timer is expired and not pending */
703 if (remaining <= 0) {
704 /*
705 * A single shot SIGEV_NONE timer must return 0, when
706 * it is expired !
707 */
708 if (!sig_none)
709 cur_setting->it_value.tv_nsec = 1;
710 } else {
711 cur_setting->it_value = ktime_to_timespec64(remaining);
712 }
713}
714
715/* Get the time remaining on a POSIX.1b interval timer. */
716static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
717{
718 struct k_itimer *timr;
719 const struct k_clock *kc;
720 unsigned long flags;
721 int ret = 0;
722
723 timr = lock_timer(timer_id, &flags);
724 if (!timr)
725 return -EINVAL;
726
727 memset(setting, 0, sizeof(*setting));
728 kc = timr->kclock;
729 if (WARN_ON_ONCE(!kc || !kc->timer_get))
730 ret = -EINVAL;
731 else
732 kc->timer_get(timr, setting);
733
734 unlock_timer(timr, flags);
735 return ret;
736}
737
738/* Get the time remaining on a POSIX.1b interval timer. */
739SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
740 struct __kernel_itimerspec __user *, setting)
741{
742 struct itimerspec64 cur_setting;
743
744 int ret = do_timer_gettime(timer_id, &cur_setting);
745 if (!ret) {
746 if (put_itimerspec64(&cur_setting, setting))
747 ret = -EFAULT;
748 }
749 return ret;
750}
751
752#ifdef CONFIG_COMPAT_32BIT_TIME
753
754COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
755 struct compat_itimerspec __user *, setting)
756{
757 struct itimerspec64 cur_setting;
758
759 int ret = do_timer_gettime(timer_id, &cur_setting);
760 if (!ret) {
761 if (put_compat_itimerspec64(&cur_setting, setting))
762 ret = -EFAULT;
763 }
764 return ret;
765}
766
767#endif
768
769/*
770 * Get the number of overruns of a POSIX.1b interval timer. This is to
771 * be the overrun of the timer last delivered. At the same time we are
772 * accumulating overruns on the next timer. The overrun is frozen when
773 * the signal is delivered, either at the notify time (if the info block
774 * is not queued) or at the actual delivery time (as we are informed by
775 * the call back to posixtimer_rearm(). So all we need to do is
776 * to pick up the frozen overrun.
777 */
778SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
779{
780 struct k_itimer *timr;
781 int overrun;
782 unsigned long flags;
783
784 timr = lock_timer(timer_id, &flags);
785 if (!timr)
786 return -EINVAL;
787
788 overrun = timer_overrun_to_int(timr, 0);
789 unlock_timer(timr, flags);
790
791 return overrun;
792}
793
794static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
795 bool absolute, bool sigev_none)
796{
797 struct hrtimer *timer = &timr->it.real.timer;
798 enum hrtimer_mode mode;
799
800 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
801 /*
802 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
803 * clock modifications, so they become CLOCK_MONOTONIC based under the
804 * hood. See hrtimer_init(). Update timr->kclock, so the generic
805 * functions which use timr->kclock->clock_get() work.
806 *
807 * Note: it_clock stays unmodified, because the next timer_set() might
808 * use ABSTIME, so it needs to switch back.
809 */
810 if (timr->it_clock == CLOCK_REALTIME)
811 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
812
813 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
814 timr->it.real.timer.function = posix_timer_fn;
815
816 if (!absolute)
817 expires = ktime_add_safe(expires, timer->base->get_time());
818 hrtimer_set_expires(timer, expires);
819
820 if (!sigev_none)
821 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
822}
823
824static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
825{
826 return hrtimer_try_to_cancel(&timr->it.real.timer);
827}
828
829/* Set a POSIX.1b interval timer. */
830int common_timer_set(struct k_itimer *timr, int flags,
831 struct itimerspec64 *new_setting,
832 struct itimerspec64 *old_setting)
833{
834 const struct k_clock *kc = timr->kclock;
835 bool sigev_none;
836 ktime_t expires;
837
838 if (old_setting)
839 common_timer_get(timr, old_setting);
840
841 /* Prevent rearming by clearing the interval */
842 timr->it_interval = 0;
843 /*
844 * Careful here. On SMP systems the timer expiry function could be
845 * active and spinning on timr->it_lock.
846 */
847 if (kc->timer_try_to_cancel(timr) < 0)
848 return TIMER_RETRY;
849
850 timr->it_active = 0;
851 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
852 ~REQUEUE_PENDING;
853 timr->it_overrun_last = 0;
854
855 /* Switch off the timer when it_value is zero */
856 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
857 return 0;
858
859 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
860 expires = timespec64_to_ktime(new_setting->it_value);
861 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
862
863 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
864 timr->it_active = !sigev_none;
865 return 0;
866}
867
868static int do_timer_settime(timer_t timer_id, int flags,
869 struct itimerspec64 *new_spec64,
870 struct itimerspec64 *old_spec64)
871{
872 const struct k_clock *kc;
873 struct k_itimer *timr;
874 unsigned long flag;
875 int error = 0;
876
877 if (!timespec64_valid(&new_spec64->it_interval) ||
878 !timespec64_valid(&new_spec64->it_value))
879 return -EINVAL;
880
881 if (old_spec64)
882 memset(old_spec64, 0, sizeof(*old_spec64));
883retry:
884 timr = lock_timer(timer_id, &flag);
885 if (!timr)
886 return -EINVAL;
887
888 kc = timr->kclock;
889 if (WARN_ON_ONCE(!kc || !kc->timer_set))
890 error = -EINVAL;
891 else
892 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
893
894 unlock_timer(timr, flag);
895 if (error == TIMER_RETRY) {
896 old_spec64 = NULL; // We already got the old time...
897 goto retry;
898 }
899
900 return error;
901}
902
903/* Set a POSIX.1b interval timer */
904SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
905 const struct __kernel_itimerspec __user *, new_setting,
906 struct __kernel_itimerspec __user *, old_setting)
907{
908 struct itimerspec64 new_spec, old_spec;
909 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
910 int error = 0;
911
912 if (!new_setting)
913 return -EINVAL;
914
915 if (get_itimerspec64(&new_spec, new_setting))
916 return -EFAULT;
917
918 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
919 if (!error && old_setting) {
920 if (put_itimerspec64(&old_spec, old_setting))
921 error = -EFAULT;
922 }
923 return error;
924}
925
926#ifdef CONFIG_COMPAT_32BIT_TIME
927COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
928 struct compat_itimerspec __user *, new,
929 struct compat_itimerspec __user *, old)
930{
931 struct itimerspec64 new_spec, old_spec;
932 struct itimerspec64 *rtn = old ? &old_spec : NULL;
933 int error = 0;
934
935 if (!new)
936 return -EINVAL;
937 if (get_compat_itimerspec64(&new_spec, new))
938 return -EFAULT;
939
940 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
941 if (!error && old) {
942 if (put_compat_itimerspec64(&old_spec, old))
943 error = -EFAULT;
944 }
945 return error;
946}
947#endif
948
949int common_timer_del(struct k_itimer *timer)
950{
951 const struct k_clock *kc = timer->kclock;
952
953 timer->it_interval = 0;
954 if (kc->timer_try_to_cancel(timer) < 0)
955 return TIMER_RETRY;
956 timer->it_active = 0;
957 return 0;
958}
959
960static inline int timer_delete_hook(struct k_itimer *timer)
961{
962 const struct k_clock *kc = timer->kclock;
963
964 if (WARN_ON_ONCE(!kc || !kc->timer_del))
965 return -EINVAL;
966 return kc->timer_del(timer);
967}
968
969/* Delete a POSIX.1b interval timer. */
970SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
971{
972 struct k_itimer *timer;
973 unsigned long flags;
974
975retry_delete:
976 timer = lock_timer(timer_id, &flags);
977 if (!timer)
978 return -EINVAL;
979
980 if (timer_delete_hook(timer) == TIMER_RETRY) {
981 unlock_timer(timer, flags);
982 goto retry_delete;
983 }
984
985 spin_lock(&current->sighand->siglock);
986 list_del(&timer->list);
987 spin_unlock(&current->sighand->siglock);
988 /*
989 * This keeps any tasks waiting on the spin lock from thinking
990 * they got something (see the lock code above).
991 */
992 timer->it_signal = NULL;
993
994 unlock_timer(timer, flags);
995 release_posix_timer(timer, IT_ID_SET);
996 return 0;
997}
998
999/*
1000 * return timer owned by the process, used by exit_itimers
1001 */
1002static void itimer_delete(struct k_itimer *timer)
1003{
1004 unsigned long flags;
1005
1006retry_delete:
1007 spin_lock_irqsave(&timer->it_lock, flags);
1008
1009 if (timer_delete_hook(timer) == TIMER_RETRY) {
1010 unlock_timer(timer, flags);
1011 goto retry_delete;
1012 }
1013 list_del(&timer->list);
1014 /*
1015 * This keeps any tasks waiting on the spin lock from thinking
1016 * they got something (see the lock code above).
1017 */
1018 timer->it_signal = NULL;
1019
1020 unlock_timer(timer, flags);
1021 release_posix_timer(timer, IT_ID_SET);
1022}
1023
1024/*
1025 * This is called by do_exit or de_thread, only when there are no more
1026 * references to the shared signal_struct.
1027 */
1028void exit_itimers(struct signal_struct *sig)
1029{
1030 struct k_itimer *tmr;
1031
1032 while (!list_empty(&sig->posix_timers)) {
1033 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1034 itimer_delete(tmr);
1035 }
1036}
1037
1038SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1039 const struct __kernel_timespec __user *, tp)
1040{
1041 const struct k_clock *kc = clockid_to_kclock(which_clock);
1042 struct timespec64 new_tp;
1043
1044 if (!kc || !kc->clock_set)
1045 return -EINVAL;
1046
1047 if (get_timespec64(&new_tp, tp))
1048 return -EFAULT;
1049
1050 return kc->clock_set(which_clock, &new_tp);
1051}
1052
1053SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1054 struct __kernel_timespec __user *, tp)
1055{
1056 const struct k_clock *kc = clockid_to_kclock(which_clock);
1057 struct timespec64 kernel_tp;
1058 int error;
1059
1060 if (!kc)
1061 return -EINVAL;
1062
1063 error = kc->clock_get(which_clock, &kernel_tp);
1064
1065 if (!error && put_timespec64(&kernel_tp, tp))
1066 error = -EFAULT;
1067
1068 return error;
1069}
1070
1071SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1072 struct timex __user *, utx)
1073{
1074 const struct k_clock *kc = clockid_to_kclock(which_clock);
1075 struct timex ktx;
1076 int err;
1077
1078 if (!kc)
1079 return -EINVAL;
1080 if (!kc->clock_adj)
1081 return -EOPNOTSUPP;
1082
1083 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1084 return -EFAULT;
1085
1086 err = kc->clock_adj(which_clock, &ktx);
1087
1088 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1089 return -EFAULT;
1090
1091 return err;
1092}
1093
1094SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1095 struct __kernel_timespec __user *, tp)
1096{
1097 const struct k_clock *kc = clockid_to_kclock(which_clock);
1098 struct timespec64 rtn_tp;
1099 int error;
1100
1101 if (!kc)
1102 return -EINVAL;
1103
1104 error = kc->clock_getres(which_clock, &rtn_tp);
1105
1106 if (!error && tp && put_timespec64(&rtn_tp, tp))
1107 error = -EFAULT;
1108
1109 return error;
1110}
1111
1112#ifdef CONFIG_COMPAT_32BIT_TIME
1113
1114COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1115 struct compat_timespec __user *, tp)
1116{
1117 const struct k_clock *kc = clockid_to_kclock(which_clock);
1118 struct timespec64 ts;
1119
1120 if (!kc || !kc->clock_set)
1121 return -EINVAL;
1122
1123 if (compat_get_timespec64(&ts, tp))
1124 return -EFAULT;
1125
1126 return kc->clock_set(which_clock, &ts);
1127}
1128
1129COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1130 struct compat_timespec __user *, tp)
1131{
1132 const struct k_clock *kc = clockid_to_kclock(which_clock);
1133 struct timespec64 ts;
1134 int err;
1135
1136 if (!kc)
1137 return -EINVAL;
1138
1139 err = kc->clock_get(which_clock, &ts);
1140
1141 if (!err && compat_put_timespec64(&ts, tp))
1142 err = -EFAULT;
1143
1144 return err;
1145}
1146
1147#endif
1148
1149#ifdef CONFIG_COMPAT
1150
1151COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1152 struct compat_timex __user *, utp)
1153{
1154 const struct k_clock *kc = clockid_to_kclock(which_clock);
1155 struct timex ktx;
1156 int err;
1157
1158 if (!kc)
1159 return -EINVAL;
1160 if (!kc->clock_adj)
1161 return -EOPNOTSUPP;
1162
1163 err = compat_get_timex(&ktx, utp);
1164 if (err)
1165 return err;
1166
1167 err = kc->clock_adj(which_clock, &ktx);
1168
1169 if (err >= 0)
1170 err = compat_put_timex(utp, &ktx);
1171
1172 return err;
1173}
1174
1175#endif
1176
1177#ifdef CONFIG_COMPAT_32BIT_TIME
1178
1179COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1180 struct compat_timespec __user *, tp)
1181{
1182 const struct k_clock *kc = clockid_to_kclock(which_clock);
1183 struct timespec64 ts;
1184 int err;
1185
1186 if (!kc)
1187 return -EINVAL;
1188
1189 err = kc->clock_getres(which_clock, &ts);
1190 if (!err && tp && compat_put_timespec64(&ts, tp))
1191 return -EFAULT;
1192
1193 return err;
1194}
1195
1196#endif
1197
1198/*
1199 * nanosleep for monotonic and realtime clocks
1200 */
1201static int common_nsleep(const clockid_t which_clock, int flags,
1202 const struct timespec64 *rqtp)
1203{
1204 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1205 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1206 which_clock);
1207}
1208
1209SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1210 const struct __kernel_timespec __user *, rqtp,
1211 struct __kernel_timespec __user *, rmtp)
1212{
1213 const struct k_clock *kc = clockid_to_kclock(which_clock);
1214 struct timespec64 t;
1215
1216 if (!kc)
1217 return -EINVAL;
1218 if (!kc->nsleep)
1219 return -EOPNOTSUPP;
1220
1221 if (get_timespec64(&t, rqtp))
1222 return -EFAULT;
1223
1224 if (!timespec64_valid(&t))
1225 return -EINVAL;
1226 if (flags & TIMER_ABSTIME)
1227 rmtp = NULL;
1228 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1229 current->restart_block.nanosleep.rmtp = rmtp;
1230
1231 return kc->nsleep(which_clock, flags, &t);
1232}
1233
1234#ifdef CONFIG_COMPAT_32BIT_TIME
1235
1236COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1237 struct compat_timespec __user *, rqtp,
1238 struct compat_timespec __user *, rmtp)
1239{
1240 const struct k_clock *kc = clockid_to_kclock(which_clock);
1241 struct timespec64 t;
1242
1243 if (!kc)
1244 return -EINVAL;
1245 if (!kc->nsleep)
1246 return -EOPNOTSUPP;
1247
1248 if (compat_get_timespec64(&t, rqtp))
1249 return -EFAULT;
1250
1251 if (!timespec64_valid(&t))
1252 return -EINVAL;
1253 if (flags & TIMER_ABSTIME)
1254 rmtp = NULL;
1255 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1256 current->restart_block.nanosleep.compat_rmtp = rmtp;
1257
1258 return kc->nsleep(which_clock, flags, &t);
1259}
1260
1261#endif
1262
1263static const struct k_clock clock_realtime = {
1264 .clock_getres = posix_get_hrtimer_res,
1265 .clock_get = posix_clock_realtime_get,
1266 .clock_set = posix_clock_realtime_set,
1267 .clock_adj = posix_clock_realtime_adj,
1268 .nsleep = common_nsleep,
1269 .timer_create = common_timer_create,
1270 .timer_set = common_timer_set,
1271 .timer_get = common_timer_get,
1272 .timer_del = common_timer_del,
1273 .timer_rearm = common_hrtimer_rearm,
1274 .timer_forward = common_hrtimer_forward,
1275 .timer_remaining = common_hrtimer_remaining,
1276 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1277 .timer_arm = common_hrtimer_arm,
1278};
1279
1280static const struct k_clock clock_monotonic = {
1281 .clock_getres = posix_get_hrtimer_res,
1282 .clock_get = posix_ktime_get_ts,
1283 .nsleep = common_nsleep,
1284 .timer_create = common_timer_create,
1285 .timer_set = common_timer_set,
1286 .timer_get = common_timer_get,
1287 .timer_del = common_timer_del,
1288 .timer_rearm = common_hrtimer_rearm,
1289 .timer_forward = common_hrtimer_forward,
1290 .timer_remaining = common_hrtimer_remaining,
1291 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1292 .timer_arm = common_hrtimer_arm,
1293};
1294
1295static const struct k_clock clock_monotonic_raw = {
1296 .clock_getres = posix_get_hrtimer_res,
1297 .clock_get = posix_get_monotonic_raw,
1298};
1299
1300static const struct k_clock clock_realtime_coarse = {
1301 .clock_getres = posix_get_coarse_res,
1302 .clock_get = posix_get_realtime_coarse,
1303};
1304
1305static const struct k_clock clock_monotonic_coarse = {
1306 .clock_getres = posix_get_coarse_res,
1307 .clock_get = posix_get_monotonic_coarse,
1308};
1309
1310static const struct k_clock clock_tai = {
1311 .clock_getres = posix_get_hrtimer_res,
1312 .clock_get = posix_get_tai,
1313 .nsleep = common_nsleep,
1314 .timer_create = common_timer_create,
1315 .timer_set = common_timer_set,
1316 .timer_get = common_timer_get,
1317 .timer_del = common_timer_del,
1318 .timer_rearm = common_hrtimer_rearm,
1319 .timer_forward = common_hrtimer_forward,
1320 .timer_remaining = common_hrtimer_remaining,
1321 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1322 .timer_arm = common_hrtimer_arm,
1323};
1324
1325static const struct k_clock clock_boottime = {
1326 .clock_getres = posix_get_hrtimer_res,
1327 .clock_get = posix_get_boottime,
1328 .nsleep = common_nsleep,
1329 .timer_create = common_timer_create,
1330 .timer_set = common_timer_set,
1331 .timer_get = common_timer_get,
1332 .timer_del = common_timer_del,
1333 .timer_rearm = common_hrtimer_rearm,
1334 .timer_forward = common_hrtimer_forward,
1335 .timer_remaining = common_hrtimer_remaining,
1336 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1337 .timer_arm = common_hrtimer_arm,
1338};
1339
1340static const struct k_clock * const posix_clocks[] = {
1341 [CLOCK_REALTIME] = &clock_realtime,
1342 [CLOCK_MONOTONIC] = &clock_monotonic,
1343 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1344 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1345 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1346 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1347 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1348 [CLOCK_BOOTTIME] = &clock_boottime,
1349 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1350 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1351 [CLOCK_TAI] = &clock_tai,
1352};
1353
1354static const struct k_clock *clockid_to_kclock(const clockid_t id)
1355{
1356 clockid_t idx = id;
1357
1358 if (id < 0) {
1359 return (id & CLOCKFD_MASK) == CLOCKFD ?
1360 &clock_posix_dynamic : &clock_posix_cpu;
1361 }
1362
1363 if (id >= ARRAY_SIZE(posix_clocks))
1364 return NULL;
1365
1366 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1367}