Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef __KVM_X86_MMU_H |
| 3 | #define __KVM_X86_MMU_H |
| 4 | |
| 5 | #include <linux/kvm_host.h> |
| 6 | #include "kvm_cache_regs.h" |
| 7 | |
| 8 | #define PT64_PT_BITS 9 |
| 9 | #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) |
| 10 | #define PT32_PT_BITS 10 |
| 11 | #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) |
| 12 | |
| 13 | #define PT_WRITABLE_SHIFT 1 |
| 14 | #define PT_USER_SHIFT 2 |
| 15 | |
| 16 | #define PT_PRESENT_MASK (1ULL << 0) |
| 17 | #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) |
| 18 | #define PT_USER_MASK (1ULL << PT_USER_SHIFT) |
| 19 | #define PT_PWT_MASK (1ULL << 3) |
| 20 | #define PT_PCD_MASK (1ULL << 4) |
| 21 | #define PT_ACCESSED_SHIFT 5 |
| 22 | #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) |
| 23 | #define PT_DIRTY_SHIFT 6 |
| 24 | #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) |
| 25 | #define PT_PAGE_SIZE_SHIFT 7 |
| 26 | #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) |
| 27 | #define PT_PAT_MASK (1ULL << 7) |
| 28 | #define PT_GLOBAL_MASK (1ULL << 8) |
| 29 | #define PT64_NX_SHIFT 63 |
| 30 | #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) |
| 31 | |
| 32 | #define PT_PAT_SHIFT 7 |
| 33 | #define PT_DIR_PAT_SHIFT 12 |
| 34 | #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) |
| 35 | |
| 36 | #define PT32_DIR_PSE36_SIZE 4 |
| 37 | #define PT32_DIR_PSE36_SHIFT 13 |
| 38 | #define PT32_DIR_PSE36_MASK \ |
| 39 | (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) |
| 40 | |
| 41 | #define PT64_ROOT_5LEVEL 5 |
| 42 | #define PT64_ROOT_4LEVEL 4 |
| 43 | #define PT32_ROOT_LEVEL 2 |
| 44 | #define PT32E_ROOT_LEVEL 3 |
| 45 | |
| 46 | #define PT_PDPE_LEVEL 3 |
| 47 | #define PT_DIRECTORY_LEVEL 2 |
| 48 | #define PT_PAGE_TABLE_LEVEL 1 |
| 49 | #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1) |
| 50 | |
| 51 | static inline u64 rsvd_bits(int s, int e) |
| 52 | { |
| 53 | if (e < s) |
| 54 | return 0; |
| 55 | |
| 56 | return ((1ULL << (e - s + 1)) - 1) << s; |
| 57 | } |
| 58 | |
| 59 | void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value); |
| 60 | |
| 61 | void |
| 62 | reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context); |
| 63 | |
| 64 | void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots); |
| 65 | void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu); |
| 66 | void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, |
| 67 | bool accessed_dirty, gpa_t new_eptp); |
| 68 | bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu); |
| 69 | int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, |
| 70 | u64 fault_address, char *insn, int insn_len); |
| 71 | |
| 72 | static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm) |
| 73 | { |
| 74 | if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) |
| 75 | return kvm->arch.n_max_mmu_pages - |
| 76 | kvm->arch.n_used_mmu_pages; |
| 77 | |
| 78 | return 0; |
| 79 | } |
| 80 | |
| 81 | static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) |
| 82 | { |
| 83 | if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE)) |
| 84 | return 0; |
| 85 | |
| 86 | return kvm_mmu_load(vcpu); |
| 87 | } |
| 88 | |
| 89 | static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3) |
| 90 | { |
| 91 | BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0); |
| 92 | |
| 93 | return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE) |
| 94 | ? cr3 & X86_CR3_PCID_MASK |
| 95 | : 0; |
| 96 | } |
| 97 | |
| 98 | static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu) |
| 99 | { |
| 100 | return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu)); |
| 101 | } |
| 102 | |
| 103 | static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu) |
| 104 | { |
| 105 | if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| 106 | vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa | |
| 107 | kvm_get_active_pcid(vcpu)); |
| 108 | } |
| 109 | |
| 110 | /* |
| 111 | * Currently, we have two sorts of write-protection, a) the first one |
| 112 | * write-protects guest page to sync the guest modification, b) another one is |
| 113 | * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences |
| 114 | * between these two sorts are: |
| 115 | * 1) the first case clears SPTE_MMU_WRITEABLE bit. |
| 116 | * 2) the first case requires flushing tlb immediately avoiding corrupting |
| 117 | * shadow page table between all vcpus so it should be in the protection of |
| 118 | * mmu-lock. And the another case does not need to flush tlb until returning |
| 119 | * the dirty bitmap to userspace since it only write-protects the page |
| 120 | * logged in the bitmap, that means the page in the dirty bitmap is not |
| 121 | * missed, so it can flush tlb out of mmu-lock. |
| 122 | * |
| 123 | * So, there is the problem: the first case can meet the corrupted tlb caused |
| 124 | * by another case which write-protects pages but without flush tlb |
| 125 | * immediately. In order to making the first case be aware this problem we let |
| 126 | * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit |
| 127 | * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit. |
| 128 | * |
| 129 | * Anyway, whenever a spte is updated (only permission and status bits are |
| 130 | * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes |
| 131 | * readonly, if that happens, we need to flush tlb. Fortunately, |
| 132 | * mmu_spte_update() has already handled it perfectly. |
| 133 | * |
| 134 | * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK: |
| 135 | * - if we want to see if it has writable tlb entry or if the spte can be |
| 136 | * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most |
| 137 | * case, otherwise |
| 138 | * - if we fix page fault on the spte or do write-protection by dirty logging, |
| 139 | * check PT_WRITABLE_MASK. |
| 140 | * |
| 141 | * TODO: introduce APIs to split these two cases. |
| 142 | */ |
| 143 | static inline int is_writable_pte(unsigned long pte) |
| 144 | { |
| 145 | return pte & PT_WRITABLE_MASK; |
| 146 | } |
| 147 | |
| 148 | static inline bool is_write_protection(struct kvm_vcpu *vcpu) |
| 149 | { |
| 150 | return kvm_read_cr0_bits(vcpu, X86_CR0_WP); |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * Check if a given access (described through the I/D, W/R and U/S bits of a |
| 155 | * page fault error code pfec) causes a permission fault with the given PTE |
| 156 | * access rights (in ACC_* format). |
| 157 | * |
| 158 | * Return zero if the access does not fault; return the page fault error code |
| 159 | * if the access faults. |
| 160 | */ |
| 161 | static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| 162 | unsigned pte_access, unsigned pte_pkey, |
| 163 | unsigned pfec) |
| 164 | { |
| 165 | int cpl = kvm_x86_ops->get_cpl(vcpu); |
| 166 | unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); |
| 167 | |
| 168 | /* |
| 169 | * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1. |
| 170 | * |
| 171 | * If CPL = 3, SMAP applies to all supervisor-mode data accesses |
| 172 | * (these are implicit supervisor accesses) regardless of the value |
| 173 | * of EFLAGS.AC. |
| 174 | * |
| 175 | * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving |
| 176 | * the result in X86_EFLAGS_AC. We then insert it in place of |
| 177 | * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec, |
| 178 | * but it will be one in index if SMAP checks are being overridden. |
| 179 | * It is important to keep this branchless. |
| 180 | */ |
| 181 | unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC); |
| 182 | int index = (pfec >> 1) + |
| 183 | (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1)); |
| 184 | bool fault = (mmu->permissions[index] >> pte_access) & 1; |
| 185 | u32 errcode = PFERR_PRESENT_MASK; |
| 186 | |
| 187 | WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK)); |
| 188 | if (unlikely(mmu->pkru_mask)) { |
| 189 | u32 pkru_bits, offset; |
| 190 | |
| 191 | /* |
| 192 | * PKRU defines 32 bits, there are 16 domains and 2 |
| 193 | * attribute bits per domain in pkru. pte_pkey is the |
| 194 | * index of the protection domain, so pte_pkey * 2 is |
| 195 | * is the index of the first bit for the domain. |
| 196 | */ |
| 197 | pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3; |
| 198 | |
| 199 | /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */ |
| 200 | offset = (pfec & ~1) + |
| 201 | ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT)); |
| 202 | |
| 203 | pkru_bits &= mmu->pkru_mask >> offset; |
| 204 | errcode |= -pkru_bits & PFERR_PK_MASK; |
| 205 | fault |= (pkru_bits != 0); |
| 206 | } |
| 207 | |
| 208 | return -(u32)fault & errcode; |
| 209 | } |
| 210 | |
| 211 | void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm); |
| 212 | void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); |
| 213 | |
| 214 | void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); |
| 215 | void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); |
| 216 | bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, |
| 217 | struct kvm_memory_slot *slot, u64 gfn); |
| 218 | int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu); |
| 219 | #endif |