Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| 4 | * All Rights Reserved. |
| 5 | */ |
| 6 | #include "xfs.h" |
| 7 | #include "xfs_fs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_bit.h" |
| 13 | #include "xfs_sb.h" |
| 14 | #include "xfs_mount.h" |
| 15 | #include "xfs_defer.h" |
| 16 | #include "xfs_da_format.h" |
| 17 | #include "xfs_da_btree.h" |
| 18 | #include "xfs_inode.h" |
| 19 | #include "xfs_dir2.h" |
| 20 | #include "xfs_ialloc.h" |
| 21 | #include "xfs_alloc.h" |
| 22 | #include "xfs_rtalloc.h" |
| 23 | #include "xfs_bmap.h" |
| 24 | #include "xfs_trans.h" |
| 25 | #include "xfs_trans_priv.h" |
| 26 | #include "xfs_log.h" |
| 27 | #include "xfs_error.h" |
| 28 | #include "xfs_quota.h" |
| 29 | #include "xfs_fsops.h" |
| 30 | #include "xfs_trace.h" |
| 31 | #include "xfs_icache.h" |
| 32 | #include "xfs_sysfs.h" |
| 33 | #include "xfs_rmap_btree.h" |
| 34 | #include "xfs_refcount_btree.h" |
| 35 | #include "xfs_reflink.h" |
| 36 | #include "xfs_extent_busy.h" |
| 37 | |
| 38 | |
| 39 | static DEFINE_MUTEX(xfs_uuid_table_mutex); |
| 40 | static int xfs_uuid_table_size; |
| 41 | static uuid_t *xfs_uuid_table; |
| 42 | |
| 43 | void |
| 44 | xfs_uuid_table_free(void) |
| 45 | { |
| 46 | if (xfs_uuid_table_size == 0) |
| 47 | return; |
| 48 | kmem_free(xfs_uuid_table); |
| 49 | xfs_uuid_table = NULL; |
| 50 | xfs_uuid_table_size = 0; |
| 51 | } |
| 52 | |
| 53 | /* |
| 54 | * See if the UUID is unique among mounted XFS filesystems. |
| 55 | * Mount fails if UUID is nil or a FS with the same UUID is already mounted. |
| 56 | */ |
| 57 | STATIC int |
| 58 | xfs_uuid_mount( |
| 59 | struct xfs_mount *mp) |
| 60 | { |
| 61 | uuid_t *uuid = &mp->m_sb.sb_uuid; |
| 62 | int hole, i; |
| 63 | |
| 64 | /* Publish UUID in struct super_block */ |
| 65 | uuid_copy(&mp->m_super->s_uuid, uuid); |
| 66 | |
| 67 | if (mp->m_flags & XFS_MOUNT_NOUUID) |
| 68 | return 0; |
| 69 | |
| 70 | if (uuid_is_null(uuid)) { |
| 71 | xfs_warn(mp, "Filesystem has null UUID - can't mount"); |
| 72 | return -EINVAL; |
| 73 | } |
| 74 | |
| 75 | mutex_lock(&xfs_uuid_table_mutex); |
| 76 | for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { |
| 77 | if (uuid_is_null(&xfs_uuid_table[i])) { |
| 78 | hole = i; |
| 79 | continue; |
| 80 | } |
| 81 | if (uuid_equal(uuid, &xfs_uuid_table[i])) |
| 82 | goto out_duplicate; |
| 83 | } |
| 84 | |
| 85 | if (hole < 0) { |
| 86 | xfs_uuid_table = kmem_realloc(xfs_uuid_table, |
| 87 | (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), |
| 88 | KM_SLEEP); |
| 89 | hole = xfs_uuid_table_size++; |
| 90 | } |
| 91 | xfs_uuid_table[hole] = *uuid; |
| 92 | mutex_unlock(&xfs_uuid_table_mutex); |
| 93 | |
| 94 | return 0; |
| 95 | |
| 96 | out_duplicate: |
| 97 | mutex_unlock(&xfs_uuid_table_mutex); |
| 98 | xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); |
| 99 | return -EINVAL; |
| 100 | } |
| 101 | |
| 102 | STATIC void |
| 103 | xfs_uuid_unmount( |
| 104 | struct xfs_mount *mp) |
| 105 | { |
| 106 | uuid_t *uuid = &mp->m_sb.sb_uuid; |
| 107 | int i; |
| 108 | |
| 109 | if (mp->m_flags & XFS_MOUNT_NOUUID) |
| 110 | return; |
| 111 | |
| 112 | mutex_lock(&xfs_uuid_table_mutex); |
| 113 | for (i = 0; i < xfs_uuid_table_size; i++) { |
| 114 | if (uuid_is_null(&xfs_uuid_table[i])) |
| 115 | continue; |
| 116 | if (!uuid_equal(uuid, &xfs_uuid_table[i])) |
| 117 | continue; |
| 118 | memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); |
| 119 | break; |
| 120 | } |
| 121 | ASSERT(i < xfs_uuid_table_size); |
| 122 | mutex_unlock(&xfs_uuid_table_mutex); |
| 123 | } |
| 124 | |
| 125 | |
| 126 | STATIC void |
| 127 | __xfs_free_perag( |
| 128 | struct rcu_head *head) |
| 129 | { |
| 130 | struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); |
| 131 | |
| 132 | ASSERT(atomic_read(&pag->pag_ref) == 0); |
| 133 | kmem_free(pag); |
| 134 | } |
| 135 | |
| 136 | /* |
| 137 | * Free up the per-ag resources associated with the mount structure. |
| 138 | */ |
| 139 | STATIC void |
| 140 | xfs_free_perag( |
| 141 | xfs_mount_t *mp) |
| 142 | { |
| 143 | xfs_agnumber_t agno; |
| 144 | struct xfs_perag *pag; |
| 145 | |
| 146 | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { |
| 147 | spin_lock(&mp->m_perag_lock); |
| 148 | pag = radix_tree_delete(&mp->m_perag_tree, agno); |
| 149 | spin_unlock(&mp->m_perag_lock); |
| 150 | ASSERT(pag); |
| 151 | ASSERT(atomic_read(&pag->pag_ref) == 0); |
| 152 | xfs_buf_hash_destroy(pag); |
| 153 | mutex_destroy(&pag->pag_ici_reclaim_lock); |
| 154 | call_rcu(&pag->rcu_head, __xfs_free_perag); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | /* |
| 159 | * Check size of device based on the (data/realtime) block count. |
| 160 | * Note: this check is used by the growfs code as well as mount. |
| 161 | */ |
| 162 | int |
| 163 | xfs_sb_validate_fsb_count( |
| 164 | xfs_sb_t *sbp, |
| 165 | uint64_t nblocks) |
| 166 | { |
| 167 | ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); |
| 168 | ASSERT(sbp->sb_blocklog >= BBSHIFT); |
| 169 | |
| 170 | /* Limited by ULONG_MAX of page cache index */ |
| 171 | if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) |
| 172 | return -EFBIG; |
| 173 | return 0; |
| 174 | } |
| 175 | |
| 176 | int |
| 177 | xfs_initialize_perag( |
| 178 | xfs_mount_t *mp, |
| 179 | xfs_agnumber_t agcount, |
| 180 | xfs_agnumber_t *maxagi) |
| 181 | { |
| 182 | xfs_agnumber_t index; |
| 183 | xfs_agnumber_t first_initialised = NULLAGNUMBER; |
| 184 | xfs_perag_t *pag; |
| 185 | int error = -ENOMEM; |
| 186 | |
| 187 | /* |
| 188 | * Walk the current per-ag tree so we don't try to initialise AGs |
| 189 | * that already exist (growfs case). Allocate and insert all the |
| 190 | * AGs we don't find ready for initialisation. |
| 191 | */ |
| 192 | for (index = 0; index < agcount; index++) { |
| 193 | pag = xfs_perag_get(mp, index); |
| 194 | if (pag) { |
| 195 | xfs_perag_put(pag); |
| 196 | continue; |
| 197 | } |
| 198 | |
| 199 | pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); |
| 200 | if (!pag) |
| 201 | goto out_unwind_new_pags; |
| 202 | pag->pag_agno = index; |
| 203 | pag->pag_mount = mp; |
| 204 | spin_lock_init(&pag->pag_ici_lock); |
| 205 | mutex_init(&pag->pag_ici_reclaim_lock); |
| 206 | INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); |
| 207 | if (xfs_buf_hash_init(pag)) |
| 208 | goto out_free_pag; |
| 209 | init_waitqueue_head(&pag->pagb_wait); |
| 210 | spin_lock_init(&pag->pagb_lock); |
| 211 | pag->pagb_count = 0; |
| 212 | pag->pagb_tree = RB_ROOT; |
| 213 | |
| 214 | if (radix_tree_preload(GFP_NOFS)) |
| 215 | goto out_hash_destroy; |
| 216 | |
| 217 | spin_lock(&mp->m_perag_lock); |
| 218 | if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { |
| 219 | BUG(); |
| 220 | spin_unlock(&mp->m_perag_lock); |
| 221 | radix_tree_preload_end(); |
| 222 | error = -EEXIST; |
| 223 | goto out_hash_destroy; |
| 224 | } |
| 225 | spin_unlock(&mp->m_perag_lock); |
| 226 | radix_tree_preload_end(); |
| 227 | /* first new pag is fully initialized */ |
| 228 | if (first_initialised == NULLAGNUMBER) |
| 229 | first_initialised = index; |
| 230 | } |
| 231 | |
| 232 | index = xfs_set_inode_alloc(mp, agcount); |
| 233 | |
| 234 | if (maxagi) |
| 235 | *maxagi = index; |
| 236 | |
| 237 | mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); |
| 238 | return 0; |
| 239 | |
| 240 | out_hash_destroy: |
| 241 | xfs_buf_hash_destroy(pag); |
| 242 | out_free_pag: |
| 243 | mutex_destroy(&pag->pag_ici_reclaim_lock); |
| 244 | kmem_free(pag); |
| 245 | out_unwind_new_pags: |
| 246 | /* unwind any prior newly initialized pags */ |
| 247 | for (index = first_initialised; index < agcount; index++) { |
| 248 | pag = radix_tree_delete(&mp->m_perag_tree, index); |
| 249 | if (!pag) |
| 250 | break; |
| 251 | xfs_buf_hash_destroy(pag); |
| 252 | mutex_destroy(&pag->pag_ici_reclaim_lock); |
| 253 | kmem_free(pag); |
| 254 | } |
| 255 | return error; |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * xfs_readsb |
| 260 | * |
| 261 | * Does the initial read of the superblock. |
| 262 | */ |
| 263 | int |
| 264 | xfs_readsb( |
| 265 | struct xfs_mount *mp, |
| 266 | int flags) |
| 267 | { |
| 268 | unsigned int sector_size; |
| 269 | struct xfs_buf *bp; |
| 270 | struct xfs_sb *sbp = &mp->m_sb; |
| 271 | int error; |
| 272 | int loud = !(flags & XFS_MFSI_QUIET); |
| 273 | const struct xfs_buf_ops *buf_ops; |
| 274 | |
| 275 | ASSERT(mp->m_sb_bp == NULL); |
| 276 | ASSERT(mp->m_ddev_targp != NULL); |
| 277 | |
| 278 | /* |
| 279 | * For the initial read, we must guess at the sector |
| 280 | * size based on the block device. It's enough to |
| 281 | * get the sb_sectsize out of the superblock and |
| 282 | * then reread with the proper length. |
| 283 | * We don't verify it yet, because it may not be complete. |
| 284 | */ |
| 285 | sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); |
| 286 | buf_ops = NULL; |
| 287 | |
| 288 | /* |
| 289 | * Allocate a (locked) buffer to hold the superblock. This will be kept |
| 290 | * around at all times to optimize access to the superblock. Therefore, |
| 291 | * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count |
| 292 | * elevated. |
| 293 | */ |
| 294 | reread: |
| 295 | error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, |
| 296 | BTOBB(sector_size), XBF_NO_IOACCT, &bp, |
| 297 | buf_ops); |
| 298 | if (error) { |
| 299 | if (loud) |
| 300 | xfs_warn(mp, "SB validate failed with error %d.", error); |
| 301 | /* bad CRC means corrupted metadata */ |
| 302 | if (error == -EFSBADCRC) |
| 303 | error = -EFSCORRUPTED; |
| 304 | return error; |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * Initialize the mount structure from the superblock. |
| 309 | */ |
| 310 | xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); |
| 311 | |
| 312 | /* |
| 313 | * If we haven't validated the superblock, do so now before we try |
| 314 | * to check the sector size and reread the superblock appropriately. |
| 315 | */ |
| 316 | if (sbp->sb_magicnum != XFS_SB_MAGIC) { |
| 317 | if (loud) |
| 318 | xfs_warn(mp, "Invalid superblock magic number"); |
| 319 | error = -EINVAL; |
| 320 | goto release_buf; |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * We must be able to do sector-sized and sector-aligned IO. |
| 325 | */ |
| 326 | if (sector_size > sbp->sb_sectsize) { |
| 327 | if (loud) |
| 328 | xfs_warn(mp, "device supports %u byte sectors (not %u)", |
| 329 | sector_size, sbp->sb_sectsize); |
| 330 | error = -ENOSYS; |
| 331 | goto release_buf; |
| 332 | } |
| 333 | |
| 334 | if (buf_ops == NULL) { |
| 335 | /* |
| 336 | * Re-read the superblock so the buffer is correctly sized, |
| 337 | * and properly verified. |
| 338 | */ |
| 339 | xfs_buf_relse(bp); |
| 340 | sector_size = sbp->sb_sectsize; |
| 341 | buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; |
| 342 | goto reread; |
| 343 | } |
| 344 | |
| 345 | xfs_reinit_percpu_counters(mp); |
| 346 | |
| 347 | /* no need to be quiet anymore, so reset the buf ops */ |
| 348 | bp->b_ops = &xfs_sb_buf_ops; |
| 349 | |
| 350 | mp->m_sb_bp = bp; |
| 351 | xfs_buf_unlock(bp); |
| 352 | return 0; |
| 353 | |
| 354 | release_buf: |
| 355 | xfs_buf_relse(bp); |
| 356 | return error; |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * Update alignment values based on mount options and sb values |
| 361 | */ |
| 362 | STATIC int |
| 363 | xfs_update_alignment(xfs_mount_t *mp) |
| 364 | { |
| 365 | xfs_sb_t *sbp = &(mp->m_sb); |
| 366 | |
| 367 | if (mp->m_dalign) { |
| 368 | /* |
| 369 | * If stripe unit and stripe width are not multiples |
| 370 | * of the fs blocksize turn off alignment. |
| 371 | */ |
| 372 | if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || |
| 373 | (BBTOB(mp->m_swidth) & mp->m_blockmask)) { |
| 374 | xfs_warn(mp, |
| 375 | "alignment check failed: sunit/swidth vs. blocksize(%d)", |
| 376 | sbp->sb_blocksize); |
| 377 | return -EINVAL; |
| 378 | } else { |
| 379 | /* |
| 380 | * Convert the stripe unit and width to FSBs. |
| 381 | */ |
| 382 | mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); |
| 383 | if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { |
| 384 | xfs_warn(mp, |
| 385 | "alignment check failed: sunit/swidth vs. agsize(%d)", |
| 386 | sbp->sb_agblocks); |
| 387 | return -EINVAL; |
| 388 | } else if (mp->m_dalign) { |
| 389 | mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); |
| 390 | } else { |
| 391 | xfs_warn(mp, |
| 392 | "alignment check failed: sunit(%d) less than bsize(%d)", |
| 393 | mp->m_dalign, sbp->sb_blocksize); |
| 394 | return -EINVAL; |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * Update superblock with new values |
| 400 | * and log changes |
| 401 | */ |
| 402 | if (xfs_sb_version_hasdalign(sbp)) { |
| 403 | if (sbp->sb_unit != mp->m_dalign) { |
| 404 | sbp->sb_unit = mp->m_dalign; |
| 405 | mp->m_update_sb = true; |
| 406 | } |
| 407 | if (sbp->sb_width != mp->m_swidth) { |
| 408 | sbp->sb_width = mp->m_swidth; |
| 409 | mp->m_update_sb = true; |
| 410 | } |
| 411 | } else { |
| 412 | xfs_warn(mp, |
| 413 | "cannot change alignment: superblock does not support data alignment"); |
| 414 | return -EINVAL; |
| 415 | } |
| 416 | } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && |
| 417 | xfs_sb_version_hasdalign(&mp->m_sb)) { |
| 418 | mp->m_dalign = sbp->sb_unit; |
| 419 | mp->m_swidth = sbp->sb_width; |
| 420 | } |
| 421 | |
| 422 | return 0; |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * Set the maximum inode count for this filesystem |
| 427 | */ |
| 428 | STATIC void |
| 429 | xfs_set_maxicount(xfs_mount_t *mp) |
| 430 | { |
| 431 | xfs_sb_t *sbp = &(mp->m_sb); |
| 432 | uint64_t icount; |
| 433 | |
| 434 | if (sbp->sb_imax_pct) { |
| 435 | /* |
| 436 | * Make sure the maximum inode count is a multiple |
| 437 | * of the units we allocate inodes in. |
| 438 | */ |
| 439 | icount = sbp->sb_dblocks * sbp->sb_imax_pct; |
| 440 | do_div(icount, 100); |
| 441 | do_div(icount, mp->m_ialloc_blks); |
| 442 | mp->m_maxicount = (icount * mp->m_ialloc_blks) << |
| 443 | sbp->sb_inopblog; |
| 444 | } else { |
| 445 | mp->m_maxicount = 0; |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | /* |
| 450 | * Set the default minimum read and write sizes unless |
| 451 | * already specified in a mount option. |
| 452 | * We use smaller I/O sizes when the file system |
| 453 | * is being used for NFS service (wsync mount option). |
| 454 | */ |
| 455 | STATIC void |
| 456 | xfs_set_rw_sizes(xfs_mount_t *mp) |
| 457 | { |
| 458 | xfs_sb_t *sbp = &(mp->m_sb); |
| 459 | int readio_log, writeio_log; |
| 460 | |
| 461 | if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { |
| 462 | if (mp->m_flags & XFS_MOUNT_WSYNC) { |
| 463 | readio_log = XFS_WSYNC_READIO_LOG; |
| 464 | writeio_log = XFS_WSYNC_WRITEIO_LOG; |
| 465 | } else { |
| 466 | readio_log = XFS_READIO_LOG_LARGE; |
| 467 | writeio_log = XFS_WRITEIO_LOG_LARGE; |
| 468 | } |
| 469 | } else { |
| 470 | readio_log = mp->m_readio_log; |
| 471 | writeio_log = mp->m_writeio_log; |
| 472 | } |
| 473 | |
| 474 | if (sbp->sb_blocklog > readio_log) { |
| 475 | mp->m_readio_log = sbp->sb_blocklog; |
| 476 | } else { |
| 477 | mp->m_readio_log = readio_log; |
| 478 | } |
| 479 | mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); |
| 480 | if (sbp->sb_blocklog > writeio_log) { |
| 481 | mp->m_writeio_log = sbp->sb_blocklog; |
| 482 | } else { |
| 483 | mp->m_writeio_log = writeio_log; |
| 484 | } |
| 485 | mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); |
| 486 | } |
| 487 | |
| 488 | /* |
| 489 | * precalculate the low space thresholds for dynamic speculative preallocation. |
| 490 | */ |
| 491 | void |
| 492 | xfs_set_low_space_thresholds( |
| 493 | struct xfs_mount *mp) |
| 494 | { |
| 495 | int i; |
| 496 | |
| 497 | for (i = 0; i < XFS_LOWSP_MAX; i++) { |
| 498 | uint64_t space = mp->m_sb.sb_dblocks; |
| 499 | |
| 500 | do_div(space, 100); |
| 501 | mp->m_low_space[i] = space * (i + 1); |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | |
| 506 | /* |
| 507 | * Set whether we're using inode alignment. |
| 508 | */ |
| 509 | STATIC void |
| 510 | xfs_set_inoalignment(xfs_mount_t *mp) |
| 511 | { |
| 512 | if (xfs_sb_version_hasalign(&mp->m_sb) && |
| 513 | mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) |
| 514 | mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; |
| 515 | else |
| 516 | mp->m_inoalign_mask = 0; |
| 517 | /* |
| 518 | * If we are using stripe alignment, check whether |
| 519 | * the stripe unit is a multiple of the inode alignment |
| 520 | */ |
| 521 | if (mp->m_dalign && mp->m_inoalign_mask && |
| 522 | !(mp->m_dalign & mp->m_inoalign_mask)) |
| 523 | mp->m_sinoalign = mp->m_dalign; |
| 524 | else |
| 525 | mp->m_sinoalign = 0; |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * Check that the data (and log if separate) is an ok size. |
| 530 | */ |
| 531 | STATIC int |
| 532 | xfs_check_sizes( |
| 533 | struct xfs_mount *mp) |
| 534 | { |
| 535 | struct xfs_buf *bp; |
| 536 | xfs_daddr_t d; |
| 537 | int error; |
| 538 | |
| 539 | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); |
| 540 | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { |
| 541 | xfs_warn(mp, "filesystem size mismatch detected"); |
| 542 | return -EFBIG; |
| 543 | } |
| 544 | error = xfs_buf_read_uncached(mp->m_ddev_targp, |
| 545 | d - XFS_FSS_TO_BB(mp, 1), |
| 546 | XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); |
| 547 | if (error) { |
| 548 | xfs_warn(mp, "last sector read failed"); |
| 549 | return error; |
| 550 | } |
| 551 | xfs_buf_relse(bp); |
| 552 | |
| 553 | if (mp->m_logdev_targp == mp->m_ddev_targp) |
| 554 | return 0; |
| 555 | |
| 556 | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); |
| 557 | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { |
| 558 | xfs_warn(mp, "log size mismatch detected"); |
| 559 | return -EFBIG; |
| 560 | } |
| 561 | error = xfs_buf_read_uncached(mp->m_logdev_targp, |
| 562 | d - XFS_FSB_TO_BB(mp, 1), |
| 563 | XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); |
| 564 | if (error) { |
| 565 | xfs_warn(mp, "log device read failed"); |
| 566 | return error; |
| 567 | } |
| 568 | xfs_buf_relse(bp); |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * Clear the quotaflags in memory and in the superblock. |
| 574 | */ |
| 575 | int |
| 576 | xfs_mount_reset_sbqflags( |
| 577 | struct xfs_mount *mp) |
| 578 | { |
| 579 | mp->m_qflags = 0; |
| 580 | |
| 581 | /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ |
| 582 | if (mp->m_sb.sb_qflags == 0) |
| 583 | return 0; |
| 584 | spin_lock(&mp->m_sb_lock); |
| 585 | mp->m_sb.sb_qflags = 0; |
| 586 | spin_unlock(&mp->m_sb_lock); |
| 587 | |
| 588 | if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) |
| 589 | return 0; |
| 590 | |
| 591 | return xfs_sync_sb(mp, false); |
| 592 | } |
| 593 | |
| 594 | uint64_t |
| 595 | xfs_default_resblks(xfs_mount_t *mp) |
| 596 | { |
| 597 | uint64_t resblks; |
| 598 | |
| 599 | /* |
| 600 | * We default to 5% or 8192 fsbs of space reserved, whichever is |
| 601 | * smaller. This is intended to cover concurrent allocation |
| 602 | * transactions when we initially hit enospc. These each require a 4 |
| 603 | * block reservation. Hence by default we cover roughly 2000 concurrent |
| 604 | * allocation reservations. |
| 605 | */ |
| 606 | resblks = mp->m_sb.sb_dblocks; |
| 607 | do_div(resblks, 20); |
| 608 | resblks = min_t(uint64_t, resblks, 8192); |
| 609 | return resblks; |
| 610 | } |
| 611 | |
| 612 | /* Ensure the summary counts are correct. */ |
| 613 | STATIC int |
| 614 | xfs_check_summary_counts( |
| 615 | struct xfs_mount *mp) |
| 616 | { |
| 617 | /* |
| 618 | * The AG0 superblock verifier rejects in-progress filesystems, |
| 619 | * so we should never see the flag set this far into mounting. |
| 620 | */ |
| 621 | if (mp->m_sb.sb_inprogress) { |
| 622 | xfs_err(mp, "sb_inprogress set after log recovery??"); |
| 623 | WARN_ON(1); |
| 624 | return -EFSCORRUPTED; |
| 625 | } |
| 626 | |
| 627 | /* |
| 628 | * Now the log is mounted, we know if it was an unclean shutdown or |
| 629 | * not. If it was, with the first phase of recovery has completed, we |
| 630 | * have consistent AG blocks on disk. We have not recovered EFIs yet, |
| 631 | * but they are recovered transactionally in the second recovery phase |
| 632 | * later. |
| 633 | * |
| 634 | * If the log was clean when we mounted, we can check the summary |
| 635 | * counters. If any of them are obviously incorrect, we can recompute |
| 636 | * them from the AGF headers in the next step. |
| 637 | */ |
| 638 | if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && |
| 639 | (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || |
| 640 | !xfs_verify_icount(mp, mp->m_sb.sb_icount) || |
| 641 | mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) |
| 642 | mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; |
| 643 | |
| 644 | /* |
| 645 | * We can safely re-initialise incore superblock counters from the |
| 646 | * per-ag data. These may not be correct if the filesystem was not |
| 647 | * cleanly unmounted, so we waited for recovery to finish before doing |
| 648 | * this. |
| 649 | * |
| 650 | * If the filesystem was cleanly unmounted or the previous check did |
| 651 | * not flag anything weird, then we can trust the values in the |
| 652 | * superblock to be correct and we don't need to do anything here. |
| 653 | * Otherwise, recalculate the summary counters. |
| 654 | */ |
| 655 | if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || |
| 656 | XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && |
| 657 | !(mp->m_flags & XFS_MOUNT_BAD_SUMMARY)) |
| 658 | return 0; |
| 659 | |
| 660 | return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); |
| 661 | } |
| 662 | |
| 663 | /* |
| 664 | * This function does the following on an initial mount of a file system: |
| 665 | * - reads the superblock from disk and init the mount struct |
| 666 | * - if we're a 32-bit kernel, do a size check on the superblock |
| 667 | * so we don't mount terabyte filesystems |
| 668 | * - init mount struct realtime fields |
| 669 | * - allocate inode hash table for fs |
| 670 | * - init directory manager |
| 671 | * - perform recovery and init the log manager |
| 672 | */ |
| 673 | int |
| 674 | xfs_mountfs( |
| 675 | struct xfs_mount *mp) |
| 676 | { |
| 677 | struct xfs_sb *sbp = &(mp->m_sb); |
| 678 | struct xfs_inode *rip; |
| 679 | uint64_t resblks; |
| 680 | uint quotamount = 0; |
| 681 | uint quotaflags = 0; |
| 682 | int error = 0; |
| 683 | |
| 684 | xfs_sb_mount_common(mp, sbp); |
| 685 | |
| 686 | /* |
| 687 | * Check for a mismatched features2 values. Older kernels read & wrote |
| 688 | * into the wrong sb offset for sb_features2 on some platforms due to |
| 689 | * xfs_sb_t not being 64bit size aligned when sb_features2 was added, |
| 690 | * which made older superblock reading/writing routines swap it as a |
| 691 | * 64-bit value. |
| 692 | * |
| 693 | * For backwards compatibility, we make both slots equal. |
| 694 | * |
| 695 | * If we detect a mismatched field, we OR the set bits into the existing |
| 696 | * features2 field in case it has already been modified; we don't want |
| 697 | * to lose any features. We then update the bad location with the ORed |
| 698 | * value so that older kernels will see any features2 flags. The |
| 699 | * superblock writeback code ensures the new sb_features2 is copied to |
| 700 | * sb_bad_features2 before it is logged or written to disk. |
| 701 | */ |
| 702 | if (xfs_sb_has_mismatched_features2(sbp)) { |
| 703 | xfs_warn(mp, "correcting sb_features alignment problem"); |
| 704 | sbp->sb_features2 |= sbp->sb_bad_features2; |
| 705 | mp->m_update_sb = true; |
| 706 | |
| 707 | /* |
| 708 | * Re-check for ATTR2 in case it was found in bad_features2 |
| 709 | * slot. |
| 710 | */ |
| 711 | if (xfs_sb_version_hasattr2(&mp->m_sb) && |
| 712 | !(mp->m_flags & XFS_MOUNT_NOATTR2)) |
| 713 | mp->m_flags |= XFS_MOUNT_ATTR2; |
| 714 | } |
| 715 | |
| 716 | if (xfs_sb_version_hasattr2(&mp->m_sb) && |
| 717 | (mp->m_flags & XFS_MOUNT_NOATTR2)) { |
| 718 | xfs_sb_version_removeattr2(&mp->m_sb); |
| 719 | mp->m_update_sb = true; |
| 720 | |
| 721 | /* update sb_versionnum for the clearing of the morebits */ |
| 722 | if (!sbp->sb_features2) |
| 723 | mp->m_update_sb = true; |
| 724 | } |
| 725 | |
| 726 | /* always use v2 inodes by default now */ |
| 727 | if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { |
| 728 | mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; |
| 729 | mp->m_update_sb = true; |
| 730 | } |
| 731 | |
| 732 | /* |
| 733 | * Check if sb_agblocks is aligned at stripe boundary |
| 734 | * If sb_agblocks is NOT aligned turn off m_dalign since |
| 735 | * allocator alignment is within an ag, therefore ag has |
| 736 | * to be aligned at stripe boundary. |
| 737 | */ |
| 738 | error = xfs_update_alignment(mp); |
| 739 | if (error) |
| 740 | goto out; |
| 741 | |
| 742 | xfs_alloc_compute_maxlevels(mp); |
| 743 | xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); |
| 744 | xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); |
| 745 | xfs_ialloc_compute_maxlevels(mp); |
| 746 | xfs_rmapbt_compute_maxlevels(mp); |
| 747 | xfs_refcountbt_compute_maxlevels(mp); |
| 748 | |
| 749 | xfs_set_maxicount(mp); |
| 750 | |
| 751 | /* enable fail_at_unmount as default */ |
| 752 | mp->m_fail_unmount = true; |
| 753 | |
| 754 | error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); |
| 755 | if (error) |
| 756 | goto out; |
| 757 | |
| 758 | error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, |
| 759 | &mp->m_kobj, "stats"); |
| 760 | if (error) |
| 761 | goto out_remove_sysfs; |
| 762 | |
| 763 | error = xfs_error_sysfs_init(mp); |
| 764 | if (error) |
| 765 | goto out_del_stats; |
| 766 | |
| 767 | error = xfs_errortag_init(mp); |
| 768 | if (error) |
| 769 | goto out_remove_error_sysfs; |
| 770 | |
| 771 | error = xfs_uuid_mount(mp); |
| 772 | if (error) |
| 773 | goto out_remove_errortag; |
| 774 | |
| 775 | /* |
| 776 | * Set the minimum read and write sizes |
| 777 | */ |
| 778 | xfs_set_rw_sizes(mp); |
| 779 | |
| 780 | /* set the low space thresholds for dynamic preallocation */ |
| 781 | xfs_set_low_space_thresholds(mp); |
| 782 | |
| 783 | /* |
| 784 | * Set the inode cluster size. |
| 785 | * This may still be overridden by the file system |
| 786 | * block size if it is larger than the chosen cluster size. |
| 787 | * |
| 788 | * For v5 filesystems, scale the cluster size with the inode size to |
| 789 | * keep a constant ratio of inode per cluster buffer, but only if mkfs |
| 790 | * has set the inode alignment value appropriately for larger cluster |
| 791 | * sizes. |
| 792 | */ |
| 793 | mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; |
| 794 | if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| 795 | int new_size = mp->m_inode_cluster_size; |
| 796 | |
| 797 | new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; |
| 798 | if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) |
| 799 | mp->m_inode_cluster_size = new_size; |
| 800 | } |
| 801 | |
| 802 | /* |
| 803 | * If enabled, sparse inode chunk alignment is expected to match the |
| 804 | * cluster size. Full inode chunk alignment must match the chunk size, |
| 805 | * but that is checked on sb read verification... |
| 806 | */ |
| 807 | if (xfs_sb_version_hassparseinodes(&mp->m_sb) && |
| 808 | mp->m_sb.sb_spino_align != |
| 809 | XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { |
| 810 | xfs_warn(mp, |
| 811 | "Sparse inode block alignment (%u) must match cluster size (%llu).", |
| 812 | mp->m_sb.sb_spino_align, |
| 813 | XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); |
| 814 | error = -EINVAL; |
| 815 | goto out_remove_uuid; |
| 816 | } |
| 817 | |
| 818 | /* |
| 819 | * Set inode alignment fields |
| 820 | */ |
| 821 | xfs_set_inoalignment(mp); |
| 822 | |
| 823 | /* |
| 824 | * Check that the data (and log if separate) is an ok size. |
| 825 | */ |
| 826 | error = xfs_check_sizes(mp); |
| 827 | if (error) |
| 828 | goto out_remove_uuid; |
| 829 | |
| 830 | /* |
| 831 | * Initialize realtime fields in the mount structure |
| 832 | */ |
| 833 | error = xfs_rtmount_init(mp); |
| 834 | if (error) { |
| 835 | xfs_warn(mp, "RT mount failed"); |
| 836 | goto out_remove_uuid; |
| 837 | } |
| 838 | |
| 839 | /* |
| 840 | * Copies the low order bits of the timestamp and the randomly |
| 841 | * set "sequence" number out of a UUID. |
| 842 | */ |
| 843 | mp->m_fixedfsid[0] = |
| 844 | (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | |
| 845 | get_unaligned_be16(&sbp->sb_uuid.b[4]); |
| 846 | mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); |
| 847 | |
| 848 | error = xfs_da_mount(mp); |
| 849 | if (error) { |
| 850 | xfs_warn(mp, "Failed dir/attr init: %d", error); |
| 851 | goto out_remove_uuid; |
| 852 | } |
| 853 | |
| 854 | /* |
| 855 | * Initialize the precomputed transaction reservations values. |
| 856 | */ |
| 857 | xfs_trans_init(mp); |
| 858 | |
| 859 | /* |
| 860 | * Allocate and initialize the per-ag data. |
| 861 | */ |
| 862 | error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); |
| 863 | if (error) { |
| 864 | xfs_warn(mp, "Failed per-ag init: %d", error); |
| 865 | goto out_free_dir; |
| 866 | } |
| 867 | |
| 868 | if (!sbp->sb_logblocks) { |
| 869 | xfs_warn(mp, "no log defined"); |
| 870 | XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); |
| 871 | error = -EFSCORRUPTED; |
| 872 | goto out_free_perag; |
| 873 | } |
| 874 | |
| 875 | /* |
| 876 | * Log's mount-time initialization. The first part of recovery can place |
| 877 | * some items on the AIL, to be handled when recovery is finished or |
| 878 | * cancelled. |
| 879 | */ |
| 880 | error = xfs_log_mount(mp, mp->m_logdev_targp, |
| 881 | XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), |
| 882 | XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); |
| 883 | if (error) { |
| 884 | xfs_warn(mp, "log mount failed"); |
| 885 | goto out_fail_wait; |
| 886 | } |
| 887 | |
| 888 | /* Make sure the summary counts are ok. */ |
| 889 | error = xfs_check_summary_counts(mp); |
| 890 | if (error) |
| 891 | goto out_log_dealloc; |
| 892 | |
| 893 | /* |
| 894 | * Get and sanity-check the root inode. |
| 895 | * Save the pointer to it in the mount structure. |
| 896 | */ |
| 897 | error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, |
| 898 | XFS_ILOCK_EXCL, &rip); |
| 899 | if (error) { |
| 900 | xfs_warn(mp, |
| 901 | "Failed to read root inode 0x%llx, error %d", |
| 902 | sbp->sb_rootino, -error); |
| 903 | goto out_log_dealloc; |
| 904 | } |
| 905 | |
| 906 | ASSERT(rip != NULL); |
| 907 | |
| 908 | if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { |
| 909 | xfs_warn(mp, "corrupted root inode %llu: not a directory", |
| 910 | (unsigned long long)rip->i_ino); |
| 911 | xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| 912 | XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, |
| 913 | mp); |
| 914 | error = -EFSCORRUPTED; |
| 915 | goto out_rele_rip; |
| 916 | } |
| 917 | mp->m_rootip = rip; /* save it */ |
| 918 | |
| 919 | xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| 920 | |
| 921 | /* |
| 922 | * Initialize realtime inode pointers in the mount structure |
| 923 | */ |
| 924 | error = xfs_rtmount_inodes(mp); |
| 925 | if (error) { |
| 926 | /* |
| 927 | * Free up the root inode. |
| 928 | */ |
| 929 | xfs_warn(mp, "failed to read RT inodes"); |
| 930 | goto out_rele_rip; |
| 931 | } |
| 932 | |
| 933 | /* |
| 934 | * If this is a read-only mount defer the superblock updates until |
| 935 | * the next remount into writeable mode. Otherwise we would never |
| 936 | * perform the update e.g. for the root filesystem. |
| 937 | */ |
| 938 | if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { |
| 939 | error = xfs_sync_sb(mp, false); |
| 940 | if (error) { |
| 941 | xfs_warn(mp, "failed to write sb changes"); |
| 942 | goto out_rtunmount; |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | /* |
| 947 | * Initialise the XFS quota management subsystem for this mount |
| 948 | */ |
| 949 | if (XFS_IS_QUOTA_RUNNING(mp)) { |
| 950 | error = xfs_qm_newmount(mp, "amount, "aflags); |
| 951 | if (error) |
| 952 | goto out_rtunmount; |
| 953 | } else { |
| 954 | ASSERT(!XFS_IS_QUOTA_ON(mp)); |
| 955 | |
| 956 | /* |
| 957 | * If a file system had quotas running earlier, but decided to |
| 958 | * mount without -o uquota/pquota/gquota options, revoke the |
| 959 | * quotachecked license. |
| 960 | */ |
| 961 | if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { |
| 962 | xfs_notice(mp, "resetting quota flags"); |
| 963 | error = xfs_mount_reset_sbqflags(mp); |
| 964 | if (error) |
| 965 | goto out_rtunmount; |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | /* |
| 970 | * Finish recovering the file system. This part needed to be delayed |
| 971 | * until after the root and real-time bitmap inodes were consistently |
| 972 | * read in. |
| 973 | */ |
| 974 | error = xfs_log_mount_finish(mp); |
| 975 | if (error) { |
| 976 | xfs_warn(mp, "log mount finish failed"); |
| 977 | goto out_rtunmount; |
| 978 | } |
| 979 | |
| 980 | /* |
| 981 | * Now the log is fully replayed, we can transition to full read-only |
| 982 | * mode for read-only mounts. This will sync all the metadata and clean |
| 983 | * the log so that the recovery we just performed does not have to be |
| 984 | * replayed again on the next mount. |
| 985 | * |
| 986 | * We use the same quiesce mechanism as the rw->ro remount, as they are |
| 987 | * semantically identical operations. |
| 988 | */ |
| 989 | if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == |
| 990 | XFS_MOUNT_RDONLY) { |
| 991 | xfs_quiesce_attr(mp); |
| 992 | } |
| 993 | |
| 994 | /* |
| 995 | * Complete the quota initialisation, post-log-replay component. |
| 996 | */ |
| 997 | if (quotamount) { |
| 998 | ASSERT(mp->m_qflags == 0); |
| 999 | mp->m_qflags = quotaflags; |
| 1000 | |
| 1001 | xfs_qm_mount_quotas(mp); |
| 1002 | } |
| 1003 | |
| 1004 | /* |
| 1005 | * Now we are mounted, reserve a small amount of unused space for |
| 1006 | * privileged transactions. This is needed so that transaction |
| 1007 | * space required for critical operations can dip into this pool |
| 1008 | * when at ENOSPC. This is needed for operations like create with |
| 1009 | * attr, unwritten extent conversion at ENOSPC, etc. Data allocations |
| 1010 | * are not allowed to use this reserved space. |
| 1011 | * |
| 1012 | * This may drive us straight to ENOSPC on mount, but that implies |
| 1013 | * we were already there on the last unmount. Warn if this occurs. |
| 1014 | */ |
| 1015 | if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { |
| 1016 | resblks = xfs_default_resblks(mp); |
| 1017 | error = xfs_reserve_blocks(mp, &resblks, NULL); |
| 1018 | if (error) |
| 1019 | xfs_warn(mp, |
| 1020 | "Unable to allocate reserve blocks. Continuing without reserve pool."); |
| 1021 | |
| 1022 | /* Recover any CoW blocks that never got remapped. */ |
| 1023 | error = xfs_reflink_recover_cow(mp); |
| 1024 | if (error) { |
| 1025 | xfs_err(mp, |
| 1026 | "Error %d recovering leftover CoW allocations.", error); |
| 1027 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| 1028 | goto out_quota; |
| 1029 | } |
| 1030 | |
| 1031 | /* Reserve AG blocks for future btree expansion. */ |
| 1032 | error = xfs_fs_reserve_ag_blocks(mp); |
| 1033 | if (error && error != -ENOSPC) |
| 1034 | goto out_agresv; |
| 1035 | } |
| 1036 | |
| 1037 | return 0; |
| 1038 | |
| 1039 | out_agresv: |
| 1040 | xfs_fs_unreserve_ag_blocks(mp); |
| 1041 | out_quota: |
| 1042 | xfs_qm_unmount_quotas(mp); |
| 1043 | out_rtunmount: |
| 1044 | xfs_rtunmount_inodes(mp); |
| 1045 | out_rele_rip: |
| 1046 | xfs_irele(rip); |
| 1047 | /* Clean out dquots that might be in memory after quotacheck. */ |
| 1048 | xfs_qm_unmount(mp); |
| 1049 | /* |
| 1050 | * Cancel all delayed reclaim work and reclaim the inodes directly. |
| 1051 | * We have to do this /after/ rtunmount and qm_unmount because those |
| 1052 | * two will have scheduled delayed reclaim for the rt/quota inodes. |
| 1053 | * |
| 1054 | * This is slightly different from the unmountfs call sequence |
| 1055 | * because we could be tearing down a partially set up mount. In |
| 1056 | * particular, if log_mount_finish fails we bail out without calling |
| 1057 | * qm_unmount_quotas and therefore rely on qm_unmount to release the |
| 1058 | * quota inodes. |
| 1059 | */ |
| 1060 | cancel_delayed_work_sync(&mp->m_reclaim_work); |
| 1061 | xfs_reclaim_inodes(mp, SYNC_WAIT); |
| 1062 | out_log_dealloc: |
| 1063 | mp->m_flags |= XFS_MOUNT_UNMOUNTING; |
| 1064 | xfs_log_mount_cancel(mp); |
| 1065 | out_fail_wait: |
| 1066 | if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) |
| 1067 | xfs_wait_buftarg(mp->m_logdev_targp); |
| 1068 | xfs_wait_buftarg(mp->m_ddev_targp); |
| 1069 | out_free_perag: |
| 1070 | xfs_free_perag(mp); |
| 1071 | out_free_dir: |
| 1072 | xfs_da_unmount(mp); |
| 1073 | out_remove_uuid: |
| 1074 | xfs_uuid_unmount(mp); |
| 1075 | out_remove_errortag: |
| 1076 | xfs_errortag_del(mp); |
| 1077 | out_remove_error_sysfs: |
| 1078 | xfs_error_sysfs_del(mp); |
| 1079 | out_del_stats: |
| 1080 | xfs_sysfs_del(&mp->m_stats.xs_kobj); |
| 1081 | out_remove_sysfs: |
| 1082 | xfs_sysfs_del(&mp->m_kobj); |
| 1083 | out: |
| 1084 | return error; |
| 1085 | } |
| 1086 | |
| 1087 | /* |
| 1088 | * This flushes out the inodes,dquots and the superblock, unmounts the |
| 1089 | * log and makes sure that incore structures are freed. |
| 1090 | */ |
| 1091 | void |
| 1092 | xfs_unmountfs( |
| 1093 | struct xfs_mount *mp) |
| 1094 | { |
| 1095 | uint64_t resblks; |
| 1096 | int error; |
| 1097 | |
| 1098 | xfs_icache_disable_reclaim(mp); |
| 1099 | xfs_fs_unreserve_ag_blocks(mp); |
| 1100 | xfs_qm_unmount_quotas(mp); |
| 1101 | xfs_rtunmount_inodes(mp); |
| 1102 | xfs_irele(mp->m_rootip); |
| 1103 | |
| 1104 | /* |
| 1105 | * We can potentially deadlock here if we have an inode cluster |
| 1106 | * that has been freed has its buffer still pinned in memory because |
| 1107 | * the transaction is still sitting in a iclog. The stale inodes |
| 1108 | * on that buffer will have their flush locks held until the |
| 1109 | * transaction hits the disk and the callbacks run. the inode |
| 1110 | * flush takes the flush lock unconditionally and with nothing to |
| 1111 | * push out the iclog we will never get that unlocked. hence we |
| 1112 | * need to force the log first. |
| 1113 | */ |
| 1114 | xfs_log_force(mp, XFS_LOG_SYNC); |
| 1115 | |
| 1116 | /* |
| 1117 | * Wait for all busy extents to be freed, including completion of |
| 1118 | * any discard operation. |
| 1119 | */ |
| 1120 | xfs_extent_busy_wait_all(mp); |
| 1121 | flush_workqueue(xfs_discard_wq); |
| 1122 | |
| 1123 | /* |
| 1124 | * We now need to tell the world we are unmounting. This will allow |
| 1125 | * us to detect that the filesystem is going away and we should error |
| 1126 | * out anything that we have been retrying in the background. This will |
| 1127 | * prevent neverending retries in AIL pushing from hanging the unmount. |
| 1128 | */ |
| 1129 | mp->m_flags |= XFS_MOUNT_UNMOUNTING; |
| 1130 | |
| 1131 | /* |
| 1132 | * Flush all pending changes from the AIL. |
| 1133 | */ |
| 1134 | xfs_ail_push_all_sync(mp->m_ail); |
| 1135 | |
| 1136 | /* |
| 1137 | * And reclaim all inodes. At this point there should be no dirty |
| 1138 | * inodes and none should be pinned or locked, but use synchronous |
| 1139 | * reclaim just to be sure. We can stop background inode reclaim |
| 1140 | * here as well if it is still running. |
| 1141 | */ |
| 1142 | cancel_delayed_work_sync(&mp->m_reclaim_work); |
| 1143 | xfs_reclaim_inodes(mp, SYNC_WAIT); |
| 1144 | |
| 1145 | xfs_qm_unmount(mp); |
| 1146 | |
| 1147 | /* |
| 1148 | * Unreserve any blocks we have so that when we unmount we don't account |
| 1149 | * the reserved free space as used. This is really only necessary for |
| 1150 | * lazy superblock counting because it trusts the incore superblock |
| 1151 | * counters to be absolutely correct on clean unmount. |
| 1152 | * |
| 1153 | * We don't bother correcting this elsewhere for lazy superblock |
| 1154 | * counting because on mount of an unclean filesystem we reconstruct the |
| 1155 | * correct counter value and this is irrelevant. |
| 1156 | * |
| 1157 | * For non-lazy counter filesystems, this doesn't matter at all because |
| 1158 | * we only every apply deltas to the superblock and hence the incore |
| 1159 | * value does not matter.... |
| 1160 | */ |
| 1161 | resblks = 0; |
| 1162 | error = xfs_reserve_blocks(mp, &resblks, NULL); |
| 1163 | if (error) |
| 1164 | xfs_warn(mp, "Unable to free reserved block pool. " |
| 1165 | "Freespace may not be correct on next mount."); |
| 1166 | |
| 1167 | error = xfs_log_sbcount(mp); |
| 1168 | if (error) |
| 1169 | xfs_warn(mp, "Unable to update superblock counters. " |
| 1170 | "Freespace may not be correct on next mount."); |
| 1171 | |
| 1172 | |
| 1173 | xfs_log_unmount(mp); |
| 1174 | xfs_da_unmount(mp); |
| 1175 | xfs_uuid_unmount(mp); |
| 1176 | |
| 1177 | #if defined(DEBUG) |
| 1178 | xfs_errortag_clearall(mp); |
| 1179 | #endif |
| 1180 | xfs_free_perag(mp); |
| 1181 | |
| 1182 | xfs_errortag_del(mp); |
| 1183 | xfs_error_sysfs_del(mp); |
| 1184 | xfs_sysfs_del(&mp->m_stats.xs_kobj); |
| 1185 | xfs_sysfs_del(&mp->m_kobj); |
| 1186 | } |
| 1187 | |
| 1188 | /* |
| 1189 | * Determine whether modifications can proceed. The caller specifies the minimum |
| 1190 | * freeze level for which modifications should not be allowed. This allows |
| 1191 | * certain operations to proceed while the freeze sequence is in progress, if |
| 1192 | * necessary. |
| 1193 | */ |
| 1194 | bool |
| 1195 | xfs_fs_writable( |
| 1196 | struct xfs_mount *mp, |
| 1197 | int level) |
| 1198 | { |
| 1199 | ASSERT(level > SB_UNFROZEN); |
| 1200 | if ((mp->m_super->s_writers.frozen >= level) || |
| 1201 | XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) |
| 1202 | return false; |
| 1203 | |
| 1204 | return true; |
| 1205 | } |
| 1206 | |
| 1207 | /* |
| 1208 | * xfs_log_sbcount |
| 1209 | * |
| 1210 | * Sync the superblock counters to disk. |
| 1211 | * |
| 1212 | * Note this code can be called during the process of freezing, so we use the |
| 1213 | * transaction allocator that does not block when the transaction subsystem is |
| 1214 | * in its frozen state. |
| 1215 | */ |
| 1216 | int |
| 1217 | xfs_log_sbcount(xfs_mount_t *mp) |
| 1218 | { |
| 1219 | /* allow this to proceed during the freeze sequence... */ |
| 1220 | if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) |
| 1221 | return 0; |
| 1222 | |
| 1223 | /* |
| 1224 | * we don't need to do this if we are updating the superblock |
| 1225 | * counters on every modification. |
| 1226 | */ |
| 1227 | if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) |
| 1228 | return 0; |
| 1229 | |
| 1230 | return xfs_sync_sb(mp, true); |
| 1231 | } |
| 1232 | |
| 1233 | /* |
| 1234 | * Deltas for the inode count are +/-64, hence we use a large batch size |
| 1235 | * of 128 so we don't need to take the counter lock on every update. |
| 1236 | */ |
| 1237 | #define XFS_ICOUNT_BATCH 128 |
| 1238 | int |
| 1239 | xfs_mod_icount( |
| 1240 | struct xfs_mount *mp, |
| 1241 | int64_t delta) |
| 1242 | { |
| 1243 | percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); |
| 1244 | if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { |
| 1245 | ASSERT(0); |
| 1246 | percpu_counter_add(&mp->m_icount, -delta); |
| 1247 | return -EINVAL; |
| 1248 | } |
| 1249 | return 0; |
| 1250 | } |
| 1251 | |
| 1252 | int |
| 1253 | xfs_mod_ifree( |
| 1254 | struct xfs_mount *mp, |
| 1255 | int64_t delta) |
| 1256 | { |
| 1257 | percpu_counter_add(&mp->m_ifree, delta); |
| 1258 | if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { |
| 1259 | ASSERT(0); |
| 1260 | percpu_counter_add(&mp->m_ifree, -delta); |
| 1261 | return -EINVAL; |
| 1262 | } |
| 1263 | return 0; |
| 1264 | } |
| 1265 | |
| 1266 | /* |
| 1267 | * Deltas for the block count can vary from 1 to very large, but lock contention |
| 1268 | * only occurs on frequent small block count updates such as in the delayed |
| 1269 | * allocation path for buffered writes (page a time updates). Hence we set |
| 1270 | * a large batch count (1024) to minimise global counter updates except when |
| 1271 | * we get near to ENOSPC and we have to be very accurate with our updates. |
| 1272 | */ |
| 1273 | #define XFS_FDBLOCKS_BATCH 1024 |
| 1274 | int |
| 1275 | xfs_mod_fdblocks( |
| 1276 | struct xfs_mount *mp, |
| 1277 | int64_t delta, |
| 1278 | bool rsvd) |
| 1279 | { |
| 1280 | int64_t lcounter; |
| 1281 | long long res_used; |
| 1282 | s32 batch; |
| 1283 | |
| 1284 | if (delta > 0) { |
| 1285 | /* |
| 1286 | * If the reserve pool is depleted, put blocks back into it |
| 1287 | * first. Most of the time the pool is full. |
| 1288 | */ |
| 1289 | if (likely(mp->m_resblks == mp->m_resblks_avail)) { |
| 1290 | percpu_counter_add(&mp->m_fdblocks, delta); |
| 1291 | return 0; |
| 1292 | } |
| 1293 | |
| 1294 | spin_lock(&mp->m_sb_lock); |
| 1295 | res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); |
| 1296 | |
| 1297 | if (res_used > delta) { |
| 1298 | mp->m_resblks_avail += delta; |
| 1299 | } else { |
| 1300 | delta -= res_used; |
| 1301 | mp->m_resblks_avail = mp->m_resblks; |
| 1302 | percpu_counter_add(&mp->m_fdblocks, delta); |
| 1303 | } |
| 1304 | spin_unlock(&mp->m_sb_lock); |
| 1305 | return 0; |
| 1306 | } |
| 1307 | |
| 1308 | /* |
| 1309 | * Taking blocks away, need to be more accurate the closer we |
| 1310 | * are to zero. |
| 1311 | * |
| 1312 | * If the counter has a value of less than 2 * max batch size, |
| 1313 | * then make everything serialise as we are real close to |
| 1314 | * ENOSPC. |
| 1315 | */ |
| 1316 | if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, |
| 1317 | XFS_FDBLOCKS_BATCH) < 0) |
| 1318 | batch = 1; |
| 1319 | else |
| 1320 | batch = XFS_FDBLOCKS_BATCH; |
| 1321 | |
| 1322 | percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); |
| 1323 | if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, |
| 1324 | XFS_FDBLOCKS_BATCH) >= 0) { |
| 1325 | /* we had space! */ |
| 1326 | return 0; |
| 1327 | } |
| 1328 | |
| 1329 | /* |
| 1330 | * lock up the sb for dipping into reserves before releasing the space |
| 1331 | * that took us to ENOSPC. |
| 1332 | */ |
| 1333 | spin_lock(&mp->m_sb_lock); |
| 1334 | percpu_counter_add(&mp->m_fdblocks, -delta); |
| 1335 | if (!rsvd) |
| 1336 | goto fdblocks_enospc; |
| 1337 | |
| 1338 | lcounter = (long long)mp->m_resblks_avail + delta; |
| 1339 | if (lcounter >= 0) { |
| 1340 | mp->m_resblks_avail = lcounter; |
| 1341 | spin_unlock(&mp->m_sb_lock); |
| 1342 | return 0; |
| 1343 | } |
| 1344 | printk_once(KERN_WARNING |
| 1345 | "Filesystem \"%s\": reserve blocks depleted! " |
| 1346 | "Consider increasing reserve pool size.", |
| 1347 | mp->m_fsname); |
| 1348 | fdblocks_enospc: |
| 1349 | spin_unlock(&mp->m_sb_lock); |
| 1350 | return -ENOSPC; |
| 1351 | } |
| 1352 | |
| 1353 | int |
| 1354 | xfs_mod_frextents( |
| 1355 | struct xfs_mount *mp, |
| 1356 | int64_t delta) |
| 1357 | { |
| 1358 | int64_t lcounter; |
| 1359 | int ret = 0; |
| 1360 | |
| 1361 | spin_lock(&mp->m_sb_lock); |
| 1362 | lcounter = mp->m_sb.sb_frextents + delta; |
| 1363 | if (lcounter < 0) |
| 1364 | ret = -ENOSPC; |
| 1365 | else |
| 1366 | mp->m_sb.sb_frextents = lcounter; |
| 1367 | spin_unlock(&mp->m_sb_lock); |
| 1368 | return ret; |
| 1369 | } |
| 1370 | |
| 1371 | /* |
| 1372 | * xfs_getsb() is called to obtain the buffer for the superblock. |
| 1373 | * The buffer is returned locked and read in from disk. |
| 1374 | * The buffer should be released with a call to xfs_brelse(). |
| 1375 | * |
| 1376 | * If the flags parameter is BUF_TRYLOCK, then we'll only return |
| 1377 | * the superblock buffer if it can be locked without sleeping. |
| 1378 | * If it can't then we'll return NULL. |
| 1379 | */ |
| 1380 | struct xfs_buf * |
| 1381 | xfs_getsb( |
| 1382 | struct xfs_mount *mp, |
| 1383 | int flags) |
| 1384 | { |
| 1385 | struct xfs_buf *bp = mp->m_sb_bp; |
| 1386 | |
| 1387 | if (!xfs_buf_trylock(bp)) { |
| 1388 | if (flags & XBF_TRYLOCK) |
| 1389 | return NULL; |
| 1390 | xfs_buf_lock(bp); |
| 1391 | } |
| 1392 | |
| 1393 | xfs_buf_hold(bp); |
| 1394 | ASSERT(bp->b_flags & XBF_DONE); |
| 1395 | return bp; |
| 1396 | } |
| 1397 | |
| 1398 | /* |
| 1399 | * Used to free the superblock along various error paths. |
| 1400 | */ |
| 1401 | void |
| 1402 | xfs_freesb( |
| 1403 | struct xfs_mount *mp) |
| 1404 | { |
| 1405 | struct xfs_buf *bp = mp->m_sb_bp; |
| 1406 | |
| 1407 | xfs_buf_lock(bp); |
| 1408 | mp->m_sb_bp = NULL; |
| 1409 | xfs_buf_relse(bp); |
| 1410 | } |
| 1411 | |
| 1412 | /* |
| 1413 | * If the underlying (data/log/rt) device is readonly, there are some |
| 1414 | * operations that cannot proceed. |
| 1415 | */ |
| 1416 | int |
| 1417 | xfs_dev_is_read_only( |
| 1418 | struct xfs_mount *mp, |
| 1419 | char *message) |
| 1420 | { |
| 1421 | if (xfs_readonly_buftarg(mp->m_ddev_targp) || |
| 1422 | xfs_readonly_buftarg(mp->m_logdev_targp) || |
| 1423 | (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { |
| 1424 | xfs_notice(mp, "%s required on read-only device.", message); |
| 1425 | xfs_notice(mp, "write access unavailable, cannot proceed."); |
| 1426 | return -EROFS; |
| 1427 | } |
| 1428 | return 0; |
| 1429 | } |
| 1430 | |
| 1431 | /* Force the summary counters to be recalculated at next mount. */ |
| 1432 | void |
| 1433 | xfs_force_summary_recalc( |
| 1434 | struct xfs_mount *mp) |
| 1435 | { |
| 1436 | if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) |
| 1437 | return; |
| 1438 | |
| 1439 | spin_lock(&mp->m_sb_lock); |
| 1440 | mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; |
| 1441 | spin_unlock(&mp->m_sb_lock); |
| 1442 | } |