blob: 6d5dc5dabfd7ec71532c9a48e00c6a70da950a35 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/kernel.h>
4#include <linux/sched.h>
5#include <linux/sched/clock.h>
6#include <linux/init.h>
7#include <linux/export.h>
8#include <linux/timer.h>
9#include <linux/acpi_pmtmr.h>
10#include <linux/cpufreq.h>
11#include <linux/delay.h>
12#include <linux/clocksource.h>
13#include <linux/percpu.h>
14#include <linux/timex.h>
15#include <linux/static_key.h>
16
17#include <asm/hpet.h>
18#include <asm/timer.h>
19#include <asm/vgtod.h>
20#include <asm/time.h>
21#include <asm/delay.h>
22#include <asm/hypervisor.h>
23#include <asm/nmi.h>
24#include <asm/x86_init.h>
25#include <asm/geode.h>
26#include <asm/apic.h>
27#include <asm/intel-family.h>
28#include <asm/i8259.h>
29#include <asm/uv/uv.h>
30
31unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
32EXPORT_SYMBOL(cpu_khz);
33
34unsigned int __read_mostly tsc_khz;
35EXPORT_SYMBOL(tsc_khz);
36
37#define KHZ 1000
38
39/*
40 * TSC can be unstable due to cpufreq or due to unsynced TSCs
41 */
42static int __read_mostly tsc_unstable;
43
44static DEFINE_STATIC_KEY_FALSE(__use_tsc);
45
46int tsc_clocksource_reliable;
47
48static u32 art_to_tsc_numerator;
49static u32 art_to_tsc_denominator;
50static u64 art_to_tsc_offset;
51struct clocksource *art_related_clocksource;
52
53struct cyc2ns {
54 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
55 seqcount_t seq; /* 32 + 4 = 36 */
56
57}; /* fits one cacheline */
58
59static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
60
61void __always_inline cyc2ns_read_begin(struct cyc2ns_data *data)
62{
63 int seq, idx;
64
65 preempt_disable_notrace();
66
67 do {
68 seq = this_cpu_read(cyc2ns.seq.sequence);
69 idx = seq & 1;
70
71 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
72 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
73 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
74
75 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
76}
77
78void __always_inline cyc2ns_read_end(void)
79{
80 preempt_enable_notrace();
81}
82
83/*
84 * Accelerators for sched_clock()
85 * convert from cycles(64bits) => nanoseconds (64bits)
86 * basic equation:
87 * ns = cycles / (freq / ns_per_sec)
88 * ns = cycles * (ns_per_sec / freq)
89 * ns = cycles * (10^9 / (cpu_khz * 10^3))
90 * ns = cycles * (10^6 / cpu_khz)
91 *
92 * Then we use scaling math (suggested by george@mvista.com) to get:
93 * ns = cycles * (10^6 * SC / cpu_khz) / SC
94 * ns = cycles * cyc2ns_scale / SC
95 *
96 * And since SC is a constant power of two, we can convert the div
97 * into a shift. The larger SC is, the more accurate the conversion, but
98 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
99 * (64-bit result) can be used.
100 *
101 * We can use khz divisor instead of mhz to keep a better precision.
102 * (mathieu.desnoyers@polymtl.ca)
103 *
104 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
105 */
106
107static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
108{
109 struct cyc2ns_data data;
110 unsigned long long ns;
111
112 cyc2ns_read_begin(&data);
113
114 ns = data.cyc2ns_offset;
115 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
116
117 cyc2ns_read_end();
118
119 return ns;
120}
121
122static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
123{
124 unsigned long long ns_now;
125 struct cyc2ns_data data;
126 struct cyc2ns *c2n;
127
128 ns_now = cycles_2_ns(tsc_now);
129
130 /*
131 * Compute a new multiplier as per the above comment and ensure our
132 * time function is continuous; see the comment near struct
133 * cyc2ns_data.
134 */
135 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
136 NSEC_PER_MSEC, 0);
137
138 /*
139 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
140 * not expected to be greater than 31 due to the original published
141 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
142 * value) - refer perf_event_mmap_page documentation in perf_event.h.
143 */
144 if (data.cyc2ns_shift == 32) {
145 data.cyc2ns_shift = 31;
146 data.cyc2ns_mul >>= 1;
147 }
148
149 data.cyc2ns_offset = ns_now -
150 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
151
152 c2n = per_cpu_ptr(&cyc2ns, cpu);
153
154 raw_write_seqcount_latch(&c2n->seq);
155 c2n->data[0] = data;
156 raw_write_seqcount_latch(&c2n->seq);
157 c2n->data[1] = data;
158}
159
160static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
161{
162 unsigned long flags;
163
164 local_irq_save(flags);
165 sched_clock_idle_sleep_event();
166
167 if (khz)
168 __set_cyc2ns_scale(khz, cpu, tsc_now);
169
170 sched_clock_idle_wakeup_event();
171 local_irq_restore(flags);
172}
173
174/*
175 * Initialize cyc2ns for boot cpu
176 */
177static void __init cyc2ns_init_boot_cpu(void)
178{
179 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
180
181 seqcount_init(&c2n->seq);
182 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
183}
184
185/*
186 * Secondary CPUs do not run through tsc_init(), so set up
187 * all the scale factors for all CPUs, assuming the same
188 * speed as the bootup CPU. (cpufreq notifiers will fix this
189 * up if their speed diverges)
190 */
191static void __init cyc2ns_init_secondary_cpus(void)
192{
193 unsigned int cpu, this_cpu = smp_processor_id();
194 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
195 struct cyc2ns_data *data = c2n->data;
196
197 for_each_possible_cpu(cpu) {
198 if (cpu != this_cpu) {
199 seqcount_init(&c2n->seq);
200 c2n = per_cpu_ptr(&cyc2ns, cpu);
201 c2n->data[0] = data[0];
202 c2n->data[1] = data[1];
203 }
204 }
205}
206
207/*
208 * Scheduler clock - returns current time in nanosec units.
209 */
210u64 native_sched_clock(void)
211{
212 if (static_branch_likely(&__use_tsc)) {
213 u64 tsc_now = rdtsc();
214
215 /* return the value in ns */
216 return cycles_2_ns(tsc_now);
217 }
218
219 /*
220 * Fall back to jiffies if there's no TSC available:
221 * ( But note that we still use it if the TSC is marked
222 * unstable. We do this because unlike Time Of Day,
223 * the scheduler clock tolerates small errors and it's
224 * very important for it to be as fast as the platform
225 * can achieve it. )
226 */
227
228 /* No locking but a rare wrong value is not a big deal: */
229 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
230}
231
232/*
233 * Generate a sched_clock if you already have a TSC value.
234 */
235u64 native_sched_clock_from_tsc(u64 tsc)
236{
237 return cycles_2_ns(tsc);
238}
239
240/* We need to define a real function for sched_clock, to override the
241 weak default version */
242#ifdef CONFIG_PARAVIRT
243unsigned long long sched_clock(void)
244{
245 return paravirt_sched_clock();
246}
247
248bool using_native_sched_clock(void)
249{
250 return pv_time_ops.sched_clock == native_sched_clock;
251}
252#else
253unsigned long long
254sched_clock(void) __attribute__((alias("native_sched_clock")));
255
256bool using_native_sched_clock(void) { return true; }
257#endif
258
259int check_tsc_unstable(void)
260{
261 return tsc_unstable;
262}
263EXPORT_SYMBOL_GPL(check_tsc_unstable);
264
265#ifdef CONFIG_X86_TSC
266int __init notsc_setup(char *str)
267{
268 mark_tsc_unstable("boot parameter notsc");
269 return 1;
270}
271#else
272/*
273 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
274 * in cpu/common.c
275 */
276int __init notsc_setup(char *str)
277{
278 setup_clear_cpu_cap(X86_FEATURE_TSC);
279 return 1;
280}
281#endif
282
283__setup("notsc", notsc_setup);
284
285static int no_sched_irq_time;
286
287static int __init tsc_setup(char *str)
288{
289 if (!strcmp(str, "reliable"))
290 tsc_clocksource_reliable = 1;
291 if (!strncmp(str, "noirqtime", 9))
292 no_sched_irq_time = 1;
293 if (!strcmp(str, "unstable"))
294 mark_tsc_unstable("boot parameter");
295 return 1;
296}
297
298__setup("tsc=", tsc_setup);
299
300#define MAX_RETRIES 5
301#define SMI_TRESHOLD 50000
302
303/*
304 * Read TSC and the reference counters. Take care of SMI disturbance
305 */
306static u64 tsc_read_refs(u64 *p, int hpet)
307{
308 u64 t1, t2;
309 int i;
310
311 for (i = 0; i < MAX_RETRIES; i++) {
312 t1 = get_cycles();
313 if (hpet)
314 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
315 else
316 *p = acpi_pm_read_early();
317 t2 = get_cycles();
318 if ((t2 - t1) < SMI_TRESHOLD)
319 return t2;
320 }
321 return ULLONG_MAX;
322}
323
324/*
325 * Calculate the TSC frequency from HPET reference
326 */
327static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
328{
329 u64 tmp;
330
331 if (hpet2 < hpet1)
332 hpet2 += 0x100000000ULL;
333 hpet2 -= hpet1;
334 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
335 do_div(tmp, 1000000);
336 deltatsc = div64_u64(deltatsc, tmp);
337
338 return (unsigned long) deltatsc;
339}
340
341/*
342 * Calculate the TSC frequency from PMTimer reference
343 */
344static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
345{
346 u64 tmp;
347
348 if (!pm1 && !pm2)
349 return ULONG_MAX;
350
351 if (pm2 < pm1)
352 pm2 += (u64)ACPI_PM_OVRRUN;
353 pm2 -= pm1;
354 tmp = pm2 * 1000000000LL;
355 do_div(tmp, PMTMR_TICKS_PER_SEC);
356 do_div(deltatsc, tmp);
357
358 return (unsigned long) deltatsc;
359}
360
361#define CAL_MS 10
362#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
363#define CAL_PIT_LOOPS 1000
364
365#define CAL2_MS 50
366#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
367#define CAL2_PIT_LOOPS 5000
368
369
370/*
371 * Try to calibrate the TSC against the Programmable
372 * Interrupt Timer and return the frequency of the TSC
373 * in kHz.
374 *
375 * Return ULONG_MAX on failure to calibrate.
376 */
377static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
378{
379 u64 tsc, t1, t2, delta;
380 unsigned long tscmin, tscmax;
381 int pitcnt;
382
383 if (!has_legacy_pic()) {
384 /*
385 * Relies on tsc_early_delay_calibrate() to have given us semi
386 * usable udelay(), wait for the same 50ms we would have with
387 * the PIT loop below.
388 */
389 udelay(10 * USEC_PER_MSEC);
390 udelay(10 * USEC_PER_MSEC);
391 udelay(10 * USEC_PER_MSEC);
392 udelay(10 * USEC_PER_MSEC);
393 udelay(10 * USEC_PER_MSEC);
394 return ULONG_MAX;
395 }
396
397 /* Set the Gate high, disable speaker */
398 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
399
400 /*
401 * Setup CTC channel 2* for mode 0, (interrupt on terminal
402 * count mode), binary count. Set the latch register to 50ms
403 * (LSB then MSB) to begin countdown.
404 */
405 outb(0xb0, 0x43);
406 outb(latch & 0xff, 0x42);
407 outb(latch >> 8, 0x42);
408
409 tsc = t1 = t2 = get_cycles();
410
411 pitcnt = 0;
412 tscmax = 0;
413 tscmin = ULONG_MAX;
414 while ((inb(0x61) & 0x20) == 0) {
415 t2 = get_cycles();
416 delta = t2 - tsc;
417 tsc = t2;
418 if ((unsigned long) delta < tscmin)
419 tscmin = (unsigned int) delta;
420 if ((unsigned long) delta > tscmax)
421 tscmax = (unsigned int) delta;
422 pitcnt++;
423 }
424
425 /*
426 * Sanity checks:
427 *
428 * If we were not able to read the PIT more than loopmin
429 * times, then we have been hit by a massive SMI
430 *
431 * If the maximum is 10 times larger than the minimum,
432 * then we got hit by an SMI as well.
433 */
434 if (pitcnt < loopmin || tscmax > 10 * tscmin)
435 return ULONG_MAX;
436
437 /* Calculate the PIT value */
438 delta = t2 - t1;
439 do_div(delta, ms);
440 return delta;
441}
442
443/*
444 * This reads the current MSB of the PIT counter, and
445 * checks if we are running on sufficiently fast and
446 * non-virtualized hardware.
447 *
448 * Our expectations are:
449 *
450 * - the PIT is running at roughly 1.19MHz
451 *
452 * - each IO is going to take about 1us on real hardware,
453 * but we allow it to be much faster (by a factor of 10) or
454 * _slightly_ slower (ie we allow up to a 2us read+counter
455 * update - anything else implies a unacceptably slow CPU
456 * or PIT for the fast calibration to work.
457 *
458 * - with 256 PIT ticks to read the value, we have 214us to
459 * see the same MSB (and overhead like doing a single TSC
460 * read per MSB value etc).
461 *
462 * - We're doing 2 reads per loop (LSB, MSB), and we expect
463 * them each to take about a microsecond on real hardware.
464 * So we expect a count value of around 100. But we'll be
465 * generous, and accept anything over 50.
466 *
467 * - if the PIT is stuck, and we see *many* more reads, we
468 * return early (and the next caller of pit_expect_msb()
469 * then consider it a failure when they don't see the
470 * next expected value).
471 *
472 * These expectations mean that we know that we have seen the
473 * transition from one expected value to another with a fairly
474 * high accuracy, and we didn't miss any events. We can thus
475 * use the TSC value at the transitions to calculate a pretty
476 * good value for the TSC frequencty.
477 */
478static inline int pit_verify_msb(unsigned char val)
479{
480 /* Ignore LSB */
481 inb(0x42);
482 return inb(0x42) == val;
483}
484
485static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
486{
487 int count;
488 u64 tsc = 0, prev_tsc = 0;
489
490 for (count = 0; count < 50000; count++) {
491 if (!pit_verify_msb(val))
492 break;
493 prev_tsc = tsc;
494 tsc = get_cycles();
495 }
496 *deltap = get_cycles() - prev_tsc;
497 *tscp = tsc;
498
499 /*
500 * We require _some_ success, but the quality control
501 * will be based on the error terms on the TSC values.
502 */
503 return count > 5;
504}
505
506/*
507 * How many MSB values do we want to see? We aim for
508 * a maximum error rate of 500ppm (in practice the
509 * real error is much smaller), but refuse to spend
510 * more than 50ms on it.
511 */
512#define MAX_QUICK_PIT_MS 50
513#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
514
515static unsigned long quick_pit_calibrate(void)
516{
517 int i;
518 u64 tsc, delta;
519 unsigned long d1, d2;
520
521 if (!has_legacy_pic())
522 return 0;
523
524 /* Set the Gate high, disable speaker */
525 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
526
527 /*
528 * Counter 2, mode 0 (one-shot), binary count
529 *
530 * NOTE! Mode 2 decrements by two (and then the
531 * output is flipped each time, giving the same
532 * final output frequency as a decrement-by-one),
533 * so mode 0 is much better when looking at the
534 * individual counts.
535 */
536 outb(0xb0, 0x43);
537
538 /* Start at 0xffff */
539 outb(0xff, 0x42);
540 outb(0xff, 0x42);
541
542 /*
543 * The PIT starts counting at the next edge, so we
544 * need to delay for a microsecond. The easiest way
545 * to do that is to just read back the 16-bit counter
546 * once from the PIT.
547 */
548 pit_verify_msb(0);
549
550 if (pit_expect_msb(0xff, &tsc, &d1)) {
551 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
552 if (!pit_expect_msb(0xff-i, &delta, &d2))
553 break;
554
555 delta -= tsc;
556
557 /*
558 * Extrapolate the error and fail fast if the error will
559 * never be below 500 ppm.
560 */
561 if (i == 1 &&
562 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
563 return 0;
564
565 /*
566 * Iterate until the error is less than 500 ppm
567 */
568 if (d1+d2 >= delta >> 11)
569 continue;
570
571 /*
572 * Check the PIT one more time to verify that
573 * all TSC reads were stable wrt the PIT.
574 *
575 * This also guarantees serialization of the
576 * last cycle read ('d2') in pit_expect_msb.
577 */
578 if (!pit_verify_msb(0xfe - i))
579 break;
580 goto success;
581 }
582 }
583 pr_info("Fast TSC calibration failed\n");
584 return 0;
585
586success:
587 /*
588 * Ok, if we get here, then we've seen the
589 * MSB of the PIT decrement 'i' times, and the
590 * error has shrunk to less than 500 ppm.
591 *
592 * As a result, we can depend on there not being
593 * any odd delays anywhere, and the TSC reads are
594 * reliable (within the error).
595 *
596 * kHz = ticks / time-in-seconds / 1000;
597 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
598 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
599 */
600 delta *= PIT_TICK_RATE;
601 do_div(delta, i*256*1000);
602 pr_info("Fast TSC calibration using PIT\n");
603 return delta;
604}
605
606/**
607 * native_calibrate_tsc
608 * Determine TSC frequency via CPUID, else return 0.
609 */
610unsigned long native_calibrate_tsc(void)
611{
612 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
613 unsigned int crystal_khz;
614
615 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
616 return 0;
617
618 if (boot_cpu_data.cpuid_level < 0x15)
619 return 0;
620
621 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
622
623 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
624 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
625
626 if (ebx_numerator == 0 || eax_denominator == 0)
627 return 0;
628
629 crystal_khz = ecx_hz / 1000;
630
631 if (crystal_khz == 0) {
632 switch (boot_cpu_data.x86_model) {
633 case INTEL_FAM6_SKYLAKE_MOBILE:
634 case INTEL_FAM6_SKYLAKE_DESKTOP:
635 case INTEL_FAM6_KABYLAKE_MOBILE:
636 case INTEL_FAM6_KABYLAKE_DESKTOP:
637 crystal_khz = 24000; /* 24.0 MHz */
638 break;
639 case INTEL_FAM6_ATOM_DENVERTON:
640 crystal_khz = 25000; /* 25.0 MHz */
641 break;
642 case INTEL_FAM6_ATOM_GOLDMONT:
643 crystal_khz = 19200; /* 19.2 MHz */
644 break;
645 }
646 }
647
648 if (crystal_khz == 0)
649 return 0;
650 /*
651 * TSC frequency determined by CPUID is a "hardware reported"
652 * frequency and is the most accurate one so far we have. This
653 * is considered a known frequency.
654 */
655 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
656
657 /*
658 * For Atom SoCs TSC is the only reliable clocksource.
659 * Mark TSC reliable so no watchdog on it.
660 */
661 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
662 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
663
664 return crystal_khz * ebx_numerator / eax_denominator;
665}
666
667static unsigned long cpu_khz_from_cpuid(void)
668{
669 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
670
671 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
672 return 0;
673
674 if (boot_cpu_data.cpuid_level < 0x16)
675 return 0;
676
677 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
678
679 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
680
681 return eax_base_mhz * 1000;
682}
683
684/*
685 * calibrate cpu using pit, hpet, and ptimer methods. They are available
686 * later in boot after acpi is initialized.
687 */
688static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
689{
690 u64 tsc1, tsc2, delta, ref1, ref2;
691 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
692 unsigned long flags, latch, ms;
693 int hpet = is_hpet_enabled(), i, loopmin;
694
695 /*
696 * Run 5 calibration loops to get the lowest frequency value
697 * (the best estimate). We use two different calibration modes
698 * here:
699 *
700 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
701 * load a timeout of 50ms. We read the time right after we
702 * started the timer and wait until the PIT count down reaches
703 * zero. In each wait loop iteration we read the TSC and check
704 * the delta to the previous read. We keep track of the min
705 * and max values of that delta. The delta is mostly defined
706 * by the IO time of the PIT access, so we can detect when a
707 * SMI/SMM disturbance happened between the two reads. If the
708 * maximum time is significantly larger than the minimum time,
709 * then we discard the result and have another try.
710 *
711 * 2) Reference counter. If available we use the HPET or the
712 * PMTIMER as a reference to check the sanity of that value.
713 * We use separate TSC readouts and check inside of the
714 * reference read for a SMI/SMM disturbance. We dicard
715 * disturbed values here as well. We do that around the PIT
716 * calibration delay loop as we have to wait for a certain
717 * amount of time anyway.
718 */
719
720 /* Preset PIT loop values */
721 latch = CAL_LATCH;
722 ms = CAL_MS;
723 loopmin = CAL_PIT_LOOPS;
724
725 for (i = 0; i < 3; i++) {
726 unsigned long tsc_pit_khz;
727
728 /*
729 * Read the start value and the reference count of
730 * hpet/pmtimer when available. Then do the PIT
731 * calibration, which will take at least 50ms, and
732 * read the end value.
733 */
734 local_irq_save(flags);
735 tsc1 = tsc_read_refs(&ref1, hpet);
736 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
737 tsc2 = tsc_read_refs(&ref2, hpet);
738 local_irq_restore(flags);
739
740 /* Pick the lowest PIT TSC calibration so far */
741 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
742
743 /* hpet or pmtimer available ? */
744 if (ref1 == ref2)
745 continue;
746
747 /* Check, whether the sampling was disturbed by an SMI */
748 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
749 continue;
750
751 tsc2 = (tsc2 - tsc1) * 1000000LL;
752 if (hpet)
753 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
754 else
755 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
756
757 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
758
759 /* Check the reference deviation */
760 delta = ((u64) tsc_pit_min) * 100;
761 do_div(delta, tsc_ref_min);
762
763 /*
764 * If both calibration results are inside a 10% window
765 * then we can be sure, that the calibration
766 * succeeded. We break out of the loop right away. We
767 * use the reference value, as it is more precise.
768 */
769 if (delta >= 90 && delta <= 110) {
770 pr_info("PIT calibration matches %s. %d loops\n",
771 hpet ? "HPET" : "PMTIMER", i + 1);
772 return tsc_ref_min;
773 }
774
775 /*
776 * Check whether PIT failed more than once. This
777 * happens in virtualized environments. We need to
778 * give the virtual PC a slightly longer timeframe for
779 * the HPET/PMTIMER to make the result precise.
780 */
781 if (i == 1 && tsc_pit_min == ULONG_MAX) {
782 latch = CAL2_LATCH;
783 ms = CAL2_MS;
784 loopmin = CAL2_PIT_LOOPS;
785 }
786 }
787
788 /*
789 * Now check the results.
790 */
791 if (tsc_pit_min == ULONG_MAX) {
792 /* PIT gave no useful value */
793 pr_warn("Unable to calibrate against PIT\n");
794
795 /* We don't have an alternative source, disable TSC */
796 if (!hpet && !ref1 && !ref2) {
797 pr_notice("No reference (HPET/PMTIMER) available\n");
798 return 0;
799 }
800
801 /* The alternative source failed as well, disable TSC */
802 if (tsc_ref_min == ULONG_MAX) {
803 pr_warn("HPET/PMTIMER calibration failed\n");
804 return 0;
805 }
806
807 /* Use the alternative source */
808 pr_info("using %s reference calibration\n",
809 hpet ? "HPET" : "PMTIMER");
810
811 return tsc_ref_min;
812 }
813
814 /* We don't have an alternative source, use the PIT calibration value */
815 if (!hpet && !ref1 && !ref2) {
816 pr_info("Using PIT calibration value\n");
817 return tsc_pit_min;
818 }
819
820 /* The alternative source failed, use the PIT calibration value */
821 if (tsc_ref_min == ULONG_MAX) {
822 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
823 return tsc_pit_min;
824 }
825
826 /*
827 * The calibration values differ too much. In doubt, we use
828 * the PIT value as we know that there are PMTIMERs around
829 * running at double speed. At least we let the user know:
830 */
831 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
832 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
833 pr_info("Using PIT calibration value\n");
834 return tsc_pit_min;
835}
836
837/**
838 * native_calibrate_cpu_early - can calibrate the cpu early in boot
839 */
840unsigned long native_calibrate_cpu_early(void)
841{
842 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
843
844 if (!fast_calibrate)
845 fast_calibrate = cpu_khz_from_msr();
846 if (!fast_calibrate) {
847 local_irq_save(flags);
848 fast_calibrate = quick_pit_calibrate();
849 local_irq_restore(flags);
850 }
851 return fast_calibrate;
852}
853
854
855/**
856 * native_calibrate_cpu - calibrate the cpu
857 */
858static unsigned long native_calibrate_cpu(void)
859{
860 unsigned long tsc_freq = native_calibrate_cpu_early();
861
862 if (!tsc_freq)
863 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
864
865 return tsc_freq;
866}
867
868void recalibrate_cpu_khz(void)
869{
870#ifndef CONFIG_SMP
871 unsigned long cpu_khz_old = cpu_khz;
872
873 if (!boot_cpu_has(X86_FEATURE_TSC))
874 return;
875
876 cpu_khz = x86_platform.calibrate_cpu();
877 tsc_khz = x86_platform.calibrate_tsc();
878 if (tsc_khz == 0)
879 tsc_khz = cpu_khz;
880 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
881 cpu_khz = tsc_khz;
882 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
883 cpu_khz_old, cpu_khz);
884#endif
885}
886
887EXPORT_SYMBOL(recalibrate_cpu_khz);
888
889
890static unsigned long long cyc2ns_suspend;
891
892void tsc_save_sched_clock_state(void)
893{
894 if (!sched_clock_stable())
895 return;
896
897 cyc2ns_suspend = sched_clock();
898}
899
900/*
901 * Even on processors with invariant TSC, TSC gets reset in some the
902 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
903 * arbitrary value (still sync'd across cpu's) during resume from such sleep
904 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
905 * that sched_clock() continues from the point where it was left off during
906 * suspend.
907 */
908void tsc_restore_sched_clock_state(void)
909{
910 unsigned long long offset;
911 unsigned long flags;
912 int cpu;
913
914 if (!sched_clock_stable())
915 return;
916
917 local_irq_save(flags);
918
919 /*
920 * We're coming out of suspend, there's no concurrency yet; don't
921 * bother being nice about the RCU stuff, just write to both
922 * data fields.
923 */
924
925 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
926 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
927
928 offset = cyc2ns_suspend - sched_clock();
929
930 for_each_possible_cpu(cpu) {
931 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
932 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
933 }
934
935 local_irq_restore(flags);
936}
937
938#ifdef CONFIG_CPU_FREQ
939/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
940 * changes.
941 *
942 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
943 * not that important because current Opteron setups do not support
944 * scaling on SMP anyroads.
945 *
946 * Should fix up last_tsc too. Currently gettimeofday in the
947 * first tick after the change will be slightly wrong.
948 */
949
950static unsigned int ref_freq;
951static unsigned long loops_per_jiffy_ref;
952static unsigned long tsc_khz_ref;
953
954static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
955 void *data)
956{
957 struct cpufreq_freqs *freq = data;
958 unsigned long *lpj;
959
960 lpj = &boot_cpu_data.loops_per_jiffy;
961#ifdef CONFIG_SMP
962 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
963 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
964#endif
965
966 if (!ref_freq) {
967 ref_freq = freq->old;
968 loops_per_jiffy_ref = *lpj;
969 tsc_khz_ref = tsc_khz;
970 }
971 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
972 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
973 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
974
975 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
976 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
977 mark_tsc_unstable("cpufreq changes");
978
979 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
980 }
981
982 return 0;
983}
984
985static struct notifier_block time_cpufreq_notifier_block = {
986 .notifier_call = time_cpufreq_notifier
987};
988
989static int __init cpufreq_register_tsc_scaling(void)
990{
991 if (!boot_cpu_has(X86_FEATURE_TSC))
992 return 0;
993 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
994 return 0;
995 cpufreq_register_notifier(&time_cpufreq_notifier_block,
996 CPUFREQ_TRANSITION_NOTIFIER);
997 return 0;
998}
999
1000core_initcall(cpufreq_register_tsc_scaling);
1001
1002#endif /* CONFIG_CPU_FREQ */
1003
1004#define ART_CPUID_LEAF (0x15)
1005#define ART_MIN_DENOMINATOR (1)
1006
1007
1008/*
1009 * If ART is present detect the numerator:denominator to convert to TSC
1010 */
1011static void __init detect_art(void)
1012{
1013 unsigned int unused[2];
1014
1015 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1016 return;
1017
1018 /*
1019 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1020 * and the TSC counter resets must not occur asynchronously.
1021 */
1022 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1023 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1024 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1025 tsc_async_resets)
1026 return;
1027
1028 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1029 &art_to_tsc_numerator, unused, unused+1);
1030
1031 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1032 return;
1033
1034 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1035
1036 /* Make this sticky over multiple CPU init calls */
1037 setup_force_cpu_cap(X86_FEATURE_ART);
1038}
1039
1040
1041/* clocksource code */
1042
1043static void tsc_resume(struct clocksource *cs)
1044{
1045 tsc_verify_tsc_adjust(true);
1046}
1047
1048/*
1049 * We used to compare the TSC to the cycle_last value in the clocksource
1050 * structure to avoid a nasty time-warp. This can be observed in a
1051 * very small window right after one CPU updated cycle_last under
1052 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1053 * is smaller than the cycle_last reference value due to a TSC which
1054 * is slighty behind. This delta is nowhere else observable, but in
1055 * that case it results in a forward time jump in the range of hours
1056 * due to the unsigned delta calculation of the time keeping core
1057 * code, which is necessary to support wrapping clocksources like pm
1058 * timer.
1059 *
1060 * This sanity check is now done in the core timekeeping code.
1061 * checking the result of read_tsc() - cycle_last for being negative.
1062 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1063 */
1064static u64 read_tsc(struct clocksource *cs)
1065{
1066 return (u64)rdtsc_ordered();
1067}
1068
1069static void tsc_cs_mark_unstable(struct clocksource *cs)
1070{
1071 if (tsc_unstable)
1072 return;
1073
1074 tsc_unstable = 1;
1075 if (using_native_sched_clock())
1076 clear_sched_clock_stable();
1077 disable_sched_clock_irqtime();
1078 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1079}
1080
1081static void tsc_cs_tick_stable(struct clocksource *cs)
1082{
1083 if (tsc_unstable)
1084 return;
1085
1086 if (using_native_sched_clock())
1087 sched_clock_tick_stable();
1088}
1089
1090/*
1091 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1092 */
1093static struct clocksource clocksource_tsc_early = {
1094 .name = "tsc-early",
1095 .rating = 299,
1096 .read = read_tsc,
1097 .mask = CLOCKSOURCE_MASK(64),
1098 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1099 CLOCK_SOURCE_MUST_VERIFY,
1100 .archdata = { .vclock_mode = VCLOCK_TSC },
1101 .resume = tsc_resume,
1102 .mark_unstable = tsc_cs_mark_unstable,
1103 .tick_stable = tsc_cs_tick_stable,
1104 .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
1105};
1106
1107/*
1108 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1109 * this one will immediately take over. We will only register if TSC has
1110 * been found good.
1111 */
1112static struct clocksource clocksource_tsc = {
1113 .name = "tsc",
1114 .rating = 300,
1115 .read = read_tsc,
1116 .mask = CLOCKSOURCE_MASK(64),
1117 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1118 CLOCK_SOURCE_VALID_FOR_HRES |
1119 CLOCK_SOURCE_MUST_VERIFY,
1120 .archdata = { .vclock_mode = VCLOCK_TSC },
1121 .resume = tsc_resume,
1122 .mark_unstable = tsc_cs_mark_unstable,
1123 .tick_stable = tsc_cs_tick_stable,
1124 .list = LIST_HEAD_INIT(clocksource_tsc.list),
1125};
1126
1127void mark_tsc_unstable(char *reason)
1128{
1129 if (tsc_unstable)
1130 return;
1131
1132 tsc_unstable = 1;
1133 if (using_native_sched_clock())
1134 clear_sched_clock_stable();
1135 disable_sched_clock_irqtime();
1136 pr_info("Marking TSC unstable due to %s\n", reason);
1137
1138 clocksource_mark_unstable(&clocksource_tsc_early);
1139 clocksource_mark_unstable(&clocksource_tsc);
1140}
1141
1142EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1143
1144static void __init check_system_tsc_reliable(void)
1145{
1146#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1147 if (is_geode_lx()) {
1148 /* RTSC counts during suspend */
1149#define RTSC_SUSP 0x100
1150 unsigned long res_low, res_high;
1151
1152 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1153 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1154 if (res_low & RTSC_SUSP)
1155 tsc_clocksource_reliable = 1;
1156 }
1157#endif
1158 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1159 tsc_clocksource_reliable = 1;
1160}
1161
1162/*
1163 * Make an educated guess if the TSC is trustworthy and synchronized
1164 * over all CPUs.
1165 */
1166int unsynchronized_tsc(void)
1167{
1168 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1169 return 1;
1170
1171#ifdef CONFIG_SMP
1172 if (apic_is_clustered_box())
1173 return 1;
1174#endif
1175
1176 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1177 return 0;
1178
1179 if (tsc_clocksource_reliable)
1180 return 0;
1181 /*
1182 * Intel systems are normally all synchronized.
1183 * Exceptions must mark TSC as unstable:
1184 */
1185 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1186 /* assume multi socket systems are not synchronized: */
1187 if (num_possible_cpus() > 1)
1188 return 1;
1189 }
1190
1191 return 0;
1192}
1193
1194/*
1195 * Convert ART to TSC given numerator/denominator found in detect_art()
1196 */
1197struct system_counterval_t convert_art_to_tsc(u64 art)
1198{
1199 u64 tmp, res, rem;
1200
1201 rem = do_div(art, art_to_tsc_denominator);
1202
1203 res = art * art_to_tsc_numerator;
1204 tmp = rem * art_to_tsc_numerator;
1205
1206 do_div(tmp, art_to_tsc_denominator);
1207 res += tmp + art_to_tsc_offset;
1208
1209 return (struct system_counterval_t) {.cs = art_related_clocksource,
1210 .cycles = res};
1211}
1212EXPORT_SYMBOL(convert_art_to_tsc);
1213
1214/**
1215 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1216 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1217 *
1218 * PTM requires all timestamps to be in units of nanoseconds. When user
1219 * software requests a cross-timestamp, this function converts system timestamp
1220 * to TSC.
1221 *
1222 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1223 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1224 * that this flag is set before conversion to TSC is attempted.
1225 *
1226 * Return:
1227 * struct system_counterval_t - system counter value with the pointer to the
1228 * corresponding clocksource
1229 * @cycles: System counter value
1230 * @cs: Clocksource corresponding to system counter value. Used
1231 * by timekeeping code to verify comparibility of two cycle
1232 * values.
1233 */
1234
1235struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1236{
1237 u64 tmp, res, rem;
1238
1239 rem = do_div(art_ns, USEC_PER_SEC);
1240
1241 res = art_ns * tsc_khz;
1242 tmp = rem * tsc_khz;
1243
1244 do_div(tmp, USEC_PER_SEC);
1245 res += tmp;
1246
1247 return (struct system_counterval_t) { .cs = art_related_clocksource,
1248 .cycles = res};
1249}
1250EXPORT_SYMBOL(convert_art_ns_to_tsc);
1251
1252
1253static void tsc_refine_calibration_work(struct work_struct *work);
1254static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1255/**
1256 * tsc_refine_calibration_work - Further refine tsc freq calibration
1257 * @work - ignored.
1258 *
1259 * This functions uses delayed work over a period of a
1260 * second to further refine the TSC freq value. Since this is
1261 * timer based, instead of loop based, we don't block the boot
1262 * process while this longer calibration is done.
1263 *
1264 * If there are any calibration anomalies (too many SMIs, etc),
1265 * or the refined calibration is off by 1% of the fast early
1266 * calibration, we throw out the new calibration and use the
1267 * early calibration.
1268 */
1269static void tsc_refine_calibration_work(struct work_struct *work)
1270{
1271 static u64 tsc_start = -1, ref_start;
1272 static int hpet;
1273 u64 tsc_stop, ref_stop, delta;
1274 unsigned long freq;
1275 int cpu;
1276
1277 /* Don't bother refining TSC on unstable systems */
1278 if (tsc_unstable)
1279 goto unreg;
1280
1281 /*
1282 * Since the work is started early in boot, we may be
1283 * delayed the first time we expire. So set the workqueue
1284 * again once we know timers are working.
1285 */
1286 if (tsc_start == -1) {
1287 /*
1288 * Only set hpet once, to avoid mixing hardware
1289 * if the hpet becomes enabled later.
1290 */
1291 hpet = is_hpet_enabled();
1292 schedule_delayed_work(&tsc_irqwork, HZ);
1293 tsc_start = tsc_read_refs(&ref_start, hpet);
1294 return;
1295 }
1296
1297 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1298
1299 /* hpet or pmtimer available ? */
1300 if (ref_start == ref_stop)
1301 goto out;
1302
1303 /* Check, whether the sampling was disturbed by an SMI */
1304 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1305 goto out;
1306
1307 delta = tsc_stop - tsc_start;
1308 delta *= 1000000LL;
1309 if (hpet)
1310 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1311 else
1312 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1313
1314 /* Make sure we're within 1% */
1315 if (abs(tsc_khz - freq) > tsc_khz/100)
1316 goto out;
1317
1318 tsc_khz = freq;
1319 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1320 (unsigned long)tsc_khz / 1000,
1321 (unsigned long)tsc_khz % 1000);
1322
1323 /* Inform the TSC deadline clockevent devices about the recalibration */
1324 lapic_update_tsc_freq();
1325
1326 /* Update the sched_clock() rate to match the clocksource one */
1327 for_each_possible_cpu(cpu)
1328 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1329
1330out:
1331 if (tsc_unstable)
1332 goto unreg;
1333
1334 if (boot_cpu_has(X86_FEATURE_ART))
1335 art_related_clocksource = &clocksource_tsc;
1336 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1337unreg:
1338 clocksource_unregister(&clocksource_tsc_early);
1339}
1340
1341
1342static int __init init_tsc_clocksource(void)
1343{
1344 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1345 return 0;
1346
1347 if (tsc_unstable)
1348 goto unreg;
1349
1350 if (tsc_clocksource_reliable)
1351 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1352
1353 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1354 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1355
1356 /*
1357 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1358 * the refined calibration and directly register it as a clocksource.
1359 */
1360 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1361 if (boot_cpu_has(X86_FEATURE_ART))
1362 art_related_clocksource = &clocksource_tsc;
1363 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1364unreg:
1365 clocksource_unregister(&clocksource_tsc_early);
1366 return 0;
1367 }
1368
1369 schedule_delayed_work(&tsc_irqwork, 0);
1370 return 0;
1371}
1372/*
1373 * We use device_initcall here, to ensure we run after the hpet
1374 * is fully initialized, which may occur at fs_initcall time.
1375 */
1376device_initcall(init_tsc_clocksource);
1377
1378static bool __init determine_cpu_tsc_frequencies(bool early)
1379{
1380 /* Make sure that cpu and tsc are not already calibrated */
1381 WARN_ON(cpu_khz || tsc_khz);
1382
1383 if (early) {
1384 cpu_khz = x86_platform.calibrate_cpu();
1385 tsc_khz = x86_platform.calibrate_tsc();
1386 } else {
1387 /* We should not be here with non-native cpu calibration */
1388 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1389 cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1390 }
1391
1392 /*
1393 * Trust non-zero tsc_khz as authoritative,
1394 * and use it to sanity check cpu_khz,
1395 * which will be off if system timer is off.
1396 */
1397 if (tsc_khz == 0)
1398 tsc_khz = cpu_khz;
1399 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1400 cpu_khz = tsc_khz;
1401
1402 if (tsc_khz == 0)
1403 return false;
1404
1405 pr_info("Detected %lu.%03lu MHz processor\n",
1406 (unsigned long)cpu_khz / KHZ,
1407 (unsigned long)cpu_khz % KHZ);
1408
1409 if (cpu_khz != tsc_khz) {
1410 pr_info("Detected %lu.%03lu MHz TSC",
1411 (unsigned long)tsc_khz / KHZ,
1412 (unsigned long)tsc_khz % KHZ);
1413 }
1414 return true;
1415}
1416
1417static unsigned long __init get_loops_per_jiffy(void)
1418{
1419 u64 lpj = (u64)tsc_khz * KHZ;
1420
1421 do_div(lpj, HZ);
1422 return lpj;
1423}
1424
1425static void __init tsc_enable_sched_clock(void)
1426{
1427 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1428 tsc_store_and_check_tsc_adjust(true);
1429 cyc2ns_init_boot_cpu();
1430 static_branch_enable(&__use_tsc);
1431}
1432
1433void __init tsc_early_init(void)
1434{
1435 if (!boot_cpu_has(X86_FEATURE_TSC))
1436 return;
1437 /* Don't change UV TSC multi-chassis synchronization */
1438 if (is_early_uv_system())
1439 return;
1440 if (!determine_cpu_tsc_frequencies(true))
1441 return;
1442 loops_per_jiffy = get_loops_per_jiffy();
1443
1444 tsc_enable_sched_clock();
1445}
1446
1447void __init tsc_init(void)
1448{
1449 /*
1450 * native_calibrate_cpu_early can only calibrate using methods that are
1451 * available early in boot.
1452 */
1453 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1454 x86_platform.calibrate_cpu = native_calibrate_cpu;
1455
1456 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1457 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1458 return;
1459 }
1460
1461 if (!tsc_khz) {
1462 /* We failed to determine frequencies earlier, try again */
1463 if (!determine_cpu_tsc_frequencies(false)) {
1464 mark_tsc_unstable("could not calculate TSC khz");
1465 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1466 return;
1467 }
1468 tsc_enable_sched_clock();
1469 }
1470
1471 cyc2ns_init_secondary_cpus();
1472
1473 if (!no_sched_irq_time)
1474 enable_sched_clock_irqtime();
1475
1476 lpj_fine = get_loops_per_jiffy();
1477 use_tsc_delay();
1478
1479 check_system_tsc_reliable();
1480
1481 if (unsynchronized_tsc()) {
1482 mark_tsc_unstable("TSCs unsynchronized");
1483 return;
1484 }
1485
1486 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1487 detect_art();
1488}
1489
1490#ifdef CONFIG_SMP
1491/*
1492 * If we have a constant TSC and are using the TSC for the delay loop,
1493 * we can skip clock calibration if another cpu in the same socket has already
1494 * been calibrated. This assumes that CONSTANT_TSC applies to all
1495 * cpus in the socket - this should be a safe assumption.
1496 */
1497unsigned long calibrate_delay_is_known(void)
1498{
1499 int sibling, cpu = smp_processor_id();
1500 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1501 const struct cpumask *mask = topology_core_cpumask(cpu);
1502
1503 if (!constant_tsc || !mask)
1504 return 0;
1505
1506 sibling = cpumask_any_but(mask, cpu);
1507 if (sibling < nr_cpu_ids)
1508 return cpu_data(sibling).loops_per_jiffy;
1509 return 0;
1510}
1511#endif