Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Re-map IO memory to kernel address space so that we can access it. |
| 3 | * This is needed for high PCI addresses that aren't mapped in the |
| 4 | * 640k-1MB IO memory area on PC's |
| 5 | * |
| 6 | * (C) Copyright 1995 1996 Linus Torvalds |
| 7 | */ |
| 8 | |
| 9 | #include <linux/bootmem.h> |
| 10 | #include <linux/init.h> |
| 11 | #include <linux/io.h> |
| 12 | #include <linux/ioport.h> |
| 13 | #include <linux/slab.h> |
| 14 | #include <linux/vmalloc.h> |
| 15 | #include <linux/mmiotrace.h> |
| 16 | #include <linux/mem_encrypt.h> |
| 17 | #include <linux/efi.h> |
| 18 | |
| 19 | #include <asm/set_memory.h> |
| 20 | #include <asm/e820/api.h> |
| 21 | #include <asm/fixmap.h> |
| 22 | #include <asm/pgtable.h> |
| 23 | #include <asm/tlbflush.h> |
| 24 | #include <asm/pgalloc.h> |
| 25 | #include <asm/pat.h> |
| 26 | #include <asm/setup.h> |
| 27 | |
| 28 | #include "physaddr.h" |
| 29 | |
| 30 | struct ioremap_mem_flags { |
| 31 | bool system_ram; |
| 32 | bool desc_other; |
| 33 | }; |
| 34 | |
| 35 | /* |
| 36 | * Fix up the linear direct mapping of the kernel to avoid cache attribute |
| 37 | * conflicts. |
| 38 | */ |
| 39 | int ioremap_change_attr(unsigned long vaddr, unsigned long size, |
| 40 | enum page_cache_mode pcm) |
| 41 | { |
| 42 | unsigned long nrpages = size >> PAGE_SHIFT; |
| 43 | int err; |
| 44 | |
| 45 | switch (pcm) { |
| 46 | case _PAGE_CACHE_MODE_UC: |
| 47 | default: |
| 48 | err = _set_memory_uc(vaddr, nrpages); |
| 49 | break; |
| 50 | case _PAGE_CACHE_MODE_WC: |
| 51 | err = _set_memory_wc(vaddr, nrpages); |
| 52 | break; |
| 53 | case _PAGE_CACHE_MODE_WT: |
| 54 | err = _set_memory_wt(vaddr, nrpages); |
| 55 | break; |
| 56 | case _PAGE_CACHE_MODE_WB: |
| 57 | err = _set_memory_wb(vaddr, nrpages); |
| 58 | break; |
| 59 | } |
| 60 | |
| 61 | return err; |
| 62 | } |
| 63 | |
| 64 | static bool __ioremap_check_ram(struct resource *res) |
| 65 | { |
| 66 | unsigned long start_pfn, stop_pfn; |
| 67 | unsigned long i; |
| 68 | |
| 69 | if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) |
| 70 | return false; |
| 71 | |
| 72 | start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 73 | stop_pfn = (res->end + 1) >> PAGE_SHIFT; |
| 74 | if (stop_pfn > start_pfn) { |
| 75 | for (i = 0; i < (stop_pfn - start_pfn); ++i) |
| 76 | if (pfn_valid(start_pfn + i) && |
| 77 | !PageReserved(pfn_to_page(start_pfn + i))) |
| 78 | return true; |
| 79 | } |
| 80 | |
| 81 | return false; |
| 82 | } |
| 83 | |
| 84 | static int __ioremap_check_desc_other(struct resource *res) |
| 85 | { |
| 86 | return (res->desc != IORES_DESC_NONE); |
| 87 | } |
| 88 | |
| 89 | static int __ioremap_res_check(struct resource *res, void *arg) |
| 90 | { |
| 91 | struct ioremap_mem_flags *flags = arg; |
| 92 | |
| 93 | if (!flags->system_ram) |
| 94 | flags->system_ram = __ioremap_check_ram(res); |
| 95 | |
| 96 | if (!flags->desc_other) |
| 97 | flags->desc_other = __ioremap_check_desc_other(res); |
| 98 | |
| 99 | return flags->system_ram && flags->desc_other; |
| 100 | } |
| 101 | |
| 102 | /* |
| 103 | * To avoid multiple resource walks, this function walks resources marked as |
| 104 | * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a |
| 105 | * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). |
| 106 | */ |
| 107 | static void __ioremap_check_mem(resource_size_t addr, unsigned long size, |
| 108 | struct ioremap_mem_flags *flags) |
| 109 | { |
| 110 | u64 start, end; |
| 111 | |
| 112 | start = (u64)addr; |
| 113 | end = start + size - 1; |
| 114 | memset(flags, 0, sizeof(*flags)); |
| 115 | |
| 116 | walk_mem_res(start, end, flags, __ioremap_res_check); |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * Remap an arbitrary physical address space into the kernel virtual |
| 121 | * address space. It transparently creates kernel huge I/O mapping when |
| 122 | * the physical address is aligned by a huge page size (1GB or 2MB) and |
| 123 | * the requested size is at least the huge page size. |
| 124 | * |
| 125 | * NOTE: MTRRs can override PAT memory types with a 4KB granularity. |
| 126 | * Therefore, the mapping code falls back to use a smaller page toward 4KB |
| 127 | * when a mapping range is covered by non-WB type of MTRRs. |
| 128 | * |
| 129 | * NOTE! We need to allow non-page-aligned mappings too: we will obviously |
| 130 | * have to convert them into an offset in a page-aligned mapping, but the |
| 131 | * caller shouldn't need to know that small detail. |
| 132 | */ |
| 133 | static void __iomem *__ioremap_caller(resource_size_t phys_addr, |
| 134 | unsigned long size, enum page_cache_mode pcm, void *caller) |
| 135 | { |
| 136 | unsigned long offset, vaddr; |
| 137 | resource_size_t last_addr; |
| 138 | const resource_size_t unaligned_phys_addr = phys_addr; |
| 139 | const unsigned long unaligned_size = size; |
| 140 | struct ioremap_mem_flags mem_flags; |
| 141 | struct vm_struct *area; |
| 142 | enum page_cache_mode new_pcm; |
| 143 | pgprot_t prot; |
| 144 | int retval; |
| 145 | void __iomem *ret_addr; |
| 146 | |
| 147 | /* Don't allow wraparound or zero size */ |
| 148 | last_addr = phys_addr + size - 1; |
| 149 | if (!size || last_addr < phys_addr) |
| 150 | return NULL; |
| 151 | |
| 152 | if (!phys_addr_valid(phys_addr)) { |
| 153 | printk(KERN_WARNING "ioremap: invalid physical address %llx\n", |
| 154 | (unsigned long long)phys_addr); |
| 155 | WARN_ON_ONCE(1); |
| 156 | return NULL; |
| 157 | } |
| 158 | |
| 159 | __ioremap_check_mem(phys_addr, size, &mem_flags); |
| 160 | |
| 161 | /* |
| 162 | * Don't allow anybody to remap normal RAM that we're using.. |
| 163 | */ |
| 164 | if (mem_flags.system_ram) { |
| 165 | WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", |
| 166 | &phys_addr, &last_addr); |
| 167 | return NULL; |
| 168 | } |
| 169 | |
| 170 | /* |
| 171 | * Mappings have to be page-aligned |
| 172 | */ |
| 173 | offset = phys_addr & ~PAGE_MASK; |
| 174 | phys_addr &= PHYSICAL_PAGE_MASK; |
| 175 | size = PAGE_ALIGN(last_addr+1) - phys_addr; |
| 176 | |
| 177 | retval = reserve_memtype(phys_addr, (u64)phys_addr + size, |
| 178 | pcm, &new_pcm); |
| 179 | if (retval) { |
| 180 | printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval); |
| 181 | return NULL; |
| 182 | } |
| 183 | |
| 184 | if (pcm != new_pcm) { |
| 185 | if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { |
| 186 | printk(KERN_ERR |
| 187 | "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", |
| 188 | (unsigned long long)phys_addr, |
| 189 | (unsigned long long)(phys_addr + size), |
| 190 | pcm, new_pcm); |
| 191 | goto err_free_memtype; |
| 192 | } |
| 193 | pcm = new_pcm; |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * If the page being mapped is in memory and SEV is active then |
| 198 | * make sure the memory encryption attribute is enabled in the |
| 199 | * resulting mapping. |
| 200 | */ |
| 201 | prot = PAGE_KERNEL_IO; |
| 202 | if (sev_active() && mem_flags.desc_other) |
| 203 | prot = pgprot_encrypted(prot); |
| 204 | |
| 205 | switch (pcm) { |
| 206 | case _PAGE_CACHE_MODE_UC: |
| 207 | default: |
| 208 | prot = __pgprot(pgprot_val(prot) | |
| 209 | cachemode2protval(_PAGE_CACHE_MODE_UC)); |
| 210 | break; |
| 211 | case _PAGE_CACHE_MODE_UC_MINUS: |
| 212 | prot = __pgprot(pgprot_val(prot) | |
| 213 | cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); |
| 214 | break; |
| 215 | case _PAGE_CACHE_MODE_WC: |
| 216 | prot = __pgprot(pgprot_val(prot) | |
| 217 | cachemode2protval(_PAGE_CACHE_MODE_WC)); |
| 218 | break; |
| 219 | case _PAGE_CACHE_MODE_WT: |
| 220 | prot = __pgprot(pgprot_val(prot) | |
| 221 | cachemode2protval(_PAGE_CACHE_MODE_WT)); |
| 222 | break; |
| 223 | case _PAGE_CACHE_MODE_WB: |
| 224 | break; |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * Ok, go for it.. |
| 229 | */ |
| 230 | area = get_vm_area_caller(size, VM_IOREMAP, caller); |
| 231 | if (!area) |
| 232 | goto err_free_memtype; |
| 233 | area->phys_addr = phys_addr; |
| 234 | vaddr = (unsigned long) area->addr; |
| 235 | |
| 236 | if (kernel_map_sync_memtype(phys_addr, size, pcm)) |
| 237 | goto err_free_area; |
| 238 | |
| 239 | if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) |
| 240 | goto err_free_area; |
| 241 | |
| 242 | ret_addr = (void __iomem *) (vaddr + offset); |
| 243 | mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr); |
| 244 | |
| 245 | /* |
| 246 | * Check if the request spans more than any BAR in the iomem resource |
| 247 | * tree. |
| 248 | */ |
| 249 | if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) |
| 250 | pr_warn("caller %pS mapping multiple BARs\n", caller); |
| 251 | |
| 252 | return ret_addr; |
| 253 | err_free_area: |
| 254 | free_vm_area(area); |
| 255 | err_free_memtype: |
| 256 | free_memtype(phys_addr, phys_addr + size); |
| 257 | return NULL; |
| 258 | } |
| 259 | |
| 260 | /** |
| 261 | * ioremap_nocache - map bus memory into CPU space |
| 262 | * @phys_addr: bus address of the memory |
| 263 | * @size: size of the resource to map |
| 264 | * |
| 265 | * ioremap_nocache performs a platform specific sequence of operations to |
| 266 | * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| 267 | * writew/writel functions and the other mmio helpers. The returned |
| 268 | * address is not guaranteed to be usable directly as a virtual |
| 269 | * address. |
| 270 | * |
| 271 | * This version of ioremap ensures that the memory is marked uncachable |
| 272 | * on the CPU as well as honouring existing caching rules from things like |
| 273 | * the PCI bus. Note that there are other caches and buffers on many |
| 274 | * busses. In particular driver authors should read up on PCI writes |
| 275 | * |
| 276 | * It's useful if some control registers are in such an area and |
| 277 | * write combining or read caching is not desirable: |
| 278 | * |
| 279 | * Must be freed with iounmap. |
| 280 | */ |
| 281 | void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size) |
| 282 | { |
| 283 | /* |
| 284 | * Ideally, this should be: |
| 285 | * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; |
| 286 | * |
| 287 | * Till we fix all X drivers to use ioremap_wc(), we will use |
| 288 | * UC MINUS. Drivers that are certain they need or can already |
| 289 | * be converted over to strong UC can use ioremap_uc(). |
| 290 | */ |
| 291 | enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; |
| 292 | |
| 293 | return __ioremap_caller(phys_addr, size, pcm, |
| 294 | __builtin_return_address(0)); |
| 295 | } |
| 296 | EXPORT_SYMBOL(ioremap_nocache); |
| 297 | |
| 298 | /** |
| 299 | * ioremap_uc - map bus memory into CPU space as strongly uncachable |
| 300 | * @phys_addr: bus address of the memory |
| 301 | * @size: size of the resource to map |
| 302 | * |
| 303 | * ioremap_uc performs a platform specific sequence of operations to |
| 304 | * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| 305 | * writew/writel functions and the other mmio helpers. The returned |
| 306 | * address is not guaranteed to be usable directly as a virtual |
| 307 | * address. |
| 308 | * |
| 309 | * This version of ioremap ensures that the memory is marked with a strong |
| 310 | * preference as completely uncachable on the CPU when possible. For non-PAT |
| 311 | * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT |
| 312 | * systems this will set the PAT entry for the pages as strong UC. This call |
| 313 | * will honor existing caching rules from things like the PCI bus. Note that |
| 314 | * there are other caches and buffers on many busses. In particular driver |
| 315 | * authors should read up on PCI writes. |
| 316 | * |
| 317 | * It's useful if some control registers are in such an area and |
| 318 | * write combining or read caching is not desirable: |
| 319 | * |
| 320 | * Must be freed with iounmap. |
| 321 | */ |
| 322 | void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) |
| 323 | { |
| 324 | enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; |
| 325 | |
| 326 | return __ioremap_caller(phys_addr, size, pcm, |
| 327 | __builtin_return_address(0)); |
| 328 | } |
| 329 | EXPORT_SYMBOL_GPL(ioremap_uc); |
| 330 | |
| 331 | /** |
| 332 | * ioremap_wc - map memory into CPU space write combined |
| 333 | * @phys_addr: bus address of the memory |
| 334 | * @size: size of the resource to map |
| 335 | * |
| 336 | * This version of ioremap ensures that the memory is marked write combining. |
| 337 | * Write combining allows faster writes to some hardware devices. |
| 338 | * |
| 339 | * Must be freed with iounmap. |
| 340 | */ |
| 341 | void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) |
| 342 | { |
| 343 | return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, |
| 344 | __builtin_return_address(0)); |
| 345 | } |
| 346 | EXPORT_SYMBOL(ioremap_wc); |
| 347 | |
| 348 | /** |
| 349 | * ioremap_wt - map memory into CPU space write through |
| 350 | * @phys_addr: bus address of the memory |
| 351 | * @size: size of the resource to map |
| 352 | * |
| 353 | * This version of ioremap ensures that the memory is marked write through. |
| 354 | * Write through stores data into memory while keeping the cache up-to-date. |
| 355 | * |
| 356 | * Must be freed with iounmap. |
| 357 | */ |
| 358 | void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) |
| 359 | { |
| 360 | return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, |
| 361 | __builtin_return_address(0)); |
| 362 | } |
| 363 | EXPORT_SYMBOL(ioremap_wt); |
| 364 | |
| 365 | void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) |
| 366 | { |
| 367 | return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, |
| 368 | __builtin_return_address(0)); |
| 369 | } |
| 370 | EXPORT_SYMBOL(ioremap_cache); |
| 371 | |
| 372 | void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, |
| 373 | unsigned long prot_val) |
| 374 | { |
| 375 | return __ioremap_caller(phys_addr, size, |
| 376 | pgprot2cachemode(__pgprot(prot_val)), |
| 377 | __builtin_return_address(0)); |
| 378 | } |
| 379 | EXPORT_SYMBOL(ioremap_prot); |
| 380 | |
| 381 | /** |
| 382 | * iounmap - Free a IO remapping |
| 383 | * @addr: virtual address from ioremap_* |
| 384 | * |
| 385 | * Caller must ensure there is only one unmapping for the same pointer. |
| 386 | */ |
| 387 | void iounmap(volatile void __iomem *addr) |
| 388 | { |
| 389 | struct vm_struct *p, *o; |
| 390 | |
| 391 | if ((void __force *)addr <= high_memory) |
| 392 | return; |
| 393 | |
| 394 | /* |
| 395 | * The PCI/ISA range special-casing was removed from __ioremap() |
| 396 | * so this check, in theory, can be removed. However, there are |
| 397 | * cases where iounmap() is called for addresses not obtained via |
| 398 | * ioremap() (vga16fb for example). Add a warning so that these |
| 399 | * cases can be caught and fixed. |
| 400 | */ |
| 401 | if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && |
| 402 | (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { |
| 403 | WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); |
| 404 | return; |
| 405 | } |
| 406 | |
| 407 | mmiotrace_iounmap(addr); |
| 408 | |
| 409 | addr = (volatile void __iomem *) |
| 410 | (PAGE_MASK & (unsigned long __force)addr); |
| 411 | |
| 412 | /* Use the vm area unlocked, assuming the caller |
| 413 | ensures there isn't another iounmap for the same address |
| 414 | in parallel. Reuse of the virtual address is prevented by |
| 415 | leaving it in the global lists until we're done with it. |
| 416 | cpa takes care of the direct mappings. */ |
| 417 | p = find_vm_area((void __force *)addr); |
| 418 | |
| 419 | if (!p) { |
| 420 | printk(KERN_ERR "iounmap: bad address %p\n", addr); |
| 421 | dump_stack(); |
| 422 | return; |
| 423 | } |
| 424 | |
| 425 | free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p)); |
| 426 | |
| 427 | /* Finally remove it */ |
| 428 | o = remove_vm_area((void __force *)addr); |
| 429 | BUG_ON(p != o || o == NULL); |
| 430 | kfree(p); |
| 431 | } |
| 432 | EXPORT_SYMBOL(iounmap); |
| 433 | |
| 434 | int __init arch_ioremap_pud_supported(void) |
| 435 | { |
| 436 | #ifdef CONFIG_X86_64 |
| 437 | return boot_cpu_has(X86_FEATURE_GBPAGES); |
| 438 | #else |
| 439 | return 0; |
| 440 | #endif |
| 441 | } |
| 442 | |
| 443 | int __init arch_ioremap_pmd_supported(void) |
| 444 | { |
| 445 | return boot_cpu_has(X86_FEATURE_PSE); |
| 446 | } |
| 447 | |
| 448 | /* |
| 449 | * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| 450 | * access |
| 451 | */ |
| 452 | void *xlate_dev_mem_ptr(phys_addr_t phys) |
| 453 | { |
| 454 | unsigned long start = phys & PAGE_MASK; |
| 455 | unsigned long offset = phys & ~PAGE_MASK; |
| 456 | void *vaddr; |
| 457 | |
| 458 | /* memremap() maps if RAM, otherwise falls back to ioremap() */ |
| 459 | vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); |
| 460 | |
| 461 | /* Only add the offset on success and return NULL if memremap() failed */ |
| 462 | if (vaddr) |
| 463 | vaddr += offset; |
| 464 | |
| 465 | return vaddr; |
| 466 | } |
| 467 | |
| 468 | void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) |
| 469 | { |
| 470 | memunmap((void *)((unsigned long)addr & PAGE_MASK)); |
| 471 | } |
| 472 | |
| 473 | /* |
| 474 | * Examine the physical address to determine if it is an area of memory |
| 475 | * that should be mapped decrypted. If the memory is not part of the |
| 476 | * kernel usable area it was accessed and created decrypted, so these |
| 477 | * areas should be mapped decrypted. And since the encryption key can |
| 478 | * change across reboots, persistent memory should also be mapped |
| 479 | * decrypted. |
| 480 | * |
| 481 | * If SEV is active, that implies that BIOS/UEFI also ran encrypted so |
| 482 | * only persistent memory should be mapped decrypted. |
| 483 | */ |
| 484 | static bool memremap_should_map_decrypted(resource_size_t phys_addr, |
| 485 | unsigned long size) |
| 486 | { |
| 487 | int is_pmem; |
| 488 | |
| 489 | /* |
| 490 | * Check if the address is part of a persistent memory region. |
| 491 | * This check covers areas added by E820, EFI and ACPI. |
| 492 | */ |
| 493 | is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, |
| 494 | IORES_DESC_PERSISTENT_MEMORY); |
| 495 | if (is_pmem != REGION_DISJOINT) |
| 496 | return true; |
| 497 | |
| 498 | /* |
| 499 | * Check if the non-volatile attribute is set for an EFI |
| 500 | * reserved area. |
| 501 | */ |
| 502 | if (efi_enabled(EFI_BOOT)) { |
| 503 | switch (efi_mem_type(phys_addr)) { |
| 504 | case EFI_RESERVED_TYPE: |
| 505 | if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) |
| 506 | return true; |
| 507 | break; |
| 508 | default: |
| 509 | break; |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | /* Check if the address is outside kernel usable area */ |
| 514 | switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { |
| 515 | case E820_TYPE_RESERVED: |
| 516 | case E820_TYPE_ACPI: |
| 517 | case E820_TYPE_NVS: |
| 518 | case E820_TYPE_UNUSABLE: |
| 519 | /* For SEV, these areas are encrypted */ |
| 520 | if (sev_active()) |
| 521 | break; |
| 522 | /* Fallthrough */ |
| 523 | |
| 524 | case E820_TYPE_PRAM: |
| 525 | return true; |
| 526 | default: |
| 527 | break; |
| 528 | } |
| 529 | |
| 530 | return false; |
| 531 | } |
| 532 | |
| 533 | /* |
| 534 | * Examine the physical address to determine if it is EFI data. Check |
| 535 | * it against the boot params structure and EFI tables and memory types. |
| 536 | */ |
| 537 | static bool memremap_is_efi_data(resource_size_t phys_addr, |
| 538 | unsigned long size) |
| 539 | { |
| 540 | u64 paddr; |
| 541 | |
| 542 | /* Check if the address is part of EFI boot/runtime data */ |
| 543 | if (!efi_enabled(EFI_BOOT)) |
| 544 | return false; |
| 545 | |
| 546 | paddr = boot_params.efi_info.efi_memmap_hi; |
| 547 | paddr <<= 32; |
| 548 | paddr |= boot_params.efi_info.efi_memmap; |
| 549 | if (phys_addr == paddr) |
| 550 | return true; |
| 551 | |
| 552 | paddr = boot_params.efi_info.efi_systab_hi; |
| 553 | paddr <<= 32; |
| 554 | paddr |= boot_params.efi_info.efi_systab; |
| 555 | if (phys_addr == paddr) |
| 556 | return true; |
| 557 | |
| 558 | if (efi_is_table_address(phys_addr)) |
| 559 | return true; |
| 560 | |
| 561 | switch (efi_mem_type(phys_addr)) { |
| 562 | case EFI_BOOT_SERVICES_DATA: |
| 563 | case EFI_RUNTIME_SERVICES_DATA: |
| 564 | return true; |
| 565 | default: |
| 566 | break; |
| 567 | } |
| 568 | |
| 569 | return false; |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * Examine the physical address to determine if it is boot data by checking |
| 574 | * it against the boot params setup_data chain. |
| 575 | */ |
| 576 | static bool memremap_is_setup_data(resource_size_t phys_addr, |
| 577 | unsigned long size) |
| 578 | { |
| 579 | struct setup_data *data; |
| 580 | u64 paddr, paddr_next; |
| 581 | |
| 582 | paddr = boot_params.hdr.setup_data; |
| 583 | while (paddr) { |
| 584 | unsigned int len; |
| 585 | |
| 586 | if (phys_addr == paddr) |
| 587 | return true; |
| 588 | |
| 589 | data = memremap(paddr, sizeof(*data), |
| 590 | MEMREMAP_WB | MEMREMAP_DEC); |
| 591 | |
| 592 | paddr_next = data->next; |
| 593 | len = data->len; |
| 594 | |
| 595 | memunmap(data); |
| 596 | |
| 597 | if ((phys_addr > paddr) && (phys_addr < (paddr + len))) |
| 598 | return true; |
| 599 | |
| 600 | paddr = paddr_next; |
| 601 | } |
| 602 | |
| 603 | return false; |
| 604 | } |
| 605 | |
| 606 | /* |
| 607 | * Examine the physical address to determine if it is boot data by checking |
| 608 | * it against the boot params setup_data chain (early boot version). |
| 609 | */ |
| 610 | static bool __init early_memremap_is_setup_data(resource_size_t phys_addr, |
| 611 | unsigned long size) |
| 612 | { |
| 613 | struct setup_data *data; |
| 614 | u64 paddr, paddr_next; |
| 615 | |
| 616 | paddr = boot_params.hdr.setup_data; |
| 617 | while (paddr) { |
| 618 | unsigned int len; |
| 619 | |
| 620 | if (phys_addr == paddr) |
| 621 | return true; |
| 622 | |
| 623 | data = early_memremap_decrypted(paddr, sizeof(*data)); |
| 624 | |
| 625 | paddr_next = data->next; |
| 626 | len = data->len; |
| 627 | |
| 628 | early_memunmap(data, sizeof(*data)); |
| 629 | |
| 630 | if ((phys_addr > paddr) && (phys_addr < (paddr + len))) |
| 631 | return true; |
| 632 | |
| 633 | paddr = paddr_next; |
| 634 | } |
| 635 | |
| 636 | return false; |
| 637 | } |
| 638 | |
| 639 | /* |
| 640 | * Architecture function to determine if RAM remap is allowed. By default, a |
| 641 | * RAM remap will map the data as encrypted. Determine if a RAM remap should |
| 642 | * not be done so that the data will be mapped decrypted. |
| 643 | */ |
| 644 | bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, |
| 645 | unsigned long flags) |
| 646 | { |
| 647 | if (!mem_encrypt_active()) |
| 648 | return true; |
| 649 | |
| 650 | if (flags & MEMREMAP_ENC) |
| 651 | return true; |
| 652 | |
| 653 | if (flags & MEMREMAP_DEC) |
| 654 | return false; |
| 655 | |
| 656 | if (sme_active()) { |
| 657 | if (memremap_is_setup_data(phys_addr, size) || |
| 658 | memremap_is_efi_data(phys_addr, size)) |
| 659 | return false; |
| 660 | } |
| 661 | |
| 662 | return !memremap_should_map_decrypted(phys_addr, size); |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | * Architecture override of __weak function to adjust the protection attributes |
| 667 | * used when remapping memory. By default, early_memremap() will map the data |
| 668 | * as encrypted. Determine if an encrypted mapping should not be done and set |
| 669 | * the appropriate protection attributes. |
| 670 | */ |
| 671 | pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, |
| 672 | unsigned long size, |
| 673 | pgprot_t prot) |
| 674 | { |
| 675 | bool encrypted_prot; |
| 676 | |
| 677 | if (!mem_encrypt_active()) |
| 678 | return prot; |
| 679 | |
| 680 | encrypted_prot = true; |
| 681 | |
| 682 | if (sme_active()) { |
| 683 | if (early_memremap_is_setup_data(phys_addr, size) || |
| 684 | memremap_is_efi_data(phys_addr, size)) |
| 685 | encrypted_prot = false; |
| 686 | } |
| 687 | |
| 688 | if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) |
| 689 | encrypted_prot = false; |
| 690 | |
| 691 | return encrypted_prot ? pgprot_encrypted(prot) |
| 692 | : pgprot_decrypted(prot); |
| 693 | } |
| 694 | |
| 695 | bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) |
| 696 | { |
| 697 | return arch_memremap_can_ram_remap(phys_addr, size, 0); |
| 698 | } |
| 699 | |
| 700 | #ifdef CONFIG_ARCH_USE_MEMREMAP_PROT |
| 701 | /* Remap memory with encryption */ |
| 702 | void __init *early_memremap_encrypted(resource_size_t phys_addr, |
| 703 | unsigned long size) |
| 704 | { |
| 705 | return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); |
| 706 | } |
| 707 | |
| 708 | /* |
| 709 | * Remap memory with encryption and write-protected - cannot be called |
| 710 | * before pat_init() is called |
| 711 | */ |
| 712 | void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, |
| 713 | unsigned long size) |
| 714 | { |
| 715 | /* Be sure the write-protect PAT entry is set for write-protect */ |
| 716 | if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP) |
| 717 | return NULL; |
| 718 | |
| 719 | return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); |
| 720 | } |
| 721 | |
| 722 | /* Remap memory without encryption */ |
| 723 | void __init *early_memremap_decrypted(resource_size_t phys_addr, |
| 724 | unsigned long size) |
| 725 | { |
| 726 | return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); |
| 727 | } |
| 728 | |
| 729 | /* |
| 730 | * Remap memory without encryption and write-protected - cannot be called |
| 731 | * before pat_init() is called |
| 732 | */ |
| 733 | void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, |
| 734 | unsigned long size) |
| 735 | { |
| 736 | /* Be sure the write-protect PAT entry is set for write-protect */ |
| 737 | if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP) |
| 738 | return NULL; |
| 739 | |
| 740 | return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); |
| 741 | } |
| 742 | #endif /* CONFIG_ARCH_USE_MEMREMAP_PROT */ |
| 743 | |
| 744 | static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; |
| 745 | |
| 746 | static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) |
| 747 | { |
| 748 | /* Don't assume we're using swapper_pg_dir at this point */ |
| 749 | pgd_t *base = __va(read_cr3_pa()); |
| 750 | pgd_t *pgd = &base[pgd_index(addr)]; |
| 751 | p4d_t *p4d = p4d_offset(pgd, addr); |
| 752 | pud_t *pud = pud_offset(p4d, addr); |
| 753 | pmd_t *pmd = pmd_offset(pud, addr); |
| 754 | |
| 755 | return pmd; |
| 756 | } |
| 757 | |
| 758 | static inline pte_t * __init early_ioremap_pte(unsigned long addr) |
| 759 | { |
| 760 | return &bm_pte[pte_index(addr)]; |
| 761 | } |
| 762 | |
| 763 | bool __init is_early_ioremap_ptep(pte_t *ptep) |
| 764 | { |
| 765 | return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; |
| 766 | } |
| 767 | |
| 768 | void __init early_ioremap_init(void) |
| 769 | { |
| 770 | pmd_t *pmd; |
| 771 | |
| 772 | #ifdef CONFIG_X86_64 |
| 773 | BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); |
| 774 | #else |
| 775 | WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); |
| 776 | #endif |
| 777 | |
| 778 | early_ioremap_setup(); |
| 779 | |
| 780 | pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); |
| 781 | memset(bm_pte, 0, sizeof(bm_pte)); |
| 782 | pmd_populate_kernel(&init_mm, pmd, bm_pte); |
| 783 | |
| 784 | /* |
| 785 | * The boot-ioremap range spans multiple pmds, for which |
| 786 | * we are not prepared: |
| 787 | */ |
| 788 | #define __FIXADDR_TOP (-PAGE_SIZE) |
| 789 | BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) |
| 790 | != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); |
| 791 | #undef __FIXADDR_TOP |
| 792 | if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) { |
| 793 | WARN_ON(1); |
| 794 | printk(KERN_WARNING "pmd %p != %p\n", |
| 795 | pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))); |
| 796 | printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", |
| 797 | fix_to_virt(FIX_BTMAP_BEGIN)); |
| 798 | printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n", |
| 799 | fix_to_virt(FIX_BTMAP_END)); |
| 800 | |
| 801 | printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END); |
| 802 | printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n", |
| 803 | FIX_BTMAP_BEGIN); |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | void __init __early_set_fixmap(enum fixed_addresses idx, |
| 808 | phys_addr_t phys, pgprot_t flags) |
| 809 | { |
| 810 | unsigned long addr = __fix_to_virt(idx); |
| 811 | pte_t *pte; |
| 812 | |
| 813 | if (idx >= __end_of_fixed_addresses) { |
| 814 | BUG(); |
| 815 | return; |
| 816 | } |
| 817 | pte = early_ioremap_pte(addr); |
| 818 | |
| 819 | /* Sanitize 'prot' against any unsupported bits: */ |
| 820 | pgprot_val(flags) &= __default_kernel_pte_mask; |
| 821 | |
| 822 | if (pgprot_val(flags)) |
| 823 | set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); |
| 824 | else |
| 825 | pte_clear(&init_mm, addr, pte); |
| 826 | __flush_tlb_one_kernel(addr); |
| 827 | } |