Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Common time routines among all ppc machines. |
| 3 | * |
| 4 | * Written by Cort Dougan (cort@cs.nmt.edu) to merge |
| 5 | * Paul Mackerras' version and mine for PReP and Pmac. |
| 6 | * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). |
| 7 | * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) |
| 8 | * |
| 9 | * First round of bugfixes by Gabriel Paubert (paubert@iram.es) |
| 10 | * to make clock more stable (2.4.0-test5). The only thing |
| 11 | * that this code assumes is that the timebases have been synchronized |
| 12 | * by firmware on SMP and are never stopped (never do sleep |
| 13 | * on SMP then, nap and doze are OK). |
| 14 | * |
| 15 | * Speeded up do_gettimeofday by getting rid of references to |
| 16 | * xtime (which required locks for consistency). (mikejc@us.ibm.com) |
| 17 | * |
| 18 | * TODO (not necessarily in this file): |
| 19 | * - improve precision and reproducibility of timebase frequency |
| 20 | * measurement at boot time. |
| 21 | * - for astronomical applications: add a new function to get |
| 22 | * non ambiguous timestamps even around leap seconds. This needs |
| 23 | * a new timestamp format and a good name. |
| 24 | * |
| 25 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
| 26 | * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| 27 | * |
| 28 | * This program is free software; you can redistribute it and/or |
| 29 | * modify it under the terms of the GNU General Public License |
| 30 | * as published by the Free Software Foundation; either version |
| 31 | * 2 of the License, or (at your option) any later version. |
| 32 | */ |
| 33 | |
| 34 | #include <linux/errno.h> |
| 35 | #include <linux/export.h> |
| 36 | #include <linux/sched.h> |
| 37 | #include <linux/sched/clock.h> |
| 38 | #include <linux/kernel.h> |
| 39 | #include <linux/param.h> |
| 40 | #include <linux/string.h> |
| 41 | #include <linux/mm.h> |
| 42 | #include <linux/interrupt.h> |
| 43 | #include <linux/timex.h> |
| 44 | #include <linux/kernel_stat.h> |
| 45 | #include <linux/time.h> |
| 46 | #include <linux/clockchips.h> |
| 47 | #include <linux/init.h> |
| 48 | #include <linux/profile.h> |
| 49 | #include <linux/cpu.h> |
| 50 | #include <linux/security.h> |
| 51 | #include <linux/percpu.h> |
| 52 | #include <linux/rtc.h> |
| 53 | #include <linux/jiffies.h> |
| 54 | #include <linux/posix-timers.h> |
| 55 | #include <linux/irq.h> |
| 56 | #include <linux/delay.h> |
| 57 | #include <linux/irq_work.h> |
| 58 | #include <linux/clk-provider.h> |
| 59 | #include <linux/suspend.h> |
| 60 | #include <linux/rtc.h> |
| 61 | #include <linux/sched/cputime.h> |
| 62 | #include <linux/processor.h> |
| 63 | #include <asm/trace.h> |
| 64 | |
| 65 | #include <asm/io.h> |
| 66 | #include <asm/nvram.h> |
| 67 | #include <asm/cache.h> |
| 68 | #include <asm/machdep.h> |
| 69 | #include <linux/uaccess.h> |
| 70 | #include <asm/time.h> |
| 71 | #include <asm/prom.h> |
| 72 | #include <asm/irq.h> |
| 73 | #include <asm/div64.h> |
| 74 | #include <asm/smp.h> |
| 75 | #include <asm/vdso_datapage.h> |
| 76 | #include <asm/firmware.h> |
| 77 | #include <asm/asm-prototypes.h> |
| 78 | |
| 79 | /* powerpc clocksource/clockevent code */ |
| 80 | |
| 81 | #include <linux/clockchips.h> |
| 82 | #include <linux/timekeeper_internal.h> |
| 83 | |
| 84 | static u64 rtc_read(struct clocksource *); |
| 85 | static struct clocksource clocksource_rtc = { |
| 86 | .name = "rtc", |
| 87 | .rating = 400, |
| 88 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 89 | .mask = CLOCKSOURCE_MASK(64), |
| 90 | .read = rtc_read, |
| 91 | }; |
| 92 | |
| 93 | static u64 timebase_read(struct clocksource *); |
| 94 | static struct clocksource clocksource_timebase = { |
| 95 | .name = "timebase", |
| 96 | .rating = 400, |
| 97 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 98 | .mask = CLOCKSOURCE_MASK(64), |
| 99 | .read = timebase_read, |
| 100 | }; |
| 101 | |
| 102 | #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF |
| 103 | u64 decrementer_max = DECREMENTER_DEFAULT_MAX; |
| 104 | |
| 105 | static int decrementer_set_next_event(unsigned long evt, |
| 106 | struct clock_event_device *dev); |
| 107 | static int decrementer_shutdown(struct clock_event_device *evt); |
| 108 | |
| 109 | struct clock_event_device decrementer_clockevent = { |
| 110 | .name = "decrementer", |
| 111 | .rating = 200, |
| 112 | .irq = 0, |
| 113 | .set_next_event = decrementer_set_next_event, |
| 114 | .set_state_shutdown = decrementer_shutdown, |
| 115 | .tick_resume = decrementer_shutdown, |
| 116 | .features = CLOCK_EVT_FEAT_ONESHOT | |
| 117 | CLOCK_EVT_FEAT_C3STOP, |
| 118 | }; |
| 119 | EXPORT_SYMBOL(decrementer_clockevent); |
| 120 | |
| 121 | DEFINE_PER_CPU(u64, decrementers_next_tb); |
| 122 | static DEFINE_PER_CPU(struct clock_event_device, decrementers); |
| 123 | |
| 124 | #define XSEC_PER_SEC (1024*1024) |
| 125 | |
| 126 | #ifdef CONFIG_PPC64 |
| 127 | #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) |
| 128 | #else |
| 129 | /* compute ((xsec << 12) * max) >> 32 */ |
| 130 | #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) |
| 131 | #endif |
| 132 | |
| 133 | unsigned long tb_ticks_per_jiffy; |
| 134 | unsigned long tb_ticks_per_usec = 100; /* sane default */ |
| 135 | EXPORT_SYMBOL(tb_ticks_per_usec); |
| 136 | unsigned long tb_ticks_per_sec; |
| 137 | EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ |
| 138 | |
| 139 | DEFINE_SPINLOCK(rtc_lock); |
| 140 | EXPORT_SYMBOL_GPL(rtc_lock); |
| 141 | |
| 142 | static u64 tb_to_ns_scale __read_mostly; |
| 143 | static unsigned tb_to_ns_shift __read_mostly; |
| 144 | static u64 boot_tb __read_mostly; |
| 145 | |
| 146 | extern struct timezone sys_tz; |
| 147 | static long timezone_offset; |
| 148 | |
| 149 | unsigned long ppc_proc_freq; |
| 150 | EXPORT_SYMBOL_GPL(ppc_proc_freq); |
| 151 | unsigned long ppc_tb_freq; |
| 152 | EXPORT_SYMBOL_GPL(ppc_tb_freq); |
| 153 | |
| 154 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| 155 | /* |
| 156 | * Factor for converting from cputime_t (timebase ticks) to |
| 157 | * microseconds. This is stored as 0.64 fixed-point binary fraction. |
| 158 | */ |
| 159 | u64 __cputime_usec_factor; |
| 160 | EXPORT_SYMBOL(__cputime_usec_factor); |
| 161 | |
| 162 | #ifdef CONFIG_PPC_SPLPAR |
| 163 | void (*dtl_consumer)(struct dtl_entry *, u64); |
| 164 | #endif |
| 165 | |
| 166 | static void calc_cputime_factors(void) |
| 167 | { |
| 168 | struct div_result res; |
| 169 | |
| 170 | div128_by_32(1000000, 0, tb_ticks_per_sec, &res); |
| 171 | __cputime_usec_factor = res.result_low; |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Read the SPURR on systems that have it, otherwise the PURR, |
| 176 | * or if that doesn't exist return the timebase value passed in. |
| 177 | */ |
| 178 | static unsigned long read_spurr(unsigned long tb) |
| 179 | { |
| 180 | if (cpu_has_feature(CPU_FTR_SPURR)) |
| 181 | return mfspr(SPRN_SPURR); |
| 182 | if (cpu_has_feature(CPU_FTR_PURR)) |
| 183 | return mfspr(SPRN_PURR); |
| 184 | return tb; |
| 185 | } |
| 186 | |
| 187 | #ifdef CONFIG_PPC_SPLPAR |
| 188 | |
| 189 | /* |
| 190 | * Scan the dispatch trace log and count up the stolen time. |
| 191 | * Should be called with interrupts disabled. |
| 192 | */ |
| 193 | static u64 scan_dispatch_log(u64 stop_tb) |
| 194 | { |
| 195 | u64 i = local_paca->dtl_ridx; |
| 196 | struct dtl_entry *dtl = local_paca->dtl_curr; |
| 197 | struct dtl_entry *dtl_end = local_paca->dispatch_log_end; |
| 198 | struct lppaca *vpa = local_paca->lppaca_ptr; |
| 199 | u64 tb_delta; |
| 200 | u64 stolen = 0; |
| 201 | u64 dtb; |
| 202 | |
| 203 | if (!dtl) |
| 204 | return 0; |
| 205 | |
| 206 | if (i == be64_to_cpu(vpa->dtl_idx)) |
| 207 | return 0; |
| 208 | while (i < be64_to_cpu(vpa->dtl_idx)) { |
| 209 | dtb = be64_to_cpu(dtl->timebase); |
| 210 | tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + |
| 211 | be32_to_cpu(dtl->ready_to_enqueue_time); |
| 212 | barrier(); |
| 213 | if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { |
| 214 | /* buffer has overflowed */ |
| 215 | i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; |
| 216 | dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); |
| 217 | continue; |
| 218 | } |
| 219 | if (dtb > stop_tb) |
| 220 | break; |
| 221 | if (dtl_consumer) |
| 222 | dtl_consumer(dtl, i); |
| 223 | stolen += tb_delta; |
| 224 | ++i; |
| 225 | ++dtl; |
| 226 | if (dtl == dtl_end) |
| 227 | dtl = local_paca->dispatch_log; |
| 228 | } |
| 229 | local_paca->dtl_ridx = i; |
| 230 | local_paca->dtl_curr = dtl; |
| 231 | return stolen; |
| 232 | } |
| 233 | |
| 234 | /* |
| 235 | * Accumulate stolen time by scanning the dispatch trace log. |
| 236 | * Called on entry from user mode. |
| 237 | */ |
| 238 | void accumulate_stolen_time(void) |
| 239 | { |
| 240 | u64 sst, ust; |
| 241 | unsigned long save_irq_soft_mask = irq_soft_mask_return(); |
| 242 | struct cpu_accounting_data *acct = &local_paca->accounting; |
| 243 | |
| 244 | /* We are called early in the exception entry, before |
| 245 | * soft/hard_enabled are sync'ed to the expected state |
| 246 | * for the exception. We are hard disabled but the PACA |
| 247 | * needs to reflect that so various debug stuff doesn't |
| 248 | * complain |
| 249 | */ |
| 250 | irq_soft_mask_set(IRQS_DISABLED); |
| 251 | |
| 252 | sst = scan_dispatch_log(acct->starttime_user); |
| 253 | ust = scan_dispatch_log(acct->starttime); |
| 254 | acct->stime -= sst; |
| 255 | acct->utime -= ust; |
| 256 | acct->steal_time += ust + sst; |
| 257 | |
| 258 | irq_soft_mask_set(save_irq_soft_mask); |
| 259 | } |
| 260 | |
| 261 | static inline u64 calculate_stolen_time(u64 stop_tb) |
| 262 | { |
| 263 | if (!firmware_has_feature(FW_FEATURE_SPLPAR)) |
| 264 | return 0; |
| 265 | |
| 266 | if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) |
| 267 | return scan_dispatch_log(stop_tb); |
| 268 | |
| 269 | return 0; |
| 270 | } |
| 271 | |
| 272 | #else /* CONFIG_PPC_SPLPAR */ |
| 273 | static inline u64 calculate_stolen_time(u64 stop_tb) |
| 274 | { |
| 275 | return 0; |
| 276 | } |
| 277 | |
| 278 | #endif /* CONFIG_PPC_SPLPAR */ |
| 279 | |
| 280 | /* |
| 281 | * Account time for a transition between system, hard irq |
| 282 | * or soft irq state. |
| 283 | */ |
| 284 | static unsigned long vtime_delta(struct task_struct *tsk, |
| 285 | unsigned long *stime_scaled, |
| 286 | unsigned long *steal_time) |
| 287 | { |
| 288 | unsigned long now, nowscaled, deltascaled; |
| 289 | unsigned long stime; |
| 290 | unsigned long utime, utime_scaled; |
| 291 | struct cpu_accounting_data *acct = get_accounting(tsk); |
| 292 | |
| 293 | WARN_ON_ONCE(!irqs_disabled()); |
| 294 | |
| 295 | now = mftb(); |
| 296 | nowscaled = read_spurr(now); |
| 297 | stime = now - acct->starttime; |
| 298 | acct->starttime = now; |
| 299 | deltascaled = nowscaled - acct->startspurr; |
| 300 | acct->startspurr = nowscaled; |
| 301 | |
| 302 | *steal_time = calculate_stolen_time(now); |
| 303 | |
| 304 | utime = acct->utime - acct->utime_sspurr; |
| 305 | acct->utime_sspurr = acct->utime; |
| 306 | |
| 307 | /* |
| 308 | * Because we don't read the SPURR on every kernel entry/exit, |
| 309 | * deltascaled includes both user and system SPURR ticks. |
| 310 | * Apportion these ticks to system SPURR ticks and user |
| 311 | * SPURR ticks in the same ratio as the system time (delta) |
| 312 | * and user time (udelta) values obtained from the timebase |
| 313 | * over the same interval. The system ticks get accounted here; |
| 314 | * the user ticks get saved up in paca->user_time_scaled to be |
| 315 | * used by account_process_tick. |
| 316 | */ |
| 317 | *stime_scaled = stime; |
| 318 | utime_scaled = utime; |
| 319 | if (deltascaled != stime + utime) { |
| 320 | if (utime) { |
| 321 | *stime_scaled = deltascaled * stime / (stime + utime); |
| 322 | utime_scaled = deltascaled - *stime_scaled; |
| 323 | } else { |
| 324 | *stime_scaled = deltascaled; |
| 325 | } |
| 326 | } |
| 327 | acct->utime_scaled += utime_scaled; |
| 328 | |
| 329 | return stime; |
| 330 | } |
| 331 | |
| 332 | void vtime_account_system(struct task_struct *tsk) |
| 333 | { |
| 334 | unsigned long stime, stime_scaled, steal_time; |
| 335 | struct cpu_accounting_data *acct = get_accounting(tsk); |
| 336 | |
| 337 | stime = vtime_delta(tsk, &stime_scaled, &steal_time); |
| 338 | |
| 339 | stime -= min(stime, steal_time); |
| 340 | acct->steal_time += steal_time; |
| 341 | |
| 342 | if ((tsk->flags & PF_VCPU) && !irq_count()) { |
| 343 | acct->gtime += stime; |
| 344 | acct->utime_scaled += stime_scaled; |
| 345 | } else { |
| 346 | if (hardirq_count()) |
| 347 | acct->hardirq_time += stime; |
| 348 | else if (in_serving_softirq()) |
| 349 | acct->softirq_time += stime; |
| 350 | else |
| 351 | acct->stime += stime; |
| 352 | |
| 353 | acct->stime_scaled += stime_scaled; |
| 354 | } |
| 355 | } |
| 356 | EXPORT_SYMBOL_GPL(vtime_account_system); |
| 357 | |
| 358 | void vtime_account_idle(struct task_struct *tsk) |
| 359 | { |
| 360 | unsigned long stime, stime_scaled, steal_time; |
| 361 | struct cpu_accounting_data *acct = get_accounting(tsk); |
| 362 | |
| 363 | stime = vtime_delta(tsk, &stime_scaled, &steal_time); |
| 364 | acct->idle_time += stime + steal_time; |
| 365 | } |
| 366 | |
| 367 | /* |
| 368 | * Account the whole cputime accumulated in the paca |
| 369 | * Must be called with interrupts disabled. |
| 370 | * Assumes that vtime_account_system/idle() has been called |
| 371 | * recently (i.e. since the last entry from usermode) so that |
| 372 | * get_paca()->user_time_scaled is up to date. |
| 373 | */ |
| 374 | void vtime_flush(struct task_struct *tsk) |
| 375 | { |
| 376 | struct cpu_accounting_data *acct = get_accounting(tsk); |
| 377 | |
| 378 | if (acct->utime) |
| 379 | account_user_time(tsk, cputime_to_nsecs(acct->utime)); |
| 380 | |
| 381 | if (acct->utime_scaled) |
| 382 | tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); |
| 383 | |
| 384 | if (acct->gtime) |
| 385 | account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); |
| 386 | |
| 387 | if (acct->steal_time) |
| 388 | account_steal_time(cputime_to_nsecs(acct->steal_time)); |
| 389 | |
| 390 | if (acct->idle_time) |
| 391 | account_idle_time(cputime_to_nsecs(acct->idle_time)); |
| 392 | |
| 393 | if (acct->stime) |
| 394 | account_system_index_time(tsk, cputime_to_nsecs(acct->stime), |
| 395 | CPUTIME_SYSTEM); |
| 396 | if (acct->stime_scaled) |
| 397 | tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); |
| 398 | |
| 399 | if (acct->hardirq_time) |
| 400 | account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), |
| 401 | CPUTIME_IRQ); |
| 402 | if (acct->softirq_time) |
| 403 | account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), |
| 404 | CPUTIME_SOFTIRQ); |
| 405 | |
| 406 | acct->utime = 0; |
| 407 | acct->utime_scaled = 0; |
| 408 | acct->utime_sspurr = 0; |
| 409 | acct->gtime = 0; |
| 410 | acct->steal_time = 0; |
| 411 | acct->idle_time = 0; |
| 412 | acct->stime = 0; |
| 413 | acct->stime_scaled = 0; |
| 414 | acct->hardirq_time = 0; |
| 415 | acct->softirq_time = 0; |
| 416 | } |
| 417 | |
| 418 | #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ |
| 419 | #define calc_cputime_factors() |
| 420 | #endif |
| 421 | |
| 422 | void __delay(unsigned long loops) |
| 423 | { |
| 424 | unsigned long start; |
| 425 | int diff; |
| 426 | |
| 427 | spin_begin(); |
| 428 | if (__USE_RTC()) { |
| 429 | start = get_rtcl(); |
| 430 | do { |
| 431 | /* the RTCL register wraps at 1000000000 */ |
| 432 | diff = get_rtcl() - start; |
| 433 | if (diff < 0) |
| 434 | diff += 1000000000; |
| 435 | spin_cpu_relax(); |
| 436 | } while (diff < loops); |
| 437 | } else { |
| 438 | start = get_tbl(); |
| 439 | while (get_tbl() - start < loops) |
| 440 | spin_cpu_relax(); |
| 441 | } |
| 442 | spin_end(); |
| 443 | } |
| 444 | EXPORT_SYMBOL(__delay); |
| 445 | |
| 446 | void udelay(unsigned long usecs) |
| 447 | { |
| 448 | __delay(tb_ticks_per_usec * usecs); |
| 449 | } |
| 450 | EXPORT_SYMBOL(udelay); |
| 451 | |
| 452 | #ifdef CONFIG_SMP |
| 453 | unsigned long profile_pc(struct pt_regs *regs) |
| 454 | { |
| 455 | unsigned long pc = instruction_pointer(regs); |
| 456 | |
| 457 | if (in_lock_functions(pc)) |
| 458 | return regs->link; |
| 459 | |
| 460 | return pc; |
| 461 | } |
| 462 | EXPORT_SYMBOL(profile_pc); |
| 463 | #endif |
| 464 | |
| 465 | #ifdef CONFIG_IRQ_WORK |
| 466 | |
| 467 | /* |
| 468 | * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... |
| 469 | */ |
| 470 | #ifdef CONFIG_PPC64 |
| 471 | static inline unsigned long test_irq_work_pending(void) |
| 472 | { |
| 473 | unsigned long x; |
| 474 | |
| 475 | asm volatile("lbz %0,%1(13)" |
| 476 | : "=r" (x) |
| 477 | : "i" (offsetof(struct paca_struct, irq_work_pending))); |
| 478 | return x; |
| 479 | } |
| 480 | |
| 481 | static inline void set_irq_work_pending_flag(void) |
| 482 | { |
| 483 | asm volatile("stb %0,%1(13)" : : |
| 484 | "r" (1), |
| 485 | "i" (offsetof(struct paca_struct, irq_work_pending))); |
| 486 | } |
| 487 | |
| 488 | static inline void clear_irq_work_pending(void) |
| 489 | { |
| 490 | asm volatile("stb %0,%1(13)" : : |
| 491 | "r" (0), |
| 492 | "i" (offsetof(struct paca_struct, irq_work_pending))); |
| 493 | } |
| 494 | |
| 495 | void arch_irq_work_raise(void) |
| 496 | { |
| 497 | preempt_disable(); |
| 498 | set_irq_work_pending_flag(); |
| 499 | /* |
| 500 | * Non-nmi code running with interrupts disabled will replay |
| 501 | * irq_happened before it re-enables interrupts, so setthe |
| 502 | * decrementer there instead of causing a hardware exception |
| 503 | * which would immediately hit the masked interrupt handler |
| 504 | * and have the net effect of setting the decrementer in |
| 505 | * irq_happened. |
| 506 | * |
| 507 | * NMI interrupts can not check this when they return, so the |
| 508 | * decrementer hardware exception is raised, which will fire |
| 509 | * when interrupts are next enabled. |
| 510 | * |
| 511 | * BookE does not support this yet, it must audit all NMI |
| 512 | * interrupt handlers to ensure they call nmi_enter() so this |
| 513 | * check would be correct. |
| 514 | */ |
| 515 | if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) { |
| 516 | set_dec(1); |
| 517 | } else { |
| 518 | hard_irq_disable(); |
| 519 | local_paca->irq_happened |= PACA_IRQ_DEC; |
| 520 | } |
| 521 | preempt_enable(); |
| 522 | } |
| 523 | |
| 524 | #else /* 32-bit */ |
| 525 | |
| 526 | DEFINE_PER_CPU(u8, irq_work_pending); |
| 527 | |
| 528 | #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) |
| 529 | #define test_irq_work_pending() __this_cpu_read(irq_work_pending) |
| 530 | #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) |
| 531 | |
| 532 | void arch_irq_work_raise(void) |
| 533 | { |
| 534 | preempt_disable(); |
| 535 | set_irq_work_pending_flag(); |
| 536 | set_dec(1); |
| 537 | preempt_enable(); |
| 538 | } |
| 539 | |
| 540 | #endif /* 32 vs 64 bit */ |
| 541 | |
| 542 | #else /* CONFIG_IRQ_WORK */ |
| 543 | |
| 544 | #define test_irq_work_pending() 0 |
| 545 | #define clear_irq_work_pending() |
| 546 | |
| 547 | #endif /* CONFIG_IRQ_WORK */ |
| 548 | |
| 549 | /* |
| 550 | * timer_interrupt - gets called when the decrementer overflows, |
| 551 | * with interrupts disabled. |
| 552 | */ |
| 553 | void timer_interrupt(struct pt_regs *regs) |
| 554 | { |
| 555 | struct clock_event_device *evt = this_cpu_ptr(&decrementers); |
| 556 | u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); |
| 557 | struct pt_regs *old_regs; |
| 558 | u64 now; |
| 559 | |
| 560 | /* Some implementations of hotplug will get timer interrupts while |
| 561 | * offline, just ignore these and we also need to set |
| 562 | * decrementers_next_tb as MAX to make sure __check_irq_replay |
| 563 | * don't replay timer interrupt when return, otherwise we'll trap |
| 564 | * here infinitely :( |
| 565 | */ |
| 566 | if (unlikely(!cpu_online(smp_processor_id()))) { |
| 567 | *next_tb = ~(u64)0; |
| 568 | set_dec(decrementer_max); |
| 569 | return; |
| 570 | } |
| 571 | |
| 572 | /* Ensure a positive value is written to the decrementer, or else |
| 573 | * some CPUs will continue to take decrementer exceptions. When the |
| 574 | * PPC_WATCHDOG (decrementer based) is configured, keep this at most |
| 575 | * 31 bits, which is about 4 seconds on most systems, which gives |
| 576 | * the watchdog a chance of catching timer interrupt hard lockups. |
| 577 | */ |
| 578 | if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) |
| 579 | set_dec(0x7fffffff); |
| 580 | else |
| 581 | set_dec(decrementer_max); |
| 582 | |
| 583 | /* Conditionally hard-enable interrupts now that the DEC has been |
| 584 | * bumped to its maximum value |
| 585 | */ |
| 586 | may_hard_irq_enable(); |
| 587 | |
| 588 | |
| 589 | #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) |
| 590 | if (atomic_read(&ppc_n_lost_interrupts) != 0) |
| 591 | do_IRQ(regs); |
| 592 | #endif |
| 593 | |
| 594 | old_regs = set_irq_regs(regs); |
| 595 | irq_enter(); |
| 596 | trace_timer_interrupt_entry(regs); |
| 597 | |
| 598 | if (test_irq_work_pending()) { |
| 599 | clear_irq_work_pending(); |
| 600 | irq_work_run(); |
| 601 | } |
| 602 | |
| 603 | now = get_tb_or_rtc(); |
| 604 | if (now >= *next_tb) { |
| 605 | *next_tb = ~(u64)0; |
| 606 | if (evt->event_handler) |
| 607 | evt->event_handler(evt); |
| 608 | __this_cpu_inc(irq_stat.timer_irqs_event); |
| 609 | } else { |
| 610 | now = *next_tb - now; |
| 611 | if (now <= decrementer_max) |
| 612 | set_dec(now); |
| 613 | /* We may have raced with new irq work */ |
| 614 | if (test_irq_work_pending()) |
| 615 | set_dec(1); |
| 616 | __this_cpu_inc(irq_stat.timer_irqs_others); |
| 617 | } |
| 618 | |
| 619 | trace_timer_interrupt_exit(regs); |
| 620 | irq_exit(); |
| 621 | set_irq_regs(old_regs); |
| 622 | } |
| 623 | EXPORT_SYMBOL(timer_interrupt); |
| 624 | |
| 625 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| 626 | void timer_broadcast_interrupt(void) |
| 627 | { |
| 628 | u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); |
| 629 | |
| 630 | *next_tb = ~(u64)0; |
| 631 | tick_receive_broadcast(); |
| 632 | __this_cpu_inc(irq_stat.broadcast_irqs_event); |
| 633 | } |
| 634 | #endif |
| 635 | |
| 636 | /* |
| 637 | * Hypervisor decrementer interrupts shouldn't occur but are sometimes |
| 638 | * left pending on exit from a KVM guest. We don't need to do anything |
| 639 | * to clear them, as they are edge-triggered. |
| 640 | */ |
| 641 | void hdec_interrupt(struct pt_regs *regs) |
| 642 | { |
| 643 | } |
| 644 | |
| 645 | #ifdef CONFIG_SUSPEND |
| 646 | static void generic_suspend_disable_irqs(void) |
| 647 | { |
| 648 | /* Disable the decrementer, so that it doesn't interfere |
| 649 | * with suspending. |
| 650 | */ |
| 651 | |
| 652 | set_dec(decrementer_max); |
| 653 | local_irq_disable(); |
| 654 | set_dec(decrementer_max); |
| 655 | } |
| 656 | |
| 657 | static void generic_suspend_enable_irqs(void) |
| 658 | { |
| 659 | local_irq_enable(); |
| 660 | } |
| 661 | |
| 662 | /* Overrides the weak version in kernel/power/main.c */ |
| 663 | void arch_suspend_disable_irqs(void) |
| 664 | { |
| 665 | if (ppc_md.suspend_disable_irqs) |
| 666 | ppc_md.suspend_disable_irqs(); |
| 667 | generic_suspend_disable_irqs(); |
| 668 | } |
| 669 | |
| 670 | /* Overrides the weak version in kernel/power/main.c */ |
| 671 | void arch_suspend_enable_irqs(void) |
| 672 | { |
| 673 | generic_suspend_enable_irqs(); |
| 674 | if (ppc_md.suspend_enable_irqs) |
| 675 | ppc_md.suspend_enable_irqs(); |
| 676 | } |
| 677 | #endif |
| 678 | |
| 679 | unsigned long long tb_to_ns(unsigned long long ticks) |
| 680 | { |
| 681 | return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; |
| 682 | } |
| 683 | EXPORT_SYMBOL_GPL(tb_to_ns); |
| 684 | |
| 685 | /* |
| 686 | * Scheduler clock - returns current time in nanosec units. |
| 687 | * |
| 688 | * Note: mulhdu(a, b) (multiply high double unsigned) returns |
| 689 | * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b |
| 690 | * are 64-bit unsigned numbers. |
| 691 | */ |
| 692 | notrace unsigned long long sched_clock(void) |
| 693 | { |
| 694 | if (__USE_RTC()) |
| 695 | return get_rtc(); |
| 696 | return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; |
| 697 | } |
| 698 | |
| 699 | |
| 700 | #ifdef CONFIG_PPC_PSERIES |
| 701 | |
| 702 | /* |
| 703 | * Running clock - attempts to give a view of time passing for a virtualised |
| 704 | * kernels. |
| 705 | * Uses the VTB register if available otherwise a next best guess. |
| 706 | */ |
| 707 | unsigned long long running_clock(void) |
| 708 | { |
| 709 | /* |
| 710 | * Don't read the VTB as a host since KVM does not switch in host |
| 711 | * timebase into the VTB when it takes a guest off the CPU, reading the |
| 712 | * VTB would result in reading 'last switched out' guest VTB. |
| 713 | * |
| 714 | * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it |
| 715 | * would be unsafe to rely only on the #ifdef above. |
| 716 | */ |
| 717 | if (firmware_has_feature(FW_FEATURE_LPAR) && |
| 718 | cpu_has_feature(CPU_FTR_ARCH_207S)) |
| 719 | return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; |
| 720 | |
| 721 | /* |
| 722 | * This is a next best approximation without a VTB. |
| 723 | * On a host which is running bare metal there should never be any stolen |
| 724 | * time and on a host which doesn't do any virtualisation TB *should* equal |
| 725 | * VTB so it makes no difference anyway. |
| 726 | */ |
| 727 | return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; |
| 728 | } |
| 729 | #endif |
| 730 | |
| 731 | static int __init get_freq(char *name, int cells, unsigned long *val) |
| 732 | { |
| 733 | struct device_node *cpu; |
| 734 | const __be32 *fp; |
| 735 | int found = 0; |
| 736 | |
| 737 | /* The cpu node should have timebase and clock frequency properties */ |
| 738 | cpu = of_find_node_by_type(NULL, "cpu"); |
| 739 | |
| 740 | if (cpu) { |
| 741 | fp = of_get_property(cpu, name, NULL); |
| 742 | if (fp) { |
| 743 | found = 1; |
| 744 | *val = of_read_ulong(fp, cells); |
| 745 | } |
| 746 | |
| 747 | of_node_put(cpu); |
| 748 | } |
| 749 | |
| 750 | return found; |
| 751 | } |
| 752 | |
| 753 | static void start_cpu_decrementer(void) |
| 754 | { |
| 755 | #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) |
| 756 | unsigned int tcr; |
| 757 | |
| 758 | /* Clear any pending timer interrupts */ |
| 759 | mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); |
| 760 | |
| 761 | tcr = mfspr(SPRN_TCR); |
| 762 | /* |
| 763 | * The watchdog may have already been enabled by u-boot. So leave |
| 764 | * TRC[WP] (Watchdog Period) alone. |
| 765 | */ |
| 766 | tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ |
| 767 | tcr |= TCR_DIE; /* Enable decrementer */ |
| 768 | mtspr(SPRN_TCR, tcr); |
| 769 | #endif |
| 770 | } |
| 771 | |
| 772 | void __init generic_calibrate_decr(void) |
| 773 | { |
| 774 | ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ |
| 775 | |
| 776 | if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && |
| 777 | !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { |
| 778 | |
| 779 | printk(KERN_ERR "WARNING: Estimating decrementer frequency " |
| 780 | "(not found)\n"); |
| 781 | } |
| 782 | |
| 783 | ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ |
| 784 | |
| 785 | if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && |
| 786 | !get_freq("clock-frequency", 1, &ppc_proc_freq)) { |
| 787 | |
| 788 | printk(KERN_ERR "WARNING: Estimating processor frequency " |
| 789 | "(not found)\n"); |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | int update_persistent_clock64(struct timespec64 now) |
| 794 | { |
| 795 | struct rtc_time tm; |
| 796 | |
| 797 | if (!ppc_md.set_rtc_time) |
| 798 | return -ENODEV; |
| 799 | |
| 800 | rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); |
| 801 | |
| 802 | return ppc_md.set_rtc_time(&tm); |
| 803 | } |
| 804 | |
| 805 | static void __read_persistent_clock(struct timespec64 *ts) |
| 806 | { |
| 807 | struct rtc_time tm; |
| 808 | static int first = 1; |
| 809 | |
| 810 | ts->tv_nsec = 0; |
| 811 | /* XXX this is a litle fragile but will work okay in the short term */ |
| 812 | if (first) { |
| 813 | first = 0; |
| 814 | if (ppc_md.time_init) |
| 815 | timezone_offset = ppc_md.time_init(); |
| 816 | |
| 817 | /* get_boot_time() isn't guaranteed to be safe to call late */ |
| 818 | if (ppc_md.get_boot_time) { |
| 819 | ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; |
| 820 | return; |
| 821 | } |
| 822 | } |
| 823 | if (!ppc_md.get_rtc_time) { |
| 824 | ts->tv_sec = 0; |
| 825 | return; |
| 826 | } |
| 827 | ppc_md.get_rtc_time(&tm); |
| 828 | |
| 829 | ts->tv_sec = rtc_tm_to_time64(&tm); |
| 830 | } |
| 831 | |
| 832 | void read_persistent_clock64(struct timespec64 *ts) |
| 833 | { |
| 834 | __read_persistent_clock(ts); |
| 835 | |
| 836 | /* Sanitize it in case real time clock is set below EPOCH */ |
| 837 | if (ts->tv_sec < 0) { |
| 838 | ts->tv_sec = 0; |
| 839 | ts->tv_nsec = 0; |
| 840 | } |
| 841 | |
| 842 | } |
| 843 | |
| 844 | /* clocksource code */ |
| 845 | static notrace u64 rtc_read(struct clocksource *cs) |
| 846 | { |
| 847 | return (u64)get_rtc(); |
| 848 | } |
| 849 | |
| 850 | static notrace u64 timebase_read(struct clocksource *cs) |
| 851 | { |
| 852 | return (u64)get_tb(); |
| 853 | } |
| 854 | |
| 855 | |
| 856 | void update_vsyscall(struct timekeeper *tk) |
| 857 | { |
| 858 | struct timespec xt; |
| 859 | struct clocksource *clock = tk->tkr_mono.clock; |
| 860 | u32 mult = tk->tkr_mono.mult; |
| 861 | u32 shift = tk->tkr_mono.shift; |
| 862 | u64 cycle_last = tk->tkr_mono.cycle_last; |
| 863 | u64 new_tb_to_xs, new_stamp_xsec; |
| 864 | u64 frac_sec; |
| 865 | |
| 866 | if (clock != &clocksource_timebase) |
| 867 | return; |
| 868 | |
| 869 | xt.tv_sec = tk->xtime_sec; |
| 870 | xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); |
| 871 | |
| 872 | /* Make userspace gettimeofday spin until we're done. */ |
| 873 | ++vdso_data->tb_update_count; |
| 874 | smp_mb(); |
| 875 | |
| 876 | /* |
| 877 | * This computes ((2^20 / 1e9) * mult) >> shift as a |
| 878 | * 0.64 fixed-point fraction. |
| 879 | * The computation in the else clause below won't overflow |
| 880 | * (as long as the timebase frequency is >= 1.049 MHz) |
| 881 | * but loses precision because we lose the low bits of the constant |
| 882 | * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9. |
| 883 | * For a shift of 24 the error is about 0.5e-9, or about 0.5ns |
| 884 | * over a second. (Shift values are usually 22, 23 or 24.) |
| 885 | * For high frequency clocks such as the 512MHz timebase clock |
| 886 | * on POWER[6789], the mult value is small (e.g. 32768000) |
| 887 | * and so we can shift the constant by 16 initially |
| 888 | * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the |
| 889 | * remaining shifts after the multiplication, which gives a |
| 890 | * more accurate result (e.g. with mult = 32768000, shift = 24, |
| 891 | * the error is only about 1.2e-12, or 0.7ns over 10 minutes). |
| 892 | */ |
| 893 | if (mult <= 62500000 && clock->shift >= 16) |
| 894 | new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16); |
| 895 | else |
| 896 | new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift); |
| 897 | |
| 898 | /* |
| 899 | * Compute the fractional second in units of 2^-32 seconds. |
| 900 | * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift |
| 901 | * in nanoseconds, so multiplying that by 2^32 / 1e9 gives |
| 902 | * it in units of 2^-32 seconds. |
| 903 | * We assume shift <= 32 because clocks_calc_mult_shift() |
| 904 | * generates shift values in the range 0 - 32. |
| 905 | */ |
| 906 | frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift); |
| 907 | do_div(frac_sec, NSEC_PER_SEC); |
| 908 | |
| 909 | /* |
| 910 | * Work out new stamp_xsec value for any legacy users of systemcfg. |
| 911 | * stamp_xsec is in units of 2^-20 seconds. |
| 912 | */ |
| 913 | new_stamp_xsec = frac_sec >> 12; |
| 914 | new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC; |
| 915 | |
| 916 | /* |
| 917 | * tb_update_count is used to allow the userspace gettimeofday code |
| 918 | * to assure itself that it sees a consistent view of the tb_to_xs and |
| 919 | * stamp_xsec variables. It reads the tb_update_count, then reads |
| 920 | * tb_to_xs and stamp_xsec and then reads tb_update_count again. If |
| 921 | * the two values of tb_update_count match and are even then the |
| 922 | * tb_to_xs and stamp_xsec values are consistent. If not, then it |
| 923 | * loops back and reads them again until this criteria is met. |
| 924 | */ |
| 925 | vdso_data->tb_orig_stamp = cycle_last; |
| 926 | vdso_data->stamp_xsec = new_stamp_xsec; |
| 927 | vdso_data->tb_to_xs = new_tb_to_xs; |
| 928 | vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec; |
| 929 | vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec; |
| 930 | vdso_data->stamp_xtime = xt; |
| 931 | vdso_data->stamp_sec_fraction = frac_sec; |
| 932 | smp_wmb(); |
| 933 | ++(vdso_data->tb_update_count); |
| 934 | } |
| 935 | |
| 936 | void update_vsyscall_tz(void) |
| 937 | { |
| 938 | vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; |
| 939 | vdso_data->tz_dsttime = sys_tz.tz_dsttime; |
| 940 | } |
| 941 | |
| 942 | static void __init clocksource_init(void) |
| 943 | { |
| 944 | struct clocksource *clock; |
| 945 | |
| 946 | if (__USE_RTC()) |
| 947 | clock = &clocksource_rtc; |
| 948 | else |
| 949 | clock = &clocksource_timebase; |
| 950 | |
| 951 | if (clocksource_register_hz(clock, tb_ticks_per_sec)) { |
| 952 | printk(KERN_ERR "clocksource: %s is already registered\n", |
| 953 | clock->name); |
| 954 | return; |
| 955 | } |
| 956 | |
| 957 | printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", |
| 958 | clock->name, clock->mult, clock->shift); |
| 959 | } |
| 960 | |
| 961 | static int decrementer_set_next_event(unsigned long evt, |
| 962 | struct clock_event_device *dev) |
| 963 | { |
| 964 | __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt); |
| 965 | set_dec(evt); |
| 966 | |
| 967 | /* We may have raced with new irq work */ |
| 968 | if (test_irq_work_pending()) |
| 969 | set_dec(1); |
| 970 | |
| 971 | return 0; |
| 972 | } |
| 973 | |
| 974 | static int decrementer_shutdown(struct clock_event_device *dev) |
| 975 | { |
| 976 | decrementer_set_next_event(decrementer_max, dev); |
| 977 | return 0; |
| 978 | } |
| 979 | |
| 980 | static void register_decrementer_clockevent(int cpu) |
| 981 | { |
| 982 | struct clock_event_device *dec = &per_cpu(decrementers, cpu); |
| 983 | |
| 984 | *dec = decrementer_clockevent; |
| 985 | dec->cpumask = cpumask_of(cpu); |
| 986 | |
| 987 | printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", |
| 988 | dec->name, dec->mult, dec->shift, cpu); |
| 989 | |
| 990 | clockevents_register_device(dec); |
| 991 | } |
| 992 | |
| 993 | static void enable_large_decrementer(void) |
| 994 | { |
| 995 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| 996 | return; |
| 997 | |
| 998 | if (decrementer_max <= DECREMENTER_DEFAULT_MAX) |
| 999 | return; |
| 1000 | |
| 1001 | /* |
| 1002 | * If we're running as the hypervisor we need to enable the LD manually |
| 1003 | * otherwise firmware should have done it for us. |
| 1004 | */ |
| 1005 | if (cpu_has_feature(CPU_FTR_HVMODE)) |
| 1006 | mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); |
| 1007 | } |
| 1008 | |
| 1009 | static void __init set_decrementer_max(void) |
| 1010 | { |
| 1011 | struct device_node *cpu; |
| 1012 | u32 bits = 32; |
| 1013 | |
| 1014 | /* Prior to ISAv3 the decrementer is always 32 bit */ |
| 1015 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| 1016 | return; |
| 1017 | |
| 1018 | cpu = of_find_node_by_type(NULL, "cpu"); |
| 1019 | |
| 1020 | if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { |
| 1021 | if (bits > 64 || bits < 32) { |
| 1022 | pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); |
| 1023 | bits = 32; |
| 1024 | } |
| 1025 | |
| 1026 | /* calculate the signed maximum given this many bits */ |
| 1027 | decrementer_max = (1ul << (bits - 1)) - 1; |
| 1028 | } |
| 1029 | |
| 1030 | of_node_put(cpu); |
| 1031 | |
| 1032 | pr_info("time_init: %u bit decrementer (max: %llx)\n", |
| 1033 | bits, decrementer_max); |
| 1034 | } |
| 1035 | |
| 1036 | static void __init init_decrementer_clockevent(void) |
| 1037 | { |
| 1038 | int cpu = smp_processor_id(); |
| 1039 | |
| 1040 | clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4); |
| 1041 | |
| 1042 | decrementer_clockevent.max_delta_ns = |
| 1043 | clockevent_delta2ns(decrementer_max, &decrementer_clockevent); |
| 1044 | decrementer_clockevent.max_delta_ticks = decrementer_max; |
| 1045 | decrementer_clockevent.min_delta_ns = |
| 1046 | clockevent_delta2ns(2, &decrementer_clockevent); |
| 1047 | decrementer_clockevent.min_delta_ticks = 2; |
| 1048 | |
| 1049 | register_decrementer_clockevent(cpu); |
| 1050 | } |
| 1051 | |
| 1052 | void secondary_cpu_time_init(void) |
| 1053 | { |
| 1054 | /* Enable and test the large decrementer for this cpu */ |
| 1055 | enable_large_decrementer(); |
| 1056 | |
| 1057 | /* Start the decrementer on CPUs that have manual control |
| 1058 | * such as BookE |
| 1059 | */ |
| 1060 | start_cpu_decrementer(); |
| 1061 | |
| 1062 | /* FIME: Should make unrelatred change to move snapshot_timebase |
| 1063 | * call here ! */ |
| 1064 | register_decrementer_clockevent(smp_processor_id()); |
| 1065 | } |
| 1066 | |
| 1067 | /* This function is only called on the boot processor */ |
| 1068 | void __init time_init(void) |
| 1069 | { |
| 1070 | struct div_result res; |
| 1071 | u64 scale; |
| 1072 | unsigned shift; |
| 1073 | |
| 1074 | if (__USE_RTC()) { |
| 1075 | /* 601 processor: dec counts down by 128 every 128ns */ |
| 1076 | ppc_tb_freq = 1000000000; |
| 1077 | } else { |
| 1078 | /* Normal PowerPC with timebase register */ |
| 1079 | ppc_md.calibrate_decr(); |
| 1080 | printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", |
| 1081 | ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); |
| 1082 | printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", |
| 1083 | ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); |
| 1084 | } |
| 1085 | |
| 1086 | tb_ticks_per_jiffy = ppc_tb_freq / HZ; |
| 1087 | tb_ticks_per_sec = ppc_tb_freq; |
| 1088 | tb_ticks_per_usec = ppc_tb_freq / 1000000; |
| 1089 | calc_cputime_factors(); |
| 1090 | |
| 1091 | /* |
| 1092 | * Compute scale factor for sched_clock. |
| 1093 | * The calibrate_decr() function has set tb_ticks_per_sec, |
| 1094 | * which is the timebase frequency. |
| 1095 | * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret |
| 1096 | * the 128-bit result as a 64.64 fixed-point number. |
| 1097 | * We then shift that number right until it is less than 1.0, |
| 1098 | * giving us the scale factor and shift count to use in |
| 1099 | * sched_clock(). |
| 1100 | */ |
| 1101 | div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); |
| 1102 | scale = res.result_low; |
| 1103 | for (shift = 0; res.result_high != 0; ++shift) { |
| 1104 | scale = (scale >> 1) | (res.result_high << 63); |
| 1105 | res.result_high >>= 1; |
| 1106 | } |
| 1107 | tb_to_ns_scale = scale; |
| 1108 | tb_to_ns_shift = shift; |
| 1109 | /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ |
| 1110 | boot_tb = get_tb_or_rtc(); |
| 1111 | |
| 1112 | /* If platform provided a timezone (pmac), we correct the time */ |
| 1113 | if (timezone_offset) { |
| 1114 | sys_tz.tz_minuteswest = -timezone_offset / 60; |
| 1115 | sys_tz.tz_dsttime = 0; |
| 1116 | } |
| 1117 | |
| 1118 | vdso_data->tb_update_count = 0; |
| 1119 | vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; |
| 1120 | |
| 1121 | /* initialise and enable the large decrementer (if we have one) */ |
| 1122 | set_decrementer_max(); |
| 1123 | enable_large_decrementer(); |
| 1124 | |
| 1125 | /* Start the decrementer on CPUs that have manual control |
| 1126 | * such as BookE |
| 1127 | */ |
| 1128 | start_cpu_decrementer(); |
| 1129 | |
| 1130 | /* Register the clocksource */ |
| 1131 | clocksource_init(); |
| 1132 | |
| 1133 | init_decrementer_clockevent(); |
| 1134 | tick_setup_hrtimer_broadcast(); |
| 1135 | |
| 1136 | #ifdef CONFIG_COMMON_CLK |
| 1137 | of_clk_init(NULL); |
| 1138 | #endif |
| 1139 | } |
| 1140 | |
| 1141 | /* |
| 1142 | * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit |
| 1143 | * result. |
| 1144 | */ |
| 1145 | void div128_by_32(u64 dividend_high, u64 dividend_low, |
| 1146 | unsigned divisor, struct div_result *dr) |
| 1147 | { |
| 1148 | unsigned long a, b, c, d; |
| 1149 | unsigned long w, x, y, z; |
| 1150 | u64 ra, rb, rc; |
| 1151 | |
| 1152 | a = dividend_high >> 32; |
| 1153 | b = dividend_high & 0xffffffff; |
| 1154 | c = dividend_low >> 32; |
| 1155 | d = dividend_low & 0xffffffff; |
| 1156 | |
| 1157 | w = a / divisor; |
| 1158 | ra = ((u64)(a - (w * divisor)) << 32) + b; |
| 1159 | |
| 1160 | rb = ((u64) do_div(ra, divisor) << 32) + c; |
| 1161 | x = ra; |
| 1162 | |
| 1163 | rc = ((u64) do_div(rb, divisor) << 32) + d; |
| 1164 | y = rb; |
| 1165 | |
| 1166 | do_div(rc, divisor); |
| 1167 | z = rc; |
| 1168 | |
| 1169 | dr->result_high = ((u64)w << 32) + x; |
| 1170 | dr->result_low = ((u64)y << 32) + z; |
| 1171 | |
| 1172 | } |
| 1173 | |
| 1174 | /* We don't need to calibrate delay, we use the CPU timebase for that */ |
| 1175 | void calibrate_delay(void) |
| 1176 | { |
| 1177 | /* Some generic code (such as spinlock debug) use loops_per_jiffy |
| 1178 | * as the number of __delay(1) in a jiffy, so make it so |
| 1179 | */ |
| 1180 | loops_per_jiffy = tb_ticks_per_jiffy; |
| 1181 | } |
| 1182 | |
| 1183 | #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) |
| 1184 | static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) |
| 1185 | { |
| 1186 | ppc_md.get_rtc_time(tm); |
| 1187 | return 0; |
| 1188 | } |
| 1189 | |
| 1190 | static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) |
| 1191 | { |
| 1192 | if (!ppc_md.set_rtc_time) |
| 1193 | return -EOPNOTSUPP; |
| 1194 | |
| 1195 | if (ppc_md.set_rtc_time(tm) < 0) |
| 1196 | return -EOPNOTSUPP; |
| 1197 | |
| 1198 | return 0; |
| 1199 | } |
| 1200 | |
| 1201 | static const struct rtc_class_ops rtc_generic_ops = { |
| 1202 | .read_time = rtc_generic_get_time, |
| 1203 | .set_time = rtc_generic_set_time, |
| 1204 | }; |
| 1205 | |
| 1206 | static int __init rtc_init(void) |
| 1207 | { |
| 1208 | struct platform_device *pdev; |
| 1209 | |
| 1210 | if (!ppc_md.get_rtc_time) |
| 1211 | return -ENODEV; |
| 1212 | |
| 1213 | pdev = platform_device_register_data(NULL, "rtc-generic", -1, |
| 1214 | &rtc_generic_ops, |
| 1215 | sizeof(rtc_generic_ops)); |
| 1216 | |
| 1217 | return PTR_ERR_OR_ZERO(pdev); |
| 1218 | } |
| 1219 | |
| 1220 | device_initcall(rtc_init); |
| 1221 | #endif |