Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com> |
| 4 | * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org> |
| 5 | * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. |
| 6 | */ |
| 7 | #include <linux/dma-direct.h> |
| 8 | #include <linux/dma-noncoherent.h> |
| 9 | #include <linux/dma-contiguous.h> |
| 10 | #include <linux/highmem.h> |
| 11 | |
| 12 | #include <asm/cache.h> |
| 13 | #include <asm/cpu-type.h> |
| 14 | #include <asm/dma-coherence.h> |
| 15 | #include <asm/io.h> |
| 16 | |
| 17 | #ifdef CONFIG_DMA_PERDEV_COHERENT |
| 18 | static inline int dev_is_coherent(struct device *dev) |
| 19 | { |
| 20 | return dev->archdata.dma_coherent; |
| 21 | } |
| 22 | #else |
| 23 | static inline int dev_is_coherent(struct device *dev) |
| 24 | { |
| 25 | switch (coherentio) { |
| 26 | default: |
| 27 | case IO_COHERENCE_DEFAULT: |
| 28 | return hw_coherentio; |
| 29 | case IO_COHERENCE_ENABLED: |
| 30 | return 1; |
| 31 | case IO_COHERENCE_DISABLED: |
| 32 | return 0; |
| 33 | } |
| 34 | } |
| 35 | #endif /* CONFIG_DMA_PERDEV_COHERENT */ |
| 36 | |
| 37 | /* |
| 38 | * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively |
| 39 | * fill random cachelines with stale data at any time, requiring an extra |
| 40 | * flush post-DMA. |
| 41 | * |
| 42 | * Warning on the terminology - Linux calls an uncached area coherent; MIPS |
| 43 | * terminology calls memory areas with hardware maintained coherency coherent. |
| 44 | * |
| 45 | * Note that the R14000 and R16000 should also be checked for in this condition. |
| 46 | * However this function is only called on non-I/O-coherent systems and only the |
| 47 | * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp. |
| 48 | * SGI IP32 aka O2. |
| 49 | */ |
| 50 | static inline bool cpu_needs_post_dma_flush(struct device *dev) |
| 51 | { |
| 52 | if (dev_is_coherent(dev)) |
| 53 | return false; |
| 54 | |
| 55 | switch (boot_cpu_type()) { |
| 56 | case CPU_R10000: |
| 57 | case CPU_R12000: |
| 58 | case CPU_BMIPS5000: |
| 59 | return true; |
| 60 | default: |
| 61 | /* |
| 62 | * Presence of MAARs suggests that the CPU supports |
| 63 | * speculatively prefetching data, and therefore requires |
| 64 | * the post-DMA flush/invalidate. |
| 65 | */ |
| 66 | return cpu_has_maar; |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | void *arch_dma_alloc(struct device *dev, size_t size, |
| 71 | dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| 72 | { |
| 73 | void *ret; |
| 74 | |
| 75 | ret = dma_direct_alloc(dev, size, dma_handle, gfp, attrs); |
| 76 | if (!ret) |
| 77 | return NULL; |
| 78 | |
| 79 | if (!dev_is_coherent(dev) && !(attrs & DMA_ATTR_NON_CONSISTENT)) { |
| 80 | dma_cache_wback_inv((unsigned long) ret, size); |
| 81 | ret = (void *)UNCAC_ADDR(ret); |
| 82 | } |
| 83 | |
| 84 | return ret; |
| 85 | } |
| 86 | |
| 87 | void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| 88 | dma_addr_t dma_addr, unsigned long attrs) |
| 89 | { |
| 90 | if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !dev_is_coherent(dev)) |
| 91 | cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr); |
| 92 | dma_direct_free(dev, size, cpu_addr, dma_addr, attrs); |
| 93 | } |
| 94 | |
| 95 | int arch_dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| 96 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 97 | unsigned long attrs) |
| 98 | { |
| 99 | unsigned long user_count = vma_pages(vma); |
| 100 | unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 101 | unsigned long addr = (unsigned long)cpu_addr; |
| 102 | unsigned long off = vma->vm_pgoff; |
| 103 | unsigned long pfn; |
| 104 | int ret = -ENXIO; |
| 105 | |
| 106 | if (!dev_is_coherent(dev)) |
| 107 | addr = CAC_ADDR(addr); |
| 108 | |
| 109 | pfn = page_to_pfn(virt_to_page((void *)addr)); |
| 110 | |
| 111 | if (attrs & DMA_ATTR_WRITE_COMBINE) |
| 112 | vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); |
| 113 | else |
| 114 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| 115 | |
| 116 | if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| 117 | return ret; |
| 118 | |
| 119 | if (off < count && user_count <= (count - off)) { |
| 120 | ret = remap_pfn_range(vma, vma->vm_start, |
| 121 | pfn + off, |
| 122 | user_count << PAGE_SHIFT, |
| 123 | vma->vm_page_prot); |
| 124 | } |
| 125 | |
| 126 | return ret; |
| 127 | } |
| 128 | |
| 129 | static inline void dma_sync_virt(void *addr, size_t size, |
| 130 | enum dma_data_direction dir) |
| 131 | { |
| 132 | switch (dir) { |
| 133 | case DMA_TO_DEVICE: |
| 134 | dma_cache_wback((unsigned long)addr, size); |
| 135 | break; |
| 136 | |
| 137 | case DMA_FROM_DEVICE: |
| 138 | dma_cache_inv((unsigned long)addr, size); |
| 139 | break; |
| 140 | |
| 141 | case DMA_BIDIRECTIONAL: |
| 142 | dma_cache_wback_inv((unsigned long)addr, size); |
| 143 | break; |
| 144 | |
| 145 | default: |
| 146 | BUG(); |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * A single sg entry may refer to multiple physically contiguous pages. But |
| 152 | * we still need to process highmem pages individually. If highmem is not |
| 153 | * configured then the bulk of this loop gets optimized out. |
| 154 | */ |
| 155 | static inline void dma_sync_phys(phys_addr_t paddr, size_t size, |
| 156 | enum dma_data_direction dir) |
| 157 | { |
| 158 | struct page *page = pfn_to_page(paddr >> PAGE_SHIFT); |
| 159 | unsigned long offset = paddr & ~PAGE_MASK; |
| 160 | size_t left = size; |
| 161 | |
| 162 | do { |
| 163 | size_t len = left; |
| 164 | |
| 165 | if (PageHighMem(page)) { |
| 166 | void *addr; |
| 167 | |
| 168 | if (offset + len > PAGE_SIZE) { |
| 169 | if (offset >= PAGE_SIZE) { |
| 170 | page += offset >> PAGE_SHIFT; |
| 171 | offset &= ~PAGE_MASK; |
| 172 | } |
| 173 | len = PAGE_SIZE - offset; |
| 174 | } |
| 175 | |
| 176 | addr = kmap_atomic(page); |
| 177 | dma_sync_virt(addr + offset, len, dir); |
| 178 | kunmap_atomic(addr); |
| 179 | } else |
| 180 | dma_sync_virt(page_address(page) + offset, size, dir); |
| 181 | offset = 0; |
| 182 | page++; |
| 183 | left -= len; |
| 184 | } while (left); |
| 185 | } |
| 186 | |
| 187 | void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, |
| 188 | size_t size, enum dma_data_direction dir) |
| 189 | { |
| 190 | if (!dev_is_coherent(dev)) |
| 191 | dma_sync_phys(paddr, size, dir); |
| 192 | } |
| 193 | |
| 194 | void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, |
| 195 | size_t size, enum dma_data_direction dir) |
| 196 | { |
| 197 | if (cpu_needs_post_dma_flush(dev)) |
| 198 | dma_sync_phys(paddr, size, dir); |
| 199 | } |
| 200 | |
| 201 | void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size, |
| 202 | enum dma_data_direction direction) |
| 203 | { |
| 204 | BUG_ON(direction == DMA_NONE); |
| 205 | |
| 206 | if (!dev_is_coherent(dev)) |
| 207 | dma_sync_virt(vaddr, size, direction); |
| 208 | } |