Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Copyright (C) 2016 Oracle. All Rights Reserved. |
| 4 | * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| 5 | */ |
| 6 | #include "xfs.h" |
| 7 | #include "xfs_fs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_mount.h" |
| 13 | #include "xfs_defer.h" |
| 14 | #include "xfs_da_format.h" |
| 15 | #include "xfs_da_btree.h" |
| 16 | #include "xfs_inode.h" |
| 17 | #include "xfs_trans.h" |
| 18 | #include "xfs_inode_item.h" |
| 19 | #include "xfs_bmap.h" |
| 20 | #include "xfs_bmap_util.h" |
| 21 | #include "xfs_error.h" |
| 22 | #include "xfs_dir2.h" |
| 23 | #include "xfs_dir2_priv.h" |
| 24 | #include "xfs_ioctl.h" |
| 25 | #include "xfs_trace.h" |
| 26 | #include "xfs_log.h" |
| 27 | #include "xfs_icache.h" |
| 28 | #include "xfs_pnfs.h" |
| 29 | #include "xfs_btree.h" |
| 30 | #include "xfs_refcount_btree.h" |
| 31 | #include "xfs_refcount.h" |
| 32 | #include "xfs_bmap_btree.h" |
| 33 | #include "xfs_trans_space.h" |
| 34 | #include "xfs_bit.h" |
| 35 | #include "xfs_alloc.h" |
| 36 | #include "xfs_quota_defs.h" |
| 37 | #include "xfs_quota.h" |
| 38 | #include "xfs_reflink.h" |
| 39 | #include "xfs_iomap.h" |
| 40 | #include "xfs_rmap_btree.h" |
| 41 | #include "xfs_sb.h" |
| 42 | #include "xfs_ag_resv.h" |
| 43 | |
| 44 | /* |
| 45 | * Copy on Write of Shared Blocks |
| 46 | * |
| 47 | * XFS must preserve "the usual" file semantics even when two files share |
| 48 | * the same physical blocks. This means that a write to one file must not |
| 49 | * alter the blocks in a different file; the way that we'll do that is |
| 50 | * through the use of a copy-on-write mechanism. At a high level, that |
| 51 | * means that when we want to write to a shared block, we allocate a new |
| 52 | * block, write the data to the new block, and if that succeeds we map the |
| 53 | * new block into the file. |
| 54 | * |
| 55 | * XFS provides a "delayed allocation" mechanism that defers the allocation |
| 56 | * of disk blocks to dirty-but-not-yet-mapped file blocks as long as |
| 57 | * possible. This reduces fragmentation by enabling the filesystem to ask |
| 58 | * for bigger chunks less often, which is exactly what we want for CoW. |
| 59 | * |
| 60 | * The delalloc mechanism begins when the kernel wants to make a block |
| 61 | * writable (write_begin or page_mkwrite). If the offset is not mapped, we |
| 62 | * create a delalloc mapping, which is a regular in-core extent, but without |
| 63 | * a real startblock. (For delalloc mappings, the startblock encodes both |
| 64 | * a flag that this is a delalloc mapping, and a worst-case estimate of how |
| 65 | * many blocks might be required to put the mapping into the BMBT.) delalloc |
| 66 | * mappings are a reservation against the free space in the filesystem; |
| 67 | * adjacent mappings can also be combined into fewer larger mappings. |
| 68 | * |
| 69 | * As an optimization, the CoW extent size hint (cowextsz) creates |
| 70 | * outsized aligned delalloc reservations in the hope of landing out of |
| 71 | * order nearby CoW writes in a single extent on disk, thereby reducing |
| 72 | * fragmentation and improving future performance. |
| 73 | * |
| 74 | * D: --RRRRRRSSSRRRRRRRR--- (data fork) |
| 75 | * C: ------DDDDDDD--------- (CoW fork) |
| 76 | * |
| 77 | * When dirty pages are being written out (typically in writepage), the |
| 78 | * delalloc reservations are converted into unwritten mappings by |
| 79 | * allocating blocks and replacing the delalloc mapping with real ones. |
| 80 | * A delalloc mapping can be replaced by several unwritten ones if the |
| 81 | * free space is fragmented. |
| 82 | * |
| 83 | * D: --RRRRRRSSSRRRRRRRR--- |
| 84 | * C: ------UUUUUUU--------- |
| 85 | * |
| 86 | * We want to adapt the delalloc mechanism for copy-on-write, since the |
| 87 | * write paths are similar. The first two steps (creating the reservation |
| 88 | * and allocating the blocks) are exactly the same as delalloc except that |
| 89 | * the mappings must be stored in a separate CoW fork because we do not want |
| 90 | * to disturb the mapping in the data fork until we're sure that the write |
| 91 | * succeeded. IO completion in this case is the process of removing the old |
| 92 | * mapping from the data fork and moving the new mapping from the CoW fork to |
| 93 | * the data fork. This will be discussed shortly. |
| 94 | * |
| 95 | * For now, unaligned directio writes will be bounced back to the page cache. |
| 96 | * Block-aligned directio writes will use the same mechanism as buffered |
| 97 | * writes. |
| 98 | * |
| 99 | * Just prior to submitting the actual disk write requests, we convert |
| 100 | * the extents representing the range of the file actually being written |
| 101 | * (as opposed to extra pieces created for the cowextsize hint) to real |
| 102 | * extents. This will become important in the next step: |
| 103 | * |
| 104 | * D: --RRRRRRSSSRRRRRRRR--- |
| 105 | * C: ------UUrrUUU--------- |
| 106 | * |
| 107 | * CoW remapping must be done after the data block write completes, |
| 108 | * because we don't want to destroy the old data fork map until we're sure |
| 109 | * the new block has been written. Since the new mappings are kept in a |
| 110 | * separate fork, we can simply iterate these mappings to find the ones |
| 111 | * that cover the file blocks that we just CoW'd. For each extent, simply |
| 112 | * unmap the corresponding range in the data fork, map the new range into |
| 113 | * the data fork, and remove the extent from the CoW fork. Because of |
| 114 | * the presence of the cowextsize hint, however, we must be careful |
| 115 | * only to remap the blocks that we've actually written out -- we must |
| 116 | * never remap delalloc reservations nor CoW staging blocks that have |
| 117 | * yet to be written. This corresponds exactly to the real extents in |
| 118 | * the CoW fork: |
| 119 | * |
| 120 | * D: --RRRRRRrrSRRRRRRRR--- |
| 121 | * C: ------UU--UUU--------- |
| 122 | * |
| 123 | * Since the remapping operation can be applied to an arbitrary file |
| 124 | * range, we record the need for the remap step as a flag in the ioend |
| 125 | * instead of declaring a new IO type. This is required for direct io |
| 126 | * because we only have ioend for the whole dio, and we have to be able to |
| 127 | * remember the presence of unwritten blocks and CoW blocks with a single |
| 128 | * ioend structure. Better yet, the more ground we can cover with one |
| 129 | * ioend, the better. |
| 130 | */ |
| 131 | |
| 132 | /* |
| 133 | * Given an AG extent, find the lowest-numbered run of shared blocks |
| 134 | * within that range and return the range in fbno/flen. If |
| 135 | * find_end_of_shared is true, return the longest contiguous extent of |
| 136 | * shared blocks. If there are no shared extents, fbno and flen will |
| 137 | * be set to NULLAGBLOCK and 0, respectively. |
| 138 | */ |
| 139 | int |
| 140 | xfs_reflink_find_shared( |
| 141 | struct xfs_mount *mp, |
| 142 | struct xfs_trans *tp, |
| 143 | xfs_agnumber_t agno, |
| 144 | xfs_agblock_t agbno, |
| 145 | xfs_extlen_t aglen, |
| 146 | xfs_agblock_t *fbno, |
| 147 | xfs_extlen_t *flen, |
| 148 | bool find_end_of_shared) |
| 149 | { |
| 150 | struct xfs_buf *agbp; |
| 151 | struct xfs_btree_cur *cur; |
| 152 | int error; |
| 153 | |
| 154 | error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); |
| 155 | if (error) |
| 156 | return error; |
| 157 | if (!agbp) |
| 158 | return -ENOMEM; |
| 159 | |
| 160 | cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno); |
| 161 | |
| 162 | error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, |
| 163 | find_end_of_shared); |
| 164 | |
| 165 | xfs_btree_del_cursor(cur, error); |
| 166 | |
| 167 | xfs_trans_brelse(tp, agbp); |
| 168 | return error; |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | * Trim the mapping to the next block where there's a change in the |
| 173 | * shared/unshared status. More specifically, this means that we |
| 174 | * find the lowest-numbered extent of shared blocks that coincides with |
| 175 | * the given block mapping. If the shared extent overlaps the start of |
| 176 | * the mapping, trim the mapping to the end of the shared extent. If |
| 177 | * the shared region intersects the mapping, trim the mapping to the |
| 178 | * start of the shared extent. If there are no shared regions that |
| 179 | * overlap, just return the original extent. |
| 180 | */ |
| 181 | int |
| 182 | xfs_reflink_trim_around_shared( |
| 183 | struct xfs_inode *ip, |
| 184 | struct xfs_bmbt_irec *irec, |
| 185 | bool *shared, |
| 186 | bool *trimmed) |
| 187 | { |
| 188 | xfs_agnumber_t agno; |
| 189 | xfs_agblock_t agbno; |
| 190 | xfs_extlen_t aglen; |
| 191 | xfs_agblock_t fbno; |
| 192 | xfs_extlen_t flen; |
| 193 | int error = 0; |
| 194 | |
| 195 | /* Holes, unwritten, and delalloc extents cannot be shared */ |
| 196 | if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) { |
| 197 | *shared = false; |
| 198 | return 0; |
| 199 | } |
| 200 | |
| 201 | trace_xfs_reflink_trim_around_shared(ip, irec); |
| 202 | |
| 203 | agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock); |
| 204 | agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock); |
| 205 | aglen = irec->br_blockcount; |
| 206 | |
| 207 | error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno, |
| 208 | aglen, &fbno, &flen, true); |
| 209 | if (error) |
| 210 | return error; |
| 211 | |
| 212 | *shared = *trimmed = false; |
| 213 | if (fbno == NULLAGBLOCK) { |
| 214 | /* No shared blocks at all. */ |
| 215 | return 0; |
| 216 | } else if (fbno == agbno) { |
| 217 | /* |
| 218 | * The start of this extent is shared. Truncate the |
| 219 | * mapping at the end of the shared region so that a |
| 220 | * subsequent iteration starts at the start of the |
| 221 | * unshared region. |
| 222 | */ |
| 223 | irec->br_blockcount = flen; |
| 224 | *shared = true; |
| 225 | if (flen != aglen) |
| 226 | *trimmed = true; |
| 227 | return 0; |
| 228 | } else { |
| 229 | /* |
| 230 | * There's a shared extent midway through this extent. |
| 231 | * Truncate the mapping at the start of the shared |
| 232 | * extent so that a subsequent iteration starts at the |
| 233 | * start of the shared region. |
| 234 | */ |
| 235 | irec->br_blockcount = fbno - agbno; |
| 236 | *trimmed = true; |
| 237 | return 0; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | * Trim the passed in imap to the next shared/unshared extent boundary, and |
| 243 | * if imap->br_startoff points to a shared extent reserve space for it in the |
| 244 | * COW fork. In this case *shared is set to true, else to false. |
| 245 | * |
| 246 | * Note that imap will always contain the block numbers for the existing blocks |
| 247 | * in the data fork, as the upper layers need them for read-modify-write |
| 248 | * operations. |
| 249 | */ |
| 250 | int |
| 251 | xfs_reflink_reserve_cow( |
| 252 | struct xfs_inode *ip, |
| 253 | struct xfs_bmbt_irec *imap, |
| 254 | bool *shared) |
| 255 | { |
| 256 | struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); |
| 257 | struct xfs_bmbt_irec got; |
| 258 | int error = 0; |
| 259 | bool eof = false, trimmed; |
| 260 | struct xfs_iext_cursor icur; |
| 261 | |
| 262 | /* |
| 263 | * Search the COW fork extent list first. This serves two purposes: |
| 264 | * first this implement the speculative preallocation using cowextisze, |
| 265 | * so that we also unshared block adjacent to shared blocks instead |
| 266 | * of just the shared blocks themselves. Second the lookup in the |
| 267 | * extent list is generally faster than going out to the shared extent |
| 268 | * tree. |
| 269 | */ |
| 270 | |
| 271 | if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got)) |
| 272 | eof = true; |
| 273 | if (!eof && got.br_startoff <= imap->br_startoff) { |
| 274 | trace_xfs_reflink_cow_found(ip, imap); |
| 275 | xfs_trim_extent(imap, got.br_startoff, got.br_blockcount); |
| 276 | |
| 277 | *shared = true; |
| 278 | return 0; |
| 279 | } |
| 280 | |
| 281 | /* Trim the mapping to the nearest shared extent boundary. */ |
| 282 | error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed); |
| 283 | if (error) |
| 284 | return error; |
| 285 | |
| 286 | /* Not shared? Just report the (potentially capped) extent. */ |
| 287 | if (!*shared) |
| 288 | return 0; |
| 289 | |
| 290 | /* |
| 291 | * Fork all the shared blocks from our write offset until the end of |
| 292 | * the extent. |
| 293 | */ |
| 294 | error = xfs_qm_dqattach_locked(ip, false); |
| 295 | if (error) |
| 296 | return error; |
| 297 | |
| 298 | error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff, |
| 299 | imap->br_blockcount, 0, &got, &icur, eof); |
| 300 | if (error == -ENOSPC || error == -EDQUOT) |
| 301 | trace_xfs_reflink_cow_enospc(ip, imap); |
| 302 | if (error) |
| 303 | return error; |
| 304 | |
| 305 | trace_xfs_reflink_cow_alloc(ip, &got); |
| 306 | return 0; |
| 307 | } |
| 308 | |
| 309 | /* Convert part of an unwritten CoW extent to a real one. */ |
| 310 | STATIC int |
| 311 | xfs_reflink_convert_cow_extent( |
| 312 | struct xfs_inode *ip, |
| 313 | struct xfs_bmbt_irec *imap, |
| 314 | xfs_fileoff_t offset_fsb, |
| 315 | xfs_filblks_t count_fsb) |
| 316 | { |
| 317 | int nimaps = 1; |
| 318 | |
| 319 | if (imap->br_state == XFS_EXT_NORM) |
| 320 | return 0; |
| 321 | |
| 322 | xfs_trim_extent(imap, offset_fsb, count_fsb); |
| 323 | trace_xfs_reflink_convert_cow(ip, imap); |
| 324 | if (imap->br_blockcount == 0) |
| 325 | return 0; |
| 326 | return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount, |
| 327 | XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap, |
| 328 | &nimaps); |
| 329 | } |
| 330 | |
| 331 | /* Convert all of the unwritten CoW extents in a file's range to real ones. */ |
| 332 | int |
| 333 | xfs_reflink_convert_cow( |
| 334 | struct xfs_inode *ip, |
| 335 | xfs_off_t offset, |
| 336 | xfs_off_t count) |
| 337 | { |
| 338 | struct xfs_mount *mp = ip->i_mount; |
| 339 | xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| 340 | xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); |
| 341 | xfs_filblks_t count_fsb = end_fsb - offset_fsb; |
| 342 | struct xfs_bmbt_irec imap; |
| 343 | int nimaps = 1, error = 0; |
| 344 | |
| 345 | ASSERT(count != 0); |
| 346 | |
| 347 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 348 | error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb, |
| 349 | XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT | |
| 350 | XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps); |
| 351 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 352 | return error; |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * Find the extent that maps the given range in the COW fork. Even if the extent |
| 357 | * is not shared we might have a preallocation for it in the COW fork. If so we |
| 358 | * use it that rather than trigger a new allocation. |
| 359 | */ |
| 360 | static int |
| 361 | xfs_find_trim_cow_extent( |
| 362 | struct xfs_inode *ip, |
| 363 | struct xfs_bmbt_irec *imap, |
| 364 | bool *shared, |
| 365 | bool *found) |
| 366 | { |
| 367 | xfs_fileoff_t offset_fsb = imap->br_startoff; |
| 368 | xfs_filblks_t count_fsb = imap->br_blockcount; |
| 369 | struct xfs_iext_cursor icur; |
| 370 | struct xfs_bmbt_irec got; |
| 371 | bool trimmed; |
| 372 | |
| 373 | *found = false; |
| 374 | |
| 375 | /* |
| 376 | * If we don't find an overlapping extent, trim the range we need to |
| 377 | * allocate to fit the hole we found. |
| 378 | */ |
| 379 | if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) || |
| 380 | got.br_startoff > offset_fsb) |
| 381 | return xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed); |
| 382 | |
| 383 | *shared = true; |
| 384 | if (isnullstartblock(got.br_startblock)) { |
| 385 | xfs_trim_extent(imap, got.br_startoff, got.br_blockcount); |
| 386 | return 0; |
| 387 | } |
| 388 | |
| 389 | /* real extent found - no need to allocate */ |
| 390 | xfs_trim_extent(&got, offset_fsb, count_fsb); |
| 391 | *imap = got; |
| 392 | *found = true; |
| 393 | return 0; |
| 394 | } |
| 395 | |
| 396 | /* Allocate all CoW reservations covering a range of blocks in a file. */ |
| 397 | int |
| 398 | xfs_reflink_allocate_cow( |
| 399 | struct xfs_inode *ip, |
| 400 | struct xfs_bmbt_irec *imap, |
| 401 | bool *shared, |
| 402 | uint *lockmode) |
| 403 | { |
| 404 | struct xfs_mount *mp = ip->i_mount; |
| 405 | xfs_fileoff_t offset_fsb = imap->br_startoff; |
| 406 | xfs_filblks_t count_fsb = imap->br_blockcount; |
| 407 | struct xfs_trans *tp; |
| 408 | int nimaps, error = 0; |
| 409 | bool found; |
| 410 | xfs_filblks_t resaligned; |
| 411 | xfs_extlen_t resblks = 0; |
| 412 | |
| 413 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| 414 | ASSERT(xfs_is_reflink_inode(ip)); |
| 415 | |
| 416 | error = xfs_find_trim_cow_extent(ip, imap, shared, &found); |
| 417 | if (error || !*shared) |
| 418 | return error; |
| 419 | if (found) |
| 420 | goto convert; |
| 421 | |
| 422 | resaligned = xfs_aligned_fsb_count(imap->br_startoff, |
| 423 | imap->br_blockcount, xfs_get_cowextsz_hint(ip)); |
| 424 | resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); |
| 425 | |
| 426 | xfs_iunlock(ip, *lockmode); |
| 427 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); |
| 428 | *lockmode = XFS_ILOCK_EXCL; |
| 429 | xfs_ilock(ip, *lockmode); |
| 430 | |
| 431 | if (error) |
| 432 | return error; |
| 433 | |
| 434 | error = xfs_qm_dqattach_locked(ip, false); |
| 435 | if (error) |
| 436 | goto out_trans_cancel; |
| 437 | |
| 438 | /* |
| 439 | * Check for an overlapping extent again now that we dropped the ilock. |
| 440 | */ |
| 441 | error = xfs_find_trim_cow_extent(ip, imap, shared, &found); |
| 442 | if (error || !*shared) |
| 443 | goto out_trans_cancel; |
| 444 | if (found) { |
| 445 | xfs_trans_cancel(tp); |
| 446 | goto convert; |
| 447 | } |
| 448 | |
| 449 | error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0, |
| 450 | XFS_QMOPT_RES_REGBLKS); |
| 451 | if (error) |
| 452 | goto out_trans_cancel; |
| 453 | |
| 454 | xfs_trans_ijoin(tp, ip, 0); |
| 455 | |
| 456 | /* Allocate the entire reservation as unwritten blocks. */ |
| 457 | nimaps = 1; |
| 458 | error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, |
| 459 | XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, |
| 460 | resblks, imap, &nimaps); |
| 461 | if (error) |
| 462 | goto out_unreserve; |
| 463 | |
| 464 | xfs_inode_set_cowblocks_tag(ip); |
| 465 | error = xfs_trans_commit(tp); |
| 466 | if (error) |
| 467 | return error; |
| 468 | |
| 469 | /* |
| 470 | * Allocation succeeded but the requested range was not even partially |
| 471 | * satisfied? Bail out! |
| 472 | */ |
| 473 | if (nimaps == 0) |
| 474 | return -ENOSPC; |
| 475 | convert: |
| 476 | return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb); |
| 477 | |
| 478 | out_unreserve: |
| 479 | xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0, |
| 480 | XFS_QMOPT_RES_REGBLKS); |
| 481 | out_trans_cancel: |
| 482 | xfs_trans_cancel(tp); |
| 483 | return error; |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Cancel CoW reservations for some block range of an inode. |
| 488 | * |
| 489 | * If cancel_real is true this function cancels all COW fork extents for the |
| 490 | * inode; if cancel_real is false, real extents are not cleared. |
| 491 | * |
| 492 | * Caller must have already joined the inode to the current transaction. The |
| 493 | * inode will be joined to the transaction returned to the caller. |
| 494 | */ |
| 495 | int |
| 496 | xfs_reflink_cancel_cow_blocks( |
| 497 | struct xfs_inode *ip, |
| 498 | struct xfs_trans **tpp, |
| 499 | xfs_fileoff_t offset_fsb, |
| 500 | xfs_fileoff_t end_fsb, |
| 501 | bool cancel_real) |
| 502 | { |
| 503 | struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); |
| 504 | struct xfs_bmbt_irec got, del; |
| 505 | struct xfs_iext_cursor icur; |
| 506 | int error = 0; |
| 507 | |
| 508 | if (!xfs_inode_has_cow_data(ip)) |
| 509 | return 0; |
| 510 | if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) |
| 511 | return 0; |
| 512 | |
| 513 | /* Walk backwards until we're out of the I/O range... */ |
| 514 | while (got.br_startoff + got.br_blockcount > offset_fsb) { |
| 515 | del = got; |
| 516 | xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); |
| 517 | |
| 518 | /* Extent delete may have bumped ext forward */ |
| 519 | if (!del.br_blockcount) { |
| 520 | xfs_iext_prev(ifp, &icur); |
| 521 | goto next_extent; |
| 522 | } |
| 523 | |
| 524 | trace_xfs_reflink_cancel_cow(ip, &del); |
| 525 | |
| 526 | if (isnullstartblock(del.br_startblock)) { |
| 527 | error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, |
| 528 | &icur, &got, &del); |
| 529 | if (error) |
| 530 | break; |
| 531 | } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { |
| 532 | ASSERT((*tpp)->t_firstblock == NULLFSBLOCK); |
| 533 | |
| 534 | /* Free the CoW orphan record. */ |
| 535 | error = xfs_refcount_free_cow_extent(*tpp, |
| 536 | del.br_startblock, del.br_blockcount); |
| 537 | if (error) |
| 538 | break; |
| 539 | |
| 540 | xfs_bmap_add_free(*tpp, del.br_startblock, |
| 541 | del.br_blockcount, NULL); |
| 542 | |
| 543 | /* Roll the transaction */ |
| 544 | error = xfs_defer_finish(tpp); |
| 545 | if (error) |
| 546 | break; |
| 547 | |
| 548 | /* Remove the mapping from the CoW fork. */ |
| 549 | xfs_bmap_del_extent_cow(ip, &icur, &got, &del); |
| 550 | |
| 551 | /* Remove the quota reservation */ |
| 552 | error = xfs_trans_reserve_quota_nblks(NULL, ip, |
| 553 | -(long)del.br_blockcount, 0, |
| 554 | XFS_QMOPT_RES_REGBLKS); |
| 555 | if (error) |
| 556 | break; |
| 557 | } else { |
| 558 | /* Didn't do anything, push cursor back. */ |
| 559 | xfs_iext_prev(ifp, &icur); |
| 560 | } |
| 561 | next_extent: |
| 562 | if (!xfs_iext_get_extent(ifp, &icur, &got)) |
| 563 | break; |
| 564 | } |
| 565 | |
| 566 | /* clear tag if cow fork is emptied */ |
| 567 | if (!ifp->if_bytes) |
| 568 | xfs_inode_clear_cowblocks_tag(ip); |
| 569 | return error; |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * Cancel CoW reservations for some byte range of an inode. |
| 574 | * |
| 575 | * If cancel_real is true this function cancels all COW fork extents for the |
| 576 | * inode; if cancel_real is false, real extents are not cleared. |
| 577 | */ |
| 578 | int |
| 579 | xfs_reflink_cancel_cow_range( |
| 580 | struct xfs_inode *ip, |
| 581 | xfs_off_t offset, |
| 582 | xfs_off_t count, |
| 583 | bool cancel_real) |
| 584 | { |
| 585 | struct xfs_trans *tp; |
| 586 | xfs_fileoff_t offset_fsb; |
| 587 | xfs_fileoff_t end_fsb; |
| 588 | int error; |
| 589 | |
| 590 | trace_xfs_reflink_cancel_cow_range(ip, offset, count); |
| 591 | ASSERT(xfs_is_reflink_inode(ip)); |
| 592 | |
| 593 | offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); |
| 594 | if (count == NULLFILEOFF) |
| 595 | end_fsb = NULLFILEOFF; |
| 596 | else |
| 597 | end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); |
| 598 | |
| 599 | /* Start a rolling transaction to remove the mappings */ |
| 600 | error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, |
| 601 | 0, 0, XFS_TRANS_NOFS, &tp); |
| 602 | if (error) |
| 603 | goto out; |
| 604 | |
| 605 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 606 | xfs_trans_ijoin(tp, ip, 0); |
| 607 | |
| 608 | /* Scrape out the old CoW reservations */ |
| 609 | error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, |
| 610 | cancel_real); |
| 611 | if (error) |
| 612 | goto out_cancel; |
| 613 | |
| 614 | error = xfs_trans_commit(tp); |
| 615 | |
| 616 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 617 | return error; |
| 618 | |
| 619 | out_cancel: |
| 620 | xfs_trans_cancel(tp); |
| 621 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 622 | out: |
| 623 | trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); |
| 624 | return error; |
| 625 | } |
| 626 | |
| 627 | /* |
| 628 | * Remap parts of a file's data fork after a successful CoW. |
| 629 | */ |
| 630 | int |
| 631 | xfs_reflink_end_cow( |
| 632 | struct xfs_inode *ip, |
| 633 | xfs_off_t offset, |
| 634 | xfs_off_t count) |
| 635 | { |
| 636 | struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); |
| 637 | struct xfs_bmbt_irec got, del; |
| 638 | struct xfs_trans *tp; |
| 639 | xfs_fileoff_t offset_fsb; |
| 640 | xfs_fileoff_t end_fsb; |
| 641 | int error; |
| 642 | unsigned int resblks; |
| 643 | xfs_filblks_t rlen; |
| 644 | struct xfs_iext_cursor icur; |
| 645 | |
| 646 | trace_xfs_reflink_end_cow(ip, offset, count); |
| 647 | |
| 648 | /* No COW extents? That's easy! */ |
| 649 | if (ifp->if_bytes == 0) |
| 650 | return 0; |
| 651 | |
| 652 | offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); |
| 653 | end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); |
| 654 | |
| 655 | /* |
| 656 | * Start a rolling transaction to switch the mappings. We're |
| 657 | * unlikely ever to have to remap 16T worth of single-block |
| 658 | * extents, so just cap the worst case extent count to 2^32-1. |
| 659 | * Stick a warning in just in case, and avoid 64-bit division. |
| 660 | */ |
| 661 | BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX); |
| 662 | if (end_fsb - offset_fsb > UINT_MAX) { |
| 663 | error = -EFSCORRUPTED; |
| 664 | xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE); |
| 665 | ASSERT(0); |
| 666 | goto out; |
| 667 | } |
| 668 | resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount, |
| 669 | (unsigned int)(end_fsb - offset_fsb), |
| 670 | XFS_DATA_FORK); |
| 671 | error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, |
| 672 | resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp); |
| 673 | if (error) |
| 674 | goto out; |
| 675 | |
| 676 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 677 | xfs_trans_ijoin(tp, ip, 0); |
| 678 | |
| 679 | /* |
| 680 | * In case of racing, overlapping AIO writes no COW extents might be |
| 681 | * left by the time I/O completes for the loser of the race. In that |
| 682 | * case we are done. |
| 683 | */ |
| 684 | if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) |
| 685 | goto out_cancel; |
| 686 | |
| 687 | /* Walk backwards until we're out of the I/O range... */ |
| 688 | while (got.br_startoff + got.br_blockcount > offset_fsb) { |
| 689 | del = got; |
| 690 | xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); |
| 691 | |
| 692 | /* Extent delete may have bumped ext forward */ |
| 693 | if (!del.br_blockcount) |
| 694 | goto prev_extent; |
| 695 | |
| 696 | /* |
| 697 | * Only remap real extent that contain data. With AIO |
| 698 | * speculatively preallocations can leak into the range we |
| 699 | * are called upon, and we need to skip them. |
| 700 | */ |
| 701 | if (!xfs_bmap_is_real_extent(&got)) |
| 702 | goto prev_extent; |
| 703 | |
| 704 | /* Unmap the old blocks in the data fork. */ |
| 705 | ASSERT(tp->t_firstblock == NULLFSBLOCK); |
| 706 | rlen = del.br_blockcount; |
| 707 | error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1); |
| 708 | if (error) |
| 709 | goto out_cancel; |
| 710 | |
| 711 | /* Trim the extent to whatever got unmapped. */ |
| 712 | if (rlen) { |
| 713 | xfs_trim_extent(&del, del.br_startoff + rlen, |
| 714 | del.br_blockcount - rlen); |
| 715 | } |
| 716 | trace_xfs_reflink_cow_remap(ip, &del); |
| 717 | |
| 718 | /* Free the CoW orphan record. */ |
| 719 | error = xfs_refcount_free_cow_extent(tp, del.br_startblock, |
| 720 | del.br_blockcount); |
| 721 | if (error) |
| 722 | goto out_cancel; |
| 723 | |
| 724 | /* Map the new blocks into the data fork. */ |
| 725 | error = xfs_bmap_map_extent(tp, ip, &del); |
| 726 | if (error) |
| 727 | goto out_cancel; |
| 728 | |
| 729 | /* Charge this new data fork mapping to the on-disk quota. */ |
| 730 | xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, |
| 731 | (long)del.br_blockcount); |
| 732 | |
| 733 | /* Remove the mapping from the CoW fork. */ |
| 734 | xfs_bmap_del_extent_cow(ip, &icur, &got, &del); |
| 735 | |
| 736 | error = xfs_defer_finish(&tp); |
| 737 | if (error) |
| 738 | goto out_cancel; |
| 739 | if (!xfs_iext_get_extent(ifp, &icur, &got)) |
| 740 | break; |
| 741 | continue; |
| 742 | prev_extent: |
| 743 | if (!xfs_iext_prev_extent(ifp, &icur, &got)) |
| 744 | break; |
| 745 | } |
| 746 | |
| 747 | error = xfs_trans_commit(tp); |
| 748 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 749 | if (error) |
| 750 | goto out; |
| 751 | return 0; |
| 752 | |
| 753 | out_cancel: |
| 754 | xfs_trans_cancel(tp); |
| 755 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 756 | out: |
| 757 | trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); |
| 758 | return error; |
| 759 | } |
| 760 | |
| 761 | /* |
| 762 | * Free leftover CoW reservations that didn't get cleaned out. |
| 763 | */ |
| 764 | int |
| 765 | xfs_reflink_recover_cow( |
| 766 | struct xfs_mount *mp) |
| 767 | { |
| 768 | xfs_agnumber_t agno; |
| 769 | int error = 0; |
| 770 | |
| 771 | if (!xfs_sb_version_hasreflink(&mp->m_sb)) |
| 772 | return 0; |
| 773 | |
| 774 | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { |
| 775 | error = xfs_refcount_recover_cow_leftovers(mp, agno); |
| 776 | if (error) |
| 777 | break; |
| 778 | } |
| 779 | |
| 780 | return error; |
| 781 | } |
| 782 | |
| 783 | /* |
| 784 | * Reflinking (Block) Ranges of Two Files Together |
| 785 | * |
| 786 | * First, ensure that the reflink flag is set on both inodes. The flag is an |
| 787 | * optimization to avoid unnecessary refcount btree lookups in the write path. |
| 788 | * |
| 789 | * Now we can iteratively remap the range of extents (and holes) in src to the |
| 790 | * corresponding ranges in dest. Let drange and srange denote the ranges of |
| 791 | * logical blocks in dest and src touched by the reflink operation. |
| 792 | * |
| 793 | * While the length of drange is greater than zero, |
| 794 | * - Read src's bmbt at the start of srange ("imap") |
| 795 | * - If imap doesn't exist, make imap appear to start at the end of srange |
| 796 | * with zero length. |
| 797 | * - If imap starts before srange, advance imap to start at srange. |
| 798 | * - If imap goes beyond srange, truncate imap to end at the end of srange. |
| 799 | * - Punch (imap start - srange start + imap len) blocks from dest at |
| 800 | * offset (drange start). |
| 801 | * - If imap points to a real range of pblks, |
| 802 | * > Increase the refcount of the imap's pblks |
| 803 | * > Map imap's pblks into dest at the offset |
| 804 | * (drange start + imap start - srange start) |
| 805 | * - Advance drange and srange by (imap start - srange start + imap len) |
| 806 | * |
| 807 | * Finally, if the reflink made dest longer, update both the in-core and |
| 808 | * on-disk file sizes. |
| 809 | * |
| 810 | * ASCII Art Demonstration: |
| 811 | * |
| 812 | * Let's say we want to reflink this source file: |
| 813 | * |
| 814 | * ----SSSSSSS-SSSSS----SSSSSS (src file) |
| 815 | * <--------------------> |
| 816 | * |
| 817 | * into this destination file: |
| 818 | * |
| 819 | * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) |
| 820 | * <--------------------> |
| 821 | * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. |
| 822 | * Observe that the range has different logical offsets in either file. |
| 823 | * |
| 824 | * Consider that the first extent in the source file doesn't line up with our |
| 825 | * reflink range. Unmapping and remapping are separate operations, so we can |
| 826 | * unmap more blocks from the destination file than we remap. |
| 827 | * |
| 828 | * ----SSSSSSS-SSSSS----SSSSSS |
| 829 | * <-------> |
| 830 | * --DDDDD---------DDDDD--DDD |
| 831 | * <-------> |
| 832 | * |
| 833 | * Now remap the source extent into the destination file: |
| 834 | * |
| 835 | * ----SSSSSSS-SSSSS----SSSSSS |
| 836 | * <-------> |
| 837 | * --DDDDD--SSSSSSSDDDDD--DDD |
| 838 | * <-------> |
| 839 | * |
| 840 | * Do likewise with the second hole and extent in our range. Holes in the |
| 841 | * unmap range don't affect our operation. |
| 842 | * |
| 843 | * ----SSSSSSS-SSSSS----SSSSSS |
| 844 | * <----> |
| 845 | * --DDDDD--SSSSSSS-SSSSS-DDD |
| 846 | * <----> |
| 847 | * |
| 848 | * Finally, unmap and remap part of the third extent. This will increase the |
| 849 | * size of the destination file. |
| 850 | * |
| 851 | * ----SSSSSSS-SSSSS----SSSSSS |
| 852 | * <-----> |
| 853 | * --DDDDD--SSSSSSS-SSSSS----SSS |
| 854 | * <-----> |
| 855 | * |
| 856 | * Once we update the destination file's i_size, we're done. |
| 857 | */ |
| 858 | |
| 859 | /* |
| 860 | * Ensure the reflink bit is set in both inodes. |
| 861 | */ |
| 862 | STATIC int |
| 863 | xfs_reflink_set_inode_flag( |
| 864 | struct xfs_inode *src, |
| 865 | struct xfs_inode *dest) |
| 866 | { |
| 867 | struct xfs_mount *mp = src->i_mount; |
| 868 | int error; |
| 869 | struct xfs_trans *tp; |
| 870 | |
| 871 | if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) |
| 872 | return 0; |
| 873 | |
| 874 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); |
| 875 | if (error) |
| 876 | goto out_error; |
| 877 | |
| 878 | /* Lock both files against IO */ |
| 879 | if (src->i_ino == dest->i_ino) |
| 880 | xfs_ilock(src, XFS_ILOCK_EXCL); |
| 881 | else |
| 882 | xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); |
| 883 | |
| 884 | if (!xfs_is_reflink_inode(src)) { |
| 885 | trace_xfs_reflink_set_inode_flag(src); |
| 886 | xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); |
| 887 | src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; |
| 888 | xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); |
| 889 | xfs_ifork_init_cow(src); |
| 890 | } else |
| 891 | xfs_iunlock(src, XFS_ILOCK_EXCL); |
| 892 | |
| 893 | if (src->i_ino == dest->i_ino) |
| 894 | goto commit_flags; |
| 895 | |
| 896 | if (!xfs_is_reflink_inode(dest)) { |
| 897 | trace_xfs_reflink_set_inode_flag(dest); |
| 898 | xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); |
| 899 | dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; |
| 900 | xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); |
| 901 | xfs_ifork_init_cow(dest); |
| 902 | } else |
| 903 | xfs_iunlock(dest, XFS_ILOCK_EXCL); |
| 904 | |
| 905 | commit_flags: |
| 906 | error = xfs_trans_commit(tp); |
| 907 | if (error) |
| 908 | goto out_error; |
| 909 | return error; |
| 910 | |
| 911 | out_error: |
| 912 | trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); |
| 913 | return error; |
| 914 | } |
| 915 | |
| 916 | /* |
| 917 | * Update destination inode size & cowextsize hint, if necessary. |
| 918 | */ |
| 919 | STATIC int |
| 920 | xfs_reflink_update_dest( |
| 921 | struct xfs_inode *dest, |
| 922 | xfs_off_t newlen, |
| 923 | xfs_extlen_t cowextsize, |
| 924 | bool is_dedupe) |
| 925 | { |
| 926 | struct xfs_mount *mp = dest->i_mount; |
| 927 | struct xfs_trans *tp; |
| 928 | int error; |
| 929 | |
| 930 | if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) |
| 931 | return 0; |
| 932 | |
| 933 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); |
| 934 | if (error) |
| 935 | goto out_error; |
| 936 | |
| 937 | xfs_ilock(dest, XFS_ILOCK_EXCL); |
| 938 | xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); |
| 939 | |
| 940 | if (newlen > i_size_read(VFS_I(dest))) { |
| 941 | trace_xfs_reflink_update_inode_size(dest, newlen); |
| 942 | i_size_write(VFS_I(dest), newlen); |
| 943 | dest->i_d.di_size = newlen; |
| 944 | } |
| 945 | |
| 946 | if (cowextsize) { |
| 947 | dest->i_d.di_cowextsize = cowextsize; |
| 948 | dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; |
| 949 | } |
| 950 | |
| 951 | if (!is_dedupe) { |
| 952 | xfs_trans_ichgtime(tp, dest, |
| 953 | XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 954 | } |
| 955 | xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); |
| 956 | |
| 957 | error = xfs_trans_commit(tp); |
| 958 | if (error) |
| 959 | goto out_error; |
| 960 | return error; |
| 961 | |
| 962 | out_error: |
| 963 | trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); |
| 964 | return error; |
| 965 | } |
| 966 | |
| 967 | /* |
| 968 | * Do we have enough reserve in this AG to handle a reflink? The refcount |
| 969 | * btree already reserved all the space it needs, but the rmap btree can grow |
| 970 | * infinitely, so we won't allow more reflinks when the AG is down to the |
| 971 | * btree reserves. |
| 972 | */ |
| 973 | static int |
| 974 | xfs_reflink_ag_has_free_space( |
| 975 | struct xfs_mount *mp, |
| 976 | xfs_agnumber_t agno) |
| 977 | { |
| 978 | struct xfs_perag *pag; |
| 979 | int error = 0; |
| 980 | |
| 981 | if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) |
| 982 | return 0; |
| 983 | |
| 984 | pag = xfs_perag_get(mp, agno); |
| 985 | if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || |
| 986 | xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) |
| 987 | error = -ENOSPC; |
| 988 | xfs_perag_put(pag); |
| 989 | return error; |
| 990 | } |
| 991 | |
| 992 | /* |
| 993 | * Unmap a range of blocks from a file, then map other blocks into the hole. |
| 994 | * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount). |
| 995 | * The extent irec is mapped into dest at irec->br_startoff. |
| 996 | */ |
| 997 | STATIC int |
| 998 | xfs_reflink_remap_extent( |
| 999 | struct xfs_inode *ip, |
| 1000 | struct xfs_bmbt_irec *irec, |
| 1001 | xfs_fileoff_t destoff, |
| 1002 | xfs_off_t new_isize) |
| 1003 | { |
| 1004 | struct xfs_mount *mp = ip->i_mount; |
| 1005 | bool real_extent = xfs_bmap_is_real_extent(irec); |
| 1006 | struct xfs_trans *tp; |
| 1007 | unsigned int resblks; |
| 1008 | struct xfs_bmbt_irec uirec; |
| 1009 | xfs_filblks_t rlen; |
| 1010 | xfs_filblks_t unmap_len; |
| 1011 | xfs_off_t newlen; |
| 1012 | int error; |
| 1013 | |
| 1014 | unmap_len = irec->br_startoff + irec->br_blockcount - destoff; |
| 1015 | trace_xfs_reflink_punch_range(ip, destoff, unmap_len); |
| 1016 | |
| 1017 | /* No reflinking if we're low on space */ |
| 1018 | if (real_extent) { |
| 1019 | error = xfs_reflink_ag_has_free_space(mp, |
| 1020 | XFS_FSB_TO_AGNO(mp, irec->br_startblock)); |
| 1021 | if (error) |
| 1022 | goto out; |
| 1023 | } |
| 1024 | |
| 1025 | /* Start a rolling transaction to switch the mappings */ |
| 1026 | resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK); |
| 1027 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); |
| 1028 | if (error) |
| 1029 | goto out; |
| 1030 | |
| 1031 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 1032 | xfs_trans_ijoin(tp, ip, 0); |
| 1033 | |
| 1034 | /* If we're not just clearing space, then do we have enough quota? */ |
| 1035 | if (real_extent) { |
| 1036 | error = xfs_trans_reserve_quota_nblks(tp, ip, |
| 1037 | irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS); |
| 1038 | if (error) |
| 1039 | goto out_cancel; |
| 1040 | } |
| 1041 | |
| 1042 | trace_xfs_reflink_remap(ip, irec->br_startoff, |
| 1043 | irec->br_blockcount, irec->br_startblock); |
| 1044 | |
| 1045 | /* Unmap the old blocks in the data fork. */ |
| 1046 | rlen = unmap_len; |
| 1047 | while (rlen) { |
| 1048 | ASSERT(tp->t_firstblock == NULLFSBLOCK); |
| 1049 | error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1); |
| 1050 | if (error) |
| 1051 | goto out_cancel; |
| 1052 | |
| 1053 | /* |
| 1054 | * Trim the extent to whatever got unmapped. |
| 1055 | * Remember, bunmapi works backwards. |
| 1056 | */ |
| 1057 | uirec.br_startblock = irec->br_startblock + rlen; |
| 1058 | uirec.br_startoff = irec->br_startoff + rlen; |
| 1059 | uirec.br_blockcount = unmap_len - rlen; |
| 1060 | unmap_len = rlen; |
| 1061 | |
| 1062 | /* If this isn't a real mapping, we're done. */ |
| 1063 | if (!real_extent || uirec.br_blockcount == 0) |
| 1064 | goto next_extent; |
| 1065 | |
| 1066 | trace_xfs_reflink_remap(ip, uirec.br_startoff, |
| 1067 | uirec.br_blockcount, uirec.br_startblock); |
| 1068 | |
| 1069 | /* Update the refcount tree */ |
| 1070 | error = xfs_refcount_increase_extent(tp, &uirec); |
| 1071 | if (error) |
| 1072 | goto out_cancel; |
| 1073 | |
| 1074 | /* Map the new blocks into the data fork. */ |
| 1075 | error = xfs_bmap_map_extent(tp, ip, &uirec); |
| 1076 | if (error) |
| 1077 | goto out_cancel; |
| 1078 | |
| 1079 | /* Update quota accounting. */ |
| 1080 | xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, |
| 1081 | uirec.br_blockcount); |
| 1082 | |
| 1083 | /* Update dest isize if needed. */ |
| 1084 | newlen = XFS_FSB_TO_B(mp, |
| 1085 | uirec.br_startoff + uirec.br_blockcount); |
| 1086 | newlen = min_t(xfs_off_t, newlen, new_isize); |
| 1087 | if (newlen > i_size_read(VFS_I(ip))) { |
| 1088 | trace_xfs_reflink_update_inode_size(ip, newlen); |
| 1089 | i_size_write(VFS_I(ip), newlen); |
| 1090 | ip->i_d.di_size = newlen; |
| 1091 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 1092 | } |
| 1093 | |
| 1094 | next_extent: |
| 1095 | /* Process all the deferred stuff. */ |
| 1096 | error = xfs_defer_finish(&tp); |
| 1097 | if (error) |
| 1098 | goto out_cancel; |
| 1099 | } |
| 1100 | |
| 1101 | error = xfs_trans_commit(tp); |
| 1102 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1103 | if (error) |
| 1104 | goto out; |
| 1105 | return 0; |
| 1106 | |
| 1107 | out_cancel: |
| 1108 | xfs_trans_cancel(tp); |
| 1109 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1110 | out: |
| 1111 | trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); |
| 1112 | return error; |
| 1113 | } |
| 1114 | |
| 1115 | /* |
| 1116 | * Iteratively remap one file's extents (and holes) to another's. |
| 1117 | */ |
| 1118 | STATIC int |
| 1119 | xfs_reflink_remap_blocks( |
| 1120 | struct xfs_inode *src, |
| 1121 | xfs_fileoff_t srcoff, |
| 1122 | struct xfs_inode *dest, |
| 1123 | xfs_fileoff_t destoff, |
| 1124 | xfs_filblks_t len, |
| 1125 | xfs_off_t new_isize) |
| 1126 | { |
| 1127 | struct xfs_bmbt_irec imap; |
| 1128 | int nimaps; |
| 1129 | int error = 0; |
| 1130 | xfs_filblks_t range_len; |
| 1131 | |
| 1132 | /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */ |
| 1133 | while (len) { |
| 1134 | uint lock_mode; |
| 1135 | |
| 1136 | trace_xfs_reflink_remap_blocks_loop(src, srcoff, len, |
| 1137 | dest, destoff); |
| 1138 | |
| 1139 | /* Read extent from the source file */ |
| 1140 | nimaps = 1; |
| 1141 | lock_mode = xfs_ilock_data_map_shared(src); |
| 1142 | error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); |
| 1143 | xfs_iunlock(src, lock_mode); |
| 1144 | if (error) |
| 1145 | goto err; |
| 1146 | ASSERT(nimaps == 1); |
| 1147 | |
| 1148 | trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE, |
| 1149 | &imap); |
| 1150 | |
| 1151 | /* Translate imap into the destination file. */ |
| 1152 | range_len = imap.br_startoff + imap.br_blockcount - srcoff; |
| 1153 | imap.br_startoff += destoff - srcoff; |
| 1154 | |
| 1155 | /* Clear dest from destoff to the end of imap and map it in. */ |
| 1156 | error = xfs_reflink_remap_extent(dest, &imap, destoff, |
| 1157 | new_isize); |
| 1158 | if (error) |
| 1159 | goto err; |
| 1160 | |
| 1161 | if (fatal_signal_pending(current)) { |
| 1162 | error = -EINTR; |
| 1163 | goto err; |
| 1164 | } |
| 1165 | |
| 1166 | /* Advance drange/srange */ |
| 1167 | srcoff += range_len; |
| 1168 | destoff += range_len; |
| 1169 | len -= range_len; |
| 1170 | } |
| 1171 | |
| 1172 | return 0; |
| 1173 | |
| 1174 | err: |
| 1175 | trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); |
| 1176 | return error; |
| 1177 | } |
| 1178 | |
| 1179 | /* |
| 1180 | * Grab the exclusive iolock for a data copy from src to dest, making |
| 1181 | * sure to abide vfs locking order (lowest pointer value goes first) and |
| 1182 | * breaking the pnfs layout leases on dest before proceeding. The loop |
| 1183 | * is needed because we cannot call the blocking break_layout() with the |
| 1184 | * src iolock held, and therefore have to back out both locks. |
| 1185 | */ |
| 1186 | static int |
| 1187 | xfs_iolock_two_inodes_and_break_layout( |
| 1188 | struct inode *src, |
| 1189 | struct inode *dest) |
| 1190 | { |
| 1191 | int error; |
| 1192 | |
| 1193 | retry: |
| 1194 | if (src < dest) { |
| 1195 | inode_lock_shared(src); |
| 1196 | inode_lock_nested(dest, I_MUTEX_NONDIR2); |
| 1197 | } else { |
| 1198 | /* src >= dest */ |
| 1199 | inode_lock(dest); |
| 1200 | } |
| 1201 | |
| 1202 | error = break_layout(dest, false); |
| 1203 | if (error == -EWOULDBLOCK) { |
| 1204 | inode_unlock(dest); |
| 1205 | if (src < dest) |
| 1206 | inode_unlock_shared(src); |
| 1207 | error = break_layout(dest, true); |
| 1208 | if (error) |
| 1209 | return error; |
| 1210 | goto retry; |
| 1211 | } |
| 1212 | if (error) { |
| 1213 | inode_unlock(dest); |
| 1214 | if (src < dest) |
| 1215 | inode_unlock_shared(src); |
| 1216 | return error; |
| 1217 | } |
| 1218 | if (src > dest) |
| 1219 | inode_lock_shared_nested(src, I_MUTEX_NONDIR2); |
| 1220 | return 0; |
| 1221 | } |
| 1222 | |
| 1223 | /* Unlock both inodes after they've been prepped for a range clone. */ |
| 1224 | STATIC void |
| 1225 | xfs_reflink_remap_unlock( |
| 1226 | struct file *file_in, |
| 1227 | struct file *file_out) |
| 1228 | { |
| 1229 | struct inode *inode_in = file_inode(file_in); |
| 1230 | struct xfs_inode *src = XFS_I(inode_in); |
| 1231 | struct inode *inode_out = file_inode(file_out); |
| 1232 | struct xfs_inode *dest = XFS_I(inode_out); |
| 1233 | bool same_inode = (inode_in == inode_out); |
| 1234 | |
| 1235 | xfs_iunlock(dest, XFS_MMAPLOCK_EXCL); |
| 1236 | if (!same_inode) |
| 1237 | xfs_iunlock(src, XFS_MMAPLOCK_SHARED); |
| 1238 | inode_unlock(inode_out); |
| 1239 | if (!same_inode) |
| 1240 | inode_unlock_shared(inode_in); |
| 1241 | } |
| 1242 | |
| 1243 | /* |
| 1244 | * If we're reflinking to a point past the destination file's EOF, we must |
| 1245 | * zero any speculative post-EOF preallocations that sit between the old EOF |
| 1246 | * and the destination file offset. |
| 1247 | */ |
| 1248 | static int |
| 1249 | xfs_reflink_zero_posteof( |
| 1250 | struct xfs_inode *ip, |
| 1251 | loff_t pos) |
| 1252 | { |
| 1253 | loff_t isize = i_size_read(VFS_I(ip)); |
| 1254 | |
| 1255 | if (pos <= isize) |
| 1256 | return 0; |
| 1257 | |
| 1258 | trace_xfs_zero_eof(ip, isize, pos - isize); |
| 1259 | return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL, |
| 1260 | &xfs_iomap_ops); |
| 1261 | } |
| 1262 | |
| 1263 | /* |
| 1264 | * Prepare two files for range cloning. Upon a successful return both inodes |
| 1265 | * will have the iolock and mmaplock held, the page cache of the out file will |
| 1266 | * be truncated, and any leases on the out file will have been broken. This |
| 1267 | * function borrows heavily from xfs_file_aio_write_checks. |
| 1268 | * |
| 1269 | * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't |
| 1270 | * checked that the bytes beyond EOF physically match. Hence we cannot use the |
| 1271 | * EOF block in the source dedupe range because it's not a complete block match, |
| 1272 | * hence can introduce a corruption into the file that has it's block replaced. |
| 1273 | * |
| 1274 | * In similar fashion, the VFS file cloning also allows partial EOF blocks to be |
| 1275 | * "block aligned" for the purposes of cloning entire files. However, if the |
| 1276 | * source file range includes the EOF block and it lands within the existing EOF |
| 1277 | * of the destination file, then we can expose stale data from beyond the source |
| 1278 | * file EOF in the destination file. |
| 1279 | * |
| 1280 | * XFS doesn't support partial block sharing, so in both cases we have check |
| 1281 | * these cases ourselves. For dedupe, we can simply round the length to dedupe |
| 1282 | * down to the previous whole block and ignore the partial EOF block. While this |
| 1283 | * means we can't dedupe the last block of a file, this is an acceptible |
| 1284 | * tradeoff for simplicity on implementation. |
| 1285 | * |
| 1286 | * For cloning, we want to share the partial EOF block if it is also the new EOF |
| 1287 | * block of the destination file. If the partial EOF block lies inside the |
| 1288 | * existing destination EOF, then we have to abort the clone to avoid exposing |
| 1289 | * stale data in the destination file. Hence we reject these clone attempts with |
| 1290 | * -EINVAL in this case. |
| 1291 | */ |
| 1292 | STATIC int |
| 1293 | xfs_reflink_remap_prep( |
| 1294 | struct file *file_in, |
| 1295 | loff_t pos_in, |
| 1296 | struct file *file_out, |
| 1297 | loff_t pos_out, |
| 1298 | u64 *len, |
| 1299 | bool is_dedupe) |
| 1300 | { |
| 1301 | struct inode *inode_in = file_inode(file_in); |
| 1302 | struct xfs_inode *src = XFS_I(inode_in); |
| 1303 | struct inode *inode_out = file_inode(file_out); |
| 1304 | struct xfs_inode *dest = XFS_I(inode_out); |
| 1305 | bool same_inode = (inode_in == inode_out); |
| 1306 | u64 blkmask = i_blocksize(inode_in) - 1; |
| 1307 | ssize_t ret; |
| 1308 | |
| 1309 | /* Lock both files against IO */ |
| 1310 | ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out); |
| 1311 | if (ret) |
| 1312 | return ret; |
| 1313 | if (same_inode) |
| 1314 | xfs_ilock(src, XFS_MMAPLOCK_EXCL); |
| 1315 | else |
| 1316 | xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest, |
| 1317 | XFS_MMAPLOCK_EXCL); |
| 1318 | |
| 1319 | /* Check file eligibility and prepare for block sharing. */ |
| 1320 | ret = -EINVAL; |
| 1321 | /* Don't reflink realtime inodes */ |
| 1322 | if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) |
| 1323 | goto out_unlock; |
| 1324 | |
| 1325 | /* Don't share DAX file data for now. */ |
| 1326 | if (IS_DAX(inode_in) || IS_DAX(inode_out)) |
| 1327 | goto out_unlock; |
| 1328 | |
| 1329 | ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out, |
| 1330 | len, is_dedupe); |
| 1331 | if (ret <= 0) |
| 1332 | goto out_unlock; |
| 1333 | |
| 1334 | /* |
| 1335 | * If the dedupe data matches, chop off the partial EOF block |
| 1336 | * from the source file so we don't try to dedupe the partial |
| 1337 | * EOF block. |
| 1338 | */ |
| 1339 | if (is_dedupe) { |
| 1340 | *len &= ~blkmask; |
| 1341 | } else if (*len & blkmask) { |
| 1342 | /* |
| 1343 | * The user is attempting to share a partial EOF block, |
| 1344 | * if it's inside the destination EOF then reject it. |
| 1345 | */ |
| 1346 | if (pos_out + *len < i_size_read(inode_out)) { |
| 1347 | ret = -EINVAL; |
| 1348 | goto out_unlock; |
| 1349 | } |
| 1350 | } |
| 1351 | |
| 1352 | /* Attach dquots to dest inode before changing block map */ |
| 1353 | ret = xfs_qm_dqattach(dest); |
| 1354 | if (ret) |
| 1355 | goto out_unlock; |
| 1356 | |
| 1357 | /* |
| 1358 | * Zero existing post-eof speculative preallocations in the destination |
| 1359 | * file. |
| 1360 | */ |
| 1361 | ret = xfs_reflink_zero_posteof(dest, pos_out); |
| 1362 | if (ret) |
| 1363 | goto out_unlock; |
| 1364 | |
| 1365 | /* Set flags and remap blocks. */ |
| 1366 | ret = xfs_reflink_set_inode_flag(src, dest); |
| 1367 | if (ret) |
| 1368 | goto out_unlock; |
| 1369 | |
| 1370 | /* Zap any page cache for the destination file's range. */ |
| 1371 | truncate_inode_pages_range(&inode_out->i_data, pos_out, |
| 1372 | PAGE_ALIGN(pos_out + *len) - 1); |
| 1373 | |
| 1374 | /* If we're altering the file contents... */ |
| 1375 | if (!is_dedupe) { |
| 1376 | /* |
| 1377 | * ...update the timestamps (which will grab the ilock again |
| 1378 | * from xfs_fs_dirty_inode, so we have to call it before we |
| 1379 | * take the ilock). |
| 1380 | */ |
| 1381 | if (!(file_out->f_mode & FMODE_NOCMTIME)) { |
| 1382 | ret = file_update_time(file_out); |
| 1383 | if (ret) |
| 1384 | goto out_unlock; |
| 1385 | } |
| 1386 | |
| 1387 | /* |
| 1388 | * ...clear the security bits if the process is not being run |
| 1389 | * by root. This keeps people from modifying setuid and setgid |
| 1390 | * binaries. |
| 1391 | */ |
| 1392 | ret = file_remove_privs(file_out); |
| 1393 | if (ret) |
| 1394 | goto out_unlock; |
| 1395 | } |
| 1396 | |
| 1397 | return 1; |
| 1398 | out_unlock: |
| 1399 | xfs_reflink_remap_unlock(file_in, file_out); |
| 1400 | return ret; |
| 1401 | } |
| 1402 | |
| 1403 | /* |
| 1404 | * Link a range of blocks from one file to another. |
| 1405 | */ |
| 1406 | int |
| 1407 | xfs_reflink_remap_range( |
| 1408 | struct file *file_in, |
| 1409 | loff_t pos_in, |
| 1410 | struct file *file_out, |
| 1411 | loff_t pos_out, |
| 1412 | u64 len, |
| 1413 | bool is_dedupe) |
| 1414 | { |
| 1415 | struct inode *inode_in = file_inode(file_in); |
| 1416 | struct xfs_inode *src = XFS_I(inode_in); |
| 1417 | struct inode *inode_out = file_inode(file_out); |
| 1418 | struct xfs_inode *dest = XFS_I(inode_out); |
| 1419 | struct xfs_mount *mp = src->i_mount; |
| 1420 | xfs_fileoff_t sfsbno, dfsbno; |
| 1421 | xfs_filblks_t fsblen; |
| 1422 | xfs_extlen_t cowextsize; |
| 1423 | ssize_t ret; |
| 1424 | |
| 1425 | if (!xfs_sb_version_hasreflink(&mp->m_sb)) |
| 1426 | return -EOPNOTSUPP; |
| 1427 | |
| 1428 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 1429 | return -EIO; |
| 1430 | |
| 1431 | /* Prepare and then clone file data. */ |
| 1432 | ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, |
| 1433 | &len, is_dedupe); |
| 1434 | if (ret <= 0) |
| 1435 | return ret; |
| 1436 | |
| 1437 | trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); |
| 1438 | |
| 1439 | dfsbno = XFS_B_TO_FSBT(mp, pos_out); |
| 1440 | sfsbno = XFS_B_TO_FSBT(mp, pos_in); |
| 1441 | fsblen = XFS_B_TO_FSB(mp, len); |
| 1442 | ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen, |
| 1443 | pos_out + len); |
| 1444 | if (ret) |
| 1445 | goto out_unlock; |
| 1446 | |
| 1447 | /* |
| 1448 | * Carry the cowextsize hint from src to dest if we're sharing the |
| 1449 | * entire source file to the entire destination file, the source file |
| 1450 | * has a cowextsize hint, and the destination file does not. |
| 1451 | */ |
| 1452 | cowextsize = 0; |
| 1453 | if (pos_in == 0 && len == i_size_read(inode_in) && |
| 1454 | (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && |
| 1455 | pos_out == 0 && len >= i_size_read(inode_out) && |
| 1456 | !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) |
| 1457 | cowextsize = src->i_d.di_cowextsize; |
| 1458 | |
| 1459 | ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, |
| 1460 | is_dedupe); |
| 1461 | |
| 1462 | out_unlock: |
| 1463 | xfs_reflink_remap_unlock(file_in, file_out); |
| 1464 | if (ret) |
| 1465 | trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); |
| 1466 | return ret; |
| 1467 | } |
| 1468 | |
| 1469 | /* |
| 1470 | * The user wants to preemptively CoW all shared blocks in this file, |
| 1471 | * which enables us to turn off the reflink flag. Iterate all |
| 1472 | * extents which are not prealloc/delalloc to see which ranges are |
| 1473 | * mentioned in the refcount tree, then read those blocks into the |
| 1474 | * pagecache, dirty them, fsync them back out, and then we can update |
| 1475 | * the inode flag. What happens if we run out of memory? :) |
| 1476 | */ |
| 1477 | STATIC int |
| 1478 | xfs_reflink_dirty_extents( |
| 1479 | struct xfs_inode *ip, |
| 1480 | xfs_fileoff_t fbno, |
| 1481 | xfs_filblks_t end, |
| 1482 | xfs_off_t isize) |
| 1483 | { |
| 1484 | struct xfs_mount *mp = ip->i_mount; |
| 1485 | xfs_agnumber_t agno; |
| 1486 | xfs_agblock_t agbno; |
| 1487 | xfs_extlen_t aglen; |
| 1488 | xfs_agblock_t rbno; |
| 1489 | xfs_extlen_t rlen; |
| 1490 | xfs_off_t fpos; |
| 1491 | xfs_off_t flen; |
| 1492 | struct xfs_bmbt_irec map[2]; |
| 1493 | int nmaps; |
| 1494 | int error = 0; |
| 1495 | |
| 1496 | while (end - fbno > 0) { |
| 1497 | nmaps = 1; |
| 1498 | /* |
| 1499 | * Look for extents in the file. Skip holes, delalloc, or |
| 1500 | * unwritten extents; they can't be reflinked. |
| 1501 | */ |
| 1502 | error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0); |
| 1503 | if (error) |
| 1504 | goto out; |
| 1505 | if (nmaps == 0) |
| 1506 | break; |
| 1507 | if (!xfs_bmap_is_real_extent(&map[0])) |
| 1508 | goto next; |
| 1509 | |
| 1510 | map[1] = map[0]; |
| 1511 | while (map[1].br_blockcount) { |
| 1512 | agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock); |
| 1513 | agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock); |
| 1514 | aglen = map[1].br_blockcount; |
| 1515 | |
| 1516 | error = xfs_reflink_find_shared(mp, NULL, agno, agbno, |
| 1517 | aglen, &rbno, &rlen, true); |
| 1518 | if (error) |
| 1519 | goto out; |
| 1520 | if (rbno == NULLAGBLOCK) |
| 1521 | break; |
| 1522 | |
| 1523 | /* Dirty the pages */ |
| 1524 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1525 | fpos = XFS_FSB_TO_B(mp, map[1].br_startoff + |
| 1526 | (rbno - agbno)); |
| 1527 | flen = XFS_FSB_TO_B(mp, rlen); |
| 1528 | if (fpos + flen > isize) |
| 1529 | flen = isize - fpos; |
| 1530 | error = iomap_file_dirty(VFS_I(ip), fpos, flen, |
| 1531 | &xfs_iomap_ops); |
| 1532 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 1533 | if (error) |
| 1534 | goto out; |
| 1535 | |
| 1536 | map[1].br_blockcount -= (rbno - agbno + rlen); |
| 1537 | map[1].br_startoff += (rbno - agbno + rlen); |
| 1538 | map[1].br_startblock += (rbno - agbno + rlen); |
| 1539 | } |
| 1540 | |
| 1541 | next: |
| 1542 | fbno = map[0].br_startoff + map[0].br_blockcount; |
| 1543 | } |
| 1544 | out: |
| 1545 | return error; |
| 1546 | } |
| 1547 | |
| 1548 | /* Does this inode need the reflink flag? */ |
| 1549 | int |
| 1550 | xfs_reflink_inode_has_shared_extents( |
| 1551 | struct xfs_trans *tp, |
| 1552 | struct xfs_inode *ip, |
| 1553 | bool *has_shared) |
| 1554 | { |
| 1555 | struct xfs_bmbt_irec got; |
| 1556 | struct xfs_mount *mp = ip->i_mount; |
| 1557 | struct xfs_ifork *ifp; |
| 1558 | xfs_agnumber_t agno; |
| 1559 | xfs_agblock_t agbno; |
| 1560 | xfs_extlen_t aglen; |
| 1561 | xfs_agblock_t rbno; |
| 1562 | xfs_extlen_t rlen; |
| 1563 | struct xfs_iext_cursor icur; |
| 1564 | bool found; |
| 1565 | int error; |
| 1566 | |
| 1567 | ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); |
| 1568 | if (!(ifp->if_flags & XFS_IFEXTENTS)) { |
| 1569 | error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); |
| 1570 | if (error) |
| 1571 | return error; |
| 1572 | } |
| 1573 | |
| 1574 | *has_shared = false; |
| 1575 | found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); |
| 1576 | while (found) { |
| 1577 | if (isnullstartblock(got.br_startblock) || |
| 1578 | got.br_state != XFS_EXT_NORM) |
| 1579 | goto next; |
| 1580 | agno = XFS_FSB_TO_AGNO(mp, got.br_startblock); |
| 1581 | agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); |
| 1582 | aglen = got.br_blockcount; |
| 1583 | |
| 1584 | error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen, |
| 1585 | &rbno, &rlen, false); |
| 1586 | if (error) |
| 1587 | return error; |
| 1588 | /* Is there still a shared block here? */ |
| 1589 | if (rbno != NULLAGBLOCK) { |
| 1590 | *has_shared = true; |
| 1591 | return 0; |
| 1592 | } |
| 1593 | next: |
| 1594 | found = xfs_iext_next_extent(ifp, &icur, &got); |
| 1595 | } |
| 1596 | |
| 1597 | return 0; |
| 1598 | } |
| 1599 | |
| 1600 | /* |
| 1601 | * Clear the inode reflink flag if there are no shared extents. |
| 1602 | * |
| 1603 | * The caller is responsible for joining the inode to the transaction passed in. |
| 1604 | * The inode will be joined to the transaction that is returned to the caller. |
| 1605 | */ |
| 1606 | int |
| 1607 | xfs_reflink_clear_inode_flag( |
| 1608 | struct xfs_inode *ip, |
| 1609 | struct xfs_trans **tpp) |
| 1610 | { |
| 1611 | bool needs_flag; |
| 1612 | int error = 0; |
| 1613 | |
| 1614 | ASSERT(xfs_is_reflink_inode(ip)); |
| 1615 | |
| 1616 | error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); |
| 1617 | if (error || needs_flag) |
| 1618 | return error; |
| 1619 | |
| 1620 | /* |
| 1621 | * We didn't find any shared blocks so turn off the reflink flag. |
| 1622 | * First, get rid of any leftover CoW mappings. |
| 1623 | */ |
| 1624 | error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true); |
| 1625 | if (error) |
| 1626 | return error; |
| 1627 | |
| 1628 | /* Clear the inode flag. */ |
| 1629 | trace_xfs_reflink_unset_inode_flag(ip); |
| 1630 | ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; |
| 1631 | xfs_inode_clear_cowblocks_tag(ip); |
| 1632 | xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); |
| 1633 | |
| 1634 | return error; |
| 1635 | } |
| 1636 | |
| 1637 | /* |
| 1638 | * Clear the inode reflink flag if there are no shared extents and the size |
| 1639 | * hasn't changed. |
| 1640 | */ |
| 1641 | STATIC int |
| 1642 | xfs_reflink_try_clear_inode_flag( |
| 1643 | struct xfs_inode *ip) |
| 1644 | { |
| 1645 | struct xfs_mount *mp = ip->i_mount; |
| 1646 | struct xfs_trans *tp; |
| 1647 | int error = 0; |
| 1648 | |
| 1649 | /* Start a rolling transaction to remove the mappings */ |
| 1650 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); |
| 1651 | if (error) |
| 1652 | return error; |
| 1653 | |
| 1654 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 1655 | xfs_trans_ijoin(tp, ip, 0); |
| 1656 | |
| 1657 | error = xfs_reflink_clear_inode_flag(ip, &tp); |
| 1658 | if (error) |
| 1659 | goto cancel; |
| 1660 | |
| 1661 | error = xfs_trans_commit(tp); |
| 1662 | if (error) |
| 1663 | goto out; |
| 1664 | |
| 1665 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1666 | return 0; |
| 1667 | cancel: |
| 1668 | xfs_trans_cancel(tp); |
| 1669 | out: |
| 1670 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1671 | return error; |
| 1672 | } |
| 1673 | |
| 1674 | /* |
| 1675 | * Pre-COW all shared blocks within a given byte range of a file and turn off |
| 1676 | * the reflink flag if we unshare all of the file's blocks. |
| 1677 | */ |
| 1678 | int |
| 1679 | xfs_reflink_unshare( |
| 1680 | struct xfs_inode *ip, |
| 1681 | xfs_off_t offset, |
| 1682 | xfs_off_t len) |
| 1683 | { |
| 1684 | struct xfs_mount *mp = ip->i_mount; |
| 1685 | xfs_fileoff_t fbno; |
| 1686 | xfs_filblks_t end; |
| 1687 | xfs_off_t isize; |
| 1688 | int error; |
| 1689 | |
| 1690 | if (!xfs_is_reflink_inode(ip)) |
| 1691 | return 0; |
| 1692 | |
| 1693 | trace_xfs_reflink_unshare(ip, offset, len); |
| 1694 | |
| 1695 | inode_dio_wait(VFS_I(ip)); |
| 1696 | |
| 1697 | /* Try to CoW the selected ranges */ |
| 1698 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 1699 | fbno = XFS_B_TO_FSBT(mp, offset); |
| 1700 | isize = i_size_read(VFS_I(ip)); |
| 1701 | end = XFS_B_TO_FSB(mp, offset + len); |
| 1702 | error = xfs_reflink_dirty_extents(ip, fbno, end, isize); |
| 1703 | if (error) |
| 1704 | goto out_unlock; |
| 1705 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1706 | |
| 1707 | /* Wait for the IO to finish */ |
| 1708 | error = filemap_write_and_wait(VFS_I(ip)->i_mapping); |
| 1709 | if (error) |
| 1710 | goto out; |
| 1711 | |
| 1712 | /* Turn off the reflink flag if possible. */ |
| 1713 | error = xfs_reflink_try_clear_inode_flag(ip); |
| 1714 | if (error) |
| 1715 | goto out; |
| 1716 | |
| 1717 | return 0; |
| 1718 | |
| 1719 | out_unlock: |
| 1720 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1721 | out: |
| 1722 | trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); |
| 1723 | return error; |
| 1724 | } |