Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Contains common pci routines for ALL ppc platform |
| 3 | * (based on pci_32.c and pci_64.c) |
| 4 | * |
| 5 | * Port for PPC64 David Engebretsen, IBM Corp. |
| 6 | * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. |
| 7 | * |
| 8 | * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM |
| 9 | * Rework, based on alpha PCI code. |
| 10 | * |
| 11 | * Common pmac/prep/chrp pci routines. -- Cort |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or |
| 14 | * modify it under the terms of the GNU General Public License |
| 15 | * as published by the Free Software Foundation; either version |
| 16 | * 2 of the License, or (at your option) any later version. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/pci.h> |
| 21 | #include <linux/string.h> |
| 22 | #include <linux/init.h> |
| 23 | #include <linux/delay.h> |
| 24 | #include <linux/export.h> |
| 25 | #include <linux/of_address.h> |
| 26 | #include <linux/of_pci.h> |
| 27 | #include <linux/mm.h> |
| 28 | #include <linux/shmem_fs.h> |
| 29 | #include <linux/list.h> |
| 30 | #include <linux/syscalls.h> |
| 31 | #include <linux/irq.h> |
| 32 | #include <linux/vmalloc.h> |
| 33 | #include <linux/slab.h> |
| 34 | #include <linux/vgaarb.h> |
| 35 | |
| 36 | #include <asm/processor.h> |
| 37 | #include <asm/io.h> |
| 38 | #include <asm/prom.h> |
| 39 | #include <asm/pci-bridge.h> |
| 40 | #include <asm/byteorder.h> |
| 41 | #include <asm/machdep.h> |
| 42 | #include <asm/ppc-pci.h> |
| 43 | #include <asm/eeh.h> |
| 44 | |
| 45 | #include "../../../drivers/pci/pci.h" |
| 46 | |
| 47 | /* hose_spinlock protects accesses to the the phb_bitmap. */ |
| 48 | static DEFINE_SPINLOCK(hose_spinlock); |
| 49 | LIST_HEAD(hose_list); |
| 50 | |
| 51 | /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ |
| 52 | #define MAX_PHBS 0x10000 |
| 53 | |
| 54 | /* |
| 55 | * For dynamic PHB numbering: used/free PHBs tracking bitmap. |
| 56 | * Accesses to this bitmap should be protected by hose_spinlock. |
| 57 | */ |
| 58 | static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); |
| 59 | |
| 60 | /* ISA Memory physical address */ |
| 61 | resource_size_t isa_mem_base; |
| 62 | EXPORT_SYMBOL(isa_mem_base); |
| 63 | |
| 64 | |
| 65 | static const struct dma_map_ops *pci_dma_ops = &dma_nommu_ops; |
| 66 | |
| 67 | void set_pci_dma_ops(const struct dma_map_ops *dma_ops) |
| 68 | { |
| 69 | pci_dma_ops = dma_ops; |
| 70 | } |
| 71 | |
| 72 | const struct dma_map_ops *get_pci_dma_ops(void) |
| 73 | { |
| 74 | return pci_dma_ops; |
| 75 | } |
| 76 | EXPORT_SYMBOL(get_pci_dma_ops); |
| 77 | |
| 78 | /* |
| 79 | * This function should run under locking protection, specifically |
| 80 | * hose_spinlock. |
| 81 | */ |
| 82 | static int get_phb_number(struct device_node *dn) |
| 83 | { |
| 84 | int ret, phb_id = -1; |
| 85 | u32 prop_32; |
| 86 | u64 prop; |
| 87 | |
| 88 | /* |
| 89 | * Try fixed PHB numbering first, by checking archs and reading |
| 90 | * the respective device-tree properties. Firstly, try powernv by |
| 91 | * reading "ibm,opal-phbid", only present in OPAL environment. |
| 92 | */ |
| 93 | ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); |
| 94 | if (ret) { |
| 95 | ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); |
| 96 | prop = prop_32; |
| 97 | } |
| 98 | |
| 99 | if (!ret) |
| 100 | phb_id = (int)(prop & (MAX_PHBS - 1)); |
| 101 | |
| 102 | /* We need to be sure to not use the same PHB number twice. */ |
| 103 | if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) |
| 104 | return phb_id; |
| 105 | |
| 106 | /* |
| 107 | * If not pseries nor powernv, or if fixed PHB numbering tried to add |
| 108 | * the same PHB number twice, then fallback to dynamic PHB numbering. |
| 109 | */ |
| 110 | phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); |
| 111 | BUG_ON(phb_id >= MAX_PHBS); |
| 112 | set_bit(phb_id, phb_bitmap); |
| 113 | |
| 114 | return phb_id; |
| 115 | } |
| 116 | |
| 117 | struct pci_controller *pcibios_alloc_controller(struct device_node *dev) |
| 118 | { |
| 119 | struct pci_controller *phb; |
| 120 | |
| 121 | phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); |
| 122 | if (phb == NULL) |
| 123 | return NULL; |
| 124 | spin_lock(&hose_spinlock); |
| 125 | phb->global_number = get_phb_number(dev); |
| 126 | list_add_tail(&phb->list_node, &hose_list); |
| 127 | spin_unlock(&hose_spinlock); |
| 128 | phb->dn = dev; |
| 129 | phb->is_dynamic = slab_is_available(); |
| 130 | #ifdef CONFIG_PPC64 |
| 131 | if (dev) { |
| 132 | int nid = of_node_to_nid(dev); |
| 133 | |
| 134 | if (nid < 0 || !node_online(nid)) |
| 135 | nid = -1; |
| 136 | |
| 137 | PHB_SET_NODE(phb, nid); |
| 138 | } |
| 139 | #endif |
| 140 | return phb; |
| 141 | } |
| 142 | EXPORT_SYMBOL_GPL(pcibios_alloc_controller); |
| 143 | |
| 144 | void pcibios_free_controller(struct pci_controller *phb) |
| 145 | { |
| 146 | spin_lock(&hose_spinlock); |
| 147 | |
| 148 | /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ |
| 149 | if (phb->global_number < MAX_PHBS) |
| 150 | clear_bit(phb->global_number, phb_bitmap); |
| 151 | |
| 152 | list_del(&phb->list_node); |
| 153 | spin_unlock(&hose_spinlock); |
| 154 | |
| 155 | if (phb->is_dynamic) |
| 156 | kfree(phb); |
| 157 | } |
| 158 | EXPORT_SYMBOL_GPL(pcibios_free_controller); |
| 159 | |
| 160 | /* |
| 161 | * This function is used to call pcibios_free_controller() |
| 162 | * in a deferred manner: a callback from the PCI subsystem. |
| 163 | * |
| 164 | * _*DO NOT*_ call pcibios_free_controller() explicitly if |
| 165 | * this is used (or it may access an invalid *phb pointer). |
| 166 | * |
| 167 | * The callback occurs when all references to the root bus |
| 168 | * are dropped (e.g., child buses/devices and their users). |
| 169 | * |
| 170 | * It's called as .release_fn() of 'struct pci_host_bridge' |
| 171 | * which is associated with the 'struct pci_controller.bus' |
| 172 | * (root bus) - it expects .release_data to hold a pointer |
| 173 | * to 'struct pci_controller'. |
| 174 | * |
| 175 | * In order to use it, register .release_fn()/release_data |
| 176 | * like this: |
| 177 | * |
| 178 | * pci_set_host_bridge_release(bridge, |
| 179 | * pcibios_free_controller_deferred |
| 180 | * (void *) phb); |
| 181 | * |
| 182 | * e.g. in the pcibios_root_bridge_prepare() callback from |
| 183 | * pci_create_root_bus(). |
| 184 | */ |
| 185 | void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) |
| 186 | { |
| 187 | struct pci_controller *phb = (struct pci_controller *) |
| 188 | bridge->release_data; |
| 189 | |
| 190 | pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); |
| 191 | |
| 192 | pcibios_free_controller(phb); |
| 193 | } |
| 194 | EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); |
| 195 | |
| 196 | /* |
| 197 | * The function is used to return the minimal alignment |
| 198 | * for memory or I/O windows of the associated P2P bridge. |
| 199 | * By default, 4KiB alignment for I/O windows and 1MiB for |
| 200 | * memory windows. |
| 201 | */ |
| 202 | resource_size_t pcibios_window_alignment(struct pci_bus *bus, |
| 203 | unsigned long type) |
| 204 | { |
| 205 | struct pci_controller *phb = pci_bus_to_host(bus); |
| 206 | |
| 207 | if (phb->controller_ops.window_alignment) |
| 208 | return phb->controller_ops.window_alignment(bus, type); |
| 209 | |
| 210 | /* |
| 211 | * PCI core will figure out the default |
| 212 | * alignment: 4KiB for I/O and 1MiB for |
| 213 | * memory window. |
| 214 | */ |
| 215 | return 1; |
| 216 | } |
| 217 | |
| 218 | void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) |
| 219 | { |
| 220 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 221 | |
| 222 | if (hose->controller_ops.setup_bridge) |
| 223 | hose->controller_ops.setup_bridge(bus, type); |
| 224 | } |
| 225 | |
| 226 | void pcibios_reset_secondary_bus(struct pci_dev *dev) |
| 227 | { |
| 228 | struct pci_controller *phb = pci_bus_to_host(dev->bus); |
| 229 | |
| 230 | if (phb->controller_ops.reset_secondary_bus) { |
| 231 | phb->controller_ops.reset_secondary_bus(dev); |
| 232 | return; |
| 233 | } |
| 234 | |
| 235 | pci_reset_secondary_bus(dev); |
| 236 | } |
| 237 | |
| 238 | resource_size_t pcibios_default_alignment(void) |
| 239 | { |
| 240 | if (ppc_md.pcibios_default_alignment) |
| 241 | return ppc_md.pcibios_default_alignment(); |
| 242 | |
| 243 | return 0; |
| 244 | } |
| 245 | |
| 246 | #ifdef CONFIG_PCI_IOV |
| 247 | resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) |
| 248 | { |
| 249 | if (ppc_md.pcibios_iov_resource_alignment) |
| 250 | return ppc_md.pcibios_iov_resource_alignment(pdev, resno); |
| 251 | |
| 252 | return pci_iov_resource_size(pdev, resno); |
| 253 | } |
| 254 | |
| 255 | int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) |
| 256 | { |
| 257 | if (ppc_md.pcibios_sriov_enable) |
| 258 | return ppc_md.pcibios_sriov_enable(pdev, num_vfs); |
| 259 | |
| 260 | return 0; |
| 261 | } |
| 262 | |
| 263 | int pcibios_sriov_disable(struct pci_dev *pdev) |
| 264 | { |
| 265 | if (ppc_md.pcibios_sriov_disable) |
| 266 | return ppc_md.pcibios_sriov_disable(pdev); |
| 267 | |
| 268 | return 0; |
| 269 | } |
| 270 | |
| 271 | #endif /* CONFIG_PCI_IOV */ |
| 272 | |
| 273 | void pcibios_bus_add_device(struct pci_dev *pdev) |
| 274 | { |
| 275 | if (ppc_md.pcibios_bus_add_device) |
| 276 | ppc_md.pcibios_bus_add_device(pdev); |
| 277 | } |
| 278 | |
| 279 | static resource_size_t pcibios_io_size(const struct pci_controller *hose) |
| 280 | { |
| 281 | #ifdef CONFIG_PPC64 |
| 282 | return hose->pci_io_size; |
| 283 | #else |
| 284 | return resource_size(&hose->io_resource); |
| 285 | #endif |
| 286 | } |
| 287 | |
| 288 | int pcibios_vaddr_is_ioport(void __iomem *address) |
| 289 | { |
| 290 | int ret = 0; |
| 291 | struct pci_controller *hose; |
| 292 | resource_size_t size; |
| 293 | |
| 294 | spin_lock(&hose_spinlock); |
| 295 | list_for_each_entry(hose, &hose_list, list_node) { |
| 296 | size = pcibios_io_size(hose); |
| 297 | if (address >= hose->io_base_virt && |
| 298 | address < (hose->io_base_virt + size)) { |
| 299 | ret = 1; |
| 300 | break; |
| 301 | } |
| 302 | } |
| 303 | spin_unlock(&hose_spinlock); |
| 304 | return ret; |
| 305 | } |
| 306 | |
| 307 | unsigned long pci_address_to_pio(phys_addr_t address) |
| 308 | { |
| 309 | struct pci_controller *hose; |
| 310 | resource_size_t size; |
| 311 | unsigned long ret = ~0; |
| 312 | |
| 313 | spin_lock(&hose_spinlock); |
| 314 | list_for_each_entry(hose, &hose_list, list_node) { |
| 315 | size = pcibios_io_size(hose); |
| 316 | if (address >= hose->io_base_phys && |
| 317 | address < (hose->io_base_phys + size)) { |
| 318 | unsigned long base = |
| 319 | (unsigned long)hose->io_base_virt - _IO_BASE; |
| 320 | ret = base + (address - hose->io_base_phys); |
| 321 | break; |
| 322 | } |
| 323 | } |
| 324 | spin_unlock(&hose_spinlock); |
| 325 | |
| 326 | return ret; |
| 327 | } |
| 328 | EXPORT_SYMBOL_GPL(pci_address_to_pio); |
| 329 | |
| 330 | /* |
| 331 | * Return the domain number for this bus. |
| 332 | */ |
| 333 | int pci_domain_nr(struct pci_bus *bus) |
| 334 | { |
| 335 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 336 | |
| 337 | return hose->global_number; |
| 338 | } |
| 339 | EXPORT_SYMBOL(pci_domain_nr); |
| 340 | |
| 341 | /* This routine is meant to be used early during boot, when the |
| 342 | * PCI bus numbers have not yet been assigned, and you need to |
| 343 | * issue PCI config cycles to an OF device. |
| 344 | * It could also be used to "fix" RTAS config cycles if you want |
| 345 | * to set pci_assign_all_buses to 1 and still use RTAS for PCI |
| 346 | * config cycles. |
| 347 | */ |
| 348 | struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) |
| 349 | { |
| 350 | while(node) { |
| 351 | struct pci_controller *hose, *tmp; |
| 352 | list_for_each_entry_safe(hose, tmp, &hose_list, list_node) |
| 353 | if (hose->dn == node) |
| 354 | return hose; |
| 355 | node = node->parent; |
| 356 | } |
| 357 | return NULL; |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * Reads the interrupt pin to determine if interrupt is use by card. |
| 362 | * If the interrupt is used, then gets the interrupt line from the |
| 363 | * openfirmware and sets it in the pci_dev and pci_config line. |
| 364 | */ |
| 365 | static int pci_read_irq_line(struct pci_dev *pci_dev) |
| 366 | { |
| 367 | int virq; |
| 368 | |
| 369 | pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); |
| 370 | |
| 371 | /* Try to get a mapping from the device-tree */ |
| 372 | virq = of_irq_parse_and_map_pci(pci_dev, 0, 0); |
| 373 | if (virq <= 0) { |
| 374 | u8 line, pin; |
| 375 | |
| 376 | /* If that fails, lets fallback to what is in the config |
| 377 | * space and map that through the default controller. We |
| 378 | * also set the type to level low since that's what PCI |
| 379 | * interrupts are. If your platform does differently, then |
| 380 | * either provide a proper interrupt tree or don't use this |
| 381 | * function. |
| 382 | */ |
| 383 | if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) |
| 384 | return -1; |
| 385 | if (pin == 0) |
| 386 | return -1; |
| 387 | if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || |
| 388 | line == 0xff || line == 0) { |
| 389 | return -1; |
| 390 | } |
| 391 | pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", |
| 392 | line, pin); |
| 393 | |
| 394 | virq = irq_create_mapping(NULL, line); |
| 395 | if (virq) |
| 396 | irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); |
| 397 | } |
| 398 | |
| 399 | if (!virq) { |
| 400 | pr_debug(" Failed to map !\n"); |
| 401 | return -1; |
| 402 | } |
| 403 | |
| 404 | pr_debug(" Mapped to linux irq %d\n", virq); |
| 405 | |
| 406 | pci_dev->irq = virq; |
| 407 | |
| 408 | return 0; |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * Platform support for /proc/bus/pci/X/Y mmap()s. |
| 413 | * -- paulus. |
| 414 | */ |
| 415 | int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma) |
| 416 | { |
| 417 | struct pci_controller *hose = pci_bus_to_host(pdev->bus); |
| 418 | resource_size_t ioaddr = pci_resource_start(pdev, bar); |
| 419 | |
| 420 | if (!hose) |
| 421 | return -EINVAL; |
| 422 | |
| 423 | /* Convert to an offset within this PCI controller */ |
| 424 | ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE; |
| 425 | |
| 426 | vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT; |
| 427 | return 0; |
| 428 | } |
| 429 | |
| 430 | /* |
| 431 | * This one is used by /dev/mem and fbdev who have no clue about the |
| 432 | * PCI device, it tries to find the PCI device first and calls the |
| 433 | * above routine |
| 434 | */ |
| 435 | pgprot_t pci_phys_mem_access_prot(struct file *file, |
| 436 | unsigned long pfn, |
| 437 | unsigned long size, |
| 438 | pgprot_t prot) |
| 439 | { |
| 440 | struct pci_dev *pdev = NULL; |
| 441 | struct resource *found = NULL; |
| 442 | resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; |
| 443 | int i; |
| 444 | |
| 445 | if (page_is_ram(pfn)) |
| 446 | return prot; |
| 447 | |
| 448 | prot = pgprot_noncached(prot); |
| 449 | for_each_pci_dev(pdev) { |
| 450 | for (i = 0; i <= PCI_ROM_RESOURCE; i++) { |
| 451 | struct resource *rp = &pdev->resource[i]; |
| 452 | int flags = rp->flags; |
| 453 | |
| 454 | /* Active and same type? */ |
| 455 | if ((flags & IORESOURCE_MEM) == 0) |
| 456 | continue; |
| 457 | /* In the range of this resource? */ |
| 458 | if (offset < (rp->start & PAGE_MASK) || |
| 459 | offset > rp->end) |
| 460 | continue; |
| 461 | found = rp; |
| 462 | break; |
| 463 | } |
| 464 | if (found) |
| 465 | break; |
| 466 | } |
| 467 | if (found) { |
| 468 | if (found->flags & IORESOURCE_PREFETCH) |
| 469 | prot = pgprot_noncached_wc(prot); |
| 470 | pci_dev_put(pdev); |
| 471 | } |
| 472 | |
| 473 | pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", |
| 474 | (unsigned long long)offset, pgprot_val(prot)); |
| 475 | |
| 476 | return prot; |
| 477 | } |
| 478 | |
| 479 | /* This provides legacy IO read access on a bus */ |
| 480 | int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) |
| 481 | { |
| 482 | unsigned long offset; |
| 483 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 484 | struct resource *rp = &hose->io_resource; |
| 485 | void __iomem *addr; |
| 486 | |
| 487 | /* Check if port can be supported by that bus. We only check |
| 488 | * the ranges of the PHB though, not the bus itself as the rules |
| 489 | * for forwarding legacy cycles down bridges are not our problem |
| 490 | * here. So if the host bridge supports it, we do it. |
| 491 | */ |
| 492 | offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| 493 | offset += port; |
| 494 | |
| 495 | if (!(rp->flags & IORESOURCE_IO)) |
| 496 | return -ENXIO; |
| 497 | if (offset < rp->start || (offset + size) > rp->end) |
| 498 | return -ENXIO; |
| 499 | addr = hose->io_base_virt + port; |
| 500 | |
| 501 | switch(size) { |
| 502 | case 1: |
| 503 | *((u8 *)val) = in_8(addr); |
| 504 | return 1; |
| 505 | case 2: |
| 506 | if (port & 1) |
| 507 | return -EINVAL; |
| 508 | *((u16 *)val) = in_le16(addr); |
| 509 | return 2; |
| 510 | case 4: |
| 511 | if (port & 3) |
| 512 | return -EINVAL; |
| 513 | *((u32 *)val) = in_le32(addr); |
| 514 | return 4; |
| 515 | } |
| 516 | return -EINVAL; |
| 517 | } |
| 518 | |
| 519 | /* This provides legacy IO write access on a bus */ |
| 520 | int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) |
| 521 | { |
| 522 | unsigned long offset; |
| 523 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 524 | struct resource *rp = &hose->io_resource; |
| 525 | void __iomem *addr; |
| 526 | |
| 527 | /* Check if port can be supported by that bus. We only check |
| 528 | * the ranges of the PHB though, not the bus itself as the rules |
| 529 | * for forwarding legacy cycles down bridges are not our problem |
| 530 | * here. So if the host bridge supports it, we do it. |
| 531 | */ |
| 532 | offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| 533 | offset += port; |
| 534 | |
| 535 | if (!(rp->flags & IORESOURCE_IO)) |
| 536 | return -ENXIO; |
| 537 | if (offset < rp->start || (offset + size) > rp->end) |
| 538 | return -ENXIO; |
| 539 | addr = hose->io_base_virt + port; |
| 540 | |
| 541 | /* WARNING: The generic code is idiotic. It gets passed a pointer |
| 542 | * to what can be a 1, 2 or 4 byte quantity and always reads that |
| 543 | * as a u32, which means that we have to correct the location of |
| 544 | * the data read within those 32 bits for size 1 and 2 |
| 545 | */ |
| 546 | switch(size) { |
| 547 | case 1: |
| 548 | out_8(addr, val >> 24); |
| 549 | return 1; |
| 550 | case 2: |
| 551 | if (port & 1) |
| 552 | return -EINVAL; |
| 553 | out_le16(addr, val >> 16); |
| 554 | return 2; |
| 555 | case 4: |
| 556 | if (port & 3) |
| 557 | return -EINVAL; |
| 558 | out_le32(addr, val); |
| 559 | return 4; |
| 560 | } |
| 561 | return -EINVAL; |
| 562 | } |
| 563 | |
| 564 | /* This provides legacy IO or memory mmap access on a bus */ |
| 565 | int pci_mmap_legacy_page_range(struct pci_bus *bus, |
| 566 | struct vm_area_struct *vma, |
| 567 | enum pci_mmap_state mmap_state) |
| 568 | { |
| 569 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 570 | resource_size_t offset = |
| 571 | ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; |
| 572 | resource_size_t size = vma->vm_end - vma->vm_start; |
| 573 | struct resource *rp; |
| 574 | |
| 575 | pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", |
| 576 | pci_domain_nr(bus), bus->number, |
| 577 | mmap_state == pci_mmap_mem ? "MEM" : "IO", |
| 578 | (unsigned long long)offset, |
| 579 | (unsigned long long)(offset + size - 1)); |
| 580 | |
| 581 | if (mmap_state == pci_mmap_mem) { |
| 582 | /* Hack alert ! |
| 583 | * |
| 584 | * Because X is lame and can fail starting if it gets an error trying |
| 585 | * to mmap legacy_mem (instead of just moving on without legacy memory |
| 586 | * access) we fake it here by giving it anonymous memory, effectively |
| 587 | * behaving just like /dev/zero |
| 588 | */ |
| 589 | if ((offset + size) > hose->isa_mem_size) { |
| 590 | printk(KERN_DEBUG |
| 591 | "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", |
| 592 | current->comm, current->pid, pci_domain_nr(bus), bus->number); |
| 593 | if (vma->vm_flags & VM_SHARED) |
| 594 | return shmem_zero_setup(vma); |
| 595 | return 0; |
| 596 | } |
| 597 | offset += hose->isa_mem_phys; |
| 598 | } else { |
| 599 | unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| 600 | unsigned long roffset = offset + io_offset; |
| 601 | rp = &hose->io_resource; |
| 602 | if (!(rp->flags & IORESOURCE_IO)) |
| 603 | return -ENXIO; |
| 604 | if (roffset < rp->start || (roffset + size) > rp->end) |
| 605 | return -ENXIO; |
| 606 | offset += hose->io_base_phys; |
| 607 | } |
| 608 | pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); |
| 609 | |
| 610 | vma->vm_pgoff = offset >> PAGE_SHIFT; |
| 611 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| 612 | return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, |
| 613 | vma->vm_end - vma->vm_start, |
| 614 | vma->vm_page_prot); |
| 615 | } |
| 616 | |
| 617 | void pci_resource_to_user(const struct pci_dev *dev, int bar, |
| 618 | const struct resource *rsrc, |
| 619 | resource_size_t *start, resource_size_t *end) |
| 620 | { |
| 621 | struct pci_bus_region region; |
| 622 | |
| 623 | if (rsrc->flags & IORESOURCE_IO) { |
| 624 | pcibios_resource_to_bus(dev->bus, ®ion, |
| 625 | (struct resource *) rsrc); |
| 626 | *start = region.start; |
| 627 | *end = region.end; |
| 628 | return; |
| 629 | } |
| 630 | |
| 631 | /* We pass a CPU physical address to userland for MMIO instead of a |
| 632 | * BAR value because X is lame and expects to be able to use that |
| 633 | * to pass to /dev/mem! |
| 634 | * |
| 635 | * That means we may have 64-bit values where some apps only expect |
| 636 | * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). |
| 637 | */ |
| 638 | *start = rsrc->start; |
| 639 | *end = rsrc->end; |
| 640 | } |
| 641 | |
| 642 | /** |
| 643 | * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree |
| 644 | * @hose: newly allocated pci_controller to be setup |
| 645 | * @dev: device node of the host bridge |
| 646 | * @primary: set if primary bus (32 bits only, soon to be deprecated) |
| 647 | * |
| 648 | * This function will parse the "ranges" property of a PCI host bridge device |
| 649 | * node and setup the resource mapping of a pci controller based on its |
| 650 | * content. |
| 651 | * |
| 652 | * Life would be boring if it wasn't for a few issues that we have to deal |
| 653 | * with here: |
| 654 | * |
| 655 | * - We can only cope with one IO space range and up to 3 Memory space |
| 656 | * ranges. However, some machines (thanks Apple !) tend to split their |
| 657 | * space into lots of small contiguous ranges. So we have to coalesce. |
| 658 | * |
| 659 | * - Some busses have IO space not starting at 0, which causes trouble with |
| 660 | * the way we do our IO resource renumbering. The code somewhat deals with |
| 661 | * it for 64 bits but I would expect problems on 32 bits. |
| 662 | * |
| 663 | * - Some 32 bits platforms such as 4xx can have physical space larger than |
| 664 | * 32 bits so we need to use 64 bits values for the parsing |
| 665 | */ |
| 666 | void pci_process_bridge_OF_ranges(struct pci_controller *hose, |
| 667 | struct device_node *dev, int primary) |
| 668 | { |
| 669 | int memno = 0; |
| 670 | struct resource *res; |
| 671 | struct of_pci_range range; |
| 672 | struct of_pci_range_parser parser; |
| 673 | |
| 674 | printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n", |
| 675 | dev, primary ? "(primary)" : ""); |
| 676 | |
| 677 | /* Check for ranges property */ |
| 678 | if (of_pci_range_parser_init(&parser, dev)) |
| 679 | return; |
| 680 | |
| 681 | /* Parse it */ |
| 682 | for_each_of_pci_range(&parser, &range) { |
| 683 | /* If we failed translation or got a zero-sized region |
| 684 | * (some FW try to feed us with non sensical zero sized regions |
| 685 | * such as power3 which look like some kind of attempt at exposing |
| 686 | * the VGA memory hole) |
| 687 | */ |
| 688 | if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) |
| 689 | continue; |
| 690 | |
| 691 | /* Act based on address space type */ |
| 692 | res = NULL; |
| 693 | switch (range.flags & IORESOURCE_TYPE_BITS) { |
| 694 | case IORESOURCE_IO: |
| 695 | printk(KERN_INFO |
| 696 | " IO 0x%016llx..0x%016llx -> 0x%016llx\n", |
| 697 | range.cpu_addr, range.cpu_addr + range.size - 1, |
| 698 | range.pci_addr); |
| 699 | |
| 700 | /* We support only one IO range */ |
| 701 | if (hose->pci_io_size) { |
| 702 | printk(KERN_INFO |
| 703 | " \\--> Skipped (too many) !\n"); |
| 704 | continue; |
| 705 | } |
| 706 | #ifdef CONFIG_PPC32 |
| 707 | /* On 32 bits, limit I/O space to 16MB */ |
| 708 | if (range.size > 0x01000000) |
| 709 | range.size = 0x01000000; |
| 710 | |
| 711 | /* 32 bits needs to map IOs here */ |
| 712 | hose->io_base_virt = ioremap(range.cpu_addr, |
| 713 | range.size); |
| 714 | |
| 715 | /* Expect trouble if pci_addr is not 0 */ |
| 716 | if (primary) |
| 717 | isa_io_base = |
| 718 | (unsigned long)hose->io_base_virt; |
| 719 | #endif /* CONFIG_PPC32 */ |
| 720 | /* pci_io_size and io_base_phys always represent IO |
| 721 | * space starting at 0 so we factor in pci_addr |
| 722 | */ |
| 723 | hose->pci_io_size = range.pci_addr + range.size; |
| 724 | hose->io_base_phys = range.cpu_addr - range.pci_addr; |
| 725 | |
| 726 | /* Build resource */ |
| 727 | res = &hose->io_resource; |
| 728 | range.cpu_addr = range.pci_addr; |
| 729 | break; |
| 730 | case IORESOURCE_MEM: |
| 731 | printk(KERN_INFO |
| 732 | " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", |
| 733 | range.cpu_addr, range.cpu_addr + range.size - 1, |
| 734 | range.pci_addr, |
| 735 | (range.pci_space & 0x40000000) ? |
| 736 | "Prefetch" : ""); |
| 737 | |
| 738 | /* We support only 3 memory ranges */ |
| 739 | if (memno >= 3) { |
| 740 | printk(KERN_INFO |
| 741 | " \\--> Skipped (too many) !\n"); |
| 742 | continue; |
| 743 | } |
| 744 | /* Handles ISA memory hole space here */ |
| 745 | if (range.pci_addr == 0) { |
| 746 | if (primary || isa_mem_base == 0) |
| 747 | isa_mem_base = range.cpu_addr; |
| 748 | hose->isa_mem_phys = range.cpu_addr; |
| 749 | hose->isa_mem_size = range.size; |
| 750 | } |
| 751 | |
| 752 | /* Build resource */ |
| 753 | hose->mem_offset[memno] = range.cpu_addr - |
| 754 | range.pci_addr; |
| 755 | res = &hose->mem_resources[memno++]; |
| 756 | break; |
| 757 | } |
| 758 | if (res != NULL) { |
| 759 | res->name = dev->full_name; |
| 760 | res->flags = range.flags; |
| 761 | res->start = range.cpu_addr; |
| 762 | res->end = range.cpu_addr + range.size - 1; |
| 763 | res->parent = res->child = res->sibling = NULL; |
| 764 | } |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | /* Decide whether to display the domain number in /proc */ |
| 769 | int pci_proc_domain(struct pci_bus *bus) |
| 770 | { |
| 771 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 772 | |
| 773 | if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) |
| 774 | return 0; |
| 775 | if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) |
| 776 | return hose->global_number != 0; |
| 777 | return 1; |
| 778 | } |
| 779 | |
| 780 | int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) |
| 781 | { |
| 782 | if (ppc_md.pcibios_root_bridge_prepare) |
| 783 | return ppc_md.pcibios_root_bridge_prepare(bridge); |
| 784 | |
| 785 | return 0; |
| 786 | } |
| 787 | |
| 788 | /* This header fixup will do the resource fixup for all devices as they are |
| 789 | * probed, but not for bridge ranges |
| 790 | */ |
| 791 | static void pcibios_fixup_resources(struct pci_dev *dev) |
| 792 | { |
| 793 | struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| 794 | int i; |
| 795 | |
| 796 | if (!hose) { |
| 797 | printk(KERN_ERR "No host bridge for PCI dev %s !\n", |
| 798 | pci_name(dev)); |
| 799 | return; |
| 800 | } |
| 801 | |
| 802 | if (dev->is_virtfn) |
| 803 | return; |
| 804 | |
| 805 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| 806 | struct resource *res = dev->resource + i; |
| 807 | struct pci_bus_region reg; |
| 808 | if (!res->flags) |
| 809 | continue; |
| 810 | |
| 811 | /* If we're going to re-assign everything, we mark all resources |
| 812 | * as unset (and 0-base them). In addition, we mark BARs starting |
| 813 | * at 0 as unset as well, except if PCI_PROBE_ONLY is also set |
| 814 | * since in that case, we don't want to re-assign anything |
| 815 | */ |
| 816 | pcibios_resource_to_bus(dev->bus, ®, res); |
| 817 | if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || |
| 818 | (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { |
| 819 | /* Only print message if not re-assigning */ |
| 820 | if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) |
| 821 | pr_debug("PCI:%s Resource %d %pR is unassigned\n", |
| 822 | pci_name(dev), i, res); |
| 823 | res->end -= res->start; |
| 824 | res->start = 0; |
| 825 | res->flags |= IORESOURCE_UNSET; |
| 826 | continue; |
| 827 | } |
| 828 | |
| 829 | pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); |
| 830 | } |
| 831 | |
| 832 | /* Call machine specific resource fixup */ |
| 833 | if (ppc_md.pcibios_fixup_resources) |
| 834 | ppc_md.pcibios_fixup_resources(dev); |
| 835 | } |
| 836 | DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); |
| 837 | |
| 838 | /* This function tries to figure out if a bridge resource has been initialized |
| 839 | * by the firmware or not. It doesn't have to be absolutely bullet proof, but |
| 840 | * things go more smoothly when it gets it right. It should covers cases such |
| 841 | * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges |
| 842 | */ |
| 843 | static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, |
| 844 | struct resource *res) |
| 845 | { |
| 846 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 847 | struct pci_dev *dev = bus->self; |
| 848 | resource_size_t offset; |
| 849 | struct pci_bus_region region; |
| 850 | u16 command; |
| 851 | int i; |
| 852 | |
| 853 | /* We don't do anything if PCI_PROBE_ONLY is set */ |
| 854 | if (pci_has_flag(PCI_PROBE_ONLY)) |
| 855 | return 0; |
| 856 | |
| 857 | /* Job is a bit different between memory and IO */ |
| 858 | if (res->flags & IORESOURCE_MEM) { |
| 859 | pcibios_resource_to_bus(dev->bus, ®ion, res); |
| 860 | |
| 861 | /* If the BAR is non-0 then it's probably been initialized */ |
| 862 | if (region.start != 0) |
| 863 | return 0; |
| 864 | |
| 865 | /* The BAR is 0, let's check if memory decoding is enabled on |
| 866 | * the bridge. If not, we consider it unassigned |
| 867 | */ |
| 868 | pci_read_config_word(dev, PCI_COMMAND, &command); |
| 869 | if ((command & PCI_COMMAND_MEMORY) == 0) |
| 870 | return 1; |
| 871 | |
| 872 | /* Memory decoding is enabled and the BAR is 0. If any of the bridge |
| 873 | * resources covers that starting address (0 then it's good enough for |
| 874 | * us for memory space) |
| 875 | */ |
| 876 | for (i = 0; i < 3; i++) { |
| 877 | if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && |
| 878 | hose->mem_resources[i].start == hose->mem_offset[i]) |
| 879 | return 0; |
| 880 | } |
| 881 | |
| 882 | /* Well, it starts at 0 and we know it will collide so we may as |
| 883 | * well consider it as unassigned. That covers the Apple case. |
| 884 | */ |
| 885 | return 1; |
| 886 | } else { |
| 887 | /* If the BAR is non-0, then we consider it assigned */ |
| 888 | offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| 889 | if (((res->start - offset) & 0xfffffffful) != 0) |
| 890 | return 0; |
| 891 | |
| 892 | /* Here, we are a bit different than memory as typically IO space |
| 893 | * starting at low addresses -is- valid. What we do instead if that |
| 894 | * we consider as unassigned anything that doesn't have IO enabled |
| 895 | * in the PCI command register, and that's it. |
| 896 | */ |
| 897 | pci_read_config_word(dev, PCI_COMMAND, &command); |
| 898 | if (command & PCI_COMMAND_IO) |
| 899 | return 0; |
| 900 | |
| 901 | /* It's starting at 0 and IO is disabled in the bridge, consider |
| 902 | * it unassigned |
| 903 | */ |
| 904 | return 1; |
| 905 | } |
| 906 | } |
| 907 | |
| 908 | /* Fixup resources of a PCI<->PCI bridge */ |
| 909 | static void pcibios_fixup_bridge(struct pci_bus *bus) |
| 910 | { |
| 911 | struct resource *res; |
| 912 | int i; |
| 913 | |
| 914 | struct pci_dev *dev = bus->self; |
| 915 | |
| 916 | pci_bus_for_each_resource(bus, res, i) { |
| 917 | if (!res || !res->flags) |
| 918 | continue; |
| 919 | if (i >= 3 && bus->self->transparent) |
| 920 | continue; |
| 921 | |
| 922 | /* If we're going to reassign everything, we can |
| 923 | * shrink the P2P resource to have size as being |
| 924 | * of 0 in order to save space. |
| 925 | */ |
| 926 | if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { |
| 927 | res->flags |= IORESOURCE_UNSET; |
| 928 | res->start = 0; |
| 929 | res->end = -1; |
| 930 | continue; |
| 931 | } |
| 932 | |
| 933 | pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); |
| 934 | |
| 935 | /* Try to detect uninitialized P2P bridge resources, |
| 936 | * and clear them out so they get re-assigned later |
| 937 | */ |
| 938 | if (pcibios_uninitialized_bridge_resource(bus, res)) { |
| 939 | res->flags = 0; |
| 940 | pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); |
| 941 | } |
| 942 | } |
| 943 | } |
| 944 | |
| 945 | void pcibios_setup_bus_self(struct pci_bus *bus) |
| 946 | { |
| 947 | struct pci_controller *phb; |
| 948 | |
| 949 | /* Fix up the bus resources for P2P bridges */ |
| 950 | if (bus->self != NULL) |
| 951 | pcibios_fixup_bridge(bus); |
| 952 | |
| 953 | /* Platform specific bus fixups. This is currently only used |
| 954 | * by fsl_pci and I'm hoping to get rid of it at some point |
| 955 | */ |
| 956 | if (ppc_md.pcibios_fixup_bus) |
| 957 | ppc_md.pcibios_fixup_bus(bus); |
| 958 | |
| 959 | /* Setup bus DMA mappings */ |
| 960 | phb = pci_bus_to_host(bus); |
| 961 | if (phb->controller_ops.dma_bus_setup) |
| 962 | phb->controller_ops.dma_bus_setup(bus); |
| 963 | } |
| 964 | |
| 965 | static void pcibios_setup_device(struct pci_dev *dev) |
| 966 | { |
| 967 | struct pci_controller *phb; |
| 968 | /* Fixup NUMA node as it may not be setup yet by the generic |
| 969 | * code and is needed by the DMA init |
| 970 | */ |
| 971 | set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); |
| 972 | |
| 973 | /* Hook up default DMA ops */ |
| 974 | set_dma_ops(&dev->dev, pci_dma_ops); |
| 975 | set_dma_offset(&dev->dev, PCI_DRAM_OFFSET); |
| 976 | |
| 977 | /* Additional platform DMA/iommu setup */ |
| 978 | phb = pci_bus_to_host(dev->bus); |
| 979 | if (phb->controller_ops.dma_dev_setup) |
| 980 | phb->controller_ops.dma_dev_setup(dev); |
| 981 | |
| 982 | /* Read default IRQs and fixup if necessary */ |
| 983 | pci_read_irq_line(dev); |
| 984 | if (ppc_md.pci_irq_fixup) |
| 985 | ppc_md.pci_irq_fixup(dev); |
| 986 | } |
| 987 | |
| 988 | int pcibios_add_device(struct pci_dev *dev) |
| 989 | { |
| 990 | /* |
| 991 | * We can only call pcibios_setup_device() after bus setup is complete, |
| 992 | * since some of the platform specific DMA setup code depends on it. |
| 993 | */ |
| 994 | if (dev->bus->is_added) |
| 995 | pcibios_setup_device(dev); |
| 996 | |
| 997 | #ifdef CONFIG_PCI_IOV |
| 998 | if (ppc_md.pcibios_fixup_sriov) |
| 999 | ppc_md.pcibios_fixup_sriov(dev); |
| 1000 | #endif /* CONFIG_PCI_IOV */ |
| 1001 | |
| 1002 | return 0; |
| 1003 | } |
| 1004 | |
| 1005 | void pcibios_setup_bus_devices(struct pci_bus *bus) |
| 1006 | { |
| 1007 | struct pci_dev *dev; |
| 1008 | |
| 1009 | pr_debug("PCI: Fixup bus devices %d (%s)\n", |
| 1010 | bus->number, bus->self ? pci_name(bus->self) : "PHB"); |
| 1011 | |
| 1012 | list_for_each_entry(dev, &bus->devices, bus_list) { |
| 1013 | /* Cardbus can call us to add new devices to a bus, so ignore |
| 1014 | * those who are already fully discovered |
| 1015 | */ |
| 1016 | if (pci_dev_is_added(dev)) |
| 1017 | continue; |
| 1018 | |
| 1019 | pcibios_setup_device(dev); |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | void pcibios_set_master(struct pci_dev *dev) |
| 1024 | { |
| 1025 | /* No special bus mastering setup handling */ |
| 1026 | } |
| 1027 | |
| 1028 | void pcibios_fixup_bus(struct pci_bus *bus) |
| 1029 | { |
| 1030 | /* When called from the generic PCI probe, read PCI<->PCI bridge |
| 1031 | * bases. This is -not- called when generating the PCI tree from |
| 1032 | * the OF device-tree. |
| 1033 | */ |
| 1034 | pci_read_bridge_bases(bus); |
| 1035 | |
| 1036 | /* Now fixup the bus bus */ |
| 1037 | pcibios_setup_bus_self(bus); |
| 1038 | |
| 1039 | /* Now fixup devices on that bus */ |
| 1040 | pcibios_setup_bus_devices(bus); |
| 1041 | } |
| 1042 | EXPORT_SYMBOL(pcibios_fixup_bus); |
| 1043 | |
| 1044 | void pci_fixup_cardbus(struct pci_bus *bus) |
| 1045 | { |
| 1046 | /* Now fixup devices on that bus */ |
| 1047 | pcibios_setup_bus_devices(bus); |
| 1048 | } |
| 1049 | |
| 1050 | |
| 1051 | static int skip_isa_ioresource_align(struct pci_dev *dev) |
| 1052 | { |
| 1053 | if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && |
| 1054 | !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) |
| 1055 | return 1; |
| 1056 | return 0; |
| 1057 | } |
| 1058 | |
| 1059 | /* |
| 1060 | * We need to avoid collisions with `mirrored' VGA ports |
| 1061 | * and other strange ISA hardware, so we always want the |
| 1062 | * addresses to be allocated in the 0x000-0x0ff region |
| 1063 | * modulo 0x400. |
| 1064 | * |
| 1065 | * Why? Because some silly external IO cards only decode |
| 1066 | * the low 10 bits of the IO address. The 0x00-0xff region |
| 1067 | * is reserved for motherboard devices that decode all 16 |
| 1068 | * bits, so it's ok to allocate at, say, 0x2800-0x28ff, |
| 1069 | * but we want to try to avoid allocating at 0x2900-0x2bff |
| 1070 | * which might have be mirrored at 0x0100-0x03ff.. |
| 1071 | */ |
| 1072 | resource_size_t pcibios_align_resource(void *data, const struct resource *res, |
| 1073 | resource_size_t size, resource_size_t align) |
| 1074 | { |
| 1075 | struct pci_dev *dev = data; |
| 1076 | resource_size_t start = res->start; |
| 1077 | |
| 1078 | if (res->flags & IORESOURCE_IO) { |
| 1079 | if (skip_isa_ioresource_align(dev)) |
| 1080 | return start; |
| 1081 | if (start & 0x300) |
| 1082 | start = (start + 0x3ff) & ~0x3ff; |
| 1083 | } |
| 1084 | |
| 1085 | return start; |
| 1086 | } |
| 1087 | EXPORT_SYMBOL(pcibios_align_resource); |
| 1088 | |
| 1089 | /* |
| 1090 | * Reparent resource children of pr that conflict with res |
| 1091 | * under res, and make res replace those children. |
| 1092 | */ |
| 1093 | static int reparent_resources(struct resource *parent, |
| 1094 | struct resource *res) |
| 1095 | { |
| 1096 | struct resource *p, **pp; |
| 1097 | struct resource **firstpp = NULL; |
| 1098 | |
| 1099 | for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { |
| 1100 | if (p->end < res->start) |
| 1101 | continue; |
| 1102 | if (res->end < p->start) |
| 1103 | break; |
| 1104 | if (p->start < res->start || p->end > res->end) |
| 1105 | return -1; /* not completely contained */ |
| 1106 | if (firstpp == NULL) |
| 1107 | firstpp = pp; |
| 1108 | } |
| 1109 | if (firstpp == NULL) |
| 1110 | return -1; /* didn't find any conflicting entries? */ |
| 1111 | res->parent = parent; |
| 1112 | res->child = *firstpp; |
| 1113 | res->sibling = *pp; |
| 1114 | *firstpp = res; |
| 1115 | *pp = NULL; |
| 1116 | for (p = res->child; p != NULL; p = p->sibling) { |
| 1117 | p->parent = res; |
| 1118 | pr_debug("PCI: Reparented %s %pR under %s\n", |
| 1119 | p->name, p, res->name); |
| 1120 | } |
| 1121 | return 0; |
| 1122 | } |
| 1123 | |
| 1124 | /* |
| 1125 | * Handle resources of PCI devices. If the world were perfect, we could |
| 1126 | * just allocate all the resource regions and do nothing more. It isn't. |
| 1127 | * On the other hand, we cannot just re-allocate all devices, as it would |
| 1128 | * require us to know lots of host bridge internals. So we attempt to |
| 1129 | * keep as much of the original configuration as possible, but tweak it |
| 1130 | * when it's found to be wrong. |
| 1131 | * |
| 1132 | * Known BIOS problems we have to work around: |
| 1133 | * - I/O or memory regions not configured |
| 1134 | * - regions configured, but not enabled in the command register |
| 1135 | * - bogus I/O addresses above 64K used |
| 1136 | * - expansion ROMs left enabled (this may sound harmless, but given |
| 1137 | * the fact the PCI specs explicitly allow address decoders to be |
| 1138 | * shared between expansion ROMs and other resource regions, it's |
| 1139 | * at least dangerous) |
| 1140 | * |
| 1141 | * Our solution: |
| 1142 | * (1) Allocate resources for all buses behind PCI-to-PCI bridges. |
| 1143 | * This gives us fixed barriers on where we can allocate. |
| 1144 | * (2) Allocate resources for all enabled devices. If there is |
| 1145 | * a collision, just mark the resource as unallocated. Also |
| 1146 | * disable expansion ROMs during this step. |
| 1147 | * (3) Try to allocate resources for disabled devices. If the |
| 1148 | * resources were assigned correctly, everything goes well, |
| 1149 | * if they weren't, they won't disturb allocation of other |
| 1150 | * resources. |
| 1151 | * (4) Assign new addresses to resources which were either |
| 1152 | * not configured at all or misconfigured. If explicitly |
| 1153 | * requested by the user, configure expansion ROM address |
| 1154 | * as well. |
| 1155 | */ |
| 1156 | |
| 1157 | static void pcibios_allocate_bus_resources(struct pci_bus *bus) |
| 1158 | { |
| 1159 | struct pci_bus *b; |
| 1160 | int i; |
| 1161 | struct resource *res, *pr; |
| 1162 | |
| 1163 | pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", |
| 1164 | pci_domain_nr(bus), bus->number); |
| 1165 | |
| 1166 | pci_bus_for_each_resource(bus, res, i) { |
| 1167 | if (!res || !res->flags || res->start > res->end || res->parent) |
| 1168 | continue; |
| 1169 | |
| 1170 | /* If the resource was left unset at this point, we clear it */ |
| 1171 | if (res->flags & IORESOURCE_UNSET) |
| 1172 | goto clear_resource; |
| 1173 | |
| 1174 | if (bus->parent == NULL) |
| 1175 | pr = (res->flags & IORESOURCE_IO) ? |
| 1176 | &ioport_resource : &iomem_resource; |
| 1177 | else { |
| 1178 | pr = pci_find_parent_resource(bus->self, res); |
| 1179 | if (pr == res) { |
| 1180 | /* this happens when the generic PCI |
| 1181 | * code (wrongly) decides that this |
| 1182 | * bridge is transparent -- paulus |
| 1183 | */ |
| 1184 | continue; |
| 1185 | } |
| 1186 | } |
| 1187 | |
| 1188 | pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", |
| 1189 | bus->self ? pci_name(bus->self) : "PHB", bus->number, |
| 1190 | i, res, pr, (pr && pr->name) ? pr->name : "nil"); |
| 1191 | |
| 1192 | if (pr && !(pr->flags & IORESOURCE_UNSET)) { |
| 1193 | struct pci_dev *dev = bus->self; |
| 1194 | |
| 1195 | if (request_resource(pr, res) == 0) |
| 1196 | continue; |
| 1197 | /* |
| 1198 | * Must be a conflict with an existing entry. |
| 1199 | * Move that entry (or entries) under the |
| 1200 | * bridge resource and try again. |
| 1201 | */ |
| 1202 | if (reparent_resources(pr, res) == 0) |
| 1203 | continue; |
| 1204 | |
| 1205 | if (dev && i < PCI_BRIDGE_RESOURCE_NUM && |
| 1206 | pci_claim_bridge_resource(dev, |
| 1207 | i + PCI_BRIDGE_RESOURCES) == 0) |
| 1208 | continue; |
| 1209 | } |
| 1210 | pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n", |
| 1211 | i, bus->number); |
| 1212 | clear_resource: |
| 1213 | /* The resource might be figured out when doing |
| 1214 | * reassignment based on the resources required |
| 1215 | * by the downstream PCI devices. Here we set |
| 1216 | * the size of the resource to be 0 in order to |
| 1217 | * save more space. |
| 1218 | */ |
| 1219 | res->start = 0; |
| 1220 | res->end = -1; |
| 1221 | res->flags = 0; |
| 1222 | } |
| 1223 | |
| 1224 | list_for_each_entry(b, &bus->children, node) |
| 1225 | pcibios_allocate_bus_resources(b); |
| 1226 | } |
| 1227 | |
| 1228 | static inline void alloc_resource(struct pci_dev *dev, int idx) |
| 1229 | { |
| 1230 | struct resource *pr, *r = &dev->resource[idx]; |
| 1231 | |
| 1232 | pr_debug("PCI: Allocating %s: Resource %d: %pR\n", |
| 1233 | pci_name(dev), idx, r); |
| 1234 | |
| 1235 | pr = pci_find_parent_resource(dev, r); |
| 1236 | if (!pr || (pr->flags & IORESOURCE_UNSET) || |
| 1237 | request_resource(pr, r) < 0) { |
| 1238 | printk(KERN_WARNING "PCI: Cannot allocate resource region %d" |
| 1239 | " of device %s, will remap\n", idx, pci_name(dev)); |
| 1240 | if (pr) |
| 1241 | pr_debug("PCI: parent is %p: %pR\n", pr, pr); |
| 1242 | /* We'll assign a new address later */ |
| 1243 | r->flags |= IORESOURCE_UNSET; |
| 1244 | r->end -= r->start; |
| 1245 | r->start = 0; |
| 1246 | } |
| 1247 | } |
| 1248 | |
| 1249 | static void __init pcibios_allocate_resources(int pass) |
| 1250 | { |
| 1251 | struct pci_dev *dev = NULL; |
| 1252 | int idx, disabled; |
| 1253 | u16 command; |
| 1254 | struct resource *r; |
| 1255 | |
| 1256 | for_each_pci_dev(dev) { |
| 1257 | pci_read_config_word(dev, PCI_COMMAND, &command); |
| 1258 | for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { |
| 1259 | r = &dev->resource[idx]; |
| 1260 | if (r->parent) /* Already allocated */ |
| 1261 | continue; |
| 1262 | if (!r->flags || (r->flags & IORESOURCE_UNSET)) |
| 1263 | continue; /* Not assigned at all */ |
| 1264 | /* We only allocate ROMs on pass 1 just in case they |
| 1265 | * have been screwed up by firmware |
| 1266 | */ |
| 1267 | if (idx == PCI_ROM_RESOURCE ) |
| 1268 | disabled = 1; |
| 1269 | if (r->flags & IORESOURCE_IO) |
| 1270 | disabled = !(command & PCI_COMMAND_IO); |
| 1271 | else |
| 1272 | disabled = !(command & PCI_COMMAND_MEMORY); |
| 1273 | if (pass == disabled) |
| 1274 | alloc_resource(dev, idx); |
| 1275 | } |
| 1276 | if (pass) |
| 1277 | continue; |
| 1278 | r = &dev->resource[PCI_ROM_RESOURCE]; |
| 1279 | if (r->flags) { |
| 1280 | /* Turn the ROM off, leave the resource region, |
| 1281 | * but keep it unregistered. |
| 1282 | */ |
| 1283 | u32 reg; |
| 1284 | pci_read_config_dword(dev, dev->rom_base_reg, ®); |
| 1285 | if (reg & PCI_ROM_ADDRESS_ENABLE) { |
| 1286 | pr_debug("PCI: Switching off ROM of %s\n", |
| 1287 | pci_name(dev)); |
| 1288 | r->flags &= ~IORESOURCE_ROM_ENABLE; |
| 1289 | pci_write_config_dword(dev, dev->rom_base_reg, |
| 1290 | reg & ~PCI_ROM_ADDRESS_ENABLE); |
| 1291 | } |
| 1292 | } |
| 1293 | } |
| 1294 | } |
| 1295 | |
| 1296 | static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) |
| 1297 | { |
| 1298 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 1299 | resource_size_t offset; |
| 1300 | struct resource *res, *pres; |
| 1301 | int i; |
| 1302 | |
| 1303 | pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); |
| 1304 | |
| 1305 | /* Check for IO */ |
| 1306 | if (!(hose->io_resource.flags & IORESOURCE_IO)) |
| 1307 | goto no_io; |
| 1308 | offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| 1309 | res = kzalloc(sizeof(struct resource), GFP_KERNEL); |
| 1310 | BUG_ON(res == NULL); |
| 1311 | res->name = "Legacy IO"; |
| 1312 | res->flags = IORESOURCE_IO; |
| 1313 | res->start = offset; |
| 1314 | res->end = (offset + 0xfff) & 0xfffffffful; |
| 1315 | pr_debug("Candidate legacy IO: %pR\n", res); |
| 1316 | if (request_resource(&hose->io_resource, res)) { |
| 1317 | printk(KERN_DEBUG |
| 1318 | "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", |
| 1319 | pci_domain_nr(bus), bus->number, res); |
| 1320 | kfree(res); |
| 1321 | } |
| 1322 | |
| 1323 | no_io: |
| 1324 | /* Check for memory */ |
| 1325 | for (i = 0; i < 3; i++) { |
| 1326 | pres = &hose->mem_resources[i]; |
| 1327 | offset = hose->mem_offset[i]; |
| 1328 | if (!(pres->flags & IORESOURCE_MEM)) |
| 1329 | continue; |
| 1330 | pr_debug("hose mem res: %pR\n", pres); |
| 1331 | if ((pres->start - offset) <= 0xa0000 && |
| 1332 | (pres->end - offset) >= 0xbffff) |
| 1333 | break; |
| 1334 | } |
| 1335 | if (i >= 3) |
| 1336 | return; |
| 1337 | res = kzalloc(sizeof(struct resource), GFP_KERNEL); |
| 1338 | BUG_ON(res == NULL); |
| 1339 | res->name = "Legacy VGA memory"; |
| 1340 | res->flags = IORESOURCE_MEM; |
| 1341 | res->start = 0xa0000 + offset; |
| 1342 | res->end = 0xbffff + offset; |
| 1343 | pr_debug("Candidate VGA memory: %pR\n", res); |
| 1344 | if (request_resource(pres, res)) { |
| 1345 | printk(KERN_DEBUG |
| 1346 | "PCI %04x:%02x Cannot reserve VGA memory %pR\n", |
| 1347 | pci_domain_nr(bus), bus->number, res); |
| 1348 | kfree(res); |
| 1349 | } |
| 1350 | } |
| 1351 | |
| 1352 | void __init pcibios_resource_survey(void) |
| 1353 | { |
| 1354 | struct pci_bus *b; |
| 1355 | |
| 1356 | /* Allocate and assign resources */ |
| 1357 | list_for_each_entry(b, &pci_root_buses, node) |
| 1358 | pcibios_allocate_bus_resources(b); |
| 1359 | if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { |
| 1360 | pcibios_allocate_resources(0); |
| 1361 | pcibios_allocate_resources(1); |
| 1362 | } |
| 1363 | |
| 1364 | /* Before we start assigning unassigned resource, we try to reserve |
| 1365 | * the low IO area and the VGA memory area if they intersect the |
| 1366 | * bus available resources to avoid allocating things on top of them |
| 1367 | */ |
| 1368 | if (!pci_has_flag(PCI_PROBE_ONLY)) { |
| 1369 | list_for_each_entry(b, &pci_root_buses, node) |
| 1370 | pcibios_reserve_legacy_regions(b); |
| 1371 | } |
| 1372 | |
| 1373 | /* Now, if the platform didn't decide to blindly trust the firmware, |
| 1374 | * we proceed to assigning things that were left unassigned |
| 1375 | */ |
| 1376 | if (!pci_has_flag(PCI_PROBE_ONLY)) { |
| 1377 | pr_debug("PCI: Assigning unassigned resources...\n"); |
| 1378 | pci_assign_unassigned_resources(); |
| 1379 | } |
| 1380 | |
| 1381 | /* Call machine dependent fixup */ |
| 1382 | if (ppc_md.pcibios_fixup) |
| 1383 | ppc_md.pcibios_fixup(); |
| 1384 | } |
| 1385 | |
| 1386 | /* This is used by the PCI hotplug driver to allocate resource |
| 1387 | * of newly plugged busses. We can try to consolidate with the |
| 1388 | * rest of the code later, for now, keep it as-is as our main |
| 1389 | * resource allocation function doesn't deal with sub-trees yet. |
| 1390 | */ |
| 1391 | void pcibios_claim_one_bus(struct pci_bus *bus) |
| 1392 | { |
| 1393 | struct pci_dev *dev; |
| 1394 | struct pci_bus *child_bus; |
| 1395 | |
| 1396 | list_for_each_entry(dev, &bus->devices, bus_list) { |
| 1397 | int i; |
| 1398 | |
| 1399 | for (i = 0; i < PCI_NUM_RESOURCES; i++) { |
| 1400 | struct resource *r = &dev->resource[i]; |
| 1401 | |
| 1402 | if (r->parent || !r->start || !r->flags) |
| 1403 | continue; |
| 1404 | |
| 1405 | pr_debug("PCI: Claiming %s: Resource %d: %pR\n", |
| 1406 | pci_name(dev), i, r); |
| 1407 | |
| 1408 | if (pci_claim_resource(dev, i) == 0) |
| 1409 | continue; |
| 1410 | |
| 1411 | pci_claim_bridge_resource(dev, i); |
| 1412 | } |
| 1413 | } |
| 1414 | |
| 1415 | list_for_each_entry(child_bus, &bus->children, node) |
| 1416 | pcibios_claim_one_bus(child_bus); |
| 1417 | } |
| 1418 | EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); |
| 1419 | |
| 1420 | |
| 1421 | /* pcibios_finish_adding_to_bus |
| 1422 | * |
| 1423 | * This is to be called by the hotplug code after devices have been |
| 1424 | * added to a bus, this include calling it for a PHB that is just |
| 1425 | * being added |
| 1426 | */ |
| 1427 | void pcibios_finish_adding_to_bus(struct pci_bus *bus) |
| 1428 | { |
| 1429 | pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", |
| 1430 | pci_domain_nr(bus), bus->number); |
| 1431 | |
| 1432 | /* Allocate bus and devices resources */ |
| 1433 | pcibios_allocate_bus_resources(bus); |
| 1434 | pcibios_claim_one_bus(bus); |
| 1435 | if (!pci_has_flag(PCI_PROBE_ONLY)) { |
| 1436 | if (bus->self) |
| 1437 | pci_assign_unassigned_bridge_resources(bus->self); |
| 1438 | else |
| 1439 | pci_assign_unassigned_bus_resources(bus); |
| 1440 | } |
| 1441 | |
| 1442 | /* Fixup EEH */ |
| 1443 | eeh_add_device_tree_late(bus); |
| 1444 | |
| 1445 | /* Add new devices to global lists. Register in proc, sysfs. */ |
| 1446 | pci_bus_add_devices(bus); |
| 1447 | |
| 1448 | /* sysfs files should only be added after devices are added */ |
| 1449 | eeh_add_sysfs_files(bus); |
| 1450 | } |
| 1451 | EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); |
| 1452 | |
| 1453 | int pcibios_enable_device(struct pci_dev *dev, int mask) |
| 1454 | { |
| 1455 | struct pci_controller *phb = pci_bus_to_host(dev->bus); |
| 1456 | |
| 1457 | if (phb->controller_ops.enable_device_hook) |
| 1458 | if (!phb->controller_ops.enable_device_hook(dev)) |
| 1459 | return -EINVAL; |
| 1460 | |
| 1461 | return pci_enable_resources(dev, mask); |
| 1462 | } |
| 1463 | |
| 1464 | void pcibios_disable_device(struct pci_dev *dev) |
| 1465 | { |
| 1466 | struct pci_controller *phb = pci_bus_to_host(dev->bus); |
| 1467 | |
| 1468 | if (phb->controller_ops.disable_device) |
| 1469 | phb->controller_ops.disable_device(dev); |
| 1470 | } |
| 1471 | |
| 1472 | resource_size_t pcibios_io_space_offset(struct pci_controller *hose) |
| 1473 | { |
| 1474 | return (unsigned long) hose->io_base_virt - _IO_BASE; |
| 1475 | } |
| 1476 | |
| 1477 | static void pcibios_setup_phb_resources(struct pci_controller *hose, |
| 1478 | struct list_head *resources) |
| 1479 | { |
| 1480 | struct resource *res; |
| 1481 | resource_size_t offset; |
| 1482 | int i; |
| 1483 | |
| 1484 | /* Hookup PHB IO resource */ |
| 1485 | res = &hose->io_resource; |
| 1486 | |
| 1487 | if (!res->flags) { |
| 1488 | pr_debug("PCI: I/O resource not set for host" |
| 1489 | " bridge %pOF (domain %d)\n", |
| 1490 | hose->dn, hose->global_number); |
| 1491 | } else { |
| 1492 | offset = pcibios_io_space_offset(hose); |
| 1493 | |
| 1494 | pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n", |
| 1495 | res, (unsigned long long)offset); |
| 1496 | pci_add_resource_offset(resources, res, offset); |
| 1497 | } |
| 1498 | |
| 1499 | /* Hookup PHB Memory resources */ |
| 1500 | for (i = 0; i < 3; ++i) { |
| 1501 | res = &hose->mem_resources[i]; |
| 1502 | if (!res->flags) |
| 1503 | continue; |
| 1504 | |
| 1505 | offset = hose->mem_offset[i]; |
| 1506 | pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, |
| 1507 | res, (unsigned long long)offset); |
| 1508 | |
| 1509 | pci_add_resource_offset(resources, res, offset); |
| 1510 | } |
| 1511 | } |
| 1512 | |
| 1513 | /* |
| 1514 | * Null PCI config access functions, for the case when we can't |
| 1515 | * find a hose. |
| 1516 | */ |
| 1517 | #define NULL_PCI_OP(rw, size, type) \ |
| 1518 | static int \ |
| 1519 | null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ |
| 1520 | { \ |
| 1521 | return PCIBIOS_DEVICE_NOT_FOUND; \ |
| 1522 | } |
| 1523 | |
| 1524 | static int |
| 1525 | null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, |
| 1526 | int len, u32 *val) |
| 1527 | { |
| 1528 | return PCIBIOS_DEVICE_NOT_FOUND; |
| 1529 | } |
| 1530 | |
| 1531 | static int |
| 1532 | null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, |
| 1533 | int len, u32 val) |
| 1534 | { |
| 1535 | return PCIBIOS_DEVICE_NOT_FOUND; |
| 1536 | } |
| 1537 | |
| 1538 | static struct pci_ops null_pci_ops = |
| 1539 | { |
| 1540 | .read = null_read_config, |
| 1541 | .write = null_write_config, |
| 1542 | }; |
| 1543 | |
| 1544 | /* |
| 1545 | * These functions are used early on before PCI scanning is done |
| 1546 | * and all of the pci_dev and pci_bus structures have been created. |
| 1547 | */ |
| 1548 | static struct pci_bus * |
| 1549 | fake_pci_bus(struct pci_controller *hose, int busnr) |
| 1550 | { |
| 1551 | static struct pci_bus bus; |
| 1552 | |
| 1553 | if (hose == NULL) { |
| 1554 | printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); |
| 1555 | } |
| 1556 | bus.number = busnr; |
| 1557 | bus.sysdata = hose; |
| 1558 | bus.ops = hose? hose->ops: &null_pci_ops; |
| 1559 | return &bus; |
| 1560 | } |
| 1561 | |
| 1562 | #define EARLY_PCI_OP(rw, size, type) \ |
| 1563 | int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ |
| 1564 | int devfn, int offset, type value) \ |
| 1565 | { \ |
| 1566 | return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ |
| 1567 | devfn, offset, value); \ |
| 1568 | } |
| 1569 | |
| 1570 | EARLY_PCI_OP(read, byte, u8 *) |
| 1571 | EARLY_PCI_OP(read, word, u16 *) |
| 1572 | EARLY_PCI_OP(read, dword, u32 *) |
| 1573 | EARLY_PCI_OP(write, byte, u8) |
| 1574 | EARLY_PCI_OP(write, word, u16) |
| 1575 | EARLY_PCI_OP(write, dword, u32) |
| 1576 | |
| 1577 | int early_find_capability(struct pci_controller *hose, int bus, int devfn, |
| 1578 | int cap) |
| 1579 | { |
| 1580 | return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); |
| 1581 | } |
| 1582 | |
| 1583 | struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) |
| 1584 | { |
| 1585 | struct pci_controller *hose = bus->sysdata; |
| 1586 | |
| 1587 | return of_node_get(hose->dn); |
| 1588 | } |
| 1589 | |
| 1590 | /** |
| 1591 | * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus |
| 1592 | * @hose: Pointer to the PCI host controller instance structure |
| 1593 | */ |
| 1594 | void pcibios_scan_phb(struct pci_controller *hose) |
| 1595 | { |
| 1596 | LIST_HEAD(resources); |
| 1597 | struct pci_bus *bus; |
| 1598 | struct device_node *node = hose->dn; |
| 1599 | int mode; |
| 1600 | |
| 1601 | pr_debug("PCI: Scanning PHB %pOF\n", node); |
| 1602 | |
| 1603 | /* Get some IO space for the new PHB */ |
| 1604 | pcibios_setup_phb_io_space(hose); |
| 1605 | |
| 1606 | /* Wire up PHB bus resources */ |
| 1607 | pcibios_setup_phb_resources(hose, &resources); |
| 1608 | |
| 1609 | hose->busn.start = hose->first_busno; |
| 1610 | hose->busn.end = hose->last_busno; |
| 1611 | hose->busn.flags = IORESOURCE_BUS; |
| 1612 | pci_add_resource(&resources, &hose->busn); |
| 1613 | |
| 1614 | /* Create an empty bus for the toplevel */ |
| 1615 | bus = pci_create_root_bus(hose->parent, hose->first_busno, |
| 1616 | hose->ops, hose, &resources); |
| 1617 | if (bus == NULL) { |
| 1618 | pr_err("Failed to create bus for PCI domain %04x\n", |
| 1619 | hose->global_number); |
| 1620 | pci_free_resource_list(&resources); |
| 1621 | return; |
| 1622 | } |
| 1623 | hose->bus = bus; |
| 1624 | |
| 1625 | /* Get probe mode and perform scan */ |
| 1626 | mode = PCI_PROBE_NORMAL; |
| 1627 | if (node && hose->controller_ops.probe_mode) |
| 1628 | mode = hose->controller_ops.probe_mode(bus); |
| 1629 | pr_debug(" probe mode: %d\n", mode); |
| 1630 | if (mode == PCI_PROBE_DEVTREE) |
| 1631 | of_scan_bus(node, bus); |
| 1632 | |
| 1633 | if (mode == PCI_PROBE_NORMAL) { |
| 1634 | pci_bus_update_busn_res_end(bus, 255); |
| 1635 | hose->last_busno = pci_scan_child_bus(bus); |
| 1636 | pci_bus_update_busn_res_end(bus, hose->last_busno); |
| 1637 | } |
| 1638 | |
| 1639 | /* Platform gets a chance to do some global fixups before |
| 1640 | * we proceed to resource allocation |
| 1641 | */ |
| 1642 | if (ppc_md.pcibios_fixup_phb) |
| 1643 | ppc_md.pcibios_fixup_phb(hose); |
| 1644 | |
| 1645 | /* Configure PCI Express settings */ |
| 1646 | if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { |
| 1647 | struct pci_bus *child; |
| 1648 | list_for_each_entry(child, &bus->children, node) |
| 1649 | pcie_bus_configure_settings(child); |
| 1650 | } |
| 1651 | } |
| 1652 | EXPORT_SYMBOL_GPL(pcibios_scan_phb); |
| 1653 | |
| 1654 | static void fixup_hide_host_resource_fsl(struct pci_dev *dev) |
| 1655 | { |
| 1656 | int i, class = dev->class >> 8; |
| 1657 | /* When configured as agent, programing interface = 1 */ |
| 1658 | int prog_if = dev->class & 0xf; |
| 1659 | |
| 1660 | if ((class == PCI_CLASS_PROCESSOR_POWERPC || |
| 1661 | class == PCI_CLASS_BRIDGE_OTHER) && |
| 1662 | (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && |
| 1663 | (prog_if == 0) && |
| 1664 | (dev->bus->parent == NULL)) { |
| 1665 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| 1666 | dev->resource[i].start = 0; |
| 1667 | dev->resource[i].end = 0; |
| 1668 | dev->resource[i].flags = 0; |
| 1669 | } |
| 1670 | } |
| 1671 | } |
| 1672 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); |
| 1673 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); |