Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2007 Oracle. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/slab.h> |
| 7 | #include <linux/blkdev.h> |
| 8 | #include <linux/writeback.h> |
| 9 | #include "ctree.h" |
| 10 | #include "transaction.h" |
| 11 | #include "btrfs_inode.h" |
| 12 | #include "extent_io.h" |
| 13 | #include "disk-io.h" |
| 14 | #include "compression.h" |
| 15 | |
| 16 | static struct kmem_cache *btrfs_ordered_extent_cache; |
| 17 | |
| 18 | static u64 entry_end(struct btrfs_ordered_extent *entry) |
| 19 | { |
| 20 | if (entry->file_offset + entry->len < entry->file_offset) |
| 21 | return (u64)-1; |
| 22 | return entry->file_offset + entry->len; |
| 23 | } |
| 24 | |
| 25 | /* returns NULL if the insertion worked, or it returns the node it did find |
| 26 | * in the tree |
| 27 | */ |
| 28 | static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, |
| 29 | struct rb_node *node) |
| 30 | { |
| 31 | struct rb_node **p = &root->rb_node; |
| 32 | struct rb_node *parent = NULL; |
| 33 | struct btrfs_ordered_extent *entry; |
| 34 | |
| 35 | while (*p) { |
| 36 | parent = *p; |
| 37 | entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); |
| 38 | |
| 39 | if (file_offset < entry->file_offset) |
| 40 | p = &(*p)->rb_left; |
| 41 | else if (file_offset >= entry_end(entry)) |
| 42 | p = &(*p)->rb_right; |
| 43 | else |
| 44 | return parent; |
| 45 | } |
| 46 | |
| 47 | rb_link_node(node, parent, p); |
| 48 | rb_insert_color(node, root); |
| 49 | return NULL; |
| 50 | } |
| 51 | |
| 52 | static void ordered_data_tree_panic(struct inode *inode, int errno, |
| 53 | u64 offset) |
| 54 | { |
| 55 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 56 | btrfs_panic(fs_info, errno, |
| 57 | "Inconsistency in ordered tree at offset %llu", offset); |
| 58 | } |
| 59 | |
| 60 | /* |
| 61 | * look for a given offset in the tree, and if it can't be found return the |
| 62 | * first lesser offset |
| 63 | */ |
| 64 | static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, |
| 65 | struct rb_node **prev_ret) |
| 66 | { |
| 67 | struct rb_node *n = root->rb_node; |
| 68 | struct rb_node *prev = NULL; |
| 69 | struct rb_node *test; |
| 70 | struct btrfs_ordered_extent *entry; |
| 71 | struct btrfs_ordered_extent *prev_entry = NULL; |
| 72 | |
| 73 | while (n) { |
| 74 | entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); |
| 75 | prev = n; |
| 76 | prev_entry = entry; |
| 77 | |
| 78 | if (file_offset < entry->file_offset) |
| 79 | n = n->rb_left; |
| 80 | else if (file_offset >= entry_end(entry)) |
| 81 | n = n->rb_right; |
| 82 | else |
| 83 | return n; |
| 84 | } |
| 85 | if (!prev_ret) |
| 86 | return NULL; |
| 87 | |
| 88 | while (prev && file_offset >= entry_end(prev_entry)) { |
| 89 | test = rb_next(prev); |
| 90 | if (!test) |
| 91 | break; |
| 92 | prev_entry = rb_entry(test, struct btrfs_ordered_extent, |
| 93 | rb_node); |
| 94 | if (file_offset < entry_end(prev_entry)) |
| 95 | break; |
| 96 | |
| 97 | prev = test; |
| 98 | } |
| 99 | if (prev) |
| 100 | prev_entry = rb_entry(prev, struct btrfs_ordered_extent, |
| 101 | rb_node); |
| 102 | while (prev && file_offset < entry_end(prev_entry)) { |
| 103 | test = rb_prev(prev); |
| 104 | if (!test) |
| 105 | break; |
| 106 | prev_entry = rb_entry(test, struct btrfs_ordered_extent, |
| 107 | rb_node); |
| 108 | prev = test; |
| 109 | } |
| 110 | *prev_ret = prev; |
| 111 | return NULL; |
| 112 | } |
| 113 | |
| 114 | /* |
| 115 | * helper to check if a given offset is inside a given entry |
| 116 | */ |
| 117 | static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) |
| 118 | { |
| 119 | if (file_offset < entry->file_offset || |
| 120 | entry->file_offset + entry->len <= file_offset) |
| 121 | return 0; |
| 122 | return 1; |
| 123 | } |
| 124 | |
| 125 | static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, |
| 126 | u64 len) |
| 127 | { |
| 128 | if (file_offset + len <= entry->file_offset || |
| 129 | entry->file_offset + entry->len <= file_offset) |
| 130 | return 0; |
| 131 | return 1; |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * look find the first ordered struct that has this offset, otherwise |
| 136 | * the first one less than this offset |
| 137 | */ |
| 138 | static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, |
| 139 | u64 file_offset) |
| 140 | { |
| 141 | struct rb_root *root = &tree->tree; |
| 142 | struct rb_node *prev = NULL; |
| 143 | struct rb_node *ret; |
| 144 | struct btrfs_ordered_extent *entry; |
| 145 | |
| 146 | if (tree->last) { |
| 147 | entry = rb_entry(tree->last, struct btrfs_ordered_extent, |
| 148 | rb_node); |
| 149 | if (offset_in_entry(entry, file_offset)) |
| 150 | return tree->last; |
| 151 | } |
| 152 | ret = __tree_search(root, file_offset, &prev); |
| 153 | if (!ret) |
| 154 | ret = prev; |
| 155 | if (ret) |
| 156 | tree->last = ret; |
| 157 | return ret; |
| 158 | } |
| 159 | |
| 160 | /* allocate and add a new ordered_extent into the per-inode tree. |
| 161 | * file_offset is the logical offset in the file |
| 162 | * |
| 163 | * start is the disk block number of an extent already reserved in the |
| 164 | * extent allocation tree |
| 165 | * |
| 166 | * len is the length of the extent |
| 167 | * |
| 168 | * The tree is given a single reference on the ordered extent that was |
| 169 | * inserted. |
| 170 | */ |
| 171 | static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, |
| 172 | u64 start, u64 len, u64 disk_len, |
| 173 | int type, int dio, int compress_type) |
| 174 | { |
| 175 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 176 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 177 | struct btrfs_ordered_inode_tree *tree; |
| 178 | struct rb_node *node; |
| 179 | struct btrfs_ordered_extent *entry; |
| 180 | |
| 181 | tree = &BTRFS_I(inode)->ordered_tree; |
| 182 | entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); |
| 183 | if (!entry) |
| 184 | return -ENOMEM; |
| 185 | |
| 186 | entry->file_offset = file_offset; |
| 187 | entry->start = start; |
| 188 | entry->len = len; |
| 189 | entry->disk_len = disk_len; |
| 190 | entry->bytes_left = len; |
| 191 | entry->inode = igrab(inode); |
| 192 | entry->compress_type = compress_type; |
| 193 | entry->truncated_len = (u64)-1; |
| 194 | if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) |
| 195 | set_bit(type, &entry->flags); |
| 196 | |
| 197 | if (dio) |
| 198 | set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); |
| 199 | |
| 200 | /* one ref for the tree */ |
| 201 | refcount_set(&entry->refs, 1); |
| 202 | init_waitqueue_head(&entry->wait); |
| 203 | INIT_LIST_HEAD(&entry->list); |
| 204 | INIT_LIST_HEAD(&entry->root_extent_list); |
| 205 | INIT_LIST_HEAD(&entry->work_list); |
| 206 | init_completion(&entry->completion); |
| 207 | INIT_LIST_HEAD(&entry->log_list); |
| 208 | INIT_LIST_HEAD(&entry->trans_list); |
| 209 | |
| 210 | trace_btrfs_ordered_extent_add(inode, entry); |
| 211 | |
| 212 | spin_lock_irq(&tree->lock); |
| 213 | node = tree_insert(&tree->tree, file_offset, |
| 214 | &entry->rb_node); |
| 215 | if (node) |
| 216 | ordered_data_tree_panic(inode, -EEXIST, file_offset); |
| 217 | spin_unlock_irq(&tree->lock); |
| 218 | |
| 219 | spin_lock(&root->ordered_extent_lock); |
| 220 | list_add_tail(&entry->root_extent_list, |
| 221 | &root->ordered_extents); |
| 222 | root->nr_ordered_extents++; |
| 223 | if (root->nr_ordered_extents == 1) { |
| 224 | spin_lock(&fs_info->ordered_root_lock); |
| 225 | BUG_ON(!list_empty(&root->ordered_root)); |
| 226 | list_add_tail(&root->ordered_root, &fs_info->ordered_roots); |
| 227 | spin_unlock(&fs_info->ordered_root_lock); |
| 228 | } |
| 229 | spin_unlock(&root->ordered_extent_lock); |
| 230 | |
| 231 | /* |
| 232 | * We don't need the count_max_extents here, we can assume that all of |
| 233 | * that work has been done at higher layers, so this is truly the |
| 234 | * smallest the extent is going to get. |
| 235 | */ |
| 236 | spin_lock(&BTRFS_I(inode)->lock); |
| 237 | btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); |
| 238 | spin_unlock(&BTRFS_I(inode)->lock); |
| 239 | |
| 240 | return 0; |
| 241 | } |
| 242 | |
| 243 | int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, |
| 244 | u64 start, u64 len, u64 disk_len, int type) |
| 245 | { |
| 246 | return __btrfs_add_ordered_extent(inode, file_offset, start, len, |
| 247 | disk_len, type, 0, |
| 248 | BTRFS_COMPRESS_NONE); |
| 249 | } |
| 250 | |
| 251 | int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, |
| 252 | u64 start, u64 len, u64 disk_len, int type) |
| 253 | { |
| 254 | return __btrfs_add_ordered_extent(inode, file_offset, start, len, |
| 255 | disk_len, type, 1, |
| 256 | BTRFS_COMPRESS_NONE); |
| 257 | } |
| 258 | |
| 259 | int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, |
| 260 | u64 start, u64 len, u64 disk_len, |
| 261 | int type, int compress_type) |
| 262 | { |
| 263 | return __btrfs_add_ordered_extent(inode, file_offset, start, len, |
| 264 | disk_len, type, 0, |
| 265 | compress_type); |
| 266 | } |
| 267 | |
| 268 | /* |
| 269 | * Add a struct btrfs_ordered_sum into the list of checksums to be inserted |
| 270 | * when an ordered extent is finished. If the list covers more than one |
| 271 | * ordered extent, it is split across multiples. |
| 272 | */ |
| 273 | void btrfs_add_ordered_sum(struct inode *inode, |
| 274 | struct btrfs_ordered_extent *entry, |
| 275 | struct btrfs_ordered_sum *sum) |
| 276 | { |
| 277 | struct btrfs_ordered_inode_tree *tree; |
| 278 | |
| 279 | tree = &BTRFS_I(inode)->ordered_tree; |
| 280 | spin_lock_irq(&tree->lock); |
| 281 | list_add_tail(&sum->list, &entry->list); |
| 282 | spin_unlock_irq(&tree->lock); |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * this is used to account for finished IO across a given range |
| 287 | * of the file. The IO may span ordered extents. If |
| 288 | * a given ordered_extent is completely done, 1 is returned, otherwise |
| 289 | * 0. |
| 290 | * |
| 291 | * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used |
| 292 | * to make sure this function only returns 1 once for a given ordered extent. |
| 293 | * |
| 294 | * file_offset is updated to one byte past the range that is recorded as |
| 295 | * complete. This allows you to walk forward in the file. |
| 296 | */ |
| 297 | int btrfs_dec_test_first_ordered_pending(struct inode *inode, |
| 298 | struct btrfs_ordered_extent **cached, |
| 299 | u64 *file_offset, u64 io_size, int uptodate) |
| 300 | { |
| 301 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 302 | struct btrfs_ordered_inode_tree *tree; |
| 303 | struct rb_node *node; |
| 304 | struct btrfs_ordered_extent *entry = NULL; |
| 305 | int ret; |
| 306 | unsigned long flags; |
| 307 | u64 dec_end; |
| 308 | u64 dec_start; |
| 309 | u64 to_dec; |
| 310 | |
| 311 | tree = &BTRFS_I(inode)->ordered_tree; |
| 312 | spin_lock_irqsave(&tree->lock, flags); |
| 313 | node = tree_search(tree, *file_offset); |
| 314 | if (!node) { |
| 315 | ret = 1; |
| 316 | goto out; |
| 317 | } |
| 318 | |
| 319 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 320 | if (!offset_in_entry(entry, *file_offset)) { |
| 321 | ret = 1; |
| 322 | goto out; |
| 323 | } |
| 324 | |
| 325 | dec_start = max(*file_offset, entry->file_offset); |
| 326 | dec_end = min(*file_offset + io_size, entry->file_offset + |
| 327 | entry->len); |
| 328 | *file_offset = dec_end; |
| 329 | if (dec_start > dec_end) { |
| 330 | btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", |
| 331 | dec_start, dec_end); |
| 332 | } |
| 333 | to_dec = dec_end - dec_start; |
| 334 | if (to_dec > entry->bytes_left) { |
| 335 | btrfs_crit(fs_info, |
| 336 | "bad ordered accounting left %llu size %llu", |
| 337 | entry->bytes_left, to_dec); |
| 338 | } |
| 339 | entry->bytes_left -= to_dec; |
| 340 | if (!uptodate) |
| 341 | set_bit(BTRFS_ORDERED_IOERR, &entry->flags); |
| 342 | |
| 343 | if (entry->bytes_left == 0) { |
| 344 | ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); |
| 345 | /* test_and_set_bit implies a barrier */ |
| 346 | cond_wake_up_nomb(&entry->wait); |
| 347 | } else { |
| 348 | ret = 1; |
| 349 | } |
| 350 | out: |
| 351 | if (!ret && cached && entry) { |
| 352 | *cached = entry; |
| 353 | refcount_inc(&entry->refs); |
| 354 | } |
| 355 | spin_unlock_irqrestore(&tree->lock, flags); |
| 356 | return ret == 0; |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * this is used to account for finished IO across a given range |
| 361 | * of the file. The IO should not span ordered extents. If |
| 362 | * a given ordered_extent is completely done, 1 is returned, otherwise |
| 363 | * 0. |
| 364 | * |
| 365 | * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used |
| 366 | * to make sure this function only returns 1 once for a given ordered extent. |
| 367 | */ |
| 368 | int btrfs_dec_test_ordered_pending(struct inode *inode, |
| 369 | struct btrfs_ordered_extent **cached, |
| 370 | u64 file_offset, u64 io_size, int uptodate) |
| 371 | { |
| 372 | struct btrfs_ordered_inode_tree *tree; |
| 373 | struct rb_node *node; |
| 374 | struct btrfs_ordered_extent *entry = NULL; |
| 375 | unsigned long flags; |
| 376 | int ret; |
| 377 | |
| 378 | tree = &BTRFS_I(inode)->ordered_tree; |
| 379 | spin_lock_irqsave(&tree->lock, flags); |
| 380 | if (cached && *cached) { |
| 381 | entry = *cached; |
| 382 | goto have_entry; |
| 383 | } |
| 384 | |
| 385 | node = tree_search(tree, file_offset); |
| 386 | if (!node) { |
| 387 | ret = 1; |
| 388 | goto out; |
| 389 | } |
| 390 | |
| 391 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 392 | have_entry: |
| 393 | if (!offset_in_entry(entry, file_offset)) { |
| 394 | ret = 1; |
| 395 | goto out; |
| 396 | } |
| 397 | |
| 398 | if (io_size > entry->bytes_left) { |
| 399 | btrfs_crit(BTRFS_I(inode)->root->fs_info, |
| 400 | "bad ordered accounting left %llu size %llu", |
| 401 | entry->bytes_left, io_size); |
| 402 | } |
| 403 | entry->bytes_left -= io_size; |
| 404 | if (!uptodate) |
| 405 | set_bit(BTRFS_ORDERED_IOERR, &entry->flags); |
| 406 | |
| 407 | if (entry->bytes_left == 0) { |
| 408 | ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); |
| 409 | /* test_and_set_bit implies a barrier */ |
| 410 | cond_wake_up_nomb(&entry->wait); |
| 411 | } else { |
| 412 | ret = 1; |
| 413 | } |
| 414 | out: |
| 415 | if (!ret && cached && entry) { |
| 416 | *cached = entry; |
| 417 | refcount_inc(&entry->refs); |
| 418 | } |
| 419 | spin_unlock_irqrestore(&tree->lock, flags); |
| 420 | return ret == 0; |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | * used to drop a reference on an ordered extent. This will free |
| 425 | * the extent if the last reference is dropped |
| 426 | */ |
| 427 | void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) |
| 428 | { |
| 429 | struct list_head *cur; |
| 430 | struct btrfs_ordered_sum *sum; |
| 431 | |
| 432 | trace_btrfs_ordered_extent_put(entry->inode, entry); |
| 433 | |
| 434 | if (refcount_dec_and_test(&entry->refs)) { |
| 435 | ASSERT(list_empty(&entry->log_list)); |
| 436 | ASSERT(list_empty(&entry->trans_list)); |
| 437 | ASSERT(list_empty(&entry->root_extent_list)); |
| 438 | ASSERT(RB_EMPTY_NODE(&entry->rb_node)); |
| 439 | if (entry->inode) |
| 440 | btrfs_add_delayed_iput(entry->inode); |
| 441 | while (!list_empty(&entry->list)) { |
| 442 | cur = entry->list.next; |
| 443 | sum = list_entry(cur, struct btrfs_ordered_sum, list); |
| 444 | list_del(&sum->list); |
| 445 | kfree(sum); |
| 446 | } |
| 447 | kmem_cache_free(btrfs_ordered_extent_cache, entry); |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | /* |
| 452 | * remove an ordered extent from the tree. No references are dropped |
| 453 | * and waiters are woken up. |
| 454 | */ |
| 455 | void btrfs_remove_ordered_extent(struct inode *inode, |
| 456 | struct btrfs_ordered_extent *entry) |
| 457 | { |
| 458 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 459 | struct btrfs_ordered_inode_tree *tree; |
| 460 | struct btrfs_inode *btrfs_inode = BTRFS_I(inode); |
| 461 | struct btrfs_root *root = btrfs_inode->root; |
| 462 | struct rb_node *node; |
| 463 | bool dec_pending_ordered = false; |
| 464 | |
| 465 | /* This is paired with btrfs_add_ordered_extent. */ |
| 466 | spin_lock(&btrfs_inode->lock); |
| 467 | btrfs_mod_outstanding_extents(btrfs_inode, -1); |
| 468 | spin_unlock(&btrfs_inode->lock); |
| 469 | if (root != fs_info->tree_root) |
| 470 | btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false); |
| 471 | |
| 472 | tree = &btrfs_inode->ordered_tree; |
| 473 | spin_lock_irq(&tree->lock); |
| 474 | node = &entry->rb_node; |
| 475 | rb_erase(node, &tree->tree); |
| 476 | RB_CLEAR_NODE(node); |
| 477 | if (tree->last == node) |
| 478 | tree->last = NULL; |
| 479 | set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); |
| 480 | if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags)) |
| 481 | dec_pending_ordered = true; |
| 482 | spin_unlock_irq(&tree->lock); |
| 483 | |
| 484 | /* |
| 485 | * The current running transaction is waiting on us, we need to let it |
| 486 | * know that we're complete and wake it up. |
| 487 | */ |
| 488 | if (dec_pending_ordered) { |
| 489 | struct btrfs_transaction *trans; |
| 490 | |
| 491 | /* |
| 492 | * The checks for trans are just a formality, it should be set, |
| 493 | * but if it isn't we don't want to deref/assert under the spin |
| 494 | * lock, so be nice and check if trans is set, but ASSERT() so |
| 495 | * if it isn't set a developer will notice. |
| 496 | */ |
| 497 | spin_lock(&fs_info->trans_lock); |
| 498 | trans = fs_info->running_transaction; |
| 499 | if (trans) |
| 500 | refcount_inc(&trans->use_count); |
| 501 | spin_unlock(&fs_info->trans_lock); |
| 502 | |
| 503 | ASSERT(trans); |
| 504 | if (trans) { |
| 505 | if (atomic_dec_and_test(&trans->pending_ordered)) |
| 506 | wake_up(&trans->pending_wait); |
| 507 | btrfs_put_transaction(trans); |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | spin_lock(&root->ordered_extent_lock); |
| 512 | list_del_init(&entry->root_extent_list); |
| 513 | root->nr_ordered_extents--; |
| 514 | |
| 515 | trace_btrfs_ordered_extent_remove(inode, entry); |
| 516 | |
| 517 | if (!root->nr_ordered_extents) { |
| 518 | spin_lock(&fs_info->ordered_root_lock); |
| 519 | BUG_ON(list_empty(&root->ordered_root)); |
| 520 | list_del_init(&root->ordered_root); |
| 521 | spin_unlock(&fs_info->ordered_root_lock); |
| 522 | } |
| 523 | spin_unlock(&root->ordered_extent_lock); |
| 524 | wake_up(&entry->wait); |
| 525 | } |
| 526 | |
| 527 | static void btrfs_run_ordered_extent_work(struct btrfs_work *work) |
| 528 | { |
| 529 | struct btrfs_ordered_extent *ordered; |
| 530 | |
| 531 | ordered = container_of(work, struct btrfs_ordered_extent, flush_work); |
| 532 | btrfs_start_ordered_extent(ordered->inode, ordered, 1); |
| 533 | complete(&ordered->completion); |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * wait for all the ordered extents in a root. This is done when balancing |
| 538 | * space between drives. |
| 539 | */ |
| 540 | u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, |
| 541 | const u64 range_start, const u64 range_len) |
| 542 | { |
| 543 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 544 | LIST_HEAD(splice); |
| 545 | LIST_HEAD(skipped); |
| 546 | LIST_HEAD(works); |
| 547 | struct btrfs_ordered_extent *ordered, *next; |
| 548 | u64 count = 0; |
| 549 | const u64 range_end = range_start + range_len; |
| 550 | |
| 551 | mutex_lock(&root->ordered_extent_mutex); |
| 552 | spin_lock(&root->ordered_extent_lock); |
| 553 | list_splice_init(&root->ordered_extents, &splice); |
| 554 | while (!list_empty(&splice) && nr) { |
| 555 | ordered = list_first_entry(&splice, struct btrfs_ordered_extent, |
| 556 | root_extent_list); |
| 557 | |
| 558 | if (range_end <= ordered->start || |
| 559 | ordered->start + ordered->disk_len <= range_start) { |
| 560 | list_move_tail(&ordered->root_extent_list, &skipped); |
| 561 | cond_resched_lock(&root->ordered_extent_lock); |
| 562 | continue; |
| 563 | } |
| 564 | |
| 565 | list_move_tail(&ordered->root_extent_list, |
| 566 | &root->ordered_extents); |
| 567 | refcount_inc(&ordered->refs); |
| 568 | spin_unlock(&root->ordered_extent_lock); |
| 569 | |
| 570 | btrfs_init_work(&ordered->flush_work, |
| 571 | btrfs_flush_delalloc_helper, |
| 572 | btrfs_run_ordered_extent_work, NULL, NULL); |
| 573 | list_add_tail(&ordered->work_list, &works); |
| 574 | btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); |
| 575 | |
| 576 | cond_resched(); |
| 577 | spin_lock(&root->ordered_extent_lock); |
| 578 | if (nr != U64_MAX) |
| 579 | nr--; |
| 580 | count++; |
| 581 | } |
| 582 | list_splice_tail(&skipped, &root->ordered_extents); |
| 583 | list_splice_tail(&splice, &root->ordered_extents); |
| 584 | spin_unlock(&root->ordered_extent_lock); |
| 585 | |
| 586 | list_for_each_entry_safe(ordered, next, &works, work_list) { |
| 587 | list_del_init(&ordered->work_list); |
| 588 | wait_for_completion(&ordered->completion); |
| 589 | btrfs_put_ordered_extent(ordered); |
| 590 | cond_resched(); |
| 591 | } |
| 592 | mutex_unlock(&root->ordered_extent_mutex); |
| 593 | |
| 594 | return count; |
| 595 | } |
| 596 | |
| 597 | u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, |
| 598 | const u64 range_start, const u64 range_len) |
| 599 | { |
| 600 | struct btrfs_root *root; |
| 601 | struct list_head splice; |
| 602 | u64 total_done = 0; |
| 603 | u64 done; |
| 604 | |
| 605 | INIT_LIST_HEAD(&splice); |
| 606 | |
| 607 | mutex_lock(&fs_info->ordered_operations_mutex); |
| 608 | spin_lock(&fs_info->ordered_root_lock); |
| 609 | list_splice_init(&fs_info->ordered_roots, &splice); |
| 610 | while (!list_empty(&splice) && nr) { |
| 611 | root = list_first_entry(&splice, struct btrfs_root, |
| 612 | ordered_root); |
| 613 | root = btrfs_grab_fs_root(root); |
| 614 | BUG_ON(!root); |
| 615 | list_move_tail(&root->ordered_root, |
| 616 | &fs_info->ordered_roots); |
| 617 | spin_unlock(&fs_info->ordered_root_lock); |
| 618 | |
| 619 | done = btrfs_wait_ordered_extents(root, nr, |
| 620 | range_start, range_len); |
| 621 | btrfs_put_fs_root(root); |
| 622 | total_done += done; |
| 623 | |
| 624 | spin_lock(&fs_info->ordered_root_lock); |
| 625 | if (nr != U64_MAX) { |
| 626 | nr -= done; |
| 627 | } |
| 628 | } |
| 629 | list_splice_tail(&splice, &fs_info->ordered_roots); |
| 630 | spin_unlock(&fs_info->ordered_root_lock); |
| 631 | mutex_unlock(&fs_info->ordered_operations_mutex); |
| 632 | |
| 633 | return total_done; |
| 634 | } |
| 635 | |
| 636 | /* |
| 637 | * Used to start IO or wait for a given ordered extent to finish. |
| 638 | * |
| 639 | * If wait is one, this effectively waits on page writeback for all the pages |
| 640 | * in the extent, and it waits on the io completion code to insert |
| 641 | * metadata into the btree corresponding to the extent |
| 642 | */ |
| 643 | void btrfs_start_ordered_extent(struct inode *inode, |
| 644 | struct btrfs_ordered_extent *entry, |
| 645 | int wait) |
| 646 | { |
| 647 | u64 start = entry->file_offset; |
| 648 | u64 end = start + entry->len - 1; |
| 649 | |
| 650 | trace_btrfs_ordered_extent_start(inode, entry); |
| 651 | |
| 652 | /* |
| 653 | * pages in the range can be dirty, clean or writeback. We |
| 654 | * start IO on any dirty ones so the wait doesn't stall waiting |
| 655 | * for the flusher thread to find them |
| 656 | */ |
| 657 | if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) |
| 658 | filemap_fdatawrite_range(inode->i_mapping, start, end); |
| 659 | if (wait) { |
| 660 | wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, |
| 661 | &entry->flags)); |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | * Used to wait on ordered extents across a large range of bytes. |
| 667 | */ |
| 668 | int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) |
| 669 | { |
| 670 | int ret = 0; |
| 671 | int ret_wb = 0; |
| 672 | u64 end; |
| 673 | u64 orig_end; |
| 674 | struct btrfs_ordered_extent *ordered; |
| 675 | |
| 676 | if (start + len < start) { |
| 677 | orig_end = INT_LIMIT(loff_t); |
| 678 | } else { |
| 679 | orig_end = start + len - 1; |
| 680 | if (orig_end > INT_LIMIT(loff_t)) |
| 681 | orig_end = INT_LIMIT(loff_t); |
| 682 | } |
| 683 | |
| 684 | /* start IO across the range first to instantiate any delalloc |
| 685 | * extents |
| 686 | */ |
| 687 | ret = btrfs_fdatawrite_range(inode, start, orig_end); |
| 688 | if (ret) |
| 689 | return ret; |
| 690 | |
| 691 | /* |
| 692 | * If we have a writeback error don't return immediately. Wait first |
| 693 | * for any ordered extents that haven't completed yet. This is to make |
| 694 | * sure no one can dirty the same page ranges and call writepages() |
| 695 | * before the ordered extents complete - to avoid failures (-EEXIST) |
| 696 | * when adding the new ordered extents to the ordered tree. |
| 697 | */ |
| 698 | ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); |
| 699 | |
| 700 | end = orig_end; |
| 701 | while (1) { |
| 702 | ordered = btrfs_lookup_first_ordered_extent(inode, end); |
| 703 | if (!ordered) |
| 704 | break; |
| 705 | if (ordered->file_offset > orig_end) { |
| 706 | btrfs_put_ordered_extent(ordered); |
| 707 | break; |
| 708 | } |
| 709 | if (ordered->file_offset + ordered->len <= start) { |
| 710 | btrfs_put_ordered_extent(ordered); |
| 711 | break; |
| 712 | } |
| 713 | btrfs_start_ordered_extent(inode, ordered, 1); |
| 714 | end = ordered->file_offset; |
| 715 | if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) |
| 716 | ret = -EIO; |
| 717 | btrfs_put_ordered_extent(ordered); |
| 718 | if (ret || end == 0 || end == start) |
| 719 | break; |
| 720 | end--; |
| 721 | } |
| 722 | return ret_wb ? ret_wb : ret; |
| 723 | } |
| 724 | |
| 725 | /* |
| 726 | * find an ordered extent corresponding to file_offset. return NULL if |
| 727 | * nothing is found, otherwise take a reference on the extent and return it |
| 728 | */ |
| 729 | struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, |
| 730 | u64 file_offset) |
| 731 | { |
| 732 | struct btrfs_ordered_inode_tree *tree; |
| 733 | struct rb_node *node; |
| 734 | struct btrfs_ordered_extent *entry = NULL; |
| 735 | |
| 736 | tree = &BTRFS_I(inode)->ordered_tree; |
| 737 | spin_lock_irq(&tree->lock); |
| 738 | node = tree_search(tree, file_offset); |
| 739 | if (!node) |
| 740 | goto out; |
| 741 | |
| 742 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 743 | if (!offset_in_entry(entry, file_offset)) |
| 744 | entry = NULL; |
| 745 | if (entry) |
| 746 | refcount_inc(&entry->refs); |
| 747 | out: |
| 748 | spin_unlock_irq(&tree->lock); |
| 749 | return entry; |
| 750 | } |
| 751 | |
| 752 | /* Since the DIO code tries to lock a wide area we need to look for any ordered |
| 753 | * extents that exist in the range, rather than just the start of the range. |
| 754 | */ |
| 755 | struct btrfs_ordered_extent *btrfs_lookup_ordered_range( |
| 756 | struct btrfs_inode *inode, u64 file_offset, u64 len) |
| 757 | { |
| 758 | struct btrfs_ordered_inode_tree *tree; |
| 759 | struct rb_node *node; |
| 760 | struct btrfs_ordered_extent *entry = NULL; |
| 761 | |
| 762 | tree = &inode->ordered_tree; |
| 763 | spin_lock_irq(&tree->lock); |
| 764 | node = tree_search(tree, file_offset); |
| 765 | if (!node) { |
| 766 | node = tree_search(tree, file_offset + len); |
| 767 | if (!node) |
| 768 | goto out; |
| 769 | } |
| 770 | |
| 771 | while (1) { |
| 772 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 773 | if (range_overlaps(entry, file_offset, len)) |
| 774 | break; |
| 775 | |
| 776 | if (entry->file_offset >= file_offset + len) { |
| 777 | entry = NULL; |
| 778 | break; |
| 779 | } |
| 780 | entry = NULL; |
| 781 | node = rb_next(node); |
| 782 | if (!node) |
| 783 | break; |
| 784 | } |
| 785 | out: |
| 786 | if (entry) |
| 787 | refcount_inc(&entry->refs); |
| 788 | spin_unlock_irq(&tree->lock); |
| 789 | return entry; |
| 790 | } |
| 791 | |
| 792 | /* |
| 793 | * lookup and return any extent before 'file_offset'. NULL is returned |
| 794 | * if none is found |
| 795 | */ |
| 796 | struct btrfs_ordered_extent * |
| 797 | btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) |
| 798 | { |
| 799 | struct btrfs_ordered_inode_tree *tree; |
| 800 | struct rb_node *node; |
| 801 | struct btrfs_ordered_extent *entry = NULL; |
| 802 | |
| 803 | tree = &BTRFS_I(inode)->ordered_tree; |
| 804 | spin_lock_irq(&tree->lock); |
| 805 | node = tree_search(tree, file_offset); |
| 806 | if (!node) |
| 807 | goto out; |
| 808 | |
| 809 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 810 | refcount_inc(&entry->refs); |
| 811 | out: |
| 812 | spin_unlock_irq(&tree->lock); |
| 813 | return entry; |
| 814 | } |
| 815 | |
| 816 | /* |
| 817 | * After an extent is done, call this to conditionally update the on disk |
| 818 | * i_size. i_size is updated to cover any fully written part of the file. |
| 819 | */ |
| 820 | int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, |
| 821 | struct btrfs_ordered_extent *ordered) |
| 822 | { |
| 823 | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; |
| 824 | u64 disk_i_size; |
| 825 | u64 new_i_size; |
| 826 | u64 i_size = i_size_read(inode); |
| 827 | struct rb_node *node; |
| 828 | struct rb_node *prev = NULL; |
| 829 | struct btrfs_ordered_extent *test; |
| 830 | int ret = 1; |
| 831 | u64 orig_offset = offset; |
| 832 | |
| 833 | spin_lock_irq(&tree->lock); |
| 834 | if (ordered) { |
| 835 | offset = entry_end(ordered); |
| 836 | if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) |
| 837 | offset = min(offset, |
| 838 | ordered->file_offset + |
| 839 | ordered->truncated_len); |
| 840 | } else { |
| 841 | offset = ALIGN(offset, btrfs_inode_sectorsize(inode)); |
| 842 | } |
| 843 | disk_i_size = BTRFS_I(inode)->disk_i_size; |
| 844 | |
| 845 | /* |
| 846 | * truncate file. |
| 847 | * If ordered is not NULL, then this is called from endio and |
| 848 | * disk_i_size will be updated by either truncate itself or any |
| 849 | * in-flight IOs which are inside the disk_i_size. |
| 850 | * |
| 851 | * Because btrfs_setsize() may set i_size with disk_i_size if truncate |
| 852 | * fails somehow, we need to make sure we have a precise disk_i_size by |
| 853 | * updating it as usual. |
| 854 | * |
| 855 | */ |
| 856 | if (!ordered && disk_i_size > i_size) { |
| 857 | BTRFS_I(inode)->disk_i_size = orig_offset; |
| 858 | ret = 0; |
| 859 | goto out; |
| 860 | } |
| 861 | |
| 862 | /* |
| 863 | * if the disk i_size is already at the inode->i_size, or |
| 864 | * this ordered extent is inside the disk i_size, we're done |
| 865 | */ |
| 866 | if (disk_i_size == i_size) |
| 867 | goto out; |
| 868 | |
| 869 | /* |
| 870 | * We still need to update disk_i_size if outstanding_isize is greater |
| 871 | * than disk_i_size. |
| 872 | */ |
| 873 | if (offset <= disk_i_size && |
| 874 | (!ordered || ordered->outstanding_isize <= disk_i_size)) |
| 875 | goto out; |
| 876 | |
| 877 | /* |
| 878 | * walk backward from this ordered extent to disk_i_size. |
| 879 | * if we find an ordered extent then we can't update disk i_size |
| 880 | * yet |
| 881 | */ |
| 882 | if (ordered) { |
| 883 | node = rb_prev(&ordered->rb_node); |
| 884 | } else { |
| 885 | prev = tree_search(tree, offset); |
| 886 | /* |
| 887 | * we insert file extents without involving ordered struct, |
| 888 | * so there should be no ordered struct cover this offset |
| 889 | */ |
| 890 | if (prev) { |
| 891 | test = rb_entry(prev, struct btrfs_ordered_extent, |
| 892 | rb_node); |
| 893 | BUG_ON(offset_in_entry(test, offset)); |
| 894 | } |
| 895 | node = prev; |
| 896 | } |
| 897 | for (; node; node = rb_prev(node)) { |
| 898 | test = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 899 | |
| 900 | /* We treat this entry as if it doesn't exist */ |
| 901 | if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) |
| 902 | continue; |
| 903 | |
| 904 | if (entry_end(test) <= disk_i_size) |
| 905 | break; |
| 906 | if (test->file_offset >= i_size) |
| 907 | break; |
| 908 | |
| 909 | /* |
| 910 | * We don't update disk_i_size now, so record this undealt |
| 911 | * i_size. Or we will not know the real i_size. |
| 912 | */ |
| 913 | if (test->outstanding_isize < offset) |
| 914 | test->outstanding_isize = offset; |
| 915 | if (ordered && |
| 916 | ordered->outstanding_isize > test->outstanding_isize) |
| 917 | test->outstanding_isize = ordered->outstanding_isize; |
| 918 | goto out; |
| 919 | } |
| 920 | new_i_size = min_t(u64, offset, i_size); |
| 921 | |
| 922 | /* |
| 923 | * Some ordered extents may completed before the current one, and |
| 924 | * we hold the real i_size in ->outstanding_isize. |
| 925 | */ |
| 926 | if (ordered && ordered->outstanding_isize > new_i_size) |
| 927 | new_i_size = min_t(u64, ordered->outstanding_isize, i_size); |
| 928 | BTRFS_I(inode)->disk_i_size = new_i_size; |
| 929 | ret = 0; |
| 930 | out: |
| 931 | /* |
| 932 | * We need to do this because we can't remove ordered extents until |
| 933 | * after the i_disk_size has been updated and then the inode has been |
| 934 | * updated to reflect the change, so we need to tell anybody who finds |
| 935 | * this ordered extent that we've already done all the real work, we |
| 936 | * just haven't completed all the other work. |
| 937 | */ |
| 938 | if (ordered) |
| 939 | set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); |
| 940 | spin_unlock_irq(&tree->lock); |
| 941 | return ret; |
| 942 | } |
| 943 | |
| 944 | /* |
| 945 | * search the ordered extents for one corresponding to 'offset' and |
| 946 | * try to find a checksum. This is used because we allow pages to |
| 947 | * be reclaimed before their checksum is actually put into the btree |
| 948 | */ |
| 949 | int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, |
| 950 | u32 *sum, int len) |
| 951 | { |
| 952 | struct btrfs_ordered_sum *ordered_sum; |
| 953 | struct btrfs_ordered_extent *ordered; |
| 954 | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; |
| 955 | unsigned long num_sectors; |
| 956 | unsigned long i; |
| 957 | u32 sectorsize = btrfs_inode_sectorsize(inode); |
| 958 | int index = 0; |
| 959 | |
| 960 | ordered = btrfs_lookup_ordered_extent(inode, offset); |
| 961 | if (!ordered) |
| 962 | return 0; |
| 963 | |
| 964 | spin_lock_irq(&tree->lock); |
| 965 | list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { |
| 966 | if (disk_bytenr >= ordered_sum->bytenr && |
| 967 | disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { |
| 968 | i = (disk_bytenr - ordered_sum->bytenr) >> |
| 969 | inode->i_sb->s_blocksize_bits; |
| 970 | num_sectors = ordered_sum->len >> |
| 971 | inode->i_sb->s_blocksize_bits; |
| 972 | num_sectors = min_t(int, len - index, num_sectors - i); |
| 973 | memcpy(sum + index, ordered_sum->sums + i, |
| 974 | num_sectors); |
| 975 | |
| 976 | index += (int)num_sectors; |
| 977 | if (index == len) |
| 978 | goto out; |
| 979 | disk_bytenr += num_sectors * sectorsize; |
| 980 | } |
| 981 | } |
| 982 | out: |
| 983 | spin_unlock_irq(&tree->lock); |
| 984 | btrfs_put_ordered_extent(ordered); |
| 985 | return index; |
| 986 | } |
| 987 | |
| 988 | int __init ordered_data_init(void) |
| 989 | { |
| 990 | btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", |
| 991 | sizeof(struct btrfs_ordered_extent), 0, |
| 992 | SLAB_MEM_SPREAD, |
| 993 | NULL); |
| 994 | if (!btrfs_ordered_extent_cache) |
| 995 | return -ENOMEM; |
| 996 | |
| 997 | return 0; |
| 998 | } |
| 999 | |
| 1000 | void __cold ordered_data_exit(void) |
| 1001 | { |
| 1002 | kmem_cache_destroy(btrfs_ordered_extent_cache); |
| 1003 | } |