Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* KVM paravirtual clock driver. A clocksource implementation |
| 2 | Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc. |
| 3 | |
| 4 | This program is free software; you can redistribute it and/or modify |
| 5 | it under the terms of the GNU General Public License as published by |
| 6 | the Free Software Foundation; either version 2 of the License, or |
| 7 | (at your option) any later version. |
| 8 | |
| 9 | This program is distributed in the hope that it will be useful, |
| 10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | GNU General Public License for more details. |
| 13 | |
| 14 | You should have received a copy of the GNU General Public License |
| 15 | along with this program; if not, write to the Free Software |
| 16 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 17 | */ |
| 18 | |
| 19 | #include <linux/clocksource.h> |
| 20 | #include <linux/kvm_para.h> |
| 21 | #include <asm/pvclock.h> |
| 22 | #include <asm/msr.h> |
| 23 | #include <asm/apic.h> |
| 24 | #include <linux/percpu.h> |
| 25 | #include <linux/hardirq.h> |
| 26 | #include <linux/cpuhotplug.h> |
| 27 | #include <linux/sched.h> |
| 28 | #include <linux/sched/clock.h> |
| 29 | #include <linux/mm.h> |
| 30 | #include <linux/slab.h> |
| 31 | #include <linux/set_memory.h> |
| 32 | |
| 33 | #include <asm/hypervisor.h> |
| 34 | #include <asm/mem_encrypt.h> |
| 35 | #include <asm/x86_init.h> |
| 36 | #include <asm/reboot.h> |
| 37 | #include <asm/kvmclock.h> |
| 38 | |
| 39 | static int kvmclock __initdata = 1; |
| 40 | static int kvmclock_vsyscall __initdata = 1; |
| 41 | static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME; |
| 42 | static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK; |
| 43 | static u64 kvm_sched_clock_offset __ro_after_init; |
| 44 | |
| 45 | static int __init parse_no_kvmclock(char *arg) |
| 46 | { |
| 47 | kvmclock = 0; |
| 48 | return 0; |
| 49 | } |
| 50 | early_param("no-kvmclock", parse_no_kvmclock); |
| 51 | |
| 52 | static int __init parse_no_kvmclock_vsyscall(char *arg) |
| 53 | { |
| 54 | kvmclock_vsyscall = 0; |
| 55 | return 0; |
| 56 | } |
| 57 | early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall); |
| 58 | |
| 59 | /* Aligned to page sizes to match whats mapped via vsyscalls to userspace */ |
| 60 | #define HV_CLOCK_SIZE (sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS) |
| 61 | #define HVC_BOOT_ARRAY_SIZE \ |
| 62 | (PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info)) |
| 63 | |
| 64 | static struct pvclock_vsyscall_time_info |
| 65 | hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE); |
| 66 | static struct pvclock_wall_clock wall_clock __bss_decrypted; |
| 67 | static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu); |
| 68 | static struct pvclock_vsyscall_time_info *hvclock_mem; |
| 69 | |
| 70 | static inline struct pvclock_vcpu_time_info *this_cpu_pvti(void) |
| 71 | { |
| 72 | return &this_cpu_read(hv_clock_per_cpu)->pvti; |
| 73 | } |
| 74 | |
| 75 | static inline struct pvclock_vsyscall_time_info *this_cpu_hvclock(void) |
| 76 | { |
| 77 | return this_cpu_read(hv_clock_per_cpu); |
| 78 | } |
| 79 | |
| 80 | /* |
| 81 | * The wallclock is the time of day when we booted. Since then, some time may |
| 82 | * have elapsed since the hypervisor wrote the data. So we try to account for |
| 83 | * that with system time |
| 84 | */ |
| 85 | static void kvm_get_wallclock(struct timespec64 *now) |
| 86 | { |
| 87 | wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock)); |
| 88 | preempt_disable(); |
| 89 | pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now); |
| 90 | preempt_enable(); |
| 91 | } |
| 92 | |
| 93 | static int kvm_set_wallclock(const struct timespec64 *now) |
| 94 | { |
| 95 | return -ENODEV; |
| 96 | } |
| 97 | |
| 98 | static u64 kvm_clock_read(void) |
| 99 | { |
| 100 | u64 ret; |
| 101 | |
| 102 | preempt_disable_notrace(); |
| 103 | ret = pvclock_clocksource_read(this_cpu_pvti()); |
| 104 | preempt_enable_notrace(); |
| 105 | return ret; |
| 106 | } |
| 107 | |
| 108 | static u64 kvm_clock_get_cycles(struct clocksource *cs) |
| 109 | { |
| 110 | return kvm_clock_read(); |
| 111 | } |
| 112 | |
| 113 | static u64 kvm_sched_clock_read(void) |
| 114 | { |
| 115 | return kvm_clock_read() - kvm_sched_clock_offset; |
| 116 | } |
| 117 | |
| 118 | static inline void kvm_sched_clock_init(bool stable) |
| 119 | { |
| 120 | if (!stable) { |
| 121 | pv_time_ops.sched_clock = kvm_clock_read; |
| 122 | clear_sched_clock_stable(); |
| 123 | return; |
| 124 | } |
| 125 | |
| 126 | kvm_sched_clock_offset = kvm_clock_read(); |
| 127 | pv_time_ops.sched_clock = kvm_sched_clock_read; |
| 128 | |
| 129 | pr_info("kvm-clock: using sched offset of %llu cycles", |
| 130 | kvm_sched_clock_offset); |
| 131 | |
| 132 | BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) > |
| 133 | sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time)); |
| 134 | } |
| 135 | |
| 136 | /* |
| 137 | * If we don't do that, there is the possibility that the guest |
| 138 | * will calibrate under heavy load - thus, getting a lower lpj - |
| 139 | * and execute the delays themselves without load. This is wrong, |
| 140 | * because no delay loop can finish beforehand. |
| 141 | * Any heuristics is subject to fail, because ultimately, a large |
| 142 | * poll of guests can be running and trouble each other. So we preset |
| 143 | * lpj here |
| 144 | */ |
| 145 | static unsigned long kvm_get_tsc_khz(void) |
| 146 | { |
| 147 | setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); |
| 148 | return pvclock_tsc_khz(this_cpu_pvti()); |
| 149 | } |
| 150 | |
| 151 | static void __init kvm_get_preset_lpj(void) |
| 152 | { |
| 153 | unsigned long khz; |
| 154 | u64 lpj; |
| 155 | |
| 156 | khz = kvm_get_tsc_khz(); |
| 157 | |
| 158 | lpj = ((u64)khz * 1000); |
| 159 | do_div(lpj, HZ); |
| 160 | preset_lpj = lpj; |
| 161 | } |
| 162 | |
| 163 | bool kvm_check_and_clear_guest_paused(void) |
| 164 | { |
| 165 | struct pvclock_vsyscall_time_info *src = this_cpu_hvclock(); |
| 166 | bool ret = false; |
| 167 | |
| 168 | if (!src) |
| 169 | return ret; |
| 170 | |
| 171 | if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) { |
| 172 | src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED; |
| 173 | pvclock_touch_watchdogs(); |
| 174 | ret = true; |
| 175 | } |
| 176 | return ret; |
| 177 | } |
| 178 | |
| 179 | struct clocksource kvm_clock = { |
| 180 | .name = "kvm-clock", |
| 181 | .read = kvm_clock_get_cycles, |
| 182 | .rating = 400, |
| 183 | .mask = CLOCKSOURCE_MASK(64), |
| 184 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 185 | }; |
| 186 | EXPORT_SYMBOL_GPL(kvm_clock); |
| 187 | |
| 188 | static void kvm_register_clock(char *txt) |
| 189 | { |
| 190 | struct pvclock_vsyscall_time_info *src = this_cpu_hvclock(); |
| 191 | u64 pa; |
| 192 | |
| 193 | if (!src) |
| 194 | return; |
| 195 | |
| 196 | pa = slow_virt_to_phys(&src->pvti) | 0x01ULL; |
| 197 | wrmsrl(msr_kvm_system_time, pa); |
| 198 | pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt); |
| 199 | } |
| 200 | |
| 201 | static void kvm_save_sched_clock_state(void) |
| 202 | { |
| 203 | } |
| 204 | |
| 205 | static void kvm_restore_sched_clock_state(void) |
| 206 | { |
| 207 | kvm_register_clock("primary cpu clock, resume"); |
| 208 | } |
| 209 | |
| 210 | #ifdef CONFIG_X86_LOCAL_APIC |
| 211 | static void kvm_setup_secondary_clock(void) |
| 212 | { |
| 213 | kvm_register_clock("secondary cpu clock"); |
| 214 | } |
| 215 | #endif |
| 216 | |
| 217 | /* |
| 218 | * After the clock is registered, the host will keep writing to the |
| 219 | * registered memory location. If the guest happens to shutdown, this memory |
| 220 | * won't be valid. In cases like kexec, in which you install a new kernel, this |
| 221 | * means a random memory location will be kept being written. So before any |
| 222 | * kind of shutdown from our side, we unregister the clock by writing anything |
| 223 | * that does not have the 'enable' bit set in the msr |
| 224 | */ |
| 225 | #ifdef CONFIG_KEXEC_CORE |
| 226 | static void kvm_crash_shutdown(struct pt_regs *regs) |
| 227 | { |
| 228 | native_write_msr(msr_kvm_system_time, 0, 0); |
| 229 | kvm_disable_steal_time(); |
| 230 | native_machine_crash_shutdown(regs); |
| 231 | } |
| 232 | #endif |
| 233 | |
| 234 | static void kvm_shutdown(void) |
| 235 | { |
| 236 | native_write_msr(msr_kvm_system_time, 0, 0); |
| 237 | kvm_disable_steal_time(); |
| 238 | native_machine_shutdown(); |
| 239 | } |
| 240 | |
| 241 | static void __init kvmclock_init_mem(void) |
| 242 | { |
| 243 | unsigned long ncpus; |
| 244 | unsigned int order; |
| 245 | struct page *p; |
| 246 | int r; |
| 247 | |
| 248 | if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus()) |
| 249 | return; |
| 250 | |
| 251 | ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE; |
| 252 | order = get_order(ncpus * sizeof(*hvclock_mem)); |
| 253 | |
| 254 | p = alloc_pages(GFP_KERNEL, order); |
| 255 | if (!p) { |
| 256 | pr_warn("%s: failed to alloc %d pages", __func__, (1U << order)); |
| 257 | return; |
| 258 | } |
| 259 | |
| 260 | hvclock_mem = page_address(p); |
| 261 | |
| 262 | /* |
| 263 | * hvclock is shared between the guest and the hypervisor, must |
| 264 | * be mapped decrypted. |
| 265 | */ |
| 266 | if (sev_active()) { |
| 267 | r = set_memory_decrypted((unsigned long) hvclock_mem, |
| 268 | 1UL << order); |
| 269 | if (r) { |
| 270 | __free_pages(p, order); |
| 271 | hvclock_mem = NULL; |
| 272 | pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n"); |
| 273 | return; |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | memset(hvclock_mem, 0, PAGE_SIZE << order); |
| 278 | } |
| 279 | |
| 280 | static int __init kvm_setup_vsyscall_timeinfo(void) |
| 281 | { |
| 282 | #ifdef CONFIG_X86_64 |
| 283 | u8 flags; |
| 284 | |
| 285 | if (!per_cpu(hv_clock_per_cpu, 0) || !kvmclock_vsyscall) |
| 286 | return 0; |
| 287 | |
| 288 | flags = pvclock_read_flags(&hv_clock_boot[0].pvti); |
| 289 | if (!(flags & PVCLOCK_TSC_STABLE_BIT)) |
| 290 | return 0; |
| 291 | |
| 292 | kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK; |
| 293 | #endif |
| 294 | |
| 295 | kvmclock_init_mem(); |
| 296 | |
| 297 | return 0; |
| 298 | } |
| 299 | early_initcall(kvm_setup_vsyscall_timeinfo); |
| 300 | |
| 301 | static int kvmclock_setup_percpu(unsigned int cpu) |
| 302 | { |
| 303 | struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu); |
| 304 | |
| 305 | /* |
| 306 | * The per cpu area setup replicates CPU0 data to all cpu |
| 307 | * pointers. So carefully check. CPU0 has been set up in init |
| 308 | * already. |
| 309 | */ |
| 310 | if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0))) |
| 311 | return 0; |
| 312 | |
| 313 | /* Use the static page for the first CPUs, allocate otherwise */ |
| 314 | if (cpu < HVC_BOOT_ARRAY_SIZE) |
| 315 | p = &hv_clock_boot[cpu]; |
| 316 | else if (hvclock_mem) |
| 317 | p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE; |
| 318 | else |
| 319 | return -ENOMEM; |
| 320 | |
| 321 | per_cpu(hv_clock_per_cpu, cpu) = p; |
| 322 | return p ? 0 : -ENOMEM; |
| 323 | } |
| 324 | |
| 325 | void __init kvmclock_init(void) |
| 326 | { |
| 327 | u8 flags; |
| 328 | |
| 329 | if (!kvm_para_available() || !kvmclock) |
| 330 | return; |
| 331 | |
| 332 | if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) { |
| 333 | msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW; |
| 334 | msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW; |
| 335 | } else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) { |
| 336 | return; |
| 337 | } |
| 338 | |
| 339 | if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu", |
| 340 | kvmclock_setup_percpu, NULL) < 0) { |
| 341 | return; |
| 342 | } |
| 343 | |
| 344 | pr_info("kvm-clock: Using msrs %x and %x", |
| 345 | msr_kvm_system_time, msr_kvm_wall_clock); |
| 346 | |
| 347 | this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]); |
| 348 | kvm_register_clock("primary cpu clock"); |
| 349 | pvclock_set_pvti_cpu0_va(hv_clock_boot); |
| 350 | |
| 351 | if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT)) |
| 352 | pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT); |
| 353 | |
| 354 | flags = pvclock_read_flags(&hv_clock_boot[0].pvti); |
| 355 | kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT); |
| 356 | |
| 357 | x86_platform.calibrate_tsc = kvm_get_tsc_khz; |
| 358 | x86_platform.calibrate_cpu = kvm_get_tsc_khz; |
| 359 | x86_platform.get_wallclock = kvm_get_wallclock; |
| 360 | x86_platform.set_wallclock = kvm_set_wallclock; |
| 361 | #ifdef CONFIG_X86_LOCAL_APIC |
| 362 | x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock; |
| 363 | #endif |
| 364 | x86_platform.save_sched_clock_state = kvm_save_sched_clock_state; |
| 365 | x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state; |
| 366 | machine_ops.shutdown = kvm_shutdown; |
| 367 | #ifdef CONFIG_KEXEC_CORE |
| 368 | machine_ops.crash_shutdown = kvm_crash_shutdown; |
| 369 | #endif |
| 370 | kvm_get_preset_lpj(); |
| 371 | clocksource_register_hz(&kvm_clock, NSEC_PER_SEC); |
| 372 | pv_info.name = "KVM"; |
| 373 | } |