Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * fs/dax.c - Direct Access filesystem code |
| 3 | * Copyright (c) 2013-2014 Intel Corporation |
| 4 | * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> |
| 5 | * Author: Ross Zwisler <ross.zwisler@linux.intel.com> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify it |
| 8 | * under the terms and conditions of the GNU General Public License, |
| 9 | * version 2, as published by the Free Software Foundation. |
| 10 | * |
| 11 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 14 | * more details. |
| 15 | */ |
| 16 | |
| 17 | #include <linux/atomic.h> |
| 18 | #include <linux/blkdev.h> |
| 19 | #include <linux/buffer_head.h> |
| 20 | #include <linux/dax.h> |
| 21 | #include <linux/fs.h> |
| 22 | #include <linux/genhd.h> |
| 23 | #include <linux/highmem.h> |
| 24 | #include <linux/memcontrol.h> |
| 25 | #include <linux/mm.h> |
| 26 | #include <linux/mutex.h> |
| 27 | #include <linux/pagevec.h> |
| 28 | #include <linux/sched.h> |
| 29 | #include <linux/sched/signal.h> |
| 30 | #include <linux/uio.h> |
| 31 | #include <linux/vmstat.h> |
| 32 | #include <linux/pfn_t.h> |
| 33 | #include <linux/sizes.h> |
| 34 | #include <linux/mmu_notifier.h> |
| 35 | #include <linux/iomap.h> |
| 36 | #include "internal.h" |
| 37 | |
| 38 | #define CREATE_TRACE_POINTS |
| 39 | #include <trace/events/fs_dax.h> |
| 40 | |
| 41 | /* We choose 4096 entries - same as per-zone page wait tables */ |
| 42 | #define DAX_WAIT_TABLE_BITS 12 |
| 43 | #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) |
| 44 | |
| 45 | /* The 'colour' (ie low bits) within a PMD of a page offset. */ |
| 46 | #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) |
| 47 | #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) |
| 48 | |
| 49 | static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; |
| 50 | |
| 51 | static int __init init_dax_wait_table(void) |
| 52 | { |
| 53 | int i; |
| 54 | |
| 55 | for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) |
| 56 | init_waitqueue_head(wait_table + i); |
| 57 | return 0; |
| 58 | } |
| 59 | fs_initcall(init_dax_wait_table); |
| 60 | |
| 61 | /* |
| 62 | * We use lowest available bit in exceptional entry for locking, one bit for |
| 63 | * the entry size (PMD) and two more to tell us if the entry is a zero page or |
| 64 | * an empty entry that is just used for locking. In total four special bits. |
| 65 | * |
| 66 | * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE |
| 67 | * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem |
| 68 | * block allocation. |
| 69 | */ |
| 70 | #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4) |
| 71 | #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT) |
| 72 | #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1)) |
| 73 | #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2)) |
| 74 | #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)) |
| 75 | |
| 76 | static unsigned long dax_radix_pfn(void *entry) |
| 77 | { |
| 78 | return (unsigned long)entry >> RADIX_DAX_SHIFT; |
| 79 | } |
| 80 | |
| 81 | static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags) |
| 82 | { |
| 83 | return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags | |
| 84 | (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK); |
| 85 | } |
| 86 | |
| 87 | static unsigned int dax_radix_order(void *entry) |
| 88 | { |
| 89 | if ((unsigned long)entry & RADIX_DAX_PMD) |
| 90 | return PMD_SHIFT - PAGE_SHIFT; |
| 91 | return 0; |
| 92 | } |
| 93 | |
| 94 | static int dax_is_pmd_entry(void *entry) |
| 95 | { |
| 96 | return (unsigned long)entry & RADIX_DAX_PMD; |
| 97 | } |
| 98 | |
| 99 | static int dax_is_pte_entry(void *entry) |
| 100 | { |
| 101 | return !((unsigned long)entry & RADIX_DAX_PMD); |
| 102 | } |
| 103 | |
| 104 | static int dax_is_zero_entry(void *entry) |
| 105 | { |
| 106 | return (unsigned long)entry & RADIX_DAX_ZERO_PAGE; |
| 107 | } |
| 108 | |
| 109 | static int dax_is_empty_entry(void *entry) |
| 110 | { |
| 111 | return (unsigned long)entry & RADIX_DAX_EMPTY; |
| 112 | } |
| 113 | |
| 114 | /* |
| 115 | * DAX radix tree locking |
| 116 | */ |
| 117 | struct exceptional_entry_key { |
| 118 | struct address_space *mapping; |
| 119 | pgoff_t entry_start; |
| 120 | }; |
| 121 | |
| 122 | struct wait_exceptional_entry_queue { |
| 123 | wait_queue_entry_t wait; |
| 124 | struct exceptional_entry_key key; |
| 125 | }; |
| 126 | |
| 127 | static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, |
| 128 | pgoff_t index, void *entry, struct exceptional_entry_key *key) |
| 129 | { |
| 130 | unsigned long hash; |
| 131 | |
| 132 | /* |
| 133 | * If 'entry' is a PMD, align the 'index' that we use for the wait |
| 134 | * queue to the start of that PMD. This ensures that all offsets in |
| 135 | * the range covered by the PMD map to the same bit lock. |
| 136 | */ |
| 137 | if (dax_is_pmd_entry(entry)) |
| 138 | index &= ~PG_PMD_COLOUR; |
| 139 | |
| 140 | key->mapping = mapping; |
| 141 | key->entry_start = index; |
| 142 | |
| 143 | hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); |
| 144 | return wait_table + hash; |
| 145 | } |
| 146 | |
| 147 | static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode, |
| 148 | int sync, void *keyp) |
| 149 | { |
| 150 | struct exceptional_entry_key *key = keyp; |
| 151 | struct wait_exceptional_entry_queue *ewait = |
| 152 | container_of(wait, struct wait_exceptional_entry_queue, wait); |
| 153 | |
| 154 | if (key->mapping != ewait->key.mapping || |
| 155 | key->entry_start != ewait->key.entry_start) |
| 156 | return 0; |
| 157 | return autoremove_wake_function(wait, mode, sync, NULL); |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * @entry may no longer be the entry at the index in the mapping. |
| 162 | * The important information it's conveying is whether the entry at |
| 163 | * this index used to be a PMD entry. |
| 164 | */ |
| 165 | static void dax_wake_mapping_entry_waiter(struct address_space *mapping, |
| 166 | pgoff_t index, void *entry, bool wake_all) |
| 167 | { |
| 168 | struct exceptional_entry_key key; |
| 169 | wait_queue_head_t *wq; |
| 170 | |
| 171 | wq = dax_entry_waitqueue(mapping, index, entry, &key); |
| 172 | |
| 173 | /* |
| 174 | * Checking for locked entry and prepare_to_wait_exclusive() happens |
| 175 | * under the i_pages lock, ditto for entry handling in our callers. |
| 176 | * So at this point all tasks that could have seen our entry locked |
| 177 | * must be in the waitqueue and the following check will see them. |
| 178 | */ |
| 179 | if (waitqueue_active(wq)) |
| 180 | __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * Check whether the given slot is locked. Must be called with the i_pages |
| 185 | * lock held. |
| 186 | */ |
| 187 | static inline int slot_locked(struct address_space *mapping, void **slot) |
| 188 | { |
| 189 | unsigned long entry = (unsigned long) |
| 190 | radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock); |
| 191 | return entry & RADIX_DAX_ENTRY_LOCK; |
| 192 | } |
| 193 | |
| 194 | /* |
| 195 | * Mark the given slot as locked. Must be called with the i_pages lock held. |
| 196 | */ |
| 197 | static inline void *lock_slot(struct address_space *mapping, void **slot) |
| 198 | { |
| 199 | unsigned long entry = (unsigned long) |
| 200 | radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock); |
| 201 | |
| 202 | entry |= RADIX_DAX_ENTRY_LOCK; |
| 203 | radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry); |
| 204 | return (void *)entry; |
| 205 | } |
| 206 | |
| 207 | /* |
| 208 | * Mark the given slot as unlocked. Must be called with the i_pages lock held. |
| 209 | */ |
| 210 | static inline void *unlock_slot(struct address_space *mapping, void **slot) |
| 211 | { |
| 212 | unsigned long entry = (unsigned long) |
| 213 | radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock); |
| 214 | |
| 215 | entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; |
| 216 | radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry); |
| 217 | return (void *)entry; |
| 218 | } |
| 219 | |
| 220 | static void put_unlocked_mapping_entry(struct address_space *mapping, |
| 221 | pgoff_t index, void *entry); |
| 222 | |
| 223 | /* |
| 224 | * Lookup entry in radix tree, wait for it to become unlocked if it is |
| 225 | * exceptional entry and return it. The caller must call |
| 226 | * put_unlocked_mapping_entry() when he decided not to lock the entry or |
| 227 | * put_locked_mapping_entry() when he locked the entry and now wants to |
| 228 | * unlock it. |
| 229 | * |
| 230 | * Must be called with the i_pages lock held. |
| 231 | */ |
| 232 | static void *__get_unlocked_mapping_entry(struct address_space *mapping, |
| 233 | pgoff_t index, void ***slotp, bool (*wait_fn)(void)) |
| 234 | { |
| 235 | void *entry, **slot; |
| 236 | struct wait_exceptional_entry_queue ewait; |
| 237 | wait_queue_head_t *wq; |
| 238 | |
| 239 | init_wait(&ewait.wait); |
| 240 | ewait.wait.func = wake_exceptional_entry_func; |
| 241 | |
| 242 | for (;;) { |
| 243 | bool revalidate; |
| 244 | |
| 245 | entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, |
| 246 | &slot); |
| 247 | if (!entry || |
| 248 | WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) || |
| 249 | !slot_locked(mapping, slot)) { |
| 250 | if (slotp) |
| 251 | *slotp = slot; |
| 252 | return entry; |
| 253 | } |
| 254 | |
| 255 | wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key); |
| 256 | prepare_to_wait_exclusive(wq, &ewait.wait, |
| 257 | TASK_UNINTERRUPTIBLE); |
| 258 | xa_unlock_irq(&mapping->i_pages); |
| 259 | revalidate = wait_fn(); |
| 260 | finish_wait(wq, &ewait.wait); |
| 261 | xa_lock_irq(&mapping->i_pages); |
| 262 | if (revalidate) { |
| 263 | put_unlocked_mapping_entry(mapping, index, entry); |
| 264 | return ERR_PTR(-EAGAIN); |
| 265 | } |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | static bool entry_wait(void) |
| 270 | { |
| 271 | schedule(); |
| 272 | /* |
| 273 | * Never return an ERR_PTR() from |
| 274 | * __get_unlocked_mapping_entry(), just keep looping. |
| 275 | */ |
| 276 | return false; |
| 277 | } |
| 278 | |
| 279 | static void *get_unlocked_mapping_entry(struct address_space *mapping, |
| 280 | pgoff_t index, void ***slotp) |
| 281 | { |
| 282 | return __get_unlocked_mapping_entry(mapping, index, slotp, entry_wait); |
| 283 | } |
| 284 | |
| 285 | static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index) |
| 286 | { |
| 287 | void *entry, **slot; |
| 288 | |
| 289 | xa_lock_irq(&mapping->i_pages); |
| 290 | entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot); |
| 291 | if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) || |
| 292 | !slot_locked(mapping, slot))) { |
| 293 | xa_unlock_irq(&mapping->i_pages); |
| 294 | return; |
| 295 | } |
| 296 | unlock_slot(mapping, slot); |
| 297 | xa_unlock_irq(&mapping->i_pages); |
| 298 | dax_wake_mapping_entry_waiter(mapping, index, entry, false); |
| 299 | } |
| 300 | |
| 301 | static void put_locked_mapping_entry(struct address_space *mapping, |
| 302 | pgoff_t index) |
| 303 | { |
| 304 | unlock_mapping_entry(mapping, index); |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * Called when we are done with radix tree entry we looked up via |
| 309 | * get_unlocked_mapping_entry() and which we didn't lock in the end. |
| 310 | */ |
| 311 | static void put_unlocked_mapping_entry(struct address_space *mapping, |
| 312 | pgoff_t index, void *entry) |
| 313 | { |
| 314 | if (!entry) |
| 315 | return; |
| 316 | |
| 317 | /* We have to wake up next waiter for the radix tree entry lock */ |
| 318 | dax_wake_mapping_entry_waiter(mapping, index, entry, false); |
| 319 | } |
| 320 | |
| 321 | static unsigned long dax_entry_size(void *entry) |
| 322 | { |
| 323 | if (dax_is_zero_entry(entry)) |
| 324 | return 0; |
| 325 | else if (dax_is_empty_entry(entry)) |
| 326 | return 0; |
| 327 | else if (dax_is_pmd_entry(entry)) |
| 328 | return PMD_SIZE; |
| 329 | else |
| 330 | return PAGE_SIZE; |
| 331 | } |
| 332 | |
| 333 | static unsigned long dax_radix_end_pfn(void *entry) |
| 334 | { |
| 335 | return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; |
| 336 | } |
| 337 | |
| 338 | /* |
| 339 | * Iterate through all mapped pfns represented by an entry, i.e. skip |
| 340 | * 'empty' and 'zero' entries. |
| 341 | */ |
| 342 | #define for_each_mapped_pfn(entry, pfn) \ |
| 343 | for (pfn = dax_radix_pfn(entry); \ |
| 344 | pfn < dax_radix_end_pfn(entry); pfn++) |
| 345 | |
| 346 | /* |
| 347 | * TODO: for reflink+dax we need a way to associate a single page with |
| 348 | * multiple address_space instances at different linear_page_index() |
| 349 | * offsets. |
| 350 | */ |
| 351 | static void dax_associate_entry(void *entry, struct address_space *mapping, |
| 352 | struct vm_area_struct *vma, unsigned long address) |
| 353 | { |
| 354 | unsigned long size = dax_entry_size(entry), pfn, index; |
| 355 | int i = 0; |
| 356 | |
| 357 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) |
| 358 | return; |
| 359 | |
| 360 | index = linear_page_index(vma, address & ~(size - 1)); |
| 361 | for_each_mapped_pfn(entry, pfn) { |
| 362 | struct page *page = pfn_to_page(pfn); |
| 363 | |
| 364 | WARN_ON_ONCE(page->mapping); |
| 365 | page->mapping = mapping; |
| 366 | page->index = index + i++; |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | static void dax_disassociate_entry(void *entry, struct address_space *mapping, |
| 371 | bool trunc) |
| 372 | { |
| 373 | unsigned long pfn; |
| 374 | |
| 375 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) |
| 376 | return; |
| 377 | |
| 378 | for_each_mapped_pfn(entry, pfn) { |
| 379 | struct page *page = pfn_to_page(pfn); |
| 380 | |
| 381 | WARN_ON_ONCE(trunc && page_ref_count(page) > 1); |
| 382 | WARN_ON_ONCE(page->mapping && page->mapping != mapping); |
| 383 | page->mapping = NULL; |
| 384 | page->index = 0; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | static struct page *dax_busy_page(void *entry) |
| 389 | { |
| 390 | unsigned long pfn; |
| 391 | |
| 392 | for_each_mapped_pfn(entry, pfn) { |
| 393 | struct page *page = pfn_to_page(pfn); |
| 394 | |
| 395 | if (page_ref_count(page) > 1) |
| 396 | return page; |
| 397 | } |
| 398 | return NULL; |
| 399 | } |
| 400 | |
| 401 | static bool entry_wait_revalidate(void) |
| 402 | { |
| 403 | rcu_read_unlock(); |
| 404 | schedule(); |
| 405 | rcu_read_lock(); |
| 406 | |
| 407 | /* |
| 408 | * Tell __get_unlocked_mapping_entry() to take a break, we need |
| 409 | * to revalidate page->mapping after dropping locks |
| 410 | */ |
| 411 | return true; |
| 412 | } |
| 413 | |
| 414 | bool dax_lock_mapping_entry(struct page *page) |
| 415 | { |
| 416 | pgoff_t index; |
| 417 | struct inode *inode; |
| 418 | bool did_lock = false; |
| 419 | void *entry = NULL, **slot; |
| 420 | struct address_space *mapping; |
| 421 | |
| 422 | rcu_read_lock(); |
| 423 | for (;;) { |
| 424 | mapping = READ_ONCE(page->mapping); |
| 425 | |
| 426 | if (!mapping || !dax_mapping(mapping)) |
| 427 | break; |
| 428 | |
| 429 | /* |
| 430 | * In the device-dax case there's no need to lock, a |
| 431 | * struct dev_pagemap pin is sufficient to keep the |
| 432 | * inode alive, and we assume we have dev_pagemap pin |
| 433 | * otherwise we would not have a valid pfn_to_page() |
| 434 | * translation. |
| 435 | */ |
| 436 | inode = mapping->host; |
| 437 | if (S_ISCHR(inode->i_mode)) { |
| 438 | did_lock = true; |
| 439 | break; |
| 440 | } |
| 441 | |
| 442 | xa_lock_irq(&mapping->i_pages); |
| 443 | if (mapping != page->mapping) { |
| 444 | xa_unlock_irq(&mapping->i_pages); |
| 445 | continue; |
| 446 | } |
| 447 | index = page->index; |
| 448 | |
| 449 | entry = __get_unlocked_mapping_entry(mapping, index, &slot, |
| 450 | entry_wait_revalidate); |
| 451 | if (!entry) { |
| 452 | xa_unlock_irq(&mapping->i_pages); |
| 453 | break; |
| 454 | } else if (IS_ERR(entry)) { |
| 455 | xa_unlock_irq(&mapping->i_pages); |
| 456 | WARN_ON_ONCE(PTR_ERR(entry) != -EAGAIN); |
| 457 | continue; |
| 458 | } |
| 459 | lock_slot(mapping, slot); |
| 460 | did_lock = true; |
| 461 | xa_unlock_irq(&mapping->i_pages); |
| 462 | break; |
| 463 | } |
| 464 | rcu_read_unlock(); |
| 465 | |
| 466 | return did_lock; |
| 467 | } |
| 468 | |
| 469 | void dax_unlock_mapping_entry(struct page *page) |
| 470 | { |
| 471 | struct address_space *mapping = page->mapping; |
| 472 | struct inode *inode = mapping->host; |
| 473 | |
| 474 | if (S_ISCHR(inode->i_mode)) |
| 475 | return; |
| 476 | |
| 477 | unlock_mapping_entry(mapping, page->index); |
| 478 | } |
| 479 | |
| 480 | /* |
| 481 | * Find radix tree entry at given index. If it points to an exceptional entry, |
| 482 | * return it with the radix tree entry locked. If the radix tree doesn't |
| 483 | * contain given index, create an empty exceptional entry for the index and |
| 484 | * return with it locked. |
| 485 | * |
| 486 | * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will |
| 487 | * either return that locked entry or will return an error. This error will |
| 488 | * happen if there are any 4k entries within the 2MiB range that we are |
| 489 | * requesting. |
| 490 | * |
| 491 | * We always favor 4k entries over 2MiB entries. There isn't a flow where we |
| 492 | * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB |
| 493 | * insertion will fail if it finds any 4k entries already in the tree, and a |
| 494 | * 4k insertion will cause an existing 2MiB entry to be unmapped and |
| 495 | * downgraded to 4k entries. This happens for both 2MiB huge zero pages as |
| 496 | * well as 2MiB empty entries. |
| 497 | * |
| 498 | * The exception to this downgrade path is for 2MiB DAX PMD entries that have |
| 499 | * real storage backing them. We will leave these real 2MiB DAX entries in |
| 500 | * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry. |
| 501 | * |
| 502 | * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For |
| 503 | * persistent memory the benefit is doubtful. We can add that later if we can |
| 504 | * show it helps. |
| 505 | */ |
| 506 | static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index, |
| 507 | unsigned long size_flag) |
| 508 | { |
| 509 | bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */ |
| 510 | void *entry, **slot; |
| 511 | |
| 512 | restart: |
| 513 | xa_lock_irq(&mapping->i_pages); |
| 514 | entry = get_unlocked_mapping_entry(mapping, index, &slot); |
| 515 | |
| 516 | if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) { |
| 517 | entry = ERR_PTR(-EIO); |
| 518 | goto out_unlock; |
| 519 | } |
| 520 | |
| 521 | if (entry) { |
| 522 | if (size_flag & RADIX_DAX_PMD) { |
| 523 | if (dax_is_pte_entry(entry)) { |
| 524 | put_unlocked_mapping_entry(mapping, index, |
| 525 | entry); |
| 526 | entry = ERR_PTR(-EEXIST); |
| 527 | goto out_unlock; |
| 528 | } |
| 529 | } else { /* trying to grab a PTE entry */ |
| 530 | if (dax_is_pmd_entry(entry) && |
| 531 | (dax_is_zero_entry(entry) || |
| 532 | dax_is_empty_entry(entry))) { |
| 533 | pmd_downgrade = true; |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | /* No entry for given index? Make sure radix tree is big enough. */ |
| 539 | if (!entry || pmd_downgrade) { |
| 540 | int err; |
| 541 | |
| 542 | if (pmd_downgrade) { |
| 543 | /* |
| 544 | * Make sure 'entry' remains valid while we drop |
| 545 | * the i_pages lock. |
| 546 | */ |
| 547 | entry = lock_slot(mapping, slot); |
| 548 | } |
| 549 | |
| 550 | xa_unlock_irq(&mapping->i_pages); |
| 551 | /* |
| 552 | * Besides huge zero pages the only other thing that gets |
| 553 | * downgraded are empty entries which don't need to be |
| 554 | * unmapped. |
| 555 | */ |
| 556 | if (pmd_downgrade && dax_is_zero_entry(entry)) |
| 557 | unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, |
| 558 | PG_PMD_NR, false); |
| 559 | |
| 560 | err = radix_tree_preload( |
| 561 | mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); |
| 562 | if (err) { |
| 563 | if (pmd_downgrade) |
| 564 | put_locked_mapping_entry(mapping, index); |
| 565 | return ERR_PTR(err); |
| 566 | } |
| 567 | xa_lock_irq(&mapping->i_pages); |
| 568 | |
| 569 | if (!entry) { |
| 570 | /* |
| 571 | * We needed to drop the i_pages lock while calling |
| 572 | * radix_tree_preload() and we didn't have an entry to |
| 573 | * lock. See if another thread inserted an entry at |
| 574 | * our index during this time. |
| 575 | */ |
| 576 | entry = __radix_tree_lookup(&mapping->i_pages, index, |
| 577 | NULL, &slot); |
| 578 | if (entry) { |
| 579 | radix_tree_preload_end(); |
| 580 | xa_unlock_irq(&mapping->i_pages); |
| 581 | goto restart; |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | if (pmd_downgrade) { |
| 586 | dax_disassociate_entry(entry, mapping, false); |
| 587 | radix_tree_delete(&mapping->i_pages, index); |
| 588 | mapping->nrexceptional--; |
| 589 | dax_wake_mapping_entry_waiter(mapping, index, entry, |
| 590 | true); |
| 591 | } |
| 592 | |
| 593 | entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY); |
| 594 | |
| 595 | err = __radix_tree_insert(&mapping->i_pages, index, |
| 596 | dax_radix_order(entry), entry); |
| 597 | radix_tree_preload_end(); |
| 598 | if (err) { |
| 599 | xa_unlock_irq(&mapping->i_pages); |
| 600 | /* |
| 601 | * Our insertion of a DAX entry failed, most likely |
| 602 | * because we were inserting a PMD entry and it |
| 603 | * collided with a PTE sized entry at a different |
| 604 | * index in the PMD range. We haven't inserted |
| 605 | * anything into the radix tree and have no waiters to |
| 606 | * wake. |
| 607 | */ |
| 608 | return ERR_PTR(err); |
| 609 | } |
| 610 | /* Good, we have inserted empty locked entry into the tree. */ |
| 611 | mapping->nrexceptional++; |
| 612 | xa_unlock_irq(&mapping->i_pages); |
| 613 | return entry; |
| 614 | } |
| 615 | entry = lock_slot(mapping, slot); |
| 616 | out_unlock: |
| 617 | xa_unlock_irq(&mapping->i_pages); |
| 618 | return entry; |
| 619 | } |
| 620 | |
| 621 | /** |
| 622 | * dax_layout_busy_page - find first pinned page in @mapping |
| 623 | * @mapping: address space to scan for a page with ref count > 1 |
| 624 | * |
| 625 | * DAX requires ZONE_DEVICE mapped pages. These pages are never |
| 626 | * 'onlined' to the page allocator so they are considered idle when |
| 627 | * page->count == 1. A filesystem uses this interface to determine if |
| 628 | * any page in the mapping is busy, i.e. for DMA, or other |
| 629 | * get_user_pages() usages. |
| 630 | * |
| 631 | * It is expected that the filesystem is holding locks to block the |
| 632 | * establishment of new mappings in this address_space. I.e. it expects |
| 633 | * to be able to run unmap_mapping_range() and subsequently not race |
| 634 | * mapping_mapped() becoming true. |
| 635 | */ |
| 636 | struct page *dax_layout_busy_page(struct address_space *mapping) |
| 637 | { |
| 638 | pgoff_t indices[PAGEVEC_SIZE]; |
| 639 | struct page *page = NULL; |
| 640 | struct pagevec pvec; |
| 641 | pgoff_t index, end; |
| 642 | unsigned i; |
| 643 | |
| 644 | /* |
| 645 | * In the 'limited' case get_user_pages() for dax is disabled. |
| 646 | */ |
| 647 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) |
| 648 | return NULL; |
| 649 | |
| 650 | if (!dax_mapping(mapping) || !mapping_mapped(mapping)) |
| 651 | return NULL; |
| 652 | |
| 653 | pagevec_init(&pvec); |
| 654 | index = 0; |
| 655 | end = -1; |
| 656 | |
| 657 | /* |
| 658 | * If we race get_user_pages_fast() here either we'll see the |
| 659 | * elevated page count in the pagevec_lookup and wait, or |
| 660 | * get_user_pages_fast() will see that the page it took a reference |
| 661 | * against is no longer mapped in the page tables and bail to the |
| 662 | * get_user_pages() slow path. The slow path is protected by |
| 663 | * pte_lock() and pmd_lock(). New references are not taken without |
| 664 | * holding those locks, and unmap_mapping_range() will not zero the |
| 665 | * pte or pmd without holding the respective lock, so we are |
| 666 | * guaranteed to either see new references or prevent new |
| 667 | * references from being established. |
| 668 | */ |
| 669 | unmap_mapping_range(mapping, 0, 0, 1); |
| 670 | |
| 671 | while (index < end && pagevec_lookup_entries(&pvec, mapping, index, |
| 672 | min(end - index, (pgoff_t)PAGEVEC_SIZE), |
| 673 | indices)) { |
| 674 | pgoff_t nr_pages = 1; |
| 675 | |
| 676 | for (i = 0; i < pagevec_count(&pvec); i++) { |
| 677 | struct page *pvec_ent = pvec.pages[i]; |
| 678 | void *entry; |
| 679 | |
| 680 | index = indices[i]; |
| 681 | if (index >= end) |
| 682 | break; |
| 683 | |
| 684 | if (WARN_ON_ONCE( |
| 685 | !radix_tree_exceptional_entry(pvec_ent))) |
| 686 | continue; |
| 687 | |
| 688 | xa_lock_irq(&mapping->i_pages); |
| 689 | entry = get_unlocked_mapping_entry(mapping, index, NULL); |
| 690 | if (entry) { |
| 691 | page = dax_busy_page(entry); |
| 692 | /* |
| 693 | * Account for multi-order entries at |
| 694 | * the end of the pagevec. |
| 695 | */ |
| 696 | if (i + 1 >= pagevec_count(&pvec)) |
| 697 | nr_pages = 1UL << dax_radix_order(entry); |
| 698 | } |
| 699 | put_unlocked_mapping_entry(mapping, index, entry); |
| 700 | xa_unlock_irq(&mapping->i_pages); |
| 701 | if (page) |
| 702 | break; |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * We don't expect normal struct page entries to exist in our |
| 707 | * tree, but we keep these pagevec calls so that this code is |
| 708 | * consistent with the common pattern for handling pagevecs |
| 709 | * throughout the kernel. |
| 710 | */ |
| 711 | pagevec_remove_exceptionals(&pvec); |
| 712 | pagevec_release(&pvec); |
| 713 | index += nr_pages; |
| 714 | |
| 715 | if (page) |
| 716 | break; |
| 717 | } |
| 718 | return page; |
| 719 | } |
| 720 | EXPORT_SYMBOL_GPL(dax_layout_busy_page); |
| 721 | |
| 722 | static int __dax_invalidate_mapping_entry(struct address_space *mapping, |
| 723 | pgoff_t index, bool trunc) |
| 724 | { |
| 725 | int ret = 0; |
| 726 | void *entry; |
| 727 | struct radix_tree_root *pages = &mapping->i_pages; |
| 728 | |
| 729 | xa_lock_irq(pages); |
| 730 | entry = get_unlocked_mapping_entry(mapping, index, NULL); |
| 731 | if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry))) |
| 732 | goto out; |
| 733 | if (!trunc && |
| 734 | (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) || |
| 735 | radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))) |
| 736 | goto out; |
| 737 | dax_disassociate_entry(entry, mapping, trunc); |
| 738 | radix_tree_delete(pages, index); |
| 739 | mapping->nrexceptional--; |
| 740 | ret = 1; |
| 741 | out: |
| 742 | put_unlocked_mapping_entry(mapping, index, entry); |
| 743 | xa_unlock_irq(pages); |
| 744 | return ret; |
| 745 | } |
| 746 | /* |
| 747 | * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree |
| 748 | * entry to get unlocked before deleting it. |
| 749 | */ |
| 750 | int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) |
| 751 | { |
| 752 | int ret = __dax_invalidate_mapping_entry(mapping, index, true); |
| 753 | |
| 754 | /* |
| 755 | * This gets called from truncate / punch_hole path. As such, the caller |
| 756 | * must hold locks protecting against concurrent modifications of the |
| 757 | * radix tree (usually fs-private i_mmap_sem for writing). Since the |
| 758 | * caller has seen exceptional entry for this index, we better find it |
| 759 | * at that index as well... |
| 760 | */ |
| 761 | WARN_ON_ONCE(!ret); |
| 762 | return ret; |
| 763 | } |
| 764 | |
| 765 | /* |
| 766 | * Invalidate exceptional DAX entry if it is clean. |
| 767 | */ |
| 768 | int dax_invalidate_mapping_entry_sync(struct address_space *mapping, |
| 769 | pgoff_t index) |
| 770 | { |
| 771 | return __dax_invalidate_mapping_entry(mapping, index, false); |
| 772 | } |
| 773 | |
| 774 | static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev, |
| 775 | sector_t sector, size_t size, struct page *to, |
| 776 | unsigned long vaddr) |
| 777 | { |
| 778 | void *vto, *kaddr; |
| 779 | pgoff_t pgoff; |
| 780 | long rc; |
| 781 | int id; |
| 782 | |
| 783 | rc = bdev_dax_pgoff(bdev, sector, size, &pgoff); |
| 784 | if (rc) |
| 785 | return rc; |
| 786 | |
| 787 | id = dax_read_lock(); |
| 788 | rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL); |
| 789 | if (rc < 0) { |
| 790 | dax_read_unlock(id); |
| 791 | return rc; |
| 792 | } |
| 793 | vto = kmap_atomic(to); |
| 794 | copy_user_page(vto, (void __force *)kaddr, vaddr, to); |
| 795 | kunmap_atomic(vto); |
| 796 | dax_read_unlock(id); |
| 797 | return 0; |
| 798 | } |
| 799 | |
| 800 | /* |
| 801 | * By this point grab_mapping_entry() has ensured that we have a locked entry |
| 802 | * of the appropriate size so we don't have to worry about downgrading PMDs to |
| 803 | * PTEs. If we happen to be trying to insert a PTE and there is a PMD |
| 804 | * already in the tree, we will skip the insertion and just dirty the PMD as |
| 805 | * appropriate. |
| 806 | */ |
| 807 | static void *dax_insert_mapping_entry(struct address_space *mapping, |
| 808 | struct vm_fault *vmf, |
| 809 | void *entry, pfn_t pfn_t, |
| 810 | unsigned long flags, bool dirty) |
| 811 | { |
| 812 | struct radix_tree_root *pages = &mapping->i_pages; |
| 813 | unsigned long pfn = pfn_t_to_pfn(pfn_t); |
| 814 | pgoff_t index = vmf->pgoff; |
| 815 | void *new_entry; |
| 816 | |
| 817 | if (dirty) |
| 818 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
| 819 | |
| 820 | if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) { |
| 821 | /* we are replacing a zero page with block mapping */ |
| 822 | if (dax_is_pmd_entry(entry)) |
| 823 | unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, |
| 824 | PG_PMD_NR, false); |
| 825 | else /* pte entry */ |
| 826 | unmap_mapping_pages(mapping, vmf->pgoff, 1, false); |
| 827 | } |
| 828 | |
| 829 | xa_lock_irq(pages); |
| 830 | new_entry = dax_radix_locked_entry(pfn, flags); |
| 831 | if (dax_entry_size(entry) != dax_entry_size(new_entry)) { |
| 832 | dax_disassociate_entry(entry, mapping, false); |
| 833 | dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); |
| 834 | } |
| 835 | |
| 836 | if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { |
| 837 | /* |
| 838 | * Only swap our new entry into the radix tree if the current |
| 839 | * entry is a zero page or an empty entry. If a normal PTE or |
| 840 | * PMD entry is already in the tree, we leave it alone. This |
| 841 | * means that if we are trying to insert a PTE and the |
| 842 | * existing entry is a PMD, we will just leave the PMD in the |
| 843 | * tree and dirty it if necessary. |
| 844 | */ |
| 845 | struct radix_tree_node *node; |
| 846 | void **slot; |
| 847 | void *ret; |
| 848 | |
| 849 | ret = __radix_tree_lookup(pages, index, &node, &slot); |
| 850 | WARN_ON_ONCE(ret != entry); |
| 851 | __radix_tree_replace(pages, node, slot, |
| 852 | new_entry, NULL); |
| 853 | entry = new_entry; |
| 854 | } |
| 855 | |
| 856 | if (dirty) |
| 857 | radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY); |
| 858 | |
| 859 | xa_unlock_irq(pages); |
| 860 | return entry; |
| 861 | } |
| 862 | |
| 863 | static inline unsigned long |
| 864 | pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) |
| 865 | { |
| 866 | unsigned long address; |
| 867 | |
| 868 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
| 869 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
| 870 | return address; |
| 871 | } |
| 872 | |
| 873 | /* Walk all mappings of a given index of a file and writeprotect them */ |
| 874 | static void dax_mapping_entry_mkclean(struct address_space *mapping, |
| 875 | pgoff_t index, unsigned long pfn) |
| 876 | { |
| 877 | struct vm_area_struct *vma; |
| 878 | pte_t pte, *ptep = NULL; |
| 879 | pmd_t *pmdp = NULL; |
| 880 | spinlock_t *ptl; |
| 881 | |
| 882 | i_mmap_lock_read(mapping); |
| 883 | vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { |
| 884 | unsigned long address, start, end; |
| 885 | |
| 886 | cond_resched(); |
| 887 | |
| 888 | if (!(vma->vm_flags & VM_SHARED)) |
| 889 | continue; |
| 890 | |
| 891 | address = pgoff_address(index, vma); |
| 892 | |
| 893 | /* |
| 894 | * Note because we provide start/end to follow_pte_pmd it will |
| 895 | * call mmu_notifier_invalidate_range_start() on our behalf |
| 896 | * before taking any lock. |
| 897 | */ |
| 898 | if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl)) |
| 899 | continue; |
| 900 | |
| 901 | /* |
| 902 | * No need to call mmu_notifier_invalidate_range() as we are |
| 903 | * downgrading page table protection not changing it to point |
| 904 | * to a new page. |
| 905 | * |
| 906 | * See Documentation/vm/mmu_notifier.rst |
| 907 | */ |
| 908 | if (pmdp) { |
| 909 | #ifdef CONFIG_FS_DAX_PMD |
| 910 | pmd_t pmd; |
| 911 | |
| 912 | if (pfn != pmd_pfn(*pmdp)) |
| 913 | goto unlock_pmd; |
| 914 | if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) |
| 915 | goto unlock_pmd; |
| 916 | |
| 917 | flush_cache_page(vma, address, pfn); |
| 918 | pmd = pmdp_huge_clear_flush(vma, address, pmdp); |
| 919 | pmd = pmd_wrprotect(pmd); |
| 920 | pmd = pmd_mkclean(pmd); |
| 921 | set_pmd_at(vma->vm_mm, address, pmdp, pmd); |
| 922 | unlock_pmd: |
| 923 | #endif |
| 924 | spin_unlock(ptl); |
| 925 | } else { |
| 926 | if (pfn != pte_pfn(*ptep)) |
| 927 | goto unlock_pte; |
| 928 | if (!pte_dirty(*ptep) && !pte_write(*ptep)) |
| 929 | goto unlock_pte; |
| 930 | |
| 931 | flush_cache_page(vma, address, pfn); |
| 932 | pte = ptep_clear_flush(vma, address, ptep); |
| 933 | pte = pte_wrprotect(pte); |
| 934 | pte = pte_mkclean(pte); |
| 935 | set_pte_at(vma->vm_mm, address, ptep, pte); |
| 936 | unlock_pte: |
| 937 | pte_unmap_unlock(ptep, ptl); |
| 938 | } |
| 939 | |
| 940 | mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); |
| 941 | } |
| 942 | i_mmap_unlock_read(mapping); |
| 943 | } |
| 944 | |
| 945 | static int dax_writeback_one(struct dax_device *dax_dev, |
| 946 | struct address_space *mapping, pgoff_t index, void *entry) |
| 947 | { |
| 948 | struct radix_tree_root *pages = &mapping->i_pages; |
| 949 | void *entry2, **slot; |
| 950 | unsigned long pfn; |
| 951 | long ret = 0; |
| 952 | size_t size; |
| 953 | |
| 954 | /* |
| 955 | * A page got tagged dirty in DAX mapping? Something is seriously |
| 956 | * wrong. |
| 957 | */ |
| 958 | if (WARN_ON(!radix_tree_exceptional_entry(entry))) |
| 959 | return -EIO; |
| 960 | |
| 961 | xa_lock_irq(pages); |
| 962 | entry2 = get_unlocked_mapping_entry(mapping, index, &slot); |
| 963 | /* Entry got punched out / reallocated? */ |
| 964 | if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2))) |
| 965 | goto put_unlocked; |
| 966 | /* |
| 967 | * Entry got reallocated elsewhere? No need to writeback. We have to |
| 968 | * compare pfns as we must not bail out due to difference in lockbit |
| 969 | * or entry type. |
| 970 | */ |
| 971 | if (dax_radix_pfn(entry2) != dax_radix_pfn(entry)) |
| 972 | goto put_unlocked; |
| 973 | if (WARN_ON_ONCE(dax_is_empty_entry(entry) || |
| 974 | dax_is_zero_entry(entry))) { |
| 975 | ret = -EIO; |
| 976 | goto put_unlocked; |
| 977 | } |
| 978 | |
| 979 | /* Another fsync thread may have already written back this entry */ |
| 980 | if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)) |
| 981 | goto put_unlocked; |
| 982 | /* Lock the entry to serialize with page faults */ |
| 983 | entry = lock_slot(mapping, slot); |
| 984 | /* |
| 985 | * We can clear the tag now but we have to be careful so that concurrent |
| 986 | * dax_writeback_one() calls for the same index cannot finish before we |
| 987 | * actually flush the caches. This is achieved as the calls will look |
| 988 | * at the entry only under the i_pages lock and once they do that |
| 989 | * they will see the entry locked and wait for it to unlock. |
| 990 | */ |
| 991 | radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE); |
| 992 | xa_unlock_irq(pages); |
| 993 | |
| 994 | /* |
| 995 | * Even if dax_writeback_mapping_range() was given a wbc->range_start |
| 996 | * in the middle of a PMD, the 'index' we are given will be aligned to |
| 997 | * the start index of the PMD, as will the pfn we pull from 'entry'. |
| 998 | * This allows us to flush for PMD_SIZE and not have to worry about |
| 999 | * partial PMD writebacks. |
| 1000 | */ |
| 1001 | pfn = dax_radix_pfn(entry); |
| 1002 | size = PAGE_SIZE << dax_radix_order(entry); |
| 1003 | |
| 1004 | dax_mapping_entry_mkclean(mapping, index, pfn); |
| 1005 | dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size); |
| 1006 | /* |
| 1007 | * After we have flushed the cache, we can clear the dirty tag. There |
| 1008 | * cannot be new dirty data in the pfn after the flush has completed as |
| 1009 | * the pfn mappings are writeprotected and fault waits for mapping |
| 1010 | * entry lock. |
| 1011 | */ |
| 1012 | xa_lock_irq(pages); |
| 1013 | radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY); |
| 1014 | xa_unlock_irq(pages); |
| 1015 | trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT); |
| 1016 | put_locked_mapping_entry(mapping, index); |
| 1017 | return ret; |
| 1018 | |
| 1019 | put_unlocked: |
| 1020 | put_unlocked_mapping_entry(mapping, index, entry2); |
| 1021 | xa_unlock_irq(pages); |
| 1022 | return ret; |
| 1023 | } |
| 1024 | |
| 1025 | /* |
| 1026 | * Flush the mapping to the persistent domain within the byte range of [start, |
| 1027 | * end]. This is required by data integrity operations to ensure file data is |
| 1028 | * on persistent storage prior to completion of the operation. |
| 1029 | */ |
| 1030 | int dax_writeback_mapping_range(struct address_space *mapping, |
| 1031 | struct block_device *bdev, struct writeback_control *wbc) |
| 1032 | { |
| 1033 | struct inode *inode = mapping->host; |
| 1034 | pgoff_t start_index, end_index; |
| 1035 | pgoff_t indices[PAGEVEC_SIZE]; |
| 1036 | struct dax_device *dax_dev; |
| 1037 | struct pagevec pvec; |
| 1038 | bool done = false; |
| 1039 | int i, ret = 0; |
| 1040 | |
| 1041 | if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) |
| 1042 | return -EIO; |
| 1043 | |
| 1044 | if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) |
| 1045 | return 0; |
| 1046 | |
| 1047 | dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); |
| 1048 | if (!dax_dev) |
| 1049 | return -EIO; |
| 1050 | |
| 1051 | start_index = wbc->range_start >> PAGE_SHIFT; |
| 1052 | end_index = wbc->range_end >> PAGE_SHIFT; |
| 1053 | |
| 1054 | trace_dax_writeback_range(inode, start_index, end_index); |
| 1055 | |
| 1056 | tag_pages_for_writeback(mapping, start_index, end_index); |
| 1057 | |
| 1058 | pagevec_init(&pvec); |
| 1059 | while (!done) { |
| 1060 | pvec.nr = find_get_entries_tag(mapping, start_index, |
| 1061 | PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, |
| 1062 | pvec.pages, indices); |
| 1063 | |
| 1064 | if (pvec.nr == 0) |
| 1065 | break; |
| 1066 | |
| 1067 | for (i = 0; i < pvec.nr; i++) { |
| 1068 | if (indices[i] > end_index) { |
| 1069 | done = true; |
| 1070 | break; |
| 1071 | } |
| 1072 | |
| 1073 | ret = dax_writeback_one(dax_dev, mapping, indices[i], |
| 1074 | pvec.pages[i]); |
| 1075 | if (ret < 0) { |
| 1076 | mapping_set_error(mapping, ret); |
| 1077 | goto out; |
| 1078 | } |
| 1079 | } |
| 1080 | start_index = indices[pvec.nr - 1] + 1; |
| 1081 | } |
| 1082 | out: |
| 1083 | put_dax(dax_dev); |
| 1084 | trace_dax_writeback_range_done(inode, start_index, end_index); |
| 1085 | return (ret < 0 ? ret : 0); |
| 1086 | } |
| 1087 | EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); |
| 1088 | |
| 1089 | static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) |
| 1090 | { |
| 1091 | return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; |
| 1092 | } |
| 1093 | |
| 1094 | static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, |
| 1095 | pfn_t *pfnp) |
| 1096 | { |
| 1097 | const sector_t sector = dax_iomap_sector(iomap, pos); |
| 1098 | pgoff_t pgoff; |
| 1099 | int id, rc; |
| 1100 | long length; |
| 1101 | |
| 1102 | rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); |
| 1103 | if (rc) |
| 1104 | return rc; |
| 1105 | id = dax_read_lock(); |
| 1106 | length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), |
| 1107 | NULL, pfnp); |
| 1108 | if (length < 0) { |
| 1109 | rc = length; |
| 1110 | goto out; |
| 1111 | } |
| 1112 | rc = -EINVAL; |
| 1113 | if (PFN_PHYS(length) < size) |
| 1114 | goto out; |
| 1115 | if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) |
| 1116 | goto out; |
| 1117 | /* For larger pages we need devmap */ |
| 1118 | if (length > 1 && !pfn_t_devmap(*pfnp)) |
| 1119 | goto out; |
| 1120 | rc = 0; |
| 1121 | out: |
| 1122 | dax_read_unlock(id); |
| 1123 | return rc; |
| 1124 | } |
| 1125 | |
| 1126 | /* |
| 1127 | * The user has performed a load from a hole in the file. Allocating a new |
| 1128 | * page in the file would cause excessive storage usage for workloads with |
| 1129 | * sparse files. Instead we insert a read-only mapping of the 4k zero page. |
| 1130 | * If this page is ever written to we will re-fault and change the mapping to |
| 1131 | * point to real DAX storage instead. |
| 1132 | */ |
| 1133 | static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry, |
| 1134 | struct vm_fault *vmf) |
| 1135 | { |
| 1136 | struct inode *inode = mapping->host; |
| 1137 | unsigned long vaddr = vmf->address; |
| 1138 | pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); |
| 1139 | vm_fault_t ret; |
| 1140 | |
| 1141 | dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE, |
| 1142 | false); |
| 1143 | ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); |
| 1144 | trace_dax_load_hole(inode, vmf, ret); |
| 1145 | return ret; |
| 1146 | } |
| 1147 | |
| 1148 | static bool dax_range_is_aligned(struct block_device *bdev, |
| 1149 | unsigned int offset, unsigned int length) |
| 1150 | { |
| 1151 | unsigned short sector_size = bdev_logical_block_size(bdev); |
| 1152 | |
| 1153 | if (!IS_ALIGNED(offset, sector_size)) |
| 1154 | return false; |
| 1155 | if (!IS_ALIGNED(length, sector_size)) |
| 1156 | return false; |
| 1157 | |
| 1158 | return true; |
| 1159 | } |
| 1160 | |
| 1161 | int __dax_zero_page_range(struct block_device *bdev, |
| 1162 | struct dax_device *dax_dev, sector_t sector, |
| 1163 | unsigned int offset, unsigned int size) |
| 1164 | { |
| 1165 | if (dax_range_is_aligned(bdev, offset, size)) { |
| 1166 | sector_t start_sector = sector + (offset >> 9); |
| 1167 | |
| 1168 | return blkdev_issue_zeroout(bdev, start_sector, |
| 1169 | size >> 9, GFP_NOFS, 0); |
| 1170 | } else { |
| 1171 | pgoff_t pgoff; |
| 1172 | long rc, id; |
| 1173 | void *kaddr; |
| 1174 | |
| 1175 | rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); |
| 1176 | if (rc) |
| 1177 | return rc; |
| 1178 | |
| 1179 | id = dax_read_lock(); |
| 1180 | rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL); |
| 1181 | if (rc < 0) { |
| 1182 | dax_read_unlock(id); |
| 1183 | return rc; |
| 1184 | } |
| 1185 | memset(kaddr + offset, 0, size); |
| 1186 | dax_flush(dax_dev, kaddr + offset, size); |
| 1187 | dax_read_unlock(id); |
| 1188 | } |
| 1189 | return 0; |
| 1190 | } |
| 1191 | EXPORT_SYMBOL_GPL(__dax_zero_page_range); |
| 1192 | |
| 1193 | static loff_t |
| 1194 | dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, |
| 1195 | struct iomap *iomap) |
| 1196 | { |
| 1197 | struct block_device *bdev = iomap->bdev; |
| 1198 | struct dax_device *dax_dev = iomap->dax_dev; |
| 1199 | struct iov_iter *iter = data; |
| 1200 | loff_t end = pos + length, done = 0; |
| 1201 | ssize_t ret = 0; |
| 1202 | size_t xfer; |
| 1203 | int id; |
| 1204 | |
| 1205 | if (iov_iter_rw(iter) == READ) { |
| 1206 | end = min(end, i_size_read(inode)); |
| 1207 | if (pos >= end) |
| 1208 | return 0; |
| 1209 | |
| 1210 | if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) |
| 1211 | return iov_iter_zero(min(length, end - pos), iter); |
| 1212 | } |
| 1213 | |
| 1214 | if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) |
| 1215 | return -EIO; |
| 1216 | |
| 1217 | /* |
| 1218 | * Write can allocate block for an area which has a hole page mapped |
| 1219 | * into page tables. We have to tear down these mappings so that data |
| 1220 | * written by write(2) is visible in mmap. |
| 1221 | */ |
| 1222 | if (iomap->flags & IOMAP_F_NEW) { |
| 1223 | invalidate_inode_pages2_range(inode->i_mapping, |
| 1224 | pos >> PAGE_SHIFT, |
| 1225 | (end - 1) >> PAGE_SHIFT); |
| 1226 | } |
| 1227 | |
| 1228 | id = dax_read_lock(); |
| 1229 | while (pos < end) { |
| 1230 | unsigned offset = pos & (PAGE_SIZE - 1); |
| 1231 | const size_t size = ALIGN(length + offset, PAGE_SIZE); |
| 1232 | const sector_t sector = dax_iomap_sector(iomap, pos); |
| 1233 | ssize_t map_len; |
| 1234 | pgoff_t pgoff; |
| 1235 | void *kaddr; |
| 1236 | |
| 1237 | if (fatal_signal_pending(current)) { |
| 1238 | ret = -EINTR; |
| 1239 | break; |
| 1240 | } |
| 1241 | |
| 1242 | ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); |
| 1243 | if (ret) |
| 1244 | break; |
| 1245 | |
| 1246 | map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), |
| 1247 | &kaddr, NULL); |
| 1248 | if (map_len < 0) { |
| 1249 | ret = map_len; |
| 1250 | break; |
| 1251 | } |
| 1252 | |
| 1253 | map_len = PFN_PHYS(map_len); |
| 1254 | kaddr += offset; |
| 1255 | map_len -= offset; |
| 1256 | if (map_len > end - pos) |
| 1257 | map_len = end - pos; |
| 1258 | |
| 1259 | /* |
| 1260 | * The userspace address for the memory copy has already been |
| 1261 | * validated via access_ok() in either vfs_read() or |
| 1262 | * vfs_write(), depending on which operation we are doing. |
| 1263 | */ |
| 1264 | if (iov_iter_rw(iter) == WRITE) |
| 1265 | xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, |
| 1266 | map_len, iter); |
| 1267 | else |
| 1268 | xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, |
| 1269 | map_len, iter); |
| 1270 | |
| 1271 | pos += xfer; |
| 1272 | length -= xfer; |
| 1273 | done += xfer; |
| 1274 | |
| 1275 | if (xfer == 0) |
| 1276 | ret = -EFAULT; |
| 1277 | if (xfer < map_len) |
| 1278 | break; |
| 1279 | } |
| 1280 | dax_read_unlock(id); |
| 1281 | |
| 1282 | return done ? done : ret; |
| 1283 | } |
| 1284 | |
| 1285 | /** |
| 1286 | * dax_iomap_rw - Perform I/O to a DAX file |
| 1287 | * @iocb: The control block for this I/O |
| 1288 | * @iter: The addresses to do I/O from or to |
| 1289 | * @ops: iomap ops passed from the file system |
| 1290 | * |
| 1291 | * This function performs read and write operations to directly mapped |
| 1292 | * persistent memory. The callers needs to take care of read/write exclusion |
| 1293 | * and evicting any page cache pages in the region under I/O. |
| 1294 | */ |
| 1295 | ssize_t |
| 1296 | dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, |
| 1297 | const struct iomap_ops *ops) |
| 1298 | { |
| 1299 | struct address_space *mapping = iocb->ki_filp->f_mapping; |
| 1300 | struct inode *inode = mapping->host; |
| 1301 | loff_t pos = iocb->ki_pos, ret = 0, done = 0; |
| 1302 | unsigned flags = 0; |
| 1303 | |
| 1304 | if (iov_iter_rw(iter) == WRITE) { |
| 1305 | lockdep_assert_held_exclusive(&inode->i_rwsem); |
| 1306 | flags |= IOMAP_WRITE; |
| 1307 | } else { |
| 1308 | lockdep_assert_held(&inode->i_rwsem); |
| 1309 | } |
| 1310 | |
| 1311 | while (iov_iter_count(iter)) { |
| 1312 | ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, |
| 1313 | iter, dax_iomap_actor); |
| 1314 | if (ret <= 0) |
| 1315 | break; |
| 1316 | pos += ret; |
| 1317 | done += ret; |
| 1318 | } |
| 1319 | |
| 1320 | iocb->ki_pos += done; |
| 1321 | return done ? done : ret; |
| 1322 | } |
| 1323 | EXPORT_SYMBOL_GPL(dax_iomap_rw); |
| 1324 | |
| 1325 | static vm_fault_t dax_fault_return(int error) |
| 1326 | { |
| 1327 | if (error == 0) |
| 1328 | return VM_FAULT_NOPAGE; |
| 1329 | if (error == -ENOMEM) |
| 1330 | return VM_FAULT_OOM; |
| 1331 | return VM_FAULT_SIGBUS; |
| 1332 | } |
| 1333 | |
| 1334 | /* |
| 1335 | * MAP_SYNC on a dax mapping guarantees dirty metadata is |
| 1336 | * flushed on write-faults (non-cow), but not read-faults. |
| 1337 | */ |
| 1338 | static bool dax_fault_is_synchronous(unsigned long flags, |
| 1339 | struct vm_area_struct *vma, struct iomap *iomap) |
| 1340 | { |
| 1341 | return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) |
| 1342 | && (iomap->flags & IOMAP_F_DIRTY); |
| 1343 | } |
| 1344 | |
| 1345 | static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, |
| 1346 | int *iomap_errp, const struct iomap_ops *ops) |
| 1347 | { |
| 1348 | struct vm_area_struct *vma = vmf->vma; |
| 1349 | struct address_space *mapping = vma->vm_file->f_mapping; |
| 1350 | struct inode *inode = mapping->host; |
| 1351 | unsigned long vaddr = vmf->address; |
| 1352 | loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; |
| 1353 | struct iomap iomap = { 0 }; |
| 1354 | unsigned flags = IOMAP_FAULT; |
| 1355 | int error, major = 0; |
| 1356 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
| 1357 | bool sync; |
| 1358 | vm_fault_t ret = 0; |
| 1359 | void *entry; |
| 1360 | pfn_t pfn; |
| 1361 | |
| 1362 | trace_dax_pte_fault(inode, vmf, ret); |
| 1363 | /* |
| 1364 | * Check whether offset isn't beyond end of file now. Caller is supposed |
| 1365 | * to hold locks serializing us with truncate / punch hole so this is |
| 1366 | * a reliable test. |
| 1367 | */ |
| 1368 | if (pos >= i_size_read(inode)) { |
| 1369 | ret = VM_FAULT_SIGBUS; |
| 1370 | goto out; |
| 1371 | } |
| 1372 | |
| 1373 | if (write && !vmf->cow_page) |
| 1374 | flags |= IOMAP_WRITE; |
| 1375 | |
| 1376 | entry = grab_mapping_entry(mapping, vmf->pgoff, 0); |
| 1377 | if (IS_ERR(entry)) { |
| 1378 | ret = dax_fault_return(PTR_ERR(entry)); |
| 1379 | goto out; |
| 1380 | } |
| 1381 | |
| 1382 | /* |
| 1383 | * It is possible, particularly with mixed reads & writes to private |
| 1384 | * mappings, that we have raced with a PMD fault that overlaps with |
| 1385 | * the PTE we need to set up. If so just return and the fault will be |
| 1386 | * retried. |
| 1387 | */ |
| 1388 | if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { |
| 1389 | ret = VM_FAULT_NOPAGE; |
| 1390 | goto unlock_entry; |
| 1391 | } |
| 1392 | |
| 1393 | /* |
| 1394 | * Note that we don't bother to use iomap_apply here: DAX required |
| 1395 | * the file system block size to be equal the page size, which means |
| 1396 | * that we never have to deal with more than a single extent here. |
| 1397 | */ |
| 1398 | error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); |
| 1399 | if (iomap_errp) |
| 1400 | *iomap_errp = error; |
| 1401 | if (error) { |
| 1402 | ret = dax_fault_return(error); |
| 1403 | goto unlock_entry; |
| 1404 | } |
| 1405 | if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { |
| 1406 | error = -EIO; /* fs corruption? */ |
| 1407 | goto error_finish_iomap; |
| 1408 | } |
| 1409 | |
| 1410 | if (vmf->cow_page) { |
| 1411 | sector_t sector = dax_iomap_sector(&iomap, pos); |
| 1412 | |
| 1413 | switch (iomap.type) { |
| 1414 | case IOMAP_HOLE: |
| 1415 | case IOMAP_UNWRITTEN: |
| 1416 | clear_user_highpage(vmf->cow_page, vaddr); |
| 1417 | break; |
| 1418 | case IOMAP_MAPPED: |
| 1419 | error = copy_user_dax(iomap.bdev, iomap.dax_dev, |
| 1420 | sector, PAGE_SIZE, vmf->cow_page, vaddr); |
| 1421 | break; |
| 1422 | default: |
| 1423 | WARN_ON_ONCE(1); |
| 1424 | error = -EIO; |
| 1425 | break; |
| 1426 | } |
| 1427 | |
| 1428 | if (error) |
| 1429 | goto error_finish_iomap; |
| 1430 | |
| 1431 | __SetPageUptodate(vmf->cow_page); |
| 1432 | ret = finish_fault(vmf); |
| 1433 | if (!ret) |
| 1434 | ret = VM_FAULT_DONE_COW; |
| 1435 | goto finish_iomap; |
| 1436 | } |
| 1437 | |
| 1438 | sync = dax_fault_is_synchronous(flags, vma, &iomap); |
| 1439 | |
| 1440 | switch (iomap.type) { |
| 1441 | case IOMAP_MAPPED: |
| 1442 | if (iomap.flags & IOMAP_F_NEW) { |
| 1443 | count_vm_event(PGMAJFAULT); |
| 1444 | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); |
| 1445 | major = VM_FAULT_MAJOR; |
| 1446 | } |
| 1447 | error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); |
| 1448 | if (error < 0) |
| 1449 | goto error_finish_iomap; |
| 1450 | |
| 1451 | entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn, |
| 1452 | 0, write && !sync); |
| 1453 | |
| 1454 | /* |
| 1455 | * If we are doing synchronous page fault and inode needs fsync, |
| 1456 | * we can insert PTE into page tables only after that happens. |
| 1457 | * Skip insertion for now and return the pfn so that caller can |
| 1458 | * insert it after fsync is done. |
| 1459 | */ |
| 1460 | if (sync) { |
| 1461 | if (WARN_ON_ONCE(!pfnp)) { |
| 1462 | error = -EIO; |
| 1463 | goto error_finish_iomap; |
| 1464 | } |
| 1465 | *pfnp = pfn; |
| 1466 | ret = VM_FAULT_NEEDDSYNC | major; |
| 1467 | goto finish_iomap; |
| 1468 | } |
| 1469 | trace_dax_insert_mapping(inode, vmf, entry); |
| 1470 | if (write) |
| 1471 | ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn); |
| 1472 | else |
| 1473 | ret = vmf_insert_mixed(vma, vaddr, pfn); |
| 1474 | |
| 1475 | goto finish_iomap; |
| 1476 | case IOMAP_UNWRITTEN: |
| 1477 | case IOMAP_HOLE: |
| 1478 | if (!write) { |
| 1479 | ret = dax_load_hole(mapping, entry, vmf); |
| 1480 | goto finish_iomap; |
| 1481 | } |
| 1482 | /*FALLTHRU*/ |
| 1483 | default: |
| 1484 | WARN_ON_ONCE(1); |
| 1485 | error = -EIO; |
| 1486 | break; |
| 1487 | } |
| 1488 | |
| 1489 | error_finish_iomap: |
| 1490 | ret = dax_fault_return(error); |
| 1491 | finish_iomap: |
| 1492 | if (ops->iomap_end) { |
| 1493 | int copied = PAGE_SIZE; |
| 1494 | |
| 1495 | if (ret & VM_FAULT_ERROR) |
| 1496 | copied = 0; |
| 1497 | /* |
| 1498 | * The fault is done by now and there's no way back (other |
| 1499 | * thread may be already happily using PTE we have installed). |
| 1500 | * Just ignore error from ->iomap_end since we cannot do much |
| 1501 | * with it. |
| 1502 | */ |
| 1503 | ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); |
| 1504 | } |
| 1505 | unlock_entry: |
| 1506 | put_locked_mapping_entry(mapping, vmf->pgoff); |
| 1507 | out: |
| 1508 | trace_dax_pte_fault_done(inode, vmf, ret); |
| 1509 | return ret | major; |
| 1510 | } |
| 1511 | |
| 1512 | #ifdef CONFIG_FS_DAX_PMD |
| 1513 | static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap, |
| 1514 | void *entry) |
| 1515 | { |
| 1516 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; |
| 1517 | unsigned long pmd_addr = vmf->address & PMD_MASK; |
| 1518 | struct inode *inode = mapping->host; |
| 1519 | struct page *zero_page; |
| 1520 | void *ret = NULL; |
| 1521 | spinlock_t *ptl; |
| 1522 | pmd_t pmd_entry; |
| 1523 | pfn_t pfn; |
| 1524 | |
| 1525 | zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); |
| 1526 | |
| 1527 | if (unlikely(!zero_page)) |
| 1528 | goto fallback; |
| 1529 | |
| 1530 | pfn = page_to_pfn_t(zero_page); |
| 1531 | ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn, |
| 1532 | RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false); |
| 1533 | |
| 1534 | ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); |
| 1535 | if (!pmd_none(*(vmf->pmd))) { |
| 1536 | spin_unlock(ptl); |
| 1537 | goto fallback; |
| 1538 | } |
| 1539 | |
| 1540 | pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); |
| 1541 | pmd_entry = pmd_mkhuge(pmd_entry); |
| 1542 | set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); |
| 1543 | spin_unlock(ptl); |
| 1544 | trace_dax_pmd_load_hole(inode, vmf, zero_page, ret); |
| 1545 | return VM_FAULT_NOPAGE; |
| 1546 | |
| 1547 | fallback: |
| 1548 | trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret); |
| 1549 | return VM_FAULT_FALLBACK; |
| 1550 | } |
| 1551 | |
| 1552 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, |
| 1553 | const struct iomap_ops *ops) |
| 1554 | { |
| 1555 | struct vm_area_struct *vma = vmf->vma; |
| 1556 | struct address_space *mapping = vma->vm_file->f_mapping; |
| 1557 | unsigned long pmd_addr = vmf->address & PMD_MASK; |
| 1558 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
| 1559 | bool sync; |
| 1560 | unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; |
| 1561 | struct inode *inode = mapping->host; |
| 1562 | vm_fault_t result = VM_FAULT_FALLBACK; |
| 1563 | struct iomap iomap = { 0 }; |
| 1564 | pgoff_t max_pgoff, pgoff; |
| 1565 | void *entry; |
| 1566 | loff_t pos; |
| 1567 | int error; |
| 1568 | pfn_t pfn; |
| 1569 | |
| 1570 | /* |
| 1571 | * Check whether offset isn't beyond end of file now. Caller is |
| 1572 | * supposed to hold locks serializing us with truncate / punch hole so |
| 1573 | * this is a reliable test. |
| 1574 | */ |
| 1575 | pgoff = linear_page_index(vma, pmd_addr); |
| 1576 | max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
| 1577 | |
| 1578 | trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); |
| 1579 | |
| 1580 | /* |
| 1581 | * Make sure that the faulting address's PMD offset (color) matches |
| 1582 | * the PMD offset from the start of the file. This is necessary so |
| 1583 | * that a PMD range in the page table overlaps exactly with a PMD |
| 1584 | * range in the radix tree. |
| 1585 | */ |
| 1586 | if ((vmf->pgoff & PG_PMD_COLOUR) != |
| 1587 | ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) |
| 1588 | goto fallback; |
| 1589 | |
| 1590 | /* Fall back to PTEs if we're going to COW */ |
| 1591 | if (write && !(vma->vm_flags & VM_SHARED)) |
| 1592 | goto fallback; |
| 1593 | |
| 1594 | /* If the PMD would extend outside the VMA */ |
| 1595 | if (pmd_addr < vma->vm_start) |
| 1596 | goto fallback; |
| 1597 | if ((pmd_addr + PMD_SIZE) > vma->vm_end) |
| 1598 | goto fallback; |
| 1599 | |
| 1600 | if (pgoff >= max_pgoff) { |
| 1601 | result = VM_FAULT_SIGBUS; |
| 1602 | goto out; |
| 1603 | } |
| 1604 | |
| 1605 | /* If the PMD would extend beyond the file size */ |
| 1606 | if ((pgoff | PG_PMD_COLOUR) >= max_pgoff) |
| 1607 | goto fallback; |
| 1608 | |
| 1609 | /* |
| 1610 | * grab_mapping_entry() will make sure we get a 2MiB empty entry, a |
| 1611 | * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page |
| 1612 | * is already in the tree, for instance), it will return -EEXIST and |
| 1613 | * we just fall back to 4k entries. |
| 1614 | */ |
| 1615 | entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD); |
| 1616 | if (IS_ERR(entry)) |
| 1617 | goto fallback; |
| 1618 | |
| 1619 | /* |
| 1620 | * It is possible, particularly with mixed reads & writes to private |
| 1621 | * mappings, that we have raced with a PTE fault that overlaps with |
| 1622 | * the PMD we need to set up. If so just return and the fault will be |
| 1623 | * retried. |
| 1624 | */ |
| 1625 | if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && |
| 1626 | !pmd_devmap(*vmf->pmd)) { |
| 1627 | result = 0; |
| 1628 | goto unlock_entry; |
| 1629 | } |
| 1630 | |
| 1631 | /* |
| 1632 | * Note that we don't use iomap_apply here. We aren't doing I/O, only |
| 1633 | * setting up a mapping, so really we're using iomap_begin() as a way |
| 1634 | * to look up our filesystem block. |
| 1635 | */ |
| 1636 | pos = (loff_t)pgoff << PAGE_SHIFT; |
| 1637 | error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); |
| 1638 | if (error) |
| 1639 | goto unlock_entry; |
| 1640 | |
| 1641 | if (iomap.offset + iomap.length < pos + PMD_SIZE) |
| 1642 | goto finish_iomap; |
| 1643 | |
| 1644 | sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); |
| 1645 | |
| 1646 | switch (iomap.type) { |
| 1647 | case IOMAP_MAPPED: |
| 1648 | error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); |
| 1649 | if (error < 0) |
| 1650 | goto finish_iomap; |
| 1651 | |
| 1652 | entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn, |
| 1653 | RADIX_DAX_PMD, write && !sync); |
| 1654 | |
| 1655 | /* |
| 1656 | * If we are doing synchronous page fault and inode needs fsync, |
| 1657 | * we can insert PMD into page tables only after that happens. |
| 1658 | * Skip insertion for now and return the pfn so that caller can |
| 1659 | * insert it after fsync is done. |
| 1660 | */ |
| 1661 | if (sync) { |
| 1662 | if (WARN_ON_ONCE(!pfnp)) |
| 1663 | goto finish_iomap; |
| 1664 | *pfnp = pfn; |
| 1665 | result = VM_FAULT_NEEDDSYNC; |
| 1666 | goto finish_iomap; |
| 1667 | } |
| 1668 | |
| 1669 | trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); |
| 1670 | result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn, |
| 1671 | write); |
| 1672 | break; |
| 1673 | case IOMAP_UNWRITTEN: |
| 1674 | case IOMAP_HOLE: |
| 1675 | if (WARN_ON_ONCE(write)) |
| 1676 | break; |
| 1677 | result = dax_pmd_load_hole(vmf, &iomap, entry); |
| 1678 | break; |
| 1679 | default: |
| 1680 | WARN_ON_ONCE(1); |
| 1681 | break; |
| 1682 | } |
| 1683 | |
| 1684 | finish_iomap: |
| 1685 | if (ops->iomap_end) { |
| 1686 | int copied = PMD_SIZE; |
| 1687 | |
| 1688 | if (result == VM_FAULT_FALLBACK) |
| 1689 | copied = 0; |
| 1690 | /* |
| 1691 | * The fault is done by now and there's no way back (other |
| 1692 | * thread may be already happily using PMD we have installed). |
| 1693 | * Just ignore error from ->iomap_end since we cannot do much |
| 1694 | * with it. |
| 1695 | */ |
| 1696 | ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, |
| 1697 | &iomap); |
| 1698 | } |
| 1699 | unlock_entry: |
| 1700 | put_locked_mapping_entry(mapping, pgoff); |
| 1701 | fallback: |
| 1702 | if (result == VM_FAULT_FALLBACK) { |
| 1703 | split_huge_pmd(vma, vmf->pmd, vmf->address); |
| 1704 | count_vm_event(THP_FAULT_FALLBACK); |
| 1705 | } |
| 1706 | out: |
| 1707 | trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); |
| 1708 | return result; |
| 1709 | } |
| 1710 | #else |
| 1711 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, |
| 1712 | const struct iomap_ops *ops) |
| 1713 | { |
| 1714 | return VM_FAULT_FALLBACK; |
| 1715 | } |
| 1716 | #endif /* CONFIG_FS_DAX_PMD */ |
| 1717 | |
| 1718 | /** |
| 1719 | * dax_iomap_fault - handle a page fault on a DAX file |
| 1720 | * @vmf: The description of the fault |
| 1721 | * @pe_size: Size of the page to fault in |
| 1722 | * @pfnp: PFN to insert for synchronous faults if fsync is required |
| 1723 | * @iomap_errp: Storage for detailed error code in case of error |
| 1724 | * @ops: Iomap ops passed from the file system |
| 1725 | * |
| 1726 | * When a page fault occurs, filesystems may call this helper in |
| 1727 | * their fault handler for DAX files. dax_iomap_fault() assumes the caller |
| 1728 | * has done all the necessary locking for page fault to proceed |
| 1729 | * successfully. |
| 1730 | */ |
| 1731 | vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, |
| 1732 | pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) |
| 1733 | { |
| 1734 | switch (pe_size) { |
| 1735 | case PE_SIZE_PTE: |
| 1736 | return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); |
| 1737 | case PE_SIZE_PMD: |
| 1738 | return dax_iomap_pmd_fault(vmf, pfnp, ops); |
| 1739 | default: |
| 1740 | return VM_FAULT_FALLBACK; |
| 1741 | } |
| 1742 | } |
| 1743 | EXPORT_SYMBOL_GPL(dax_iomap_fault); |
| 1744 | |
| 1745 | /** |
| 1746 | * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables |
| 1747 | * @vmf: The description of the fault |
| 1748 | * @pe_size: Size of entry to be inserted |
| 1749 | * @pfn: PFN to insert |
| 1750 | * |
| 1751 | * This function inserts writeable PTE or PMD entry into page tables for mmaped |
| 1752 | * DAX file. It takes care of marking corresponding radix tree entry as dirty |
| 1753 | * as well. |
| 1754 | */ |
| 1755 | static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf, |
| 1756 | enum page_entry_size pe_size, |
| 1757 | pfn_t pfn) |
| 1758 | { |
| 1759 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; |
| 1760 | void *entry, **slot; |
| 1761 | pgoff_t index = vmf->pgoff; |
| 1762 | vm_fault_t ret; |
| 1763 | |
| 1764 | xa_lock_irq(&mapping->i_pages); |
| 1765 | entry = get_unlocked_mapping_entry(mapping, index, &slot); |
| 1766 | /* Did we race with someone splitting entry or so? */ |
| 1767 | if (!entry || |
| 1768 | (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) || |
| 1769 | (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) { |
| 1770 | put_unlocked_mapping_entry(mapping, index, entry); |
| 1771 | xa_unlock_irq(&mapping->i_pages); |
| 1772 | trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, |
| 1773 | VM_FAULT_NOPAGE); |
| 1774 | return VM_FAULT_NOPAGE; |
| 1775 | } |
| 1776 | radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY); |
| 1777 | entry = lock_slot(mapping, slot); |
| 1778 | xa_unlock_irq(&mapping->i_pages); |
| 1779 | switch (pe_size) { |
| 1780 | case PE_SIZE_PTE: |
| 1781 | ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); |
| 1782 | break; |
| 1783 | #ifdef CONFIG_FS_DAX_PMD |
| 1784 | case PE_SIZE_PMD: |
| 1785 | ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, |
| 1786 | pfn, true); |
| 1787 | break; |
| 1788 | #endif |
| 1789 | default: |
| 1790 | ret = VM_FAULT_FALLBACK; |
| 1791 | } |
| 1792 | put_locked_mapping_entry(mapping, index); |
| 1793 | trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); |
| 1794 | return ret; |
| 1795 | } |
| 1796 | |
| 1797 | /** |
| 1798 | * dax_finish_sync_fault - finish synchronous page fault |
| 1799 | * @vmf: The description of the fault |
| 1800 | * @pe_size: Size of entry to be inserted |
| 1801 | * @pfn: PFN to insert |
| 1802 | * |
| 1803 | * This function ensures that the file range touched by the page fault is |
| 1804 | * stored persistently on the media and handles inserting of appropriate page |
| 1805 | * table entry. |
| 1806 | */ |
| 1807 | vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, |
| 1808 | enum page_entry_size pe_size, pfn_t pfn) |
| 1809 | { |
| 1810 | int err; |
| 1811 | loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; |
| 1812 | size_t len = 0; |
| 1813 | |
| 1814 | if (pe_size == PE_SIZE_PTE) |
| 1815 | len = PAGE_SIZE; |
| 1816 | else if (pe_size == PE_SIZE_PMD) |
| 1817 | len = PMD_SIZE; |
| 1818 | else |
| 1819 | WARN_ON_ONCE(1); |
| 1820 | err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); |
| 1821 | if (err) |
| 1822 | return VM_FAULT_SIGBUS; |
| 1823 | return dax_insert_pfn_mkwrite(vmf, pe_size, pfn); |
| 1824 | } |
| 1825 | EXPORT_SYMBOL_GPL(dax_finish_sync_fault); |