blob: 2aca1236af36d67e1cd84c15cabf2025e56f8318 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
4 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
5 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
6 */
7#include <linux/dma-direct.h>
8#include <linux/dma-noncoherent.h>
9#include <linux/dma-contiguous.h>
10#include <linux/highmem.h>
11
12#include <asm/cache.h>
13#include <asm/cpu-type.h>
14#include <asm/dma-coherence.h>
15#include <asm/io.h>
16
17#ifdef CONFIG_DMA_PERDEV_COHERENT
18static inline int dev_is_coherent(struct device *dev)
19{
20 return dev->archdata.dma_coherent;
21}
22#else
23static inline int dev_is_coherent(struct device *dev)
24{
25 switch (coherentio) {
26 default:
27 case IO_COHERENCE_DEFAULT:
28 return hw_coherentio;
29 case IO_COHERENCE_ENABLED:
30 return 1;
31 case IO_COHERENCE_DISABLED:
32 return 0;
33 }
34}
35#endif /* CONFIG_DMA_PERDEV_COHERENT */
36
37/*
38 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
39 * fill random cachelines with stale data at any time, requiring an extra
40 * flush post-DMA.
41 *
42 * Warning on the terminology - Linux calls an uncached area coherent; MIPS
43 * terminology calls memory areas with hardware maintained coherency coherent.
44 *
45 * Note that the R14000 and R16000 should also be checked for in this condition.
46 * However this function is only called on non-I/O-coherent systems and only the
47 * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
48 * SGI IP32 aka O2.
49 */
50static inline bool cpu_needs_post_dma_flush(struct device *dev)
51{
52 if (dev_is_coherent(dev))
53 return false;
54
55 switch (boot_cpu_type()) {
56 case CPU_R10000:
57 case CPU_R12000:
58 case CPU_BMIPS5000:
59 return true;
60 default:
61 /*
62 * Presence of MAARs suggests that the CPU supports
63 * speculatively prefetching data, and therefore requires
64 * the post-DMA flush/invalidate.
65 */
66 return cpu_has_maar;
67 }
68}
69
70void *arch_dma_alloc(struct device *dev, size_t size,
71 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
72{
73 void *ret;
74
75 ret = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
76 if (!ret)
77 return NULL;
78
79 if (!dev_is_coherent(dev) && !(attrs & DMA_ATTR_NON_CONSISTENT)) {
80 dma_cache_wback_inv((unsigned long) ret, size);
81 ret = (void *)UNCAC_ADDR(ret);
82 }
83
84 return ret;
85}
86
87void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
88 dma_addr_t dma_addr, unsigned long attrs)
89{
90 if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !dev_is_coherent(dev))
91 cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr);
92 dma_direct_free(dev, size, cpu_addr, dma_addr, attrs);
93}
94
95int arch_dma_mmap(struct device *dev, struct vm_area_struct *vma,
96 void *cpu_addr, dma_addr_t dma_addr, size_t size,
97 unsigned long attrs)
98{
99 unsigned long user_count = vma_pages(vma);
100 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
101 unsigned long addr = (unsigned long)cpu_addr;
102 unsigned long off = vma->vm_pgoff;
103 unsigned long pfn;
104 int ret = -ENXIO;
105
106 if (!dev_is_coherent(dev))
107 addr = CAC_ADDR(addr);
108
109 pfn = page_to_pfn(virt_to_page((void *)addr));
110
111 if (attrs & DMA_ATTR_WRITE_COMBINE)
112 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
113 else
114 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
115
116 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
117 return ret;
118
119 if (off < count && user_count <= (count - off)) {
120 ret = remap_pfn_range(vma, vma->vm_start,
121 pfn + off,
122 user_count << PAGE_SHIFT,
123 vma->vm_page_prot);
124 }
125
126 return ret;
127}
128
129static inline void dma_sync_virt(void *addr, size_t size,
130 enum dma_data_direction dir)
131{
132 switch (dir) {
133 case DMA_TO_DEVICE:
134 dma_cache_wback((unsigned long)addr, size);
135 break;
136
137 case DMA_FROM_DEVICE:
138 dma_cache_inv((unsigned long)addr, size);
139 break;
140
141 case DMA_BIDIRECTIONAL:
142 dma_cache_wback_inv((unsigned long)addr, size);
143 break;
144
145 default:
146 BUG();
147 }
148}
149
150/*
151 * A single sg entry may refer to multiple physically contiguous pages. But
152 * we still need to process highmem pages individually. If highmem is not
153 * configured then the bulk of this loop gets optimized out.
154 */
155static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
156 enum dma_data_direction dir)
157{
158 struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
159 unsigned long offset = paddr & ~PAGE_MASK;
160 size_t left = size;
161
162 do {
163 size_t len = left;
164
165 if (PageHighMem(page)) {
166 void *addr;
167
168 if (offset + len > PAGE_SIZE) {
169 if (offset >= PAGE_SIZE) {
170 page += offset >> PAGE_SHIFT;
171 offset &= ~PAGE_MASK;
172 }
173 len = PAGE_SIZE - offset;
174 }
175
176 addr = kmap_atomic(page);
177 dma_sync_virt(addr + offset, len, dir);
178 kunmap_atomic(addr);
179 } else
180 dma_sync_virt(page_address(page) + offset, size, dir);
181 offset = 0;
182 page++;
183 left -= len;
184 } while (left);
185}
186
187void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
188 size_t size, enum dma_data_direction dir)
189{
190 if (!dev_is_coherent(dev))
191 dma_sync_phys(paddr, size, dir);
192}
193
194void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
195 size_t size, enum dma_data_direction dir)
196{
197 if (cpu_needs_post_dma_flush(dev))
198 dma_sync_phys(paddr, size, dir);
199}
200
201void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
202 enum dma_data_direction direction)
203{
204 BUG_ON(direction == DMA_NONE);
205
206 if (!dev_is_coherent(dev))
207 dma_sync_virt(vaddr, size, direction);
208}