Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * ASIX AX8817X based USB 2.0 Ethernet Devices |
| 3 | * Copyright (C) 2003-2006 David Hollis <dhollis@davehollis.com> |
| 4 | * Copyright (C) 2005 Phil Chang <pchang23@sbcglobal.net> |
| 5 | * Copyright (C) 2006 James Painter <jamie.painter@iname.com> |
| 6 | * Copyright (c) 2002-2003 TiVo Inc. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License as published by |
| 10 | * the Free Software Foundation; either version 2 of the License, or |
| 11 | * (at your option) any later version. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | * GNU General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 20 | */ |
| 21 | |
| 22 | #include "asix.h" |
| 23 | |
| 24 | int asix_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, |
| 25 | u16 size, void *data, int in_pm) |
| 26 | { |
| 27 | int ret; |
| 28 | int (*fn)(struct usbnet *, u8, u8, u16, u16, void *, u16); |
| 29 | |
| 30 | BUG_ON(!dev); |
| 31 | |
| 32 | if (!in_pm) |
| 33 | fn = usbnet_read_cmd; |
| 34 | else |
| 35 | fn = usbnet_read_cmd_nopm; |
| 36 | |
| 37 | ret = fn(dev, cmd, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, |
| 38 | value, index, data, size); |
| 39 | |
| 40 | if (unlikely(ret < 0)) |
| 41 | netdev_warn(dev->net, "Failed to read reg index 0x%04x: %d\n", |
| 42 | index, ret); |
| 43 | |
| 44 | return ret; |
| 45 | } |
| 46 | |
| 47 | int asix_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, |
| 48 | u16 size, void *data, int in_pm) |
| 49 | { |
| 50 | int ret; |
| 51 | int (*fn)(struct usbnet *, u8, u8, u16, u16, const void *, u16); |
| 52 | |
| 53 | BUG_ON(!dev); |
| 54 | |
| 55 | if (!in_pm) |
| 56 | fn = usbnet_write_cmd; |
| 57 | else |
| 58 | fn = usbnet_write_cmd_nopm; |
| 59 | |
| 60 | ret = fn(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, |
| 61 | value, index, data, size); |
| 62 | |
| 63 | if (unlikely(ret < 0)) |
| 64 | netdev_warn(dev->net, "Failed to write reg index 0x%04x: %d\n", |
| 65 | index, ret); |
| 66 | |
| 67 | return ret; |
| 68 | } |
| 69 | |
| 70 | void asix_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, u16 index, |
| 71 | u16 size, void *data) |
| 72 | { |
| 73 | usbnet_write_cmd_async(dev, cmd, |
| 74 | USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, |
| 75 | value, index, data, size); |
| 76 | } |
| 77 | |
| 78 | static void reset_asix_rx_fixup_info(struct asix_rx_fixup_info *rx) |
| 79 | { |
| 80 | /* Reset the variables that have a lifetime outside of |
| 81 | * asix_rx_fixup_internal() so that future processing starts from a |
| 82 | * known set of initial conditions. |
| 83 | */ |
| 84 | |
| 85 | if (rx->ax_skb) { |
| 86 | /* Discard any incomplete Ethernet frame in the netdev buffer */ |
| 87 | kfree_skb(rx->ax_skb); |
| 88 | rx->ax_skb = NULL; |
| 89 | } |
| 90 | |
| 91 | /* Assume the Data header 32-bit word is at the start of the current |
| 92 | * or next URB socket buffer so reset all the state variables. |
| 93 | */ |
| 94 | rx->remaining = 0; |
| 95 | rx->split_head = false; |
| 96 | rx->header = 0; |
| 97 | } |
| 98 | |
| 99 | int asix_rx_fixup_internal(struct usbnet *dev, struct sk_buff *skb, |
| 100 | struct asix_rx_fixup_info *rx) |
| 101 | { |
| 102 | int offset = 0; |
| 103 | u16 size; |
| 104 | |
| 105 | /* When an Ethernet frame spans multiple URB socket buffers, |
| 106 | * do a sanity test for the Data header synchronisation. |
| 107 | * Attempt to detect the situation of the previous socket buffer having |
| 108 | * been truncated or a socket buffer was missing. These situations |
| 109 | * cause a discontinuity in the data stream and therefore need to avoid |
| 110 | * appending bad data to the end of the current netdev socket buffer. |
| 111 | * Also avoid unnecessarily discarding a good current netdev socket |
| 112 | * buffer. |
| 113 | */ |
| 114 | if (rx->remaining && (rx->remaining + sizeof(u32) <= skb->len)) { |
| 115 | offset = ((rx->remaining + 1) & 0xfffe); |
| 116 | rx->header = get_unaligned_le32(skb->data + offset); |
| 117 | offset = 0; |
| 118 | |
| 119 | size = (u16)(rx->header & 0x7ff); |
| 120 | if (size != ((~rx->header >> 16) & 0x7ff)) { |
| 121 | netdev_err(dev->net, "asix_rx_fixup() Data Header synchronisation was lost, remaining %d\n", |
| 122 | rx->remaining); |
| 123 | reset_asix_rx_fixup_info(rx); |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | while (offset + sizeof(u16) <= skb->len) { |
| 128 | u16 copy_length; |
| 129 | |
| 130 | if (!rx->remaining) { |
| 131 | if (skb->len - offset == sizeof(u16)) { |
| 132 | rx->header = get_unaligned_le16( |
| 133 | skb->data + offset); |
| 134 | rx->split_head = true; |
| 135 | offset += sizeof(u16); |
| 136 | break; |
| 137 | } |
| 138 | |
| 139 | if (rx->split_head == true) { |
| 140 | rx->header |= (get_unaligned_le16( |
| 141 | skb->data + offset) << 16); |
| 142 | rx->split_head = false; |
| 143 | offset += sizeof(u16); |
| 144 | } else { |
| 145 | rx->header = get_unaligned_le32(skb->data + |
| 146 | offset); |
| 147 | offset += sizeof(u32); |
| 148 | } |
| 149 | |
| 150 | /* take frame length from Data header 32-bit word */ |
| 151 | size = (u16)(rx->header & 0x7ff); |
| 152 | if (size != ((~rx->header >> 16) & 0x7ff)) { |
| 153 | netdev_err(dev->net, "asix_rx_fixup() Bad Header Length 0x%x, offset %d\n", |
| 154 | rx->header, offset); |
| 155 | reset_asix_rx_fixup_info(rx); |
| 156 | return 0; |
| 157 | } |
| 158 | if (size > dev->net->mtu + ETH_HLEN + VLAN_HLEN) { |
| 159 | netdev_dbg(dev->net, "asix_rx_fixup() Bad RX Length %d\n", |
| 160 | size); |
| 161 | reset_asix_rx_fixup_info(rx); |
| 162 | return 0; |
| 163 | } |
| 164 | |
| 165 | /* Sometimes may fail to get a netdev socket buffer but |
| 166 | * continue to process the URB socket buffer so that |
| 167 | * synchronisation of the Ethernet frame Data header |
| 168 | * word is maintained. |
| 169 | */ |
| 170 | rx->ax_skb = netdev_alloc_skb_ip_align(dev->net, size); |
| 171 | |
| 172 | rx->remaining = size; |
| 173 | } |
| 174 | |
| 175 | if (rx->remaining > skb->len - offset) { |
| 176 | copy_length = skb->len - offset; |
| 177 | rx->remaining -= copy_length; |
| 178 | } else { |
| 179 | copy_length = rx->remaining; |
| 180 | rx->remaining = 0; |
| 181 | } |
| 182 | |
| 183 | if (rx->ax_skb) { |
| 184 | skb_put_data(rx->ax_skb, skb->data + offset, |
| 185 | copy_length); |
| 186 | if (!rx->remaining) { |
| 187 | usbnet_skb_return(dev, rx->ax_skb); |
| 188 | rx->ax_skb = NULL; |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | offset += (copy_length + 1) & 0xfffe; |
| 193 | } |
| 194 | |
| 195 | if (skb->len != offset) { |
| 196 | netdev_err(dev->net, "asix_rx_fixup() Bad SKB Length %d, %d\n", |
| 197 | skb->len, offset); |
| 198 | reset_asix_rx_fixup_info(rx); |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | return 1; |
| 203 | } |
| 204 | |
| 205 | int asix_rx_fixup_common(struct usbnet *dev, struct sk_buff *skb) |
| 206 | { |
| 207 | struct asix_common_private *dp = dev->driver_priv; |
| 208 | struct asix_rx_fixup_info *rx = &dp->rx_fixup_info; |
| 209 | |
| 210 | return asix_rx_fixup_internal(dev, skb, rx); |
| 211 | } |
| 212 | |
| 213 | void asix_rx_fixup_common_free(struct asix_common_private *dp) |
| 214 | { |
| 215 | struct asix_rx_fixup_info *rx; |
| 216 | |
| 217 | if (!dp) |
| 218 | return; |
| 219 | |
| 220 | rx = &dp->rx_fixup_info; |
| 221 | |
| 222 | if (rx->ax_skb) { |
| 223 | kfree_skb(rx->ax_skb); |
| 224 | rx->ax_skb = NULL; |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | struct sk_buff *asix_tx_fixup(struct usbnet *dev, struct sk_buff *skb, |
| 229 | gfp_t flags) |
| 230 | { |
| 231 | int padlen; |
| 232 | int headroom = skb_headroom(skb); |
| 233 | int tailroom = skb_tailroom(skb); |
| 234 | u32 packet_len; |
| 235 | u32 padbytes = 0xffff0000; |
| 236 | |
| 237 | padlen = ((skb->len + 4) & (dev->maxpacket - 1)) ? 0 : 4; |
| 238 | |
| 239 | /* We need to push 4 bytes in front of frame (packet_len) |
| 240 | * and maybe add 4 bytes after the end (if padlen is 4) |
| 241 | * |
| 242 | * Avoid skb_copy_expand() expensive call, using following rules : |
| 243 | * - We are allowed to push 4 bytes in headroom if skb_header_cloned() |
| 244 | * is false (and if we have 4 bytes of headroom) |
| 245 | * - We are allowed to put 4 bytes at tail if skb_cloned() |
| 246 | * is false (and if we have 4 bytes of tailroom) |
| 247 | * |
| 248 | * TCP packets for example are cloned, but __skb_header_release() |
| 249 | * was called in tcp stack, allowing us to use headroom for our needs. |
| 250 | */ |
| 251 | if (!skb_header_cloned(skb) && |
| 252 | !(padlen && skb_cloned(skb)) && |
| 253 | headroom + tailroom >= 4 + padlen) { |
| 254 | /* following should not happen, but better be safe */ |
| 255 | if (headroom < 4 || |
| 256 | tailroom < padlen) { |
| 257 | skb->data = memmove(skb->head + 4, skb->data, skb->len); |
| 258 | skb_set_tail_pointer(skb, skb->len); |
| 259 | } |
| 260 | } else { |
| 261 | struct sk_buff *skb2; |
| 262 | |
| 263 | skb2 = skb_copy_expand(skb, 4, padlen, flags); |
| 264 | dev_kfree_skb_any(skb); |
| 265 | skb = skb2; |
| 266 | if (!skb) |
| 267 | return NULL; |
| 268 | } |
| 269 | |
| 270 | packet_len = ((skb->len ^ 0x0000ffff) << 16) + skb->len; |
| 271 | skb_push(skb, 4); |
| 272 | cpu_to_le32s(&packet_len); |
| 273 | skb_copy_to_linear_data(skb, &packet_len, sizeof(packet_len)); |
| 274 | |
| 275 | if (padlen) { |
| 276 | cpu_to_le32s(&padbytes); |
| 277 | memcpy(skb_tail_pointer(skb), &padbytes, sizeof(padbytes)); |
| 278 | skb_put(skb, sizeof(padbytes)); |
| 279 | } |
| 280 | |
| 281 | usbnet_set_skb_tx_stats(skb, 1, 0); |
| 282 | return skb; |
| 283 | } |
| 284 | |
| 285 | int asix_set_sw_mii(struct usbnet *dev, int in_pm) |
| 286 | { |
| 287 | int ret; |
| 288 | ret = asix_write_cmd(dev, AX_CMD_SET_SW_MII, 0x0000, 0, 0, NULL, in_pm); |
| 289 | |
| 290 | if (ret < 0) |
| 291 | netdev_err(dev->net, "Failed to enable software MII access\n"); |
| 292 | return ret; |
| 293 | } |
| 294 | |
| 295 | int asix_set_hw_mii(struct usbnet *dev, int in_pm) |
| 296 | { |
| 297 | int ret; |
| 298 | ret = asix_write_cmd(dev, AX_CMD_SET_HW_MII, 0x0000, 0, 0, NULL, in_pm); |
| 299 | if (ret < 0) |
| 300 | netdev_err(dev->net, "Failed to enable hardware MII access\n"); |
| 301 | return ret; |
| 302 | } |
| 303 | |
| 304 | int asix_read_phy_addr(struct usbnet *dev, int internal) |
| 305 | { |
| 306 | int offset = (internal ? 1 : 0); |
| 307 | u8 buf[2]; |
| 308 | int ret = asix_read_cmd(dev, AX_CMD_READ_PHY_ID, 0, 0, 2, buf, 0); |
| 309 | |
| 310 | netdev_dbg(dev->net, "asix_get_phy_addr()\n"); |
| 311 | |
| 312 | if (ret < 0) { |
| 313 | netdev_err(dev->net, "Error reading PHYID register: %02x\n", ret); |
| 314 | goto out; |
| 315 | } |
| 316 | netdev_dbg(dev->net, "asix_get_phy_addr() returning 0x%04x\n", |
| 317 | *((__le16 *)buf)); |
| 318 | ret = buf[offset]; |
| 319 | |
| 320 | out: |
| 321 | return ret; |
| 322 | } |
| 323 | |
| 324 | int asix_get_phy_addr(struct usbnet *dev) |
| 325 | { |
| 326 | /* return the address of the internal phy */ |
| 327 | return asix_read_phy_addr(dev, 1); |
| 328 | } |
| 329 | |
| 330 | |
| 331 | int asix_sw_reset(struct usbnet *dev, u8 flags, int in_pm) |
| 332 | { |
| 333 | int ret; |
| 334 | |
| 335 | ret = asix_write_cmd(dev, AX_CMD_SW_RESET, flags, 0, 0, NULL, in_pm); |
| 336 | if (ret < 0) |
| 337 | netdev_err(dev->net, "Failed to send software reset: %02x\n", ret); |
| 338 | |
| 339 | return ret; |
| 340 | } |
| 341 | |
| 342 | u16 asix_read_rx_ctl(struct usbnet *dev, int in_pm) |
| 343 | { |
| 344 | __le16 v; |
| 345 | int ret = asix_read_cmd(dev, AX_CMD_READ_RX_CTL, 0, 0, 2, &v, in_pm); |
| 346 | |
| 347 | if (ret < 0) { |
| 348 | netdev_err(dev->net, "Error reading RX_CTL register: %02x\n", ret); |
| 349 | goto out; |
| 350 | } |
| 351 | ret = le16_to_cpu(v); |
| 352 | out: |
| 353 | return ret; |
| 354 | } |
| 355 | |
| 356 | int asix_write_rx_ctl(struct usbnet *dev, u16 mode, int in_pm) |
| 357 | { |
| 358 | int ret; |
| 359 | |
| 360 | netdev_dbg(dev->net, "asix_write_rx_ctl() - mode = 0x%04x\n", mode); |
| 361 | ret = asix_write_cmd(dev, AX_CMD_WRITE_RX_CTL, mode, 0, 0, NULL, in_pm); |
| 362 | if (ret < 0) |
| 363 | netdev_err(dev->net, "Failed to write RX_CTL mode to 0x%04x: %02x\n", |
| 364 | mode, ret); |
| 365 | |
| 366 | return ret; |
| 367 | } |
| 368 | |
| 369 | u16 asix_read_medium_status(struct usbnet *dev, int in_pm) |
| 370 | { |
| 371 | __le16 v; |
| 372 | int ret = asix_read_cmd(dev, AX_CMD_READ_MEDIUM_STATUS, |
| 373 | 0, 0, 2, &v, in_pm); |
| 374 | |
| 375 | if (ret < 0) { |
| 376 | netdev_err(dev->net, "Error reading Medium Status register: %02x\n", |
| 377 | ret); |
| 378 | return ret; /* TODO: callers not checking for error ret */ |
| 379 | } |
| 380 | |
| 381 | return le16_to_cpu(v); |
| 382 | |
| 383 | } |
| 384 | |
| 385 | int asix_write_medium_mode(struct usbnet *dev, u16 mode, int in_pm) |
| 386 | { |
| 387 | int ret; |
| 388 | |
| 389 | netdev_dbg(dev->net, "asix_write_medium_mode() - mode = 0x%04x\n", mode); |
| 390 | ret = asix_write_cmd(dev, AX_CMD_WRITE_MEDIUM_MODE, |
| 391 | mode, 0, 0, NULL, in_pm); |
| 392 | if (ret < 0) |
| 393 | netdev_err(dev->net, "Failed to write Medium Mode mode to 0x%04x: %02x\n", |
| 394 | mode, ret); |
| 395 | |
| 396 | return ret; |
| 397 | } |
| 398 | |
| 399 | int asix_write_gpio(struct usbnet *dev, u16 value, int sleep, int in_pm) |
| 400 | { |
| 401 | int ret; |
| 402 | |
| 403 | netdev_dbg(dev->net, "asix_write_gpio() - value = 0x%04x\n", value); |
| 404 | ret = asix_write_cmd(dev, AX_CMD_WRITE_GPIOS, value, 0, 0, NULL, in_pm); |
| 405 | if (ret < 0) |
| 406 | netdev_err(dev->net, "Failed to write GPIO value 0x%04x: %02x\n", |
| 407 | value, ret); |
| 408 | |
| 409 | if (sleep) |
| 410 | msleep(sleep); |
| 411 | |
| 412 | return ret; |
| 413 | } |
| 414 | |
| 415 | /* |
| 416 | * AX88772 & AX88178 have a 16-bit RX_CTL value |
| 417 | */ |
| 418 | void asix_set_multicast(struct net_device *net) |
| 419 | { |
| 420 | struct usbnet *dev = netdev_priv(net); |
| 421 | struct asix_data *data = (struct asix_data *)&dev->data; |
| 422 | u16 rx_ctl = AX_DEFAULT_RX_CTL; |
| 423 | |
| 424 | if (net->flags & IFF_PROMISC) { |
| 425 | rx_ctl |= AX_RX_CTL_PRO; |
| 426 | } else if (net->flags & IFF_ALLMULTI || |
| 427 | netdev_mc_count(net) > AX_MAX_MCAST) { |
| 428 | rx_ctl |= AX_RX_CTL_AMALL; |
| 429 | } else if (netdev_mc_empty(net)) { |
| 430 | /* just broadcast and directed */ |
| 431 | } else { |
| 432 | /* We use the 20 byte dev->data |
| 433 | * for our 8 byte filter buffer |
| 434 | * to avoid allocating memory that |
| 435 | * is tricky to free later */ |
| 436 | struct netdev_hw_addr *ha; |
| 437 | u32 crc_bits; |
| 438 | |
| 439 | memset(data->multi_filter, 0, AX_MCAST_FILTER_SIZE); |
| 440 | |
| 441 | /* Build the multicast hash filter. */ |
| 442 | netdev_for_each_mc_addr(ha, net) { |
| 443 | crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26; |
| 444 | data->multi_filter[crc_bits >> 3] |= |
| 445 | 1 << (crc_bits & 7); |
| 446 | } |
| 447 | |
| 448 | asix_write_cmd_async(dev, AX_CMD_WRITE_MULTI_FILTER, 0, 0, |
| 449 | AX_MCAST_FILTER_SIZE, data->multi_filter); |
| 450 | |
| 451 | rx_ctl |= AX_RX_CTL_AM; |
| 452 | } |
| 453 | |
| 454 | asix_write_cmd_async(dev, AX_CMD_WRITE_RX_CTL, rx_ctl, 0, 0, NULL); |
| 455 | } |
| 456 | |
| 457 | int asix_mdio_read(struct net_device *netdev, int phy_id, int loc) |
| 458 | { |
| 459 | struct usbnet *dev = netdev_priv(netdev); |
| 460 | __le16 res; |
| 461 | u8 smsr; |
| 462 | int i = 0; |
| 463 | int ret; |
| 464 | |
| 465 | mutex_lock(&dev->phy_mutex); |
| 466 | do { |
| 467 | ret = asix_set_sw_mii(dev, 0); |
| 468 | if (ret == -ENODEV || ret == -ETIMEDOUT) |
| 469 | break; |
| 470 | usleep_range(1000, 1100); |
| 471 | ret = asix_read_cmd(dev, AX_CMD_STATMNGSTS_REG, |
| 472 | 0, 0, 1, &smsr, 0); |
| 473 | } while (!(smsr & AX_HOST_EN) && (i++ < 30) && (ret != -ENODEV)); |
| 474 | if (ret == -ENODEV || ret == -ETIMEDOUT) { |
| 475 | mutex_unlock(&dev->phy_mutex); |
| 476 | return ret; |
| 477 | } |
| 478 | |
| 479 | asix_read_cmd(dev, AX_CMD_READ_MII_REG, phy_id, |
| 480 | (__u16)loc, 2, &res, 0); |
| 481 | asix_set_hw_mii(dev, 0); |
| 482 | mutex_unlock(&dev->phy_mutex); |
| 483 | |
| 484 | netdev_dbg(dev->net, "asix_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", |
| 485 | phy_id, loc, le16_to_cpu(res)); |
| 486 | |
| 487 | return le16_to_cpu(res); |
| 488 | } |
| 489 | |
| 490 | void asix_mdio_write(struct net_device *netdev, int phy_id, int loc, int val) |
| 491 | { |
| 492 | struct usbnet *dev = netdev_priv(netdev); |
| 493 | __le16 res = cpu_to_le16(val); |
| 494 | u8 smsr; |
| 495 | int i = 0; |
| 496 | int ret; |
| 497 | |
| 498 | netdev_dbg(dev->net, "asix_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", |
| 499 | phy_id, loc, val); |
| 500 | |
| 501 | mutex_lock(&dev->phy_mutex); |
| 502 | do { |
| 503 | ret = asix_set_sw_mii(dev, 0); |
| 504 | if (ret == -ENODEV) |
| 505 | break; |
| 506 | usleep_range(1000, 1100); |
| 507 | ret = asix_read_cmd(dev, AX_CMD_STATMNGSTS_REG, |
| 508 | 0, 0, 1, &smsr, 0); |
| 509 | } while (!(smsr & AX_HOST_EN) && (i++ < 30) && (ret != -ENODEV)); |
| 510 | if (ret == -ENODEV) { |
| 511 | mutex_unlock(&dev->phy_mutex); |
| 512 | return; |
| 513 | } |
| 514 | |
| 515 | asix_write_cmd(dev, AX_CMD_WRITE_MII_REG, phy_id, |
| 516 | (__u16)loc, 2, &res, 0); |
| 517 | asix_set_hw_mii(dev, 0); |
| 518 | mutex_unlock(&dev->phy_mutex); |
| 519 | } |
| 520 | |
| 521 | int asix_mdio_read_nopm(struct net_device *netdev, int phy_id, int loc) |
| 522 | { |
| 523 | struct usbnet *dev = netdev_priv(netdev); |
| 524 | __le16 res; |
| 525 | u8 smsr; |
| 526 | int i = 0; |
| 527 | int ret; |
| 528 | |
| 529 | mutex_lock(&dev->phy_mutex); |
| 530 | do { |
| 531 | ret = asix_set_sw_mii(dev, 1); |
| 532 | if (ret == -ENODEV || ret == -ETIMEDOUT) |
| 533 | break; |
| 534 | usleep_range(1000, 1100); |
| 535 | ret = asix_read_cmd(dev, AX_CMD_STATMNGSTS_REG, |
| 536 | 0, 0, 1, &smsr, 1); |
| 537 | } while (!(smsr & AX_HOST_EN) && (i++ < 30) && (ret != -ENODEV)); |
| 538 | if (ret == -ENODEV || ret == -ETIMEDOUT) { |
| 539 | mutex_unlock(&dev->phy_mutex); |
| 540 | return ret; |
| 541 | } |
| 542 | |
| 543 | asix_read_cmd(dev, AX_CMD_READ_MII_REG, phy_id, |
| 544 | (__u16)loc, 2, &res, 1); |
| 545 | asix_set_hw_mii(dev, 1); |
| 546 | mutex_unlock(&dev->phy_mutex); |
| 547 | |
| 548 | netdev_dbg(dev->net, "asix_mdio_read_nopm() phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", |
| 549 | phy_id, loc, le16_to_cpu(res)); |
| 550 | |
| 551 | return le16_to_cpu(res); |
| 552 | } |
| 553 | |
| 554 | void |
| 555 | asix_mdio_write_nopm(struct net_device *netdev, int phy_id, int loc, int val) |
| 556 | { |
| 557 | struct usbnet *dev = netdev_priv(netdev); |
| 558 | __le16 res = cpu_to_le16(val); |
| 559 | u8 smsr; |
| 560 | int i = 0; |
| 561 | int ret; |
| 562 | |
| 563 | netdev_dbg(dev->net, "asix_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", |
| 564 | phy_id, loc, val); |
| 565 | |
| 566 | mutex_lock(&dev->phy_mutex); |
| 567 | do { |
| 568 | ret = asix_set_sw_mii(dev, 1); |
| 569 | if (ret == -ENODEV) |
| 570 | break; |
| 571 | usleep_range(1000, 1100); |
| 572 | ret = asix_read_cmd(dev, AX_CMD_STATMNGSTS_REG, |
| 573 | 0, 0, 1, &smsr, 1); |
| 574 | } while (!(smsr & AX_HOST_EN) && (i++ < 30) && (ret != -ENODEV)); |
| 575 | if (ret == -ENODEV) { |
| 576 | mutex_unlock(&dev->phy_mutex); |
| 577 | return; |
| 578 | } |
| 579 | |
| 580 | asix_write_cmd(dev, AX_CMD_WRITE_MII_REG, phy_id, |
| 581 | (__u16)loc, 2, &res, 1); |
| 582 | asix_set_hw_mii(dev, 1); |
| 583 | mutex_unlock(&dev->phy_mutex); |
| 584 | } |
| 585 | |
| 586 | void asix_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) |
| 587 | { |
| 588 | struct usbnet *dev = netdev_priv(net); |
| 589 | u8 opt; |
| 590 | |
| 591 | if (asix_read_cmd(dev, AX_CMD_READ_MONITOR_MODE, |
| 592 | 0, 0, 1, &opt, 0) < 0) { |
| 593 | wolinfo->supported = 0; |
| 594 | wolinfo->wolopts = 0; |
| 595 | return; |
| 596 | } |
| 597 | wolinfo->supported = WAKE_PHY | WAKE_MAGIC; |
| 598 | wolinfo->wolopts = 0; |
| 599 | if (opt & AX_MONITOR_LINK) |
| 600 | wolinfo->wolopts |= WAKE_PHY; |
| 601 | if (opt & AX_MONITOR_MAGIC) |
| 602 | wolinfo->wolopts |= WAKE_MAGIC; |
| 603 | } |
| 604 | |
| 605 | int asix_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) |
| 606 | { |
| 607 | struct usbnet *dev = netdev_priv(net); |
| 608 | u8 opt = 0; |
| 609 | |
| 610 | if (wolinfo->wolopts & ~(WAKE_PHY | WAKE_MAGIC)) |
| 611 | return -EINVAL; |
| 612 | |
| 613 | if (wolinfo->wolopts & WAKE_PHY) |
| 614 | opt |= AX_MONITOR_LINK; |
| 615 | if (wolinfo->wolopts & WAKE_MAGIC) |
| 616 | opt |= AX_MONITOR_MAGIC; |
| 617 | |
| 618 | if (asix_write_cmd(dev, AX_CMD_WRITE_MONITOR_MODE, |
| 619 | opt, 0, 0, NULL, 0) < 0) |
| 620 | return -EINVAL; |
| 621 | |
| 622 | return 0; |
| 623 | } |
| 624 | |
| 625 | int asix_get_eeprom_len(struct net_device *net) |
| 626 | { |
| 627 | return AX_EEPROM_LEN; |
| 628 | } |
| 629 | |
| 630 | int asix_get_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom, |
| 631 | u8 *data) |
| 632 | { |
| 633 | struct usbnet *dev = netdev_priv(net); |
| 634 | u16 *eeprom_buff; |
| 635 | int first_word, last_word; |
| 636 | int i; |
| 637 | |
| 638 | if (eeprom->len == 0) |
| 639 | return -EINVAL; |
| 640 | |
| 641 | eeprom->magic = AX_EEPROM_MAGIC; |
| 642 | |
| 643 | first_word = eeprom->offset >> 1; |
| 644 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| 645 | |
| 646 | eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), |
| 647 | GFP_KERNEL); |
| 648 | if (!eeprom_buff) |
| 649 | return -ENOMEM; |
| 650 | |
| 651 | /* ax8817x returns 2 bytes from eeprom on read */ |
| 652 | for (i = first_word; i <= last_word; i++) { |
| 653 | if (asix_read_cmd(dev, AX_CMD_READ_EEPROM, i, 0, 2, |
| 654 | &eeprom_buff[i - first_word], 0) < 0) { |
| 655 | kfree(eeprom_buff); |
| 656 | return -EIO; |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | memcpy(data, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); |
| 661 | kfree(eeprom_buff); |
| 662 | return 0; |
| 663 | } |
| 664 | |
| 665 | int asix_set_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom, |
| 666 | u8 *data) |
| 667 | { |
| 668 | struct usbnet *dev = netdev_priv(net); |
| 669 | u16 *eeprom_buff; |
| 670 | int first_word, last_word; |
| 671 | int i; |
| 672 | int ret; |
| 673 | |
| 674 | netdev_dbg(net, "write EEPROM len %d, offset %d, magic 0x%x\n", |
| 675 | eeprom->len, eeprom->offset, eeprom->magic); |
| 676 | |
| 677 | if (eeprom->len == 0) |
| 678 | return -EINVAL; |
| 679 | |
| 680 | if (eeprom->magic != AX_EEPROM_MAGIC) |
| 681 | return -EINVAL; |
| 682 | |
| 683 | first_word = eeprom->offset >> 1; |
| 684 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| 685 | |
| 686 | eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), |
| 687 | GFP_KERNEL); |
| 688 | if (!eeprom_buff) |
| 689 | return -ENOMEM; |
| 690 | |
| 691 | /* align data to 16 bit boundaries, read the missing data from |
| 692 | the EEPROM */ |
| 693 | if (eeprom->offset & 1) { |
| 694 | ret = asix_read_cmd(dev, AX_CMD_READ_EEPROM, first_word, 0, 2, |
| 695 | &eeprom_buff[0], 0); |
| 696 | if (ret < 0) { |
| 697 | netdev_err(net, "Failed to read EEPROM at offset 0x%02x.\n", first_word); |
| 698 | goto free; |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | if ((eeprom->offset + eeprom->len) & 1) { |
| 703 | ret = asix_read_cmd(dev, AX_CMD_READ_EEPROM, last_word, 0, 2, |
| 704 | &eeprom_buff[last_word - first_word], 0); |
| 705 | if (ret < 0) { |
| 706 | netdev_err(net, "Failed to read EEPROM at offset 0x%02x.\n", last_word); |
| 707 | goto free; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | memcpy((u8 *)eeprom_buff + (eeprom->offset & 1), data, eeprom->len); |
| 712 | |
| 713 | /* write data to EEPROM */ |
| 714 | ret = asix_write_cmd(dev, AX_CMD_WRITE_ENABLE, 0x0000, 0, 0, NULL, 0); |
| 715 | if (ret < 0) { |
| 716 | netdev_err(net, "Failed to enable EEPROM write\n"); |
| 717 | goto free; |
| 718 | } |
| 719 | msleep(20); |
| 720 | |
| 721 | for (i = first_word; i <= last_word; i++) { |
| 722 | netdev_dbg(net, "write to EEPROM at offset 0x%02x, data 0x%04x\n", |
| 723 | i, eeprom_buff[i - first_word]); |
| 724 | ret = asix_write_cmd(dev, AX_CMD_WRITE_EEPROM, i, |
| 725 | eeprom_buff[i - first_word], 0, NULL, 0); |
| 726 | if (ret < 0) { |
| 727 | netdev_err(net, "Failed to write EEPROM at offset 0x%02x.\n", |
| 728 | i); |
| 729 | goto free; |
| 730 | } |
| 731 | msleep(20); |
| 732 | } |
| 733 | |
| 734 | ret = asix_write_cmd(dev, AX_CMD_WRITE_DISABLE, 0x0000, 0, 0, NULL, 0); |
| 735 | if (ret < 0) { |
| 736 | netdev_err(net, "Failed to disable EEPROM write\n"); |
| 737 | goto free; |
| 738 | } |
| 739 | |
| 740 | ret = 0; |
| 741 | free: |
| 742 | kfree(eeprom_buff); |
| 743 | return ret; |
| 744 | } |
| 745 | |
| 746 | void asix_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *info) |
| 747 | { |
| 748 | /* Inherit standard device info */ |
| 749 | usbnet_get_drvinfo(net, info); |
| 750 | strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); |
| 751 | strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); |
| 752 | } |
| 753 | |
| 754 | int asix_set_mac_address(struct net_device *net, void *p) |
| 755 | { |
| 756 | struct usbnet *dev = netdev_priv(net); |
| 757 | struct asix_data *data = (struct asix_data *)&dev->data; |
| 758 | struct sockaddr *addr = p; |
| 759 | |
| 760 | if (netif_running(net)) |
| 761 | return -EBUSY; |
| 762 | if (!is_valid_ether_addr(addr->sa_data)) |
| 763 | return -EADDRNOTAVAIL; |
| 764 | |
| 765 | memcpy(net->dev_addr, addr->sa_data, ETH_ALEN); |
| 766 | |
| 767 | /* We use the 20 byte dev->data |
| 768 | * for our 6 byte mac buffer |
| 769 | * to avoid allocating memory that |
| 770 | * is tricky to free later */ |
| 771 | memcpy(data->mac_addr, addr->sa_data, ETH_ALEN); |
| 772 | asix_write_cmd_async(dev, AX_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN, |
| 773 | data->mac_addr); |
| 774 | |
| 775 | return 0; |
| 776 | } |