David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) |
| 2 | |
| 3 | /* |
| 4 | * BTF-to-C type converter. |
| 5 | * |
| 6 | * Copyright (c) 2019 Facebook |
| 7 | */ |
| 8 | |
| 9 | #include <stdbool.h> |
| 10 | #include <stddef.h> |
| 11 | #include <stdlib.h> |
| 12 | #include <string.h> |
| 13 | #include <errno.h> |
| 14 | #include <linux/err.h> |
| 15 | #include <linux/btf.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 16 | #include <linux/kernel.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 17 | #include "btf.h" |
| 18 | #include "hashmap.h" |
| 19 | #include "libbpf.h" |
| 20 | #include "libbpf_internal.h" |
| 21 | |
| 22 | static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; |
| 23 | static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; |
| 24 | |
| 25 | static const char *pfx(int lvl) |
| 26 | { |
| 27 | return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; |
| 28 | } |
| 29 | |
| 30 | enum btf_dump_type_order_state { |
| 31 | NOT_ORDERED, |
| 32 | ORDERING, |
| 33 | ORDERED, |
| 34 | }; |
| 35 | |
| 36 | enum btf_dump_type_emit_state { |
| 37 | NOT_EMITTED, |
| 38 | EMITTING, |
| 39 | EMITTED, |
| 40 | }; |
| 41 | |
| 42 | /* per-type auxiliary state */ |
| 43 | struct btf_dump_type_aux_state { |
| 44 | /* topological sorting state */ |
| 45 | enum btf_dump_type_order_state order_state: 2; |
| 46 | /* emitting state used to determine the need for forward declaration */ |
| 47 | enum btf_dump_type_emit_state emit_state: 2; |
| 48 | /* whether forward declaration was already emitted */ |
| 49 | __u8 fwd_emitted: 1; |
| 50 | /* whether unique non-duplicate name was already assigned */ |
| 51 | __u8 name_resolved: 1; |
| 52 | /* whether type is referenced from any other type */ |
| 53 | __u8 referenced: 1; |
| 54 | }; |
| 55 | |
| 56 | struct btf_dump { |
| 57 | const struct btf *btf; |
| 58 | const struct btf_ext *btf_ext; |
| 59 | btf_dump_printf_fn_t printf_fn; |
| 60 | struct btf_dump_opts opts; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 61 | int ptr_sz; |
| 62 | bool strip_mods; |
| 63 | int last_id; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 64 | |
| 65 | /* per-type auxiliary state */ |
| 66 | struct btf_dump_type_aux_state *type_states; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 67 | size_t type_states_cap; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 68 | /* per-type optional cached unique name, must be freed, if present */ |
| 69 | const char **cached_names; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 70 | size_t cached_names_cap; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 71 | |
| 72 | /* topo-sorted list of dependent type definitions */ |
| 73 | __u32 *emit_queue; |
| 74 | int emit_queue_cap; |
| 75 | int emit_queue_cnt; |
| 76 | |
| 77 | /* |
| 78 | * stack of type declarations (e.g., chain of modifiers, arrays, |
| 79 | * funcs, etc) |
| 80 | */ |
| 81 | __u32 *decl_stack; |
| 82 | int decl_stack_cap; |
| 83 | int decl_stack_cnt; |
| 84 | |
| 85 | /* maps struct/union/enum name to a number of name occurrences */ |
| 86 | struct hashmap *type_names; |
| 87 | /* |
| 88 | * maps typedef identifiers and enum value names to a number of such |
| 89 | * name occurrences |
| 90 | */ |
| 91 | struct hashmap *ident_names; |
| 92 | }; |
| 93 | |
| 94 | static size_t str_hash_fn(const void *key, void *ctx) |
| 95 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 96 | return str_hash(key); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 97 | } |
| 98 | |
| 99 | static bool str_equal_fn(const void *a, const void *b, void *ctx) |
| 100 | { |
| 101 | return strcmp(a, b) == 0; |
| 102 | } |
| 103 | |
| 104 | static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) |
| 105 | { |
| 106 | return btf__name_by_offset(d->btf, name_off); |
| 107 | } |
| 108 | |
| 109 | static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) |
| 110 | { |
| 111 | va_list args; |
| 112 | |
| 113 | va_start(args, fmt); |
| 114 | d->printf_fn(d->opts.ctx, fmt, args); |
| 115 | va_end(args); |
| 116 | } |
| 117 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 118 | static int btf_dump_mark_referenced(struct btf_dump *d); |
| 119 | static int btf_dump_resize(struct btf_dump *d); |
| 120 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 121 | struct btf_dump *btf_dump__new(const struct btf *btf, |
| 122 | const struct btf_ext *btf_ext, |
| 123 | const struct btf_dump_opts *opts, |
| 124 | btf_dump_printf_fn_t printf_fn) |
| 125 | { |
| 126 | struct btf_dump *d; |
| 127 | int err; |
| 128 | |
| 129 | d = calloc(1, sizeof(struct btf_dump)); |
| 130 | if (!d) |
| 131 | return ERR_PTR(-ENOMEM); |
| 132 | |
| 133 | d->btf = btf; |
| 134 | d->btf_ext = btf_ext; |
| 135 | d->printf_fn = printf_fn; |
| 136 | d->opts.ctx = opts ? opts->ctx : NULL; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 137 | d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 138 | |
| 139 | d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); |
| 140 | if (IS_ERR(d->type_names)) { |
| 141 | err = PTR_ERR(d->type_names); |
| 142 | d->type_names = NULL; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 143 | goto err; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 144 | } |
| 145 | d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); |
| 146 | if (IS_ERR(d->ident_names)) { |
| 147 | err = PTR_ERR(d->ident_names); |
| 148 | d->ident_names = NULL; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 149 | goto err; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 150 | } |
| 151 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 152 | err = btf_dump_resize(d); |
| 153 | if (err) |
| 154 | goto err; |
| 155 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 156 | return d; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 157 | err: |
| 158 | btf_dump__free(d); |
| 159 | return ERR_PTR(err); |
| 160 | } |
| 161 | |
| 162 | static int btf_dump_resize(struct btf_dump *d) |
| 163 | { |
| 164 | int err, last_id = btf__get_nr_types(d->btf); |
| 165 | |
| 166 | if (last_id <= d->last_id) |
| 167 | return 0; |
| 168 | |
| 169 | if (btf_ensure_mem((void **)&d->type_states, &d->type_states_cap, |
| 170 | sizeof(*d->type_states), last_id + 1)) |
| 171 | return -ENOMEM; |
| 172 | if (btf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, |
| 173 | sizeof(*d->cached_names), last_id + 1)) |
| 174 | return -ENOMEM; |
| 175 | |
| 176 | if (d->last_id == 0) { |
| 177 | /* VOID is special */ |
| 178 | d->type_states[0].order_state = ORDERED; |
| 179 | d->type_states[0].emit_state = EMITTED; |
| 180 | } |
| 181 | |
| 182 | /* eagerly determine referenced types for anon enums */ |
| 183 | err = btf_dump_mark_referenced(d); |
| 184 | if (err) |
| 185 | return err; |
| 186 | |
| 187 | d->last_id = last_id; |
| 188 | return 0; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 189 | } |
| 190 | |
| 191 | void btf_dump__free(struct btf_dump *d) |
| 192 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 193 | int i; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 194 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 195 | if (IS_ERR_OR_NULL(d)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 196 | return; |
| 197 | |
| 198 | free(d->type_states); |
| 199 | if (d->cached_names) { |
| 200 | /* any set cached name is owned by us and should be freed */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 201 | for (i = 0; i <= d->last_id; i++) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 202 | if (d->cached_names[i]) |
| 203 | free((void *)d->cached_names[i]); |
| 204 | } |
| 205 | } |
| 206 | free(d->cached_names); |
| 207 | free(d->emit_queue); |
| 208 | free(d->decl_stack); |
| 209 | hashmap__free(d->type_names); |
| 210 | hashmap__free(d->ident_names); |
| 211 | |
| 212 | free(d); |
| 213 | } |
| 214 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 215 | static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); |
| 216 | static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); |
| 217 | |
| 218 | /* |
| 219 | * Dump BTF type in a compilable C syntax, including all the necessary |
| 220 | * dependent types, necessary for compilation. If some of the dependent types |
| 221 | * were already emitted as part of previous btf_dump__dump_type() invocation |
| 222 | * for another type, they won't be emitted again. This API allows callers to |
| 223 | * filter out BTF types according to user-defined criterias and emitted only |
| 224 | * minimal subset of types, necessary to compile everything. Full struct/union |
| 225 | * definitions will still be emitted, even if the only usage is through |
| 226 | * pointer and could be satisfied with just a forward declaration. |
| 227 | * |
| 228 | * Dumping is done in two high-level passes: |
| 229 | * 1. Topologically sort type definitions to satisfy C rules of compilation. |
| 230 | * 2. Emit type definitions in C syntax. |
| 231 | * |
| 232 | * Returns 0 on success; <0, otherwise. |
| 233 | */ |
| 234 | int btf_dump__dump_type(struct btf_dump *d, __u32 id) |
| 235 | { |
| 236 | int err, i; |
| 237 | |
| 238 | if (id > btf__get_nr_types(d->btf)) |
| 239 | return -EINVAL; |
| 240 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 241 | err = btf_dump_resize(d); |
| 242 | if (err) |
| 243 | return err; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 244 | |
| 245 | d->emit_queue_cnt = 0; |
| 246 | err = btf_dump_order_type(d, id, false); |
| 247 | if (err < 0) |
| 248 | return err; |
| 249 | |
| 250 | for (i = 0; i < d->emit_queue_cnt; i++) |
| 251 | btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); |
| 252 | |
| 253 | return 0; |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * Mark all types that are referenced from any other type. This is used to |
| 258 | * determine top-level anonymous enums that need to be emitted as an |
| 259 | * independent type declarations. |
| 260 | * Anonymous enums come in two flavors: either embedded in a struct's field |
| 261 | * definition, in which case they have to be declared inline as part of field |
| 262 | * type declaration; or as a top-level anonymous enum, typically used for |
| 263 | * declaring global constants. It's impossible to distinguish between two |
| 264 | * without knowning whether given enum type was referenced from other type: |
| 265 | * top-level anonymous enum won't be referenced by anything, while embedded |
| 266 | * one will. |
| 267 | */ |
| 268 | static int btf_dump_mark_referenced(struct btf_dump *d) |
| 269 | { |
| 270 | int i, j, n = btf__get_nr_types(d->btf); |
| 271 | const struct btf_type *t; |
| 272 | __u16 vlen; |
| 273 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 274 | for (i = d->last_id + 1; i <= n; i++) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 275 | t = btf__type_by_id(d->btf, i); |
| 276 | vlen = btf_vlen(t); |
| 277 | |
| 278 | switch (btf_kind(t)) { |
| 279 | case BTF_KIND_INT: |
| 280 | case BTF_KIND_ENUM: |
| 281 | case BTF_KIND_FWD: |
| 282 | break; |
| 283 | |
| 284 | case BTF_KIND_VOLATILE: |
| 285 | case BTF_KIND_CONST: |
| 286 | case BTF_KIND_RESTRICT: |
| 287 | case BTF_KIND_PTR: |
| 288 | case BTF_KIND_TYPEDEF: |
| 289 | case BTF_KIND_FUNC: |
| 290 | case BTF_KIND_VAR: |
| 291 | d->type_states[t->type].referenced = 1; |
| 292 | break; |
| 293 | |
| 294 | case BTF_KIND_ARRAY: { |
| 295 | const struct btf_array *a = btf_array(t); |
| 296 | |
| 297 | d->type_states[a->index_type].referenced = 1; |
| 298 | d->type_states[a->type].referenced = 1; |
| 299 | break; |
| 300 | } |
| 301 | case BTF_KIND_STRUCT: |
| 302 | case BTF_KIND_UNION: { |
| 303 | const struct btf_member *m = btf_members(t); |
| 304 | |
| 305 | for (j = 0; j < vlen; j++, m++) |
| 306 | d->type_states[m->type].referenced = 1; |
| 307 | break; |
| 308 | } |
| 309 | case BTF_KIND_FUNC_PROTO: { |
| 310 | const struct btf_param *p = btf_params(t); |
| 311 | |
| 312 | for (j = 0; j < vlen; j++, p++) |
| 313 | d->type_states[p->type].referenced = 1; |
| 314 | break; |
| 315 | } |
| 316 | case BTF_KIND_DATASEC: { |
| 317 | const struct btf_var_secinfo *v = btf_var_secinfos(t); |
| 318 | |
| 319 | for (j = 0; j < vlen; j++, v++) |
| 320 | d->type_states[v->type].referenced = 1; |
| 321 | break; |
| 322 | } |
| 323 | default: |
| 324 | return -EINVAL; |
| 325 | } |
| 326 | } |
| 327 | return 0; |
| 328 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 329 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 330 | static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) |
| 331 | { |
| 332 | __u32 *new_queue; |
| 333 | size_t new_cap; |
| 334 | |
| 335 | if (d->emit_queue_cnt >= d->emit_queue_cap) { |
| 336 | new_cap = max(16, d->emit_queue_cap * 3 / 2); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 337 | new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 338 | if (!new_queue) |
| 339 | return -ENOMEM; |
| 340 | d->emit_queue = new_queue; |
| 341 | d->emit_queue_cap = new_cap; |
| 342 | } |
| 343 | |
| 344 | d->emit_queue[d->emit_queue_cnt++] = id; |
| 345 | return 0; |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * Determine order of emitting dependent types and specified type to satisfy |
| 350 | * C compilation rules. This is done through topological sorting with an |
| 351 | * additional complication which comes from C rules. The main idea for C is |
| 352 | * that if some type is "embedded" into a struct/union, it's size needs to be |
| 353 | * known at the time of definition of containing type. E.g., for: |
| 354 | * |
| 355 | * struct A {}; |
| 356 | * struct B { struct A x; } |
| 357 | * |
| 358 | * struct A *HAS* to be defined before struct B, because it's "embedded", |
| 359 | * i.e., it is part of struct B layout. But in the following case: |
| 360 | * |
| 361 | * struct A; |
| 362 | * struct B { struct A *x; } |
| 363 | * struct A {}; |
| 364 | * |
| 365 | * it's enough to just have a forward declaration of struct A at the time of |
| 366 | * struct B definition, as struct B has a pointer to struct A, so the size of |
| 367 | * field x is known without knowing struct A size: it's sizeof(void *). |
| 368 | * |
| 369 | * Unfortunately, there are some trickier cases we need to handle, e.g.: |
| 370 | * |
| 371 | * struct A {}; // if this was forward-declaration: compilation error |
| 372 | * struct B { |
| 373 | * struct { // anonymous struct |
| 374 | * struct A y; |
| 375 | * } *x; |
| 376 | * }; |
| 377 | * |
| 378 | * In this case, struct B's field x is a pointer, so it's size is known |
| 379 | * regardless of the size of (anonymous) struct it points to. But because this |
| 380 | * struct is anonymous and thus defined inline inside struct B, *and* it |
| 381 | * embeds struct A, compiler requires full definition of struct A to be known |
| 382 | * before struct B can be defined. This creates a transitive dependency |
| 383 | * between struct A and struct B. If struct A was forward-declared before |
| 384 | * struct B definition and fully defined after struct B definition, that would |
| 385 | * trigger compilation error. |
| 386 | * |
| 387 | * All this means that while we are doing topological sorting on BTF type |
| 388 | * graph, we need to determine relationships between different types (graph |
| 389 | * nodes): |
| 390 | * - weak link (relationship) between X and Y, if Y *CAN* be |
| 391 | * forward-declared at the point of X definition; |
| 392 | * - strong link, if Y *HAS* to be fully-defined before X can be defined. |
| 393 | * |
| 394 | * The rule is as follows. Given a chain of BTF types from X to Y, if there is |
| 395 | * BTF_KIND_PTR type in the chain and at least one non-anonymous type |
| 396 | * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. |
| 397 | * Weak/strong relationship is determined recursively during DFS traversal and |
| 398 | * is returned as a result from btf_dump_order_type(). |
| 399 | * |
| 400 | * btf_dump_order_type() is trying to avoid unnecessary forward declarations, |
| 401 | * but it is not guaranteeing that no extraneous forward declarations will be |
| 402 | * emitted. |
| 403 | * |
| 404 | * To avoid extra work, algorithm marks some of BTF types as ORDERED, when |
| 405 | * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, |
| 406 | * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the |
| 407 | * entire graph path, so depending where from one came to that BTF type, it |
| 408 | * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, |
| 409 | * once they are processed, there is no need to do it again, so they are |
| 410 | * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces |
| 411 | * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But |
| 412 | * in any case, once those are processed, no need to do it again, as the |
| 413 | * result won't change. |
| 414 | * |
| 415 | * Returns: |
| 416 | * - 1, if type is part of strong link (so there is strong topological |
| 417 | * ordering requirements); |
| 418 | * - 0, if type is part of weak link (so can be satisfied through forward |
| 419 | * declaration); |
| 420 | * - <0, on error (e.g., unsatisfiable type loop detected). |
| 421 | */ |
| 422 | static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) |
| 423 | { |
| 424 | /* |
| 425 | * Order state is used to detect strong link cycles, but only for BTF |
| 426 | * kinds that are or could be an independent definition (i.e., |
| 427 | * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, |
| 428 | * func_protos, modifiers are just means to get to these definitions. |
| 429 | * Int/void don't need definitions, they are assumed to be always |
| 430 | * properly defined. We also ignore datasec, var, and funcs for now. |
| 431 | * So for all non-defining kinds, we never even set ordering state, |
| 432 | * for defining kinds we set ORDERING and subsequently ORDERED if it |
| 433 | * forms a strong link. |
| 434 | */ |
| 435 | struct btf_dump_type_aux_state *tstate = &d->type_states[id]; |
| 436 | const struct btf_type *t; |
| 437 | __u16 vlen; |
| 438 | int err, i; |
| 439 | |
| 440 | /* return true, letting typedefs know that it's ok to be emitted */ |
| 441 | if (tstate->order_state == ORDERED) |
| 442 | return 1; |
| 443 | |
| 444 | t = btf__type_by_id(d->btf, id); |
| 445 | |
| 446 | if (tstate->order_state == ORDERING) { |
| 447 | /* type loop, but resolvable through fwd declaration */ |
| 448 | if (btf_is_composite(t) && through_ptr && t->name_off != 0) |
| 449 | return 0; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 450 | pr_warn("unsatisfiable type cycle, id:[%u]\n", id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 451 | return -ELOOP; |
| 452 | } |
| 453 | |
| 454 | switch (btf_kind(t)) { |
| 455 | case BTF_KIND_INT: |
| 456 | tstate->order_state = ORDERED; |
| 457 | return 0; |
| 458 | |
| 459 | case BTF_KIND_PTR: |
| 460 | err = btf_dump_order_type(d, t->type, true); |
| 461 | tstate->order_state = ORDERED; |
| 462 | return err; |
| 463 | |
| 464 | case BTF_KIND_ARRAY: |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 465 | return btf_dump_order_type(d, btf_array(t)->type, false); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 466 | |
| 467 | case BTF_KIND_STRUCT: |
| 468 | case BTF_KIND_UNION: { |
| 469 | const struct btf_member *m = btf_members(t); |
| 470 | /* |
| 471 | * struct/union is part of strong link, only if it's embedded |
| 472 | * (so no ptr in a path) or it's anonymous (so has to be |
| 473 | * defined inline, even if declared through ptr) |
| 474 | */ |
| 475 | if (through_ptr && t->name_off != 0) |
| 476 | return 0; |
| 477 | |
| 478 | tstate->order_state = ORDERING; |
| 479 | |
| 480 | vlen = btf_vlen(t); |
| 481 | for (i = 0; i < vlen; i++, m++) { |
| 482 | err = btf_dump_order_type(d, m->type, false); |
| 483 | if (err < 0) |
| 484 | return err; |
| 485 | } |
| 486 | |
| 487 | if (t->name_off != 0) { |
| 488 | err = btf_dump_add_emit_queue_id(d, id); |
| 489 | if (err < 0) |
| 490 | return err; |
| 491 | } |
| 492 | |
| 493 | tstate->order_state = ORDERED; |
| 494 | return 1; |
| 495 | } |
| 496 | case BTF_KIND_ENUM: |
| 497 | case BTF_KIND_FWD: |
| 498 | /* |
| 499 | * non-anonymous or non-referenced enums are top-level |
| 500 | * declarations and should be emitted. Same logic can be |
| 501 | * applied to FWDs, it won't hurt anyways. |
| 502 | */ |
| 503 | if (t->name_off != 0 || !tstate->referenced) { |
| 504 | err = btf_dump_add_emit_queue_id(d, id); |
| 505 | if (err) |
| 506 | return err; |
| 507 | } |
| 508 | tstate->order_state = ORDERED; |
| 509 | return 1; |
| 510 | |
| 511 | case BTF_KIND_TYPEDEF: { |
| 512 | int is_strong; |
| 513 | |
| 514 | is_strong = btf_dump_order_type(d, t->type, through_ptr); |
| 515 | if (is_strong < 0) |
| 516 | return is_strong; |
| 517 | |
| 518 | /* typedef is similar to struct/union w.r.t. fwd-decls */ |
| 519 | if (through_ptr && !is_strong) |
| 520 | return 0; |
| 521 | |
| 522 | /* typedef is always a named definition */ |
| 523 | err = btf_dump_add_emit_queue_id(d, id); |
| 524 | if (err) |
| 525 | return err; |
| 526 | |
| 527 | d->type_states[id].order_state = ORDERED; |
| 528 | return 1; |
| 529 | } |
| 530 | case BTF_KIND_VOLATILE: |
| 531 | case BTF_KIND_CONST: |
| 532 | case BTF_KIND_RESTRICT: |
| 533 | return btf_dump_order_type(d, t->type, through_ptr); |
| 534 | |
| 535 | case BTF_KIND_FUNC_PROTO: { |
| 536 | const struct btf_param *p = btf_params(t); |
| 537 | bool is_strong; |
| 538 | |
| 539 | err = btf_dump_order_type(d, t->type, through_ptr); |
| 540 | if (err < 0) |
| 541 | return err; |
| 542 | is_strong = err > 0; |
| 543 | |
| 544 | vlen = btf_vlen(t); |
| 545 | for (i = 0; i < vlen; i++, p++) { |
| 546 | err = btf_dump_order_type(d, p->type, through_ptr); |
| 547 | if (err < 0) |
| 548 | return err; |
| 549 | if (err > 0) |
| 550 | is_strong = true; |
| 551 | } |
| 552 | return is_strong; |
| 553 | } |
| 554 | case BTF_KIND_FUNC: |
| 555 | case BTF_KIND_VAR: |
| 556 | case BTF_KIND_DATASEC: |
| 557 | d->type_states[id].order_state = ORDERED; |
| 558 | return 0; |
| 559 | |
| 560 | default: |
| 561 | return -EINVAL; |
| 562 | } |
| 563 | } |
| 564 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 565 | static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, |
| 566 | const struct btf_type *t); |
| 567 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 568 | static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, |
| 569 | const struct btf_type *t); |
| 570 | static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, |
| 571 | const struct btf_type *t, int lvl); |
| 572 | |
| 573 | static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, |
| 574 | const struct btf_type *t); |
| 575 | static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, |
| 576 | const struct btf_type *t, int lvl); |
| 577 | |
| 578 | static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, |
| 579 | const struct btf_type *t); |
| 580 | |
| 581 | static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, |
| 582 | const struct btf_type *t, int lvl); |
| 583 | |
| 584 | /* a local view into a shared stack */ |
| 585 | struct id_stack { |
| 586 | const __u32 *ids; |
| 587 | int cnt; |
| 588 | }; |
| 589 | |
| 590 | static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, |
| 591 | const char *fname, int lvl); |
| 592 | static void btf_dump_emit_type_chain(struct btf_dump *d, |
| 593 | struct id_stack *decl_stack, |
| 594 | const char *fname, int lvl); |
| 595 | |
| 596 | static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); |
| 597 | static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); |
| 598 | static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, |
| 599 | const char *orig_name); |
| 600 | |
| 601 | static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) |
| 602 | { |
| 603 | const struct btf_type *t = btf__type_by_id(d->btf, id); |
| 604 | |
| 605 | /* __builtin_va_list is a compiler built-in, which causes compilation |
| 606 | * errors, when compiling w/ different compiler, then used to compile |
| 607 | * original code (e.g., GCC to compile kernel, Clang to use generated |
| 608 | * C header from BTF). As it is built-in, it should be already defined |
| 609 | * properly internally in compiler. |
| 610 | */ |
| 611 | if (t->name_off == 0) |
| 612 | return false; |
| 613 | return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; |
| 614 | } |
| 615 | |
| 616 | /* |
| 617 | * Emit C-syntax definitions of types from chains of BTF types. |
| 618 | * |
| 619 | * High-level handling of determining necessary forward declarations are handled |
| 620 | * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type |
| 621 | * declarations/definitions in C syntax are handled by a combo of |
| 622 | * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to |
| 623 | * corresponding btf_dump_emit_*_{def,fwd}() functions. |
| 624 | * |
| 625 | * We also keep track of "containing struct/union type ID" to determine when |
| 626 | * we reference it from inside and thus can avoid emitting unnecessary forward |
| 627 | * declaration. |
| 628 | * |
| 629 | * This algorithm is designed in such a way, that even if some error occurs |
| 630 | * (either technical, e.g., out of memory, or logical, i.e., malformed BTF |
| 631 | * that doesn't comply to C rules completely), algorithm will try to proceed |
| 632 | * and produce as much meaningful output as possible. |
| 633 | */ |
| 634 | static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) |
| 635 | { |
| 636 | struct btf_dump_type_aux_state *tstate = &d->type_states[id]; |
| 637 | bool top_level_def = cont_id == 0; |
| 638 | const struct btf_type *t; |
| 639 | __u16 kind; |
| 640 | |
| 641 | if (tstate->emit_state == EMITTED) |
| 642 | return; |
| 643 | |
| 644 | t = btf__type_by_id(d->btf, id); |
| 645 | kind = btf_kind(t); |
| 646 | |
| 647 | if (tstate->emit_state == EMITTING) { |
| 648 | if (tstate->fwd_emitted) |
| 649 | return; |
| 650 | |
| 651 | switch (kind) { |
| 652 | case BTF_KIND_STRUCT: |
| 653 | case BTF_KIND_UNION: |
| 654 | /* |
| 655 | * if we are referencing a struct/union that we are |
| 656 | * part of - then no need for fwd declaration |
| 657 | */ |
| 658 | if (id == cont_id) |
| 659 | return; |
| 660 | if (t->name_off == 0) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 661 | pr_warn("anonymous struct/union loop, id:[%u]\n", |
| 662 | id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 663 | return; |
| 664 | } |
| 665 | btf_dump_emit_struct_fwd(d, id, t); |
| 666 | btf_dump_printf(d, ";\n\n"); |
| 667 | tstate->fwd_emitted = 1; |
| 668 | break; |
| 669 | case BTF_KIND_TYPEDEF: |
| 670 | /* |
| 671 | * for typedef fwd_emitted means typedef definition |
| 672 | * was emitted, but it can be used only for "weak" |
| 673 | * references through pointer only, not for embedding |
| 674 | */ |
| 675 | if (!btf_dump_is_blacklisted(d, id)) { |
| 676 | btf_dump_emit_typedef_def(d, id, t, 0); |
| 677 | btf_dump_printf(d, ";\n\n"); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 678 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 679 | tstate->fwd_emitted = 1; |
| 680 | break; |
| 681 | default: |
| 682 | break; |
| 683 | } |
| 684 | |
| 685 | return; |
| 686 | } |
| 687 | |
| 688 | switch (kind) { |
| 689 | case BTF_KIND_INT: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 690 | /* Emit type alias definitions if necessary */ |
| 691 | btf_dump_emit_missing_aliases(d, id, t); |
| 692 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 693 | tstate->emit_state = EMITTED; |
| 694 | break; |
| 695 | case BTF_KIND_ENUM: |
| 696 | if (top_level_def) { |
| 697 | btf_dump_emit_enum_def(d, id, t, 0); |
| 698 | btf_dump_printf(d, ";\n\n"); |
| 699 | } |
| 700 | tstate->emit_state = EMITTED; |
| 701 | break; |
| 702 | case BTF_KIND_PTR: |
| 703 | case BTF_KIND_VOLATILE: |
| 704 | case BTF_KIND_CONST: |
| 705 | case BTF_KIND_RESTRICT: |
| 706 | btf_dump_emit_type(d, t->type, cont_id); |
| 707 | break; |
| 708 | case BTF_KIND_ARRAY: |
| 709 | btf_dump_emit_type(d, btf_array(t)->type, cont_id); |
| 710 | break; |
| 711 | case BTF_KIND_FWD: |
| 712 | btf_dump_emit_fwd_def(d, id, t); |
| 713 | btf_dump_printf(d, ";\n\n"); |
| 714 | tstate->emit_state = EMITTED; |
| 715 | break; |
| 716 | case BTF_KIND_TYPEDEF: |
| 717 | tstate->emit_state = EMITTING; |
| 718 | btf_dump_emit_type(d, t->type, id); |
| 719 | /* |
| 720 | * typedef can server as both definition and forward |
| 721 | * declaration; at this stage someone depends on |
| 722 | * typedef as a forward declaration (refers to it |
| 723 | * through pointer), so unless we already did it, |
| 724 | * emit typedef as a forward declaration |
| 725 | */ |
| 726 | if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { |
| 727 | btf_dump_emit_typedef_def(d, id, t, 0); |
| 728 | btf_dump_printf(d, ";\n\n"); |
| 729 | } |
| 730 | tstate->emit_state = EMITTED; |
| 731 | break; |
| 732 | case BTF_KIND_STRUCT: |
| 733 | case BTF_KIND_UNION: |
| 734 | tstate->emit_state = EMITTING; |
| 735 | /* if it's a top-level struct/union definition or struct/union |
| 736 | * is anonymous, then in C we'll be emitting all fields and |
| 737 | * their types (as opposed to just `struct X`), so we need to |
| 738 | * make sure that all types, referenced from struct/union |
| 739 | * members have necessary forward-declarations, where |
| 740 | * applicable |
| 741 | */ |
| 742 | if (top_level_def || t->name_off == 0) { |
| 743 | const struct btf_member *m = btf_members(t); |
| 744 | __u16 vlen = btf_vlen(t); |
| 745 | int i, new_cont_id; |
| 746 | |
| 747 | new_cont_id = t->name_off == 0 ? cont_id : id; |
| 748 | for (i = 0; i < vlen; i++, m++) |
| 749 | btf_dump_emit_type(d, m->type, new_cont_id); |
| 750 | } else if (!tstate->fwd_emitted && id != cont_id) { |
| 751 | btf_dump_emit_struct_fwd(d, id, t); |
| 752 | btf_dump_printf(d, ";\n\n"); |
| 753 | tstate->fwd_emitted = 1; |
| 754 | } |
| 755 | |
| 756 | if (top_level_def) { |
| 757 | btf_dump_emit_struct_def(d, id, t, 0); |
| 758 | btf_dump_printf(d, ";\n\n"); |
| 759 | tstate->emit_state = EMITTED; |
| 760 | } else { |
| 761 | tstate->emit_state = NOT_EMITTED; |
| 762 | } |
| 763 | break; |
| 764 | case BTF_KIND_FUNC_PROTO: { |
| 765 | const struct btf_param *p = btf_params(t); |
| 766 | __u16 vlen = btf_vlen(t); |
| 767 | int i; |
| 768 | |
| 769 | btf_dump_emit_type(d, t->type, cont_id); |
| 770 | for (i = 0; i < vlen; i++, p++) |
| 771 | btf_dump_emit_type(d, p->type, cont_id); |
| 772 | |
| 773 | break; |
| 774 | } |
| 775 | default: |
| 776 | break; |
| 777 | } |
| 778 | } |
| 779 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 780 | static bool btf_is_struct_packed(const struct btf *btf, __u32 id, |
| 781 | const struct btf_type *t) |
| 782 | { |
| 783 | const struct btf_member *m; |
| 784 | int align, i, bit_sz; |
| 785 | __u16 vlen; |
| 786 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 787 | align = btf__align_of(btf, id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 788 | /* size of a non-packed struct has to be a multiple of its alignment*/ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 789 | if (align && t->size % align) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 790 | return true; |
| 791 | |
| 792 | m = btf_members(t); |
| 793 | vlen = btf_vlen(t); |
| 794 | /* all non-bitfield fields have to be naturally aligned */ |
| 795 | for (i = 0; i < vlen; i++, m++) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 796 | align = btf__align_of(btf, m->type); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 797 | bit_sz = btf_member_bitfield_size(t, i); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 798 | if (align && bit_sz == 0 && m->offset % (8 * align) != 0) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 799 | return true; |
| 800 | } |
| 801 | |
| 802 | /* |
| 803 | * if original struct was marked as packed, but its layout is |
| 804 | * naturally aligned, we'll detect that it's not packed |
| 805 | */ |
| 806 | return false; |
| 807 | } |
| 808 | |
| 809 | static int chip_away_bits(int total, int at_most) |
| 810 | { |
| 811 | return total % at_most ? : at_most; |
| 812 | } |
| 813 | |
| 814 | static void btf_dump_emit_bit_padding(const struct btf_dump *d, |
| 815 | int cur_off, int m_off, int m_bit_sz, |
| 816 | int align, int lvl) |
| 817 | { |
| 818 | int off_diff = m_off - cur_off; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 819 | int ptr_bits = d->ptr_sz * 8; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 820 | |
| 821 | if (off_diff <= 0) |
| 822 | /* no gap */ |
| 823 | return; |
| 824 | if (m_bit_sz == 0 && off_diff < align * 8) |
| 825 | /* natural padding will take care of a gap */ |
| 826 | return; |
| 827 | |
| 828 | while (off_diff > 0) { |
| 829 | const char *pad_type; |
| 830 | int pad_bits; |
| 831 | |
| 832 | if (ptr_bits > 32 && off_diff > 32) { |
| 833 | pad_type = "long"; |
| 834 | pad_bits = chip_away_bits(off_diff, ptr_bits); |
| 835 | } else if (off_diff > 16) { |
| 836 | pad_type = "int"; |
| 837 | pad_bits = chip_away_bits(off_diff, 32); |
| 838 | } else if (off_diff > 8) { |
| 839 | pad_type = "short"; |
| 840 | pad_bits = chip_away_bits(off_diff, 16); |
| 841 | } else { |
| 842 | pad_type = "char"; |
| 843 | pad_bits = chip_away_bits(off_diff, 8); |
| 844 | } |
| 845 | btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); |
| 846 | off_diff -= pad_bits; |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, |
| 851 | const struct btf_type *t) |
| 852 | { |
| 853 | btf_dump_printf(d, "%s %s", |
| 854 | btf_is_struct(t) ? "struct" : "union", |
| 855 | btf_dump_type_name(d, id)); |
| 856 | } |
| 857 | |
| 858 | static void btf_dump_emit_struct_def(struct btf_dump *d, |
| 859 | __u32 id, |
| 860 | const struct btf_type *t, |
| 861 | int lvl) |
| 862 | { |
| 863 | const struct btf_member *m = btf_members(t); |
| 864 | bool is_struct = btf_is_struct(t); |
| 865 | int align, i, packed, off = 0; |
| 866 | __u16 vlen = btf_vlen(t); |
| 867 | |
| 868 | packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 869 | |
| 870 | btf_dump_printf(d, "%s%s%s {", |
| 871 | is_struct ? "struct" : "union", |
| 872 | t->name_off ? " " : "", |
| 873 | btf_dump_type_name(d, id)); |
| 874 | |
| 875 | for (i = 0; i < vlen; i++, m++) { |
| 876 | const char *fname; |
| 877 | int m_off, m_sz; |
| 878 | |
| 879 | fname = btf_name_of(d, m->name_off); |
| 880 | m_sz = btf_member_bitfield_size(t, i); |
| 881 | m_off = btf_member_bit_offset(t, i); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 882 | align = packed ? 1 : btf__align_of(d->btf, m->type); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 883 | |
| 884 | btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); |
| 885 | btf_dump_printf(d, "\n%s", pfx(lvl + 1)); |
| 886 | btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); |
| 887 | |
| 888 | if (m_sz) { |
| 889 | btf_dump_printf(d, ": %d", m_sz); |
| 890 | off = m_off + m_sz; |
| 891 | } else { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 892 | m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 893 | off = m_off + m_sz * 8; |
| 894 | } |
| 895 | btf_dump_printf(d, ";"); |
| 896 | } |
| 897 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 898 | /* pad at the end, if necessary */ |
| 899 | if (is_struct) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 900 | align = packed ? 1 : btf__align_of(d->btf, id); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 901 | btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align, |
| 902 | lvl + 1); |
| 903 | } |
| 904 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 905 | if (vlen) |
| 906 | btf_dump_printf(d, "\n"); |
| 907 | btf_dump_printf(d, "%s}", pfx(lvl)); |
| 908 | if (packed) |
| 909 | btf_dump_printf(d, " __attribute__((packed))"); |
| 910 | } |
| 911 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 912 | static const char *missing_base_types[][2] = { |
| 913 | /* |
| 914 | * GCC emits typedefs to its internal __PolyX_t types when compiling Arm |
| 915 | * SIMD intrinsics. Alias them to standard base types. |
| 916 | */ |
| 917 | { "__Poly8_t", "unsigned char" }, |
| 918 | { "__Poly16_t", "unsigned short" }, |
| 919 | { "__Poly64_t", "unsigned long long" }, |
| 920 | { "__Poly128_t", "unsigned __int128" }, |
| 921 | }; |
| 922 | |
| 923 | static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, |
| 924 | const struct btf_type *t) |
| 925 | { |
| 926 | const char *name = btf_dump_type_name(d, id); |
| 927 | int i; |
| 928 | |
| 929 | for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { |
| 930 | if (strcmp(name, missing_base_types[i][0]) == 0) { |
| 931 | btf_dump_printf(d, "typedef %s %s;\n\n", |
| 932 | missing_base_types[i][1], name); |
| 933 | break; |
| 934 | } |
| 935 | } |
| 936 | } |
| 937 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 938 | static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, |
| 939 | const struct btf_type *t) |
| 940 | { |
| 941 | btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); |
| 942 | } |
| 943 | |
| 944 | static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, |
| 945 | const struct btf_type *t, |
| 946 | int lvl) |
| 947 | { |
| 948 | const struct btf_enum *v = btf_enum(t); |
| 949 | __u16 vlen = btf_vlen(t); |
| 950 | const char *name; |
| 951 | size_t dup_cnt; |
| 952 | int i; |
| 953 | |
| 954 | btf_dump_printf(d, "enum%s%s", |
| 955 | t->name_off ? " " : "", |
| 956 | btf_dump_type_name(d, id)); |
| 957 | |
| 958 | if (vlen) { |
| 959 | btf_dump_printf(d, " {"); |
| 960 | for (i = 0; i < vlen; i++, v++) { |
| 961 | name = btf_name_of(d, v->name_off); |
| 962 | /* enumerators share namespace with typedef idents */ |
| 963 | dup_cnt = btf_dump_name_dups(d, d->ident_names, name); |
| 964 | if (dup_cnt > 1) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 965 | btf_dump_printf(d, "\n%s%s___%zu = %u,", |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 966 | pfx(lvl + 1), name, dup_cnt, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 967 | (__u32)v->val); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 968 | } else { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 969 | btf_dump_printf(d, "\n%s%s = %u,", |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 970 | pfx(lvl + 1), name, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 971 | (__u32)v->val); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 972 | } |
| 973 | } |
| 974 | btf_dump_printf(d, "\n%s}", pfx(lvl)); |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, |
| 979 | const struct btf_type *t) |
| 980 | { |
| 981 | const char *name = btf_dump_type_name(d, id); |
| 982 | |
| 983 | if (btf_kflag(t)) |
| 984 | btf_dump_printf(d, "union %s", name); |
| 985 | else |
| 986 | btf_dump_printf(d, "struct %s", name); |
| 987 | } |
| 988 | |
| 989 | static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, |
| 990 | const struct btf_type *t, int lvl) |
| 991 | { |
| 992 | const char *name = btf_dump_ident_name(d, id); |
| 993 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 994 | /* |
| 995 | * Old GCC versions are emitting invalid typedef for __gnuc_va_list |
| 996 | * pointing to VOID. This generates warnings from btf_dump() and |
| 997 | * results in uncompilable header file, so we are fixing it up here |
| 998 | * with valid typedef into __builtin_va_list. |
| 999 | */ |
| 1000 | if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { |
| 1001 | btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); |
| 1002 | return; |
| 1003 | } |
| 1004 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1005 | btf_dump_printf(d, "typedef "); |
| 1006 | btf_dump_emit_type_decl(d, t->type, name, lvl); |
| 1007 | } |
| 1008 | |
| 1009 | static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) |
| 1010 | { |
| 1011 | __u32 *new_stack; |
| 1012 | size_t new_cap; |
| 1013 | |
| 1014 | if (d->decl_stack_cnt >= d->decl_stack_cap) { |
| 1015 | new_cap = max(16, d->decl_stack_cap * 3 / 2); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1016 | new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1017 | if (!new_stack) |
| 1018 | return -ENOMEM; |
| 1019 | d->decl_stack = new_stack; |
| 1020 | d->decl_stack_cap = new_cap; |
| 1021 | } |
| 1022 | |
| 1023 | d->decl_stack[d->decl_stack_cnt++] = id; |
| 1024 | |
| 1025 | return 0; |
| 1026 | } |
| 1027 | |
| 1028 | /* |
| 1029 | * Emit type declaration (e.g., field type declaration in a struct or argument |
| 1030 | * declaration in function prototype) in correct C syntax. |
| 1031 | * |
| 1032 | * For most types it's trivial, but there are few quirky type declaration |
| 1033 | * cases worth mentioning: |
| 1034 | * - function prototypes (especially nesting of function prototypes); |
| 1035 | * - arrays; |
| 1036 | * - const/volatile/restrict for pointers vs other types. |
| 1037 | * |
| 1038 | * For a good discussion of *PARSING* C syntax (as a human), see |
| 1039 | * Peter van der Linden's "Expert C Programming: Deep C Secrets", |
| 1040 | * Ch.3 "Unscrambling Declarations in C". |
| 1041 | * |
| 1042 | * It won't help with BTF to C conversion much, though, as it's an opposite |
| 1043 | * problem. So we came up with this algorithm in reverse to van der Linden's |
| 1044 | * parsing algorithm. It goes from structured BTF representation of type |
| 1045 | * declaration to a valid compilable C syntax. |
| 1046 | * |
| 1047 | * For instance, consider this C typedef: |
| 1048 | * typedef const int * const * arr[10] arr_t; |
| 1049 | * It will be represented in BTF with this chain of BTF types: |
| 1050 | * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] |
| 1051 | * |
| 1052 | * Notice how [const] modifier always goes before type it modifies in BTF type |
| 1053 | * graph, but in C syntax, const/volatile/restrict modifiers are written to |
| 1054 | * the right of pointers, but to the left of other types. There are also other |
| 1055 | * quirks, like function pointers, arrays of them, functions returning other |
| 1056 | * functions, etc. |
| 1057 | * |
| 1058 | * We handle that by pushing all the types to a stack, until we hit "terminal" |
| 1059 | * type (int/enum/struct/union/fwd). Then depending on the kind of a type on |
| 1060 | * top of a stack, modifiers are handled differently. Array/function pointers |
| 1061 | * have also wildly different syntax and how nesting of them are done. See |
| 1062 | * code for authoritative definition. |
| 1063 | * |
| 1064 | * To avoid allocating new stack for each independent chain of BTF types, we |
| 1065 | * share one bigger stack, with each chain working only on its own local view |
| 1066 | * of a stack frame. Some care is required to "pop" stack frames after |
| 1067 | * processing type declaration chain. |
| 1068 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1069 | int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, |
| 1070 | const struct btf_dump_emit_type_decl_opts *opts) |
| 1071 | { |
| 1072 | const char *fname; |
| 1073 | int lvl, err; |
| 1074 | |
| 1075 | if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) |
| 1076 | return -EINVAL; |
| 1077 | |
| 1078 | err = btf_dump_resize(d); |
| 1079 | if (err) |
| 1080 | return -EINVAL; |
| 1081 | |
| 1082 | fname = OPTS_GET(opts, field_name, ""); |
| 1083 | lvl = OPTS_GET(opts, indent_level, 0); |
| 1084 | d->strip_mods = OPTS_GET(opts, strip_mods, false); |
| 1085 | btf_dump_emit_type_decl(d, id, fname, lvl); |
| 1086 | d->strip_mods = false; |
| 1087 | return 0; |
| 1088 | } |
| 1089 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1090 | static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, |
| 1091 | const char *fname, int lvl) |
| 1092 | { |
| 1093 | struct id_stack decl_stack; |
| 1094 | const struct btf_type *t; |
| 1095 | int err, stack_start; |
| 1096 | |
| 1097 | stack_start = d->decl_stack_cnt; |
| 1098 | for (;;) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1099 | t = btf__type_by_id(d->btf, id); |
| 1100 | if (d->strip_mods && btf_is_mod(t)) |
| 1101 | goto skip_mod; |
| 1102 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1103 | err = btf_dump_push_decl_stack_id(d, id); |
| 1104 | if (err < 0) { |
| 1105 | /* |
| 1106 | * if we don't have enough memory for entire type decl |
| 1107 | * chain, restore stack, emit warning, and try to |
| 1108 | * proceed nevertheless |
| 1109 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1110 | pr_warn("not enough memory for decl stack:%d", err); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1111 | d->decl_stack_cnt = stack_start; |
| 1112 | return; |
| 1113 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1114 | skip_mod: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1115 | /* VOID */ |
| 1116 | if (id == 0) |
| 1117 | break; |
| 1118 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1119 | switch (btf_kind(t)) { |
| 1120 | case BTF_KIND_PTR: |
| 1121 | case BTF_KIND_VOLATILE: |
| 1122 | case BTF_KIND_CONST: |
| 1123 | case BTF_KIND_RESTRICT: |
| 1124 | case BTF_KIND_FUNC_PROTO: |
| 1125 | id = t->type; |
| 1126 | break; |
| 1127 | case BTF_KIND_ARRAY: |
| 1128 | id = btf_array(t)->type; |
| 1129 | break; |
| 1130 | case BTF_KIND_INT: |
| 1131 | case BTF_KIND_ENUM: |
| 1132 | case BTF_KIND_FWD: |
| 1133 | case BTF_KIND_STRUCT: |
| 1134 | case BTF_KIND_UNION: |
| 1135 | case BTF_KIND_TYPEDEF: |
| 1136 | goto done; |
| 1137 | default: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1138 | pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", |
| 1139 | btf_kind(t), id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1140 | goto done; |
| 1141 | } |
| 1142 | } |
| 1143 | done: |
| 1144 | /* |
| 1145 | * We might be inside a chain of declarations (e.g., array of function |
| 1146 | * pointers returning anonymous (so inlined) structs, having another |
| 1147 | * array field). Each of those needs its own "stack frame" to handle |
| 1148 | * emitting of declarations. Those stack frames are non-overlapping |
| 1149 | * portions of shared btf_dump->decl_stack. To make it a bit nicer to |
| 1150 | * handle this set of nested stacks, we create a view corresponding to |
| 1151 | * our own "stack frame" and work with it as an independent stack. |
| 1152 | * We'll need to clean up after emit_type_chain() returns, though. |
| 1153 | */ |
| 1154 | decl_stack.ids = d->decl_stack + stack_start; |
| 1155 | decl_stack.cnt = d->decl_stack_cnt - stack_start; |
| 1156 | btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); |
| 1157 | /* |
| 1158 | * emit_type_chain() guarantees that it will pop its entire decl_stack |
| 1159 | * frame before returning. But it works with a read-only view into |
| 1160 | * decl_stack, so it doesn't actually pop anything from the |
| 1161 | * perspective of shared btf_dump->decl_stack, per se. We need to |
| 1162 | * reset decl_stack state to how it was before us to avoid it growing |
| 1163 | * all the time. |
| 1164 | */ |
| 1165 | d->decl_stack_cnt = stack_start; |
| 1166 | } |
| 1167 | |
| 1168 | static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) |
| 1169 | { |
| 1170 | const struct btf_type *t; |
| 1171 | __u32 id; |
| 1172 | |
| 1173 | while (decl_stack->cnt) { |
| 1174 | id = decl_stack->ids[decl_stack->cnt - 1]; |
| 1175 | t = btf__type_by_id(d->btf, id); |
| 1176 | |
| 1177 | switch (btf_kind(t)) { |
| 1178 | case BTF_KIND_VOLATILE: |
| 1179 | btf_dump_printf(d, "volatile "); |
| 1180 | break; |
| 1181 | case BTF_KIND_CONST: |
| 1182 | btf_dump_printf(d, "const "); |
| 1183 | break; |
| 1184 | case BTF_KIND_RESTRICT: |
| 1185 | btf_dump_printf(d, "restrict "); |
| 1186 | break; |
| 1187 | default: |
| 1188 | return; |
| 1189 | } |
| 1190 | decl_stack->cnt--; |
| 1191 | } |
| 1192 | } |
| 1193 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1194 | static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) |
| 1195 | { |
| 1196 | const struct btf_type *t; |
| 1197 | __u32 id; |
| 1198 | |
| 1199 | while (decl_stack->cnt) { |
| 1200 | id = decl_stack->ids[decl_stack->cnt - 1]; |
| 1201 | t = btf__type_by_id(d->btf, id); |
| 1202 | if (!btf_is_mod(t)) |
| 1203 | return; |
| 1204 | decl_stack->cnt--; |
| 1205 | } |
| 1206 | } |
| 1207 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1208 | static void btf_dump_emit_name(const struct btf_dump *d, |
| 1209 | const char *name, bool last_was_ptr) |
| 1210 | { |
| 1211 | bool separate = name[0] && !last_was_ptr; |
| 1212 | |
| 1213 | btf_dump_printf(d, "%s%s", separate ? " " : "", name); |
| 1214 | } |
| 1215 | |
| 1216 | static void btf_dump_emit_type_chain(struct btf_dump *d, |
| 1217 | struct id_stack *decls, |
| 1218 | const char *fname, int lvl) |
| 1219 | { |
| 1220 | /* |
| 1221 | * last_was_ptr is used to determine if we need to separate pointer |
| 1222 | * asterisk (*) from previous part of type signature with space, so |
| 1223 | * that we get `int ***`, instead of `int * * *`. We default to true |
| 1224 | * for cases where we have single pointer in a chain. E.g., in ptr -> |
| 1225 | * func_proto case. func_proto will start a new emit_type_chain call |
| 1226 | * with just ptr, which should be emitted as (*) or (*<fname>), so we |
| 1227 | * don't want to prepend space for that last pointer. |
| 1228 | */ |
| 1229 | bool last_was_ptr = true; |
| 1230 | const struct btf_type *t; |
| 1231 | const char *name; |
| 1232 | __u16 kind; |
| 1233 | __u32 id; |
| 1234 | |
| 1235 | while (decls->cnt) { |
| 1236 | id = decls->ids[--decls->cnt]; |
| 1237 | if (id == 0) { |
| 1238 | /* VOID is a special snowflake */ |
| 1239 | btf_dump_emit_mods(d, decls); |
| 1240 | btf_dump_printf(d, "void"); |
| 1241 | last_was_ptr = false; |
| 1242 | continue; |
| 1243 | } |
| 1244 | |
| 1245 | t = btf__type_by_id(d->btf, id); |
| 1246 | kind = btf_kind(t); |
| 1247 | |
| 1248 | switch (kind) { |
| 1249 | case BTF_KIND_INT: |
| 1250 | btf_dump_emit_mods(d, decls); |
| 1251 | name = btf_name_of(d, t->name_off); |
| 1252 | btf_dump_printf(d, "%s", name); |
| 1253 | break; |
| 1254 | case BTF_KIND_STRUCT: |
| 1255 | case BTF_KIND_UNION: |
| 1256 | btf_dump_emit_mods(d, decls); |
| 1257 | /* inline anonymous struct/union */ |
| 1258 | if (t->name_off == 0) |
| 1259 | btf_dump_emit_struct_def(d, id, t, lvl); |
| 1260 | else |
| 1261 | btf_dump_emit_struct_fwd(d, id, t); |
| 1262 | break; |
| 1263 | case BTF_KIND_ENUM: |
| 1264 | btf_dump_emit_mods(d, decls); |
| 1265 | /* inline anonymous enum */ |
| 1266 | if (t->name_off == 0) |
| 1267 | btf_dump_emit_enum_def(d, id, t, lvl); |
| 1268 | else |
| 1269 | btf_dump_emit_enum_fwd(d, id, t); |
| 1270 | break; |
| 1271 | case BTF_KIND_FWD: |
| 1272 | btf_dump_emit_mods(d, decls); |
| 1273 | btf_dump_emit_fwd_def(d, id, t); |
| 1274 | break; |
| 1275 | case BTF_KIND_TYPEDEF: |
| 1276 | btf_dump_emit_mods(d, decls); |
| 1277 | btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); |
| 1278 | break; |
| 1279 | case BTF_KIND_PTR: |
| 1280 | btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); |
| 1281 | break; |
| 1282 | case BTF_KIND_VOLATILE: |
| 1283 | btf_dump_printf(d, " volatile"); |
| 1284 | break; |
| 1285 | case BTF_KIND_CONST: |
| 1286 | btf_dump_printf(d, " const"); |
| 1287 | break; |
| 1288 | case BTF_KIND_RESTRICT: |
| 1289 | btf_dump_printf(d, " restrict"); |
| 1290 | break; |
| 1291 | case BTF_KIND_ARRAY: { |
| 1292 | const struct btf_array *a = btf_array(t); |
| 1293 | const struct btf_type *next_t; |
| 1294 | __u32 next_id; |
| 1295 | bool multidim; |
| 1296 | /* |
| 1297 | * GCC has a bug |
| 1298 | * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) |
| 1299 | * which causes it to emit extra const/volatile |
| 1300 | * modifiers for an array, if array's element type has |
| 1301 | * const/volatile modifiers. Clang doesn't do that. |
| 1302 | * In general, it doesn't seem very meaningful to have |
| 1303 | * a const/volatile modifier for array, so we are |
| 1304 | * going to silently skip them here. |
| 1305 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1306 | btf_dump_drop_mods(d, decls); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1307 | |
| 1308 | if (decls->cnt == 0) { |
| 1309 | btf_dump_emit_name(d, fname, last_was_ptr); |
| 1310 | btf_dump_printf(d, "[%u]", a->nelems); |
| 1311 | return; |
| 1312 | } |
| 1313 | |
| 1314 | next_id = decls->ids[decls->cnt - 1]; |
| 1315 | next_t = btf__type_by_id(d->btf, next_id); |
| 1316 | multidim = btf_is_array(next_t); |
| 1317 | /* we need space if we have named non-pointer */ |
| 1318 | if (fname[0] && !last_was_ptr) |
| 1319 | btf_dump_printf(d, " "); |
| 1320 | /* no parentheses for multi-dimensional array */ |
| 1321 | if (!multidim) |
| 1322 | btf_dump_printf(d, "("); |
| 1323 | btf_dump_emit_type_chain(d, decls, fname, lvl); |
| 1324 | if (!multidim) |
| 1325 | btf_dump_printf(d, ")"); |
| 1326 | btf_dump_printf(d, "[%u]", a->nelems); |
| 1327 | return; |
| 1328 | } |
| 1329 | case BTF_KIND_FUNC_PROTO: { |
| 1330 | const struct btf_param *p = btf_params(t); |
| 1331 | __u16 vlen = btf_vlen(t); |
| 1332 | int i; |
| 1333 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1334 | /* |
| 1335 | * GCC emits extra volatile qualifier for |
| 1336 | * __attribute__((noreturn)) function pointers. Clang |
| 1337 | * doesn't do it. It's a GCC quirk for backwards |
| 1338 | * compatibility with code written for GCC <2.5. So, |
| 1339 | * similarly to extra qualifiers for array, just drop |
| 1340 | * them, instead of handling them. |
| 1341 | */ |
| 1342 | btf_dump_drop_mods(d, decls); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1343 | if (decls->cnt) { |
| 1344 | btf_dump_printf(d, " ("); |
| 1345 | btf_dump_emit_type_chain(d, decls, fname, lvl); |
| 1346 | btf_dump_printf(d, ")"); |
| 1347 | } else { |
| 1348 | btf_dump_emit_name(d, fname, last_was_ptr); |
| 1349 | } |
| 1350 | btf_dump_printf(d, "("); |
| 1351 | /* |
| 1352 | * Clang for BPF target generates func_proto with no |
| 1353 | * args as a func_proto with a single void arg (e.g., |
| 1354 | * `int (*f)(void)` vs just `int (*f)()`). We are |
| 1355 | * going to pretend there are no args for such case. |
| 1356 | */ |
| 1357 | if (vlen == 1 && p->type == 0) { |
| 1358 | btf_dump_printf(d, ")"); |
| 1359 | return; |
| 1360 | } |
| 1361 | |
| 1362 | for (i = 0; i < vlen; i++, p++) { |
| 1363 | if (i > 0) |
| 1364 | btf_dump_printf(d, ", "); |
| 1365 | |
| 1366 | /* last arg of type void is vararg */ |
| 1367 | if (i == vlen - 1 && p->type == 0) { |
| 1368 | btf_dump_printf(d, "..."); |
| 1369 | break; |
| 1370 | } |
| 1371 | |
| 1372 | name = btf_name_of(d, p->name_off); |
| 1373 | btf_dump_emit_type_decl(d, p->type, name, lvl); |
| 1374 | } |
| 1375 | |
| 1376 | btf_dump_printf(d, ")"); |
| 1377 | return; |
| 1378 | } |
| 1379 | default: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1380 | pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", |
| 1381 | kind, id); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1382 | return; |
| 1383 | } |
| 1384 | |
| 1385 | last_was_ptr = kind == BTF_KIND_PTR; |
| 1386 | } |
| 1387 | |
| 1388 | btf_dump_emit_name(d, fname, last_was_ptr); |
| 1389 | } |
| 1390 | |
| 1391 | /* return number of duplicates (occurrences) of a given name */ |
| 1392 | static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, |
| 1393 | const char *orig_name) |
| 1394 | { |
| 1395 | size_t dup_cnt = 0; |
| 1396 | |
| 1397 | hashmap__find(name_map, orig_name, (void **)&dup_cnt); |
| 1398 | dup_cnt++; |
| 1399 | hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); |
| 1400 | |
| 1401 | return dup_cnt; |
| 1402 | } |
| 1403 | |
| 1404 | static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, |
| 1405 | struct hashmap *name_map) |
| 1406 | { |
| 1407 | struct btf_dump_type_aux_state *s = &d->type_states[id]; |
| 1408 | const struct btf_type *t = btf__type_by_id(d->btf, id); |
| 1409 | const char *orig_name = btf_name_of(d, t->name_off); |
| 1410 | const char **cached_name = &d->cached_names[id]; |
| 1411 | size_t dup_cnt; |
| 1412 | |
| 1413 | if (t->name_off == 0) |
| 1414 | return ""; |
| 1415 | |
| 1416 | if (s->name_resolved) |
| 1417 | return *cached_name ? *cached_name : orig_name; |
| 1418 | |
| 1419 | dup_cnt = btf_dump_name_dups(d, name_map, orig_name); |
| 1420 | if (dup_cnt > 1) { |
| 1421 | const size_t max_len = 256; |
| 1422 | char new_name[max_len]; |
| 1423 | |
| 1424 | snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); |
| 1425 | *cached_name = strdup(new_name); |
| 1426 | } |
| 1427 | |
| 1428 | s->name_resolved = 1; |
| 1429 | return *cached_name ? *cached_name : orig_name; |
| 1430 | } |
| 1431 | |
| 1432 | static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) |
| 1433 | { |
| 1434 | return btf_dump_resolve_name(d, id, d->type_names); |
| 1435 | } |
| 1436 | |
| 1437 | static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) |
| 1438 | { |
| 1439 | return btf_dump_resolve_name(d, id, d->ident_names); |
| 1440 | } |