blob: f2817e80a1ab3724210b6559f0a6d2a98bb93a6d [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/mm.h>
18#include <linux/sched/mm.h>
19#include <linux/module.h>
20#include <linux/gfp.h>
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
26#include <linux/vmpressure.h>
27#include <linux/vmstat.h>
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
39#include <linux/compaction.h>
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
42#include <linux/delay.h>
43#include <linux/kthread.h>
44#include <linux/freezer.h>
45#include <linux/memcontrol.h>
46#include <linux/delayacct.h>
47#include <linux/sysctl.h>
48#include <linux/oom.h>
David Brazdil0f672f62019-12-10 10:32:29 +000049#include <linux/pagevec.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000050#include <linux/prefetch.h>
51#include <linux/printk.h>
52#include <linux/dax.h>
David Brazdil0f672f62019-12-10 10:32:29 +000053#include <linux/psi.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000054
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57
58#include <linux/swapops.h>
59#include <linux/balloon_compaction.h>
60
61#include "internal.h"
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
66struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
75
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
81
Olivier Deprez157378f2022-04-04 15:47:50 +020082 /*
83 * Scan pressure balancing between anon and file LRUs
84 */
85 unsigned long anon_cost;
86 unsigned long file_cost;
87
88 /* Can active pages be deactivated as part of reclaim? */
89#define DEACTIVATE_ANON 1
90#define DEACTIVATE_FILE 2
91 unsigned int may_deactivate:2;
92 unsigned int force_deactivate:1;
93 unsigned int skipped_deactivate:1;
94
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000095 /* Writepage batching in laptop mode; RECLAIM_WRITE */
96 unsigned int may_writepage:1;
97
98 /* Can mapped pages be reclaimed? */
99 unsigned int may_unmap:1;
100
101 /* Can pages be swapped as part of reclaim? */
102 unsigned int may_swap:1;
103
104 /*
Olivier Deprez0e641232021-09-23 10:07:05 +0200105 * Cgroup memory below memory.low is protected as long as we
106 * don't threaten to OOM. If any cgroup is reclaimed at
107 * reduced force or passed over entirely due to its memory.low
108 * setting (memcg_low_skipped), and nothing is reclaimed as a
109 * result, then go back for one more cycle that reclaims the protected
110 * memory (memcg_low_reclaim) to avert OOM.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000111 */
112 unsigned int memcg_low_reclaim:1;
113 unsigned int memcg_low_skipped:1;
114
115 unsigned int hibernation_mode:1;
116
117 /* One of the zones is ready for compaction */
118 unsigned int compaction_ready:1;
119
Olivier Deprez157378f2022-04-04 15:47:50 +0200120 /* There is easily reclaimable cold cache in the current node */
121 unsigned int cache_trim_mode:1;
122
123 /* The file pages on the current node are dangerously low */
124 unsigned int file_is_tiny:1;
125
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000126 /* Allocation order */
127 s8 order;
128
129 /* Scan (total_size >> priority) pages at once */
130 s8 priority;
131
132 /* The highest zone to isolate pages for reclaim from */
133 s8 reclaim_idx;
134
135 /* This context's GFP mask */
136 gfp_t gfp_mask;
137
138 /* Incremented by the number of inactive pages that were scanned */
139 unsigned long nr_scanned;
140
141 /* Number of pages freed so far during a call to shrink_zones() */
142 unsigned long nr_reclaimed;
143
144 struct {
145 unsigned int dirty;
146 unsigned int unqueued_dirty;
147 unsigned int congested;
148 unsigned int writeback;
149 unsigned int immediate;
150 unsigned int file_taken;
151 unsigned int taken;
152 } nr;
David Brazdil0f672f62019-12-10 10:32:29 +0000153
154 /* for recording the reclaimed slab by now */
155 struct reclaim_state reclaim_state;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000156};
157
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000158#ifdef ARCH_HAS_PREFETCHW
159#define prefetchw_prev_lru_page(_page, _base, _field) \
160 do { \
161 if ((_page)->lru.prev != _base) { \
162 struct page *prev; \
163 \
164 prev = lru_to_page(&(_page->lru)); \
165 prefetchw(&prev->_field); \
166 } \
167 } while (0)
168#else
169#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
170#endif
171
172/*
Olivier Deprez157378f2022-04-04 15:47:50 +0200173 * From 0 .. 200. Higher means more swappy.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000174 */
175int vm_swappiness = 60;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000176
David Brazdil0f672f62019-12-10 10:32:29 +0000177static void set_task_reclaim_state(struct task_struct *task,
178 struct reclaim_state *rs)
179{
180 /* Check for an overwrite */
181 WARN_ON_ONCE(rs && task->reclaim_state);
182
183 /* Check for the nulling of an already-nulled member */
184 WARN_ON_ONCE(!rs && !task->reclaim_state);
185
186 task->reclaim_state = rs;
187}
188
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000189static LIST_HEAD(shrinker_list);
190static DECLARE_RWSEM(shrinker_rwsem);
191
David Brazdil0f672f62019-12-10 10:32:29 +0000192#ifdef CONFIG_MEMCG
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000193/*
194 * We allow subsystems to populate their shrinker-related
195 * LRU lists before register_shrinker_prepared() is called
196 * for the shrinker, since we don't want to impose
197 * restrictions on their internal registration order.
198 * In this case shrink_slab_memcg() may find corresponding
199 * bit is set in the shrinkers map.
200 *
201 * This value is used by the function to detect registering
202 * shrinkers and to skip do_shrink_slab() calls for them.
203 */
204#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
205
206static DEFINE_IDR(shrinker_idr);
207static int shrinker_nr_max;
208
209static int prealloc_memcg_shrinker(struct shrinker *shrinker)
210{
211 int id, ret = -ENOMEM;
212
213 down_write(&shrinker_rwsem);
214 /* This may call shrinker, so it must use down_read_trylock() */
215 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
216 if (id < 0)
217 goto unlock;
218
219 if (id >= shrinker_nr_max) {
220 if (memcg_expand_shrinker_maps(id)) {
221 idr_remove(&shrinker_idr, id);
222 goto unlock;
223 }
224
225 shrinker_nr_max = id + 1;
226 }
227 shrinker->id = id;
228 ret = 0;
229unlock:
230 up_write(&shrinker_rwsem);
231 return ret;
232}
233
234static void unregister_memcg_shrinker(struct shrinker *shrinker)
235{
236 int id = shrinker->id;
237
238 BUG_ON(id < 0);
239
240 down_write(&shrinker_rwsem);
241 idr_remove(&shrinker_idr, id);
242 up_write(&shrinker_rwsem);
243}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000244
Olivier Deprez157378f2022-04-04 15:47:50 +0200245static bool cgroup_reclaim(struct scan_control *sc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000246{
Olivier Deprez157378f2022-04-04 15:47:50 +0200247 return sc->target_mem_cgroup;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000248}
249
250/**
Olivier Deprez157378f2022-04-04 15:47:50 +0200251 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000252 * @sc: scan_control in question
253 *
254 * The normal page dirty throttling mechanism in balance_dirty_pages() is
255 * completely broken with the legacy memcg and direct stalling in
256 * shrink_page_list() is used for throttling instead, which lacks all the
257 * niceties such as fairness, adaptive pausing, bandwidth proportional
258 * allocation and configurability.
259 *
260 * This function tests whether the vmscan currently in progress can assume
261 * that the normal dirty throttling mechanism is operational.
262 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200263static bool writeback_throttling_sane(struct scan_control *sc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000264{
Olivier Deprez157378f2022-04-04 15:47:50 +0200265 if (!cgroup_reclaim(sc))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000266 return true;
267#ifdef CONFIG_CGROUP_WRITEBACK
268 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
269 return true;
270#endif
271 return false;
272}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000273#else
David Brazdil0f672f62019-12-10 10:32:29 +0000274static int prealloc_memcg_shrinker(struct shrinker *shrinker)
275{
276 return 0;
277}
278
279static void unregister_memcg_shrinker(struct shrinker *shrinker)
280{
281}
282
Olivier Deprez157378f2022-04-04 15:47:50 +0200283static bool cgroup_reclaim(struct scan_control *sc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000284{
285 return false;
Olivier Deprez157378f2022-04-04 15:47:50 +0200286}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000287
Olivier Deprez157378f2022-04-04 15:47:50 +0200288static bool writeback_throttling_sane(struct scan_control *sc)
289{
290 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000291}
292#endif
293
294/*
295 * This misses isolated pages which are not accounted for to save counters.
296 * As the data only determines if reclaim or compaction continues, it is
297 * not expected that isolated pages will be a dominating factor.
298 */
299unsigned long zone_reclaimable_pages(struct zone *zone)
300{
301 unsigned long nr;
302
303 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
304 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
305 if (get_nr_swap_pages() > 0)
306 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
307 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
308
309 return nr;
310}
311
312/**
313 * lruvec_lru_size - Returns the number of pages on the given LRU list.
314 * @lruvec: lru vector
315 * @lru: lru to use
316 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
317 */
318unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
319{
Olivier Deprez157378f2022-04-04 15:47:50 +0200320 unsigned long size = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000321 int zid;
322
Olivier Deprez157378f2022-04-04 15:47:50 +0200323 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000324 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000325
326 if (!managed_zone(zone))
327 continue;
328
329 if (!mem_cgroup_disabled())
Olivier Deprez157378f2022-04-04 15:47:50 +0200330 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000331 else
Olivier Deprez157378f2022-04-04 15:47:50 +0200332 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000333 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200334 return size;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000335}
336
337/*
338 * Add a shrinker callback to be called from the vm.
339 */
340int prealloc_shrinker(struct shrinker *shrinker)
341{
David Brazdil0f672f62019-12-10 10:32:29 +0000342 unsigned int size = sizeof(*shrinker->nr_deferred);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000343
344 if (shrinker->flags & SHRINKER_NUMA_AWARE)
345 size *= nr_node_ids;
346
347 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
348 if (!shrinker->nr_deferred)
349 return -ENOMEM;
350
351 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
352 if (prealloc_memcg_shrinker(shrinker))
353 goto free_deferred;
354 }
355
356 return 0;
357
358free_deferred:
359 kfree(shrinker->nr_deferred);
360 shrinker->nr_deferred = NULL;
361 return -ENOMEM;
362}
363
364void free_prealloced_shrinker(struct shrinker *shrinker)
365{
366 if (!shrinker->nr_deferred)
367 return;
368
369 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
370 unregister_memcg_shrinker(shrinker);
371
372 kfree(shrinker->nr_deferred);
373 shrinker->nr_deferred = NULL;
374}
375
376void register_shrinker_prepared(struct shrinker *shrinker)
377{
378 down_write(&shrinker_rwsem);
379 list_add_tail(&shrinker->list, &shrinker_list);
Olivier Deprez0e641232021-09-23 10:07:05 +0200380#ifdef CONFIG_MEMCG
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000381 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
382 idr_replace(&shrinker_idr, shrinker, shrinker->id);
383#endif
384 up_write(&shrinker_rwsem);
385}
386
387int register_shrinker(struct shrinker *shrinker)
388{
389 int err = prealloc_shrinker(shrinker);
390
391 if (err)
392 return err;
393 register_shrinker_prepared(shrinker);
394 return 0;
395}
396EXPORT_SYMBOL(register_shrinker);
397
398/*
399 * Remove one
400 */
401void unregister_shrinker(struct shrinker *shrinker)
402{
403 if (!shrinker->nr_deferred)
404 return;
405 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
406 unregister_memcg_shrinker(shrinker);
407 down_write(&shrinker_rwsem);
408 list_del(&shrinker->list);
409 up_write(&shrinker_rwsem);
410 kfree(shrinker->nr_deferred);
411 shrinker->nr_deferred = NULL;
412}
413EXPORT_SYMBOL(unregister_shrinker);
414
415#define SHRINK_BATCH 128
416
417static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
418 struct shrinker *shrinker, int priority)
419{
420 unsigned long freed = 0;
421 unsigned long long delta;
422 long total_scan;
423 long freeable;
424 long nr;
425 long new_nr;
426 int nid = shrinkctl->nid;
427 long batch_size = shrinker->batch ? shrinker->batch
428 : SHRINK_BATCH;
429 long scanned = 0, next_deferred;
430
431 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
432 nid = 0;
433
434 freeable = shrinker->count_objects(shrinker, shrinkctl);
435 if (freeable == 0 || freeable == SHRINK_EMPTY)
436 return freeable;
437
438 /*
439 * copy the current shrinker scan count into a local variable
440 * and zero it so that other concurrent shrinker invocations
441 * don't also do this scanning work.
442 */
443 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
444
445 total_scan = nr;
David Brazdil0f672f62019-12-10 10:32:29 +0000446 if (shrinker->seeks) {
447 delta = freeable >> priority;
448 delta *= 4;
449 do_div(delta, shrinker->seeks);
450 } else {
451 /*
452 * These objects don't require any IO to create. Trim
453 * them aggressively under memory pressure to keep
454 * them from causing refetches in the IO caches.
455 */
456 delta = freeable / 2;
457 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000458
459 total_scan += delta;
460 if (total_scan < 0) {
David Brazdil0f672f62019-12-10 10:32:29 +0000461 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000462 shrinker->scan_objects, total_scan);
463 total_scan = freeable;
464 next_deferred = nr;
465 } else
466 next_deferred = total_scan;
467
468 /*
469 * We need to avoid excessive windup on filesystem shrinkers
470 * due to large numbers of GFP_NOFS allocations causing the
471 * shrinkers to return -1 all the time. This results in a large
472 * nr being built up so when a shrink that can do some work
473 * comes along it empties the entire cache due to nr >>>
474 * freeable. This is bad for sustaining a working set in
475 * memory.
476 *
477 * Hence only allow the shrinker to scan the entire cache when
478 * a large delta change is calculated directly.
479 */
480 if (delta < freeable / 4)
481 total_scan = min(total_scan, freeable / 2);
482
483 /*
484 * Avoid risking looping forever due to too large nr value:
485 * never try to free more than twice the estimate number of
486 * freeable entries.
487 */
488 if (total_scan > freeable * 2)
489 total_scan = freeable * 2;
490
491 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
492 freeable, delta, total_scan, priority);
493
494 /*
495 * Normally, we should not scan less than batch_size objects in one
496 * pass to avoid too frequent shrinker calls, but if the slab has less
497 * than batch_size objects in total and we are really tight on memory,
498 * we will try to reclaim all available objects, otherwise we can end
499 * up failing allocations although there are plenty of reclaimable
500 * objects spread over several slabs with usage less than the
501 * batch_size.
502 *
503 * We detect the "tight on memory" situations by looking at the total
504 * number of objects we want to scan (total_scan). If it is greater
505 * than the total number of objects on slab (freeable), we must be
506 * scanning at high prio and therefore should try to reclaim as much as
507 * possible.
508 */
509 while (total_scan >= batch_size ||
510 total_scan >= freeable) {
511 unsigned long ret;
512 unsigned long nr_to_scan = min(batch_size, total_scan);
513
514 shrinkctl->nr_to_scan = nr_to_scan;
515 shrinkctl->nr_scanned = nr_to_scan;
516 ret = shrinker->scan_objects(shrinker, shrinkctl);
517 if (ret == SHRINK_STOP)
518 break;
519 freed += ret;
520
521 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
522 total_scan -= shrinkctl->nr_scanned;
523 scanned += shrinkctl->nr_scanned;
524
525 cond_resched();
526 }
527
528 if (next_deferred >= scanned)
529 next_deferred -= scanned;
530 else
531 next_deferred = 0;
532 /*
533 * move the unused scan count back into the shrinker in a
534 * manner that handles concurrent updates. If we exhausted the
535 * scan, there is no need to do an update.
536 */
537 if (next_deferred > 0)
538 new_nr = atomic_long_add_return(next_deferred,
539 &shrinker->nr_deferred[nid]);
540 else
541 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
542
543 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
544 return freed;
545}
546
David Brazdil0f672f62019-12-10 10:32:29 +0000547#ifdef CONFIG_MEMCG
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000548static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
549 struct mem_cgroup *memcg, int priority)
550{
551 struct memcg_shrinker_map *map;
552 unsigned long ret, freed = 0;
553 int i;
554
David Brazdil0f672f62019-12-10 10:32:29 +0000555 if (!mem_cgroup_online(memcg))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000556 return 0;
557
558 if (!down_read_trylock(&shrinker_rwsem))
559 return 0;
560
561 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
562 true);
563 if (unlikely(!map))
564 goto unlock;
565
566 for_each_set_bit(i, map->map, shrinker_nr_max) {
567 struct shrink_control sc = {
568 .gfp_mask = gfp_mask,
569 .nid = nid,
570 .memcg = memcg,
571 };
572 struct shrinker *shrinker;
573
574 shrinker = idr_find(&shrinker_idr, i);
575 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
576 if (!shrinker)
577 clear_bit(i, map->map);
578 continue;
579 }
580
David Brazdil0f672f62019-12-10 10:32:29 +0000581 /* Call non-slab shrinkers even though kmem is disabled */
582 if (!memcg_kmem_enabled() &&
583 !(shrinker->flags & SHRINKER_NONSLAB))
584 continue;
585
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000586 ret = do_shrink_slab(&sc, shrinker, priority);
587 if (ret == SHRINK_EMPTY) {
588 clear_bit(i, map->map);
589 /*
590 * After the shrinker reported that it had no objects to
591 * free, but before we cleared the corresponding bit in
592 * the memcg shrinker map, a new object might have been
593 * added. To make sure, we have the bit set in this
594 * case, we invoke the shrinker one more time and reset
595 * the bit if it reports that it is not empty anymore.
596 * The memory barrier here pairs with the barrier in
597 * memcg_set_shrinker_bit():
598 *
599 * list_lru_add() shrink_slab_memcg()
600 * list_add_tail() clear_bit()
601 * <MB> <MB>
602 * set_bit() do_shrink_slab()
603 */
604 smp_mb__after_atomic();
605 ret = do_shrink_slab(&sc, shrinker, priority);
606 if (ret == SHRINK_EMPTY)
607 ret = 0;
608 else
609 memcg_set_shrinker_bit(memcg, nid, i);
610 }
611 freed += ret;
612
613 if (rwsem_is_contended(&shrinker_rwsem)) {
614 freed = freed ? : 1;
615 break;
616 }
617 }
618unlock:
619 up_read(&shrinker_rwsem);
620 return freed;
621}
David Brazdil0f672f62019-12-10 10:32:29 +0000622#else /* CONFIG_MEMCG */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000623static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
624 struct mem_cgroup *memcg, int priority)
625{
626 return 0;
627}
David Brazdil0f672f62019-12-10 10:32:29 +0000628#endif /* CONFIG_MEMCG */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000629
630/**
631 * shrink_slab - shrink slab caches
632 * @gfp_mask: allocation context
633 * @nid: node whose slab caches to target
634 * @memcg: memory cgroup whose slab caches to target
635 * @priority: the reclaim priority
636 *
637 * Call the shrink functions to age shrinkable caches.
638 *
639 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
640 * unaware shrinkers will receive a node id of 0 instead.
641 *
642 * @memcg specifies the memory cgroup to target. Unaware shrinkers
643 * are called only if it is the root cgroup.
644 *
645 * @priority is sc->priority, we take the number of objects and >> by priority
646 * in order to get the scan target.
647 *
648 * Returns the number of reclaimed slab objects.
649 */
650static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
651 struct mem_cgroup *memcg,
652 int priority)
653{
654 unsigned long ret, freed = 0;
655 struct shrinker *shrinker;
656
David Brazdil0f672f62019-12-10 10:32:29 +0000657 /*
658 * The root memcg might be allocated even though memcg is disabled
659 * via "cgroup_disable=memory" boot parameter. This could make
660 * mem_cgroup_is_root() return false, then just run memcg slab
661 * shrink, but skip global shrink. This may result in premature
662 * oom.
663 */
664 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000665 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
666
667 if (!down_read_trylock(&shrinker_rwsem))
668 goto out;
669
670 list_for_each_entry(shrinker, &shrinker_list, list) {
671 struct shrink_control sc = {
672 .gfp_mask = gfp_mask,
673 .nid = nid,
674 .memcg = memcg,
675 };
676
677 ret = do_shrink_slab(&sc, shrinker, priority);
678 if (ret == SHRINK_EMPTY)
679 ret = 0;
680 freed += ret;
681 /*
682 * Bail out if someone want to register a new shrinker to
Olivier Deprez157378f2022-04-04 15:47:50 +0200683 * prevent the registration from being stalled for long periods
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000684 * by parallel ongoing shrinking.
685 */
686 if (rwsem_is_contended(&shrinker_rwsem)) {
687 freed = freed ? : 1;
688 break;
689 }
690 }
691
692 up_read(&shrinker_rwsem);
693out:
694 cond_resched();
695 return freed;
696}
697
698void drop_slab_node(int nid)
699{
700 unsigned long freed;
701
702 do {
703 struct mem_cgroup *memcg = NULL;
704
Olivier Deprez157378f2022-04-04 15:47:50 +0200705 if (fatal_signal_pending(current))
706 return;
707
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000708 freed = 0;
709 memcg = mem_cgroup_iter(NULL, NULL, NULL);
710 do {
711 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
712 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
713 } while (freed > 10);
714}
715
716void drop_slab(void)
717{
718 int nid;
719
720 for_each_online_node(nid)
721 drop_slab_node(nid);
722}
723
724static inline int is_page_cache_freeable(struct page *page)
725{
726 /*
727 * A freeable page cache page is referenced only by the caller
David Brazdil0f672f62019-12-10 10:32:29 +0000728 * that isolated the page, the page cache and optional buffer
729 * heads at page->private.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000730 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200731 int page_cache_pins = thp_nr_pages(page);
David Brazdil0f672f62019-12-10 10:32:29 +0000732 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000733}
734
Olivier Deprez157378f2022-04-04 15:47:50 +0200735static int may_write_to_inode(struct inode *inode)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000736{
737 if (current->flags & PF_SWAPWRITE)
738 return 1;
739 if (!inode_write_congested(inode))
740 return 1;
741 if (inode_to_bdi(inode) == current->backing_dev_info)
742 return 1;
743 return 0;
744}
745
746/*
747 * We detected a synchronous write error writing a page out. Probably
748 * -ENOSPC. We need to propagate that into the address_space for a subsequent
749 * fsync(), msync() or close().
750 *
751 * The tricky part is that after writepage we cannot touch the mapping: nothing
752 * prevents it from being freed up. But we have a ref on the page and once
753 * that page is locked, the mapping is pinned.
754 *
755 * We're allowed to run sleeping lock_page() here because we know the caller has
756 * __GFP_FS.
757 */
758static void handle_write_error(struct address_space *mapping,
759 struct page *page, int error)
760{
761 lock_page(page);
762 if (page_mapping(page) == mapping)
763 mapping_set_error(mapping, error);
764 unlock_page(page);
765}
766
767/* possible outcome of pageout() */
768typedef enum {
769 /* failed to write page out, page is locked */
770 PAGE_KEEP,
771 /* move page to the active list, page is locked */
772 PAGE_ACTIVATE,
773 /* page has been sent to the disk successfully, page is unlocked */
774 PAGE_SUCCESS,
775 /* page is clean and locked */
776 PAGE_CLEAN,
777} pageout_t;
778
779/*
780 * pageout is called by shrink_page_list() for each dirty page.
781 * Calls ->writepage().
782 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200783static pageout_t pageout(struct page *page, struct address_space *mapping)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000784{
785 /*
786 * If the page is dirty, only perform writeback if that write
787 * will be non-blocking. To prevent this allocation from being
788 * stalled by pagecache activity. But note that there may be
789 * stalls if we need to run get_block(). We could test
790 * PagePrivate for that.
791 *
792 * If this process is currently in __generic_file_write_iter() against
793 * this page's queue, we can perform writeback even if that
794 * will block.
795 *
796 * If the page is swapcache, write it back even if that would
797 * block, for some throttling. This happens by accident, because
798 * swap_backing_dev_info is bust: it doesn't reflect the
799 * congestion state of the swapdevs. Easy to fix, if needed.
800 */
801 if (!is_page_cache_freeable(page))
802 return PAGE_KEEP;
803 if (!mapping) {
804 /*
805 * Some data journaling orphaned pages can have
806 * page->mapping == NULL while being dirty with clean buffers.
807 */
808 if (page_has_private(page)) {
809 if (try_to_free_buffers(page)) {
810 ClearPageDirty(page);
811 pr_info("%s: orphaned page\n", __func__);
812 return PAGE_CLEAN;
813 }
814 }
815 return PAGE_KEEP;
816 }
817 if (mapping->a_ops->writepage == NULL)
818 return PAGE_ACTIVATE;
Olivier Deprez157378f2022-04-04 15:47:50 +0200819 if (!may_write_to_inode(mapping->host))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000820 return PAGE_KEEP;
821
822 if (clear_page_dirty_for_io(page)) {
823 int res;
824 struct writeback_control wbc = {
825 .sync_mode = WB_SYNC_NONE,
826 .nr_to_write = SWAP_CLUSTER_MAX,
827 .range_start = 0,
828 .range_end = LLONG_MAX,
829 .for_reclaim = 1,
830 };
831
832 SetPageReclaim(page);
833 res = mapping->a_ops->writepage(page, &wbc);
834 if (res < 0)
835 handle_write_error(mapping, page, res);
836 if (res == AOP_WRITEPAGE_ACTIVATE) {
837 ClearPageReclaim(page);
838 return PAGE_ACTIVATE;
839 }
840
841 if (!PageWriteback(page)) {
842 /* synchronous write or broken a_ops? */
843 ClearPageReclaim(page);
844 }
845 trace_mm_vmscan_writepage(page);
846 inc_node_page_state(page, NR_VMSCAN_WRITE);
847 return PAGE_SUCCESS;
848 }
849
850 return PAGE_CLEAN;
851}
852
853/*
854 * Same as remove_mapping, but if the page is removed from the mapping, it
855 * gets returned with a refcount of 0.
856 */
857static int __remove_mapping(struct address_space *mapping, struct page *page,
Olivier Deprez157378f2022-04-04 15:47:50 +0200858 bool reclaimed, struct mem_cgroup *target_memcg)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000859{
860 unsigned long flags;
861 int refcount;
Olivier Deprez157378f2022-04-04 15:47:50 +0200862 void *shadow = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000863
864 BUG_ON(!PageLocked(page));
865 BUG_ON(mapping != page_mapping(page));
866
867 xa_lock_irqsave(&mapping->i_pages, flags);
868 /*
869 * The non racy check for a busy page.
870 *
871 * Must be careful with the order of the tests. When someone has
872 * a ref to the page, it may be possible that they dirty it then
873 * drop the reference. So if PageDirty is tested before page_count
874 * here, then the following race may occur:
875 *
876 * get_user_pages(&page);
877 * [user mapping goes away]
878 * write_to(page);
879 * !PageDirty(page) [good]
880 * SetPageDirty(page);
881 * put_page(page);
882 * !page_count(page) [good, discard it]
883 *
884 * [oops, our write_to data is lost]
885 *
886 * Reversing the order of the tests ensures such a situation cannot
887 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
888 * load is not satisfied before that of page->_refcount.
889 *
890 * Note that if SetPageDirty is always performed via set_page_dirty,
891 * and thus under the i_pages lock, then this ordering is not required.
892 */
David Brazdil0f672f62019-12-10 10:32:29 +0000893 refcount = 1 + compound_nr(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000894 if (!page_ref_freeze(page, refcount))
895 goto cannot_free;
896 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
897 if (unlikely(PageDirty(page))) {
898 page_ref_unfreeze(page, refcount);
899 goto cannot_free;
900 }
901
902 if (PageSwapCache(page)) {
903 swp_entry_t swap = { .val = page_private(page) };
904 mem_cgroup_swapout(page, swap);
Olivier Deprez157378f2022-04-04 15:47:50 +0200905 if (reclaimed && !mapping_exiting(mapping))
906 shadow = workingset_eviction(page, target_memcg);
907 __delete_from_swap_cache(page, swap, shadow);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000908 xa_unlock_irqrestore(&mapping->i_pages, flags);
909 put_swap_page(page, swap);
910 } else {
911 void (*freepage)(struct page *);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000912
913 freepage = mapping->a_ops->freepage;
914 /*
915 * Remember a shadow entry for reclaimed file cache in
916 * order to detect refaults, thus thrashing, later on.
917 *
918 * But don't store shadows in an address space that is
Olivier Deprez157378f2022-04-04 15:47:50 +0200919 * already exiting. This is not just an optimization,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000920 * inode reclaim needs to empty out the radix tree or
921 * the nodes are lost. Don't plant shadows behind its
922 * back.
923 *
924 * We also don't store shadows for DAX mappings because the
925 * only page cache pages found in these are zero pages
926 * covering holes, and because we don't want to mix DAX
927 * exceptional entries and shadow exceptional entries in the
928 * same address_space.
929 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200930 if (reclaimed && page_is_file_lru(page) &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000931 !mapping_exiting(mapping) && !dax_mapping(mapping))
Olivier Deprez157378f2022-04-04 15:47:50 +0200932 shadow = workingset_eviction(page, target_memcg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000933 __delete_from_page_cache(page, shadow);
934 xa_unlock_irqrestore(&mapping->i_pages, flags);
935
936 if (freepage != NULL)
937 freepage(page);
938 }
939
940 return 1;
941
942cannot_free:
943 xa_unlock_irqrestore(&mapping->i_pages, flags);
944 return 0;
945}
946
947/*
948 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
949 * someone else has a ref on the page, abort and return 0. If it was
950 * successfully detached, return 1. Assumes the caller has a single ref on
951 * this page.
952 */
953int remove_mapping(struct address_space *mapping, struct page *page)
954{
Olivier Deprez157378f2022-04-04 15:47:50 +0200955 if (__remove_mapping(mapping, page, false, NULL)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000956 /*
957 * Unfreezing the refcount with 1 rather than 2 effectively
958 * drops the pagecache ref for us without requiring another
959 * atomic operation.
960 */
961 page_ref_unfreeze(page, 1);
962 return 1;
963 }
964 return 0;
965}
966
967/**
968 * putback_lru_page - put previously isolated page onto appropriate LRU list
969 * @page: page to be put back to appropriate lru list
970 *
971 * Add previously isolated @page to appropriate LRU list.
972 * Page may still be unevictable for other reasons.
973 *
974 * lru_lock must not be held, interrupts must be enabled.
975 */
976void putback_lru_page(struct page *page)
977{
978 lru_cache_add(page);
979 put_page(page); /* drop ref from isolate */
980}
981
982enum page_references {
983 PAGEREF_RECLAIM,
984 PAGEREF_RECLAIM_CLEAN,
985 PAGEREF_KEEP,
986 PAGEREF_ACTIVATE,
987};
988
989static enum page_references page_check_references(struct page *page,
990 struct scan_control *sc)
991{
992 int referenced_ptes, referenced_page;
993 unsigned long vm_flags;
994
995 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
996 &vm_flags);
997 referenced_page = TestClearPageReferenced(page);
998
999 /*
1000 * Mlock lost the isolation race with us. Let try_to_unmap()
1001 * move the page to the unevictable list.
1002 */
1003 if (vm_flags & VM_LOCKED)
1004 return PAGEREF_RECLAIM;
1005
1006 if (referenced_ptes) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001007 /*
1008 * All mapped pages start out with page table
1009 * references from the instantiating fault, so we need
1010 * to look twice if a mapped file page is used more
1011 * than once.
1012 *
1013 * Mark it and spare it for another trip around the
1014 * inactive list. Another page table reference will
1015 * lead to its activation.
1016 *
1017 * Note: the mark is set for activated pages as well
1018 * so that recently deactivated but used pages are
1019 * quickly recovered.
1020 */
1021 SetPageReferenced(page);
1022
1023 if (referenced_page || referenced_ptes > 1)
1024 return PAGEREF_ACTIVATE;
1025
1026 /*
1027 * Activate file-backed executable pages after first usage.
1028 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001029 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001030 return PAGEREF_ACTIVATE;
1031
1032 return PAGEREF_KEEP;
1033 }
1034
1035 /* Reclaim if clean, defer dirty pages to writeback */
1036 if (referenced_page && !PageSwapBacked(page))
1037 return PAGEREF_RECLAIM_CLEAN;
1038
1039 return PAGEREF_RECLAIM;
1040}
1041
1042/* Check if a page is dirty or under writeback */
1043static void page_check_dirty_writeback(struct page *page,
1044 bool *dirty, bool *writeback)
1045{
1046 struct address_space *mapping;
1047
1048 /*
1049 * Anonymous pages are not handled by flushers and must be written
1050 * from reclaim context. Do not stall reclaim based on them
1051 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001052 if (!page_is_file_lru(page) ||
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001053 (PageAnon(page) && !PageSwapBacked(page))) {
1054 *dirty = false;
1055 *writeback = false;
1056 return;
1057 }
1058
1059 /* By default assume that the page flags are accurate */
1060 *dirty = PageDirty(page);
1061 *writeback = PageWriteback(page);
1062
1063 /* Verify dirty/writeback state if the filesystem supports it */
1064 if (!page_has_private(page))
1065 return;
1066
1067 mapping = page_mapping(page);
1068 if (mapping && mapping->a_ops->is_dirty_writeback)
1069 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1070}
1071
1072/*
1073 * shrink_page_list() returns the number of reclaimed pages
1074 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001075static unsigned int shrink_page_list(struct list_head *page_list,
1076 struct pglist_data *pgdat,
1077 struct scan_control *sc,
1078 struct reclaim_stat *stat,
1079 bool ignore_references)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001080{
1081 LIST_HEAD(ret_pages);
1082 LIST_HEAD(free_pages);
Olivier Deprez157378f2022-04-04 15:47:50 +02001083 unsigned int nr_reclaimed = 0;
1084 unsigned int pgactivate = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001085
David Brazdil0f672f62019-12-10 10:32:29 +00001086 memset(stat, 0, sizeof(*stat));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001087 cond_resched();
1088
1089 while (!list_empty(page_list)) {
1090 struct address_space *mapping;
1091 struct page *page;
David Brazdil0f672f62019-12-10 10:32:29 +00001092 enum page_references references = PAGEREF_RECLAIM;
Olivier Deprez157378f2022-04-04 15:47:50 +02001093 bool dirty, writeback, may_enter_fs;
David Brazdil0f672f62019-12-10 10:32:29 +00001094 unsigned int nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001095
1096 cond_resched();
1097
1098 page = lru_to_page(page_list);
1099 list_del(&page->lru);
1100
1101 if (!trylock_page(page))
1102 goto keep;
1103
1104 VM_BUG_ON_PAGE(PageActive(page), page);
1105
David Brazdil0f672f62019-12-10 10:32:29 +00001106 nr_pages = compound_nr(page);
1107
1108 /* Account the number of base pages even though THP */
1109 sc->nr_scanned += nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001110
1111 if (unlikely(!page_evictable(page)))
1112 goto activate_locked;
1113
1114 if (!sc->may_unmap && page_mapped(page))
1115 goto keep_locked;
1116
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001117 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1118 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1119
1120 /*
1121 * The number of dirty pages determines if a node is marked
1122 * reclaim_congested which affects wait_iff_congested. kswapd
1123 * will stall and start writing pages if the tail of the LRU
1124 * is all dirty unqueued pages.
1125 */
1126 page_check_dirty_writeback(page, &dirty, &writeback);
1127 if (dirty || writeback)
David Brazdil0f672f62019-12-10 10:32:29 +00001128 stat->nr_dirty++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001129
1130 if (dirty && !writeback)
David Brazdil0f672f62019-12-10 10:32:29 +00001131 stat->nr_unqueued_dirty++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001132
1133 /*
1134 * Treat this page as congested if the underlying BDI is or if
1135 * pages are cycling through the LRU so quickly that the
1136 * pages marked for immediate reclaim are making it to the
1137 * end of the LRU a second time.
1138 */
1139 mapping = page_mapping(page);
1140 if (((dirty || writeback) && mapping &&
1141 inode_write_congested(mapping->host)) ||
1142 (writeback && PageReclaim(page)))
David Brazdil0f672f62019-12-10 10:32:29 +00001143 stat->nr_congested++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001144
1145 /*
1146 * If a page at the tail of the LRU is under writeback, there
1147 * are three cases to consider.
1148 *
1149 * 1) If reclaim is encountering an excessive number of pages
1150 * under writeback and this page is both under writeback and
1151 * PageReclaim then it indicates that pages are being queued
1152 * for IO but are being recycled through the LRU before the
1153 * IO can complete. Waiting on the page itself risks an
1154 * indefinite stall if it is impossible to writeback the
1155 * page due to IO error or disconnected storage so instead
1156 * note that the LRU is being scanned too quickly and the
1157 * caller can stall after page list has been processed.
1158 *
1159 * 2) Global or new memcg reclaim encounters a page that is
1160 * not marked for immediate reclaim, or the caller does not
1161 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1162 * not to fs). In this case mark the page for immediate
1163 * reclaim and continue scanning.
1164 *
1165 * Require may_enter_fs because we would wait on fs, which
1166 * may not have submitted IO yet. And the loop driver might
1167 * enter reclaim, and deadlock if it waits on a page for
1168 * which it is needed to do the write (loop masks off
1169 * __GFP_IO|__GFP_FS for this reason); but more thought
1170 * would probably show more reasons.
1171 *
1172 * 3) Legacy memcg encounters a page that is already marked
1173 * PageReclaim. memcg does not have any dirty pages
1174 * throttling so we could easily OOM just because too many
1175 * pages are in writeback and there is nothing else to
1176 * reclaim. Wait for the writeback to complete.
1177 *
1178 * In cases 1) and 2) we activate the pages to get them out of
1179 * the way while we continue scanning for clean pages on the
1180 * inactive list and refilling from the active list. The
1181 * observation here is that waiting for disk writes is more
1182 * expensive than potentially causing reloads down the line.
1183 * Since they're marked for immediate reclaim, they won't put
1184 * memory pressure on the cache working set any longer than it
1185 * takes to write them to disk.
1186 */
1187 if (PageWriteback(page)) {
1188 /* Case 1 above */
1189 if (current_is_kswapd() &&
1190 PageReclaim(page) &&
1191 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
David Brazdil0f672f62019-12-10 10:32:29 +00001192 stat->nr_immediate++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001193 goto activate_locked;
1194
1195 /* Case 2 above */
Olivier Deprez157378f2022-04-04 15:47:50 +02001196 } else if (writeback_throttling_sane(sc) ||
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001197 !PageReclaim(page) || !may_enter_fs) {
1198 /*
1199 * This is slightly racy - end_page_writeback()
1200 * might have just cleared PageReclaim, then
1201 * setting PageReclaim here end up interpreted
1202 * as PageReadahead - but that does not matter
1203 * enough to care. What we do want is for this
1204 * page to have PageReclaim set next time memcg
1205 * reclaim reaches the tests above, so it will
1206 * then wait_on_page_writeback() to avoid OOM;
1207 * and it's also appropriate in global reclaim.
1208 */
1209 SetPageReclaim(page);
David Brazdil0f672f62019-12-10 10:32:29 +00001210 stat->nr_writeback++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001211 goto activate_locked;
1212
1213 /* Case 3 above */
1214 } else {
1215 unlock_page(page);
1216 wait_on_page_writeback(page);
1217 /* then go back and try same page again */
1218 list_add_tail(&page->lru, page_list);
1219 continue;
1220 }
1221 }
1222
David Brazdil0f672f62019-12-10 10:32:29 +00001223 if (!ignore_references)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001224 references = page_check_references(page, sc);
1225
1226 switch (references) {
1227 case PAGEREF_ACTIVATE:
1228 goto activate_locked;
1229 case PAGEREF_KEEP:
David Brazdil0f672f62019-12-10 10:32:29 +00001230 stat->nr_ref_keep += nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001231 goto keep_locked;
1232 case PAGEREF_RECLAIM:
1233 case PAGEREF_RECLAIM_CLEAN:
1234 ; /* try to reclaim the page below */
1235 }
1236
1237 /*
1238 * Anonymous process memory has backing store?
1239 * Try to allocate it some swap space here.
1240 * Lazyfree page could be freed directly
1241 */
1242 if (PageAnon(page) && PageSwapBacked(page)) {
1243 if (!PageSwapCache(page)) {
1244 if (!(sc->gfp_mask & __GFP_IO))
1245 goto keep_locked;
Olivier Deprez157378f2022-04-04 15:47:50 +02001246 if (page_maybe_dma_pinned(page))
1247 goto keep_locked;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001248 if (PageTransHuge(page)) {
1249 /* cannot split THP, skip it */
1250 if (!can_split_huge_page(page, NULL))
1251 goto activate_locked;
1252 /*
1253 * Split pages without a PMD map right
1254 * away. Chances are some or all of the
1255 * tail pages can be freed without IO.
1256 */
1257 if (!compound_mapcount(page) &&
1258 split_huge_page_to_list(page,
1259 page_list))
1260 goto activate_locked;
1261 }
1262 if (!add_to_swap(page)) {
1263 if (!PageTransHuge(page))
David Brazdil0f672f62019-12-10 10:32:29 +00001264 goto activate_locked_split;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001265 /* Fallback to swap normal pages */
1266 if (split_huge_page_to_list(page,
1267 page_list))
1268 goto activate_locked;
1269#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1270 count_vm_event(THP_SWPOUT_FALLBACK);
1271#endif
1272 if (!add_to_swap(page))
David Brazdil0f672f62019-12-10 10:32:29 +00001273 goto activate_locked_split;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001274 }
1275
Olivier Deprez157378f2022-04-04 15:47:50 +02001276 may_enter_fs = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001277
1278 /* Adding to swap updated mapping */
1279 mapping = page_mapping(page);
1280 }
1281 } else if (unlikely(PageTransHuge(page))) {
1282 /* Split file THP */
1283 if (split_huge_page_to_list(page, page_list))
1284 goto keep_locked;
1285 }
1286
1287 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001288 * THP may get split above, need minus tail pages and update
1289 * nr_pages to avoid accounting tail pages twice.
1290 *
1291 * The tail pages that are added into swap cache successfully
1292 * reach here.
1293 */
1294 if ((nr_pages > 1) && !PageTransHuge(page)) {
1295 sc->nr_scanned -= (nr_pages - 1);
1296 nr_pages = 1;
1297 }
1298
1299 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001300 * The page is mapped into the page tables of one or more
1301 * processes. Try to unmap it here.
1302 */
1303 if (page_mapped(page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001304 enum ttu_flags flags = TTU_BATCH_FLUSH;
1305 bool was_swapbacked = PageSwapBacked(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001306
1307 if (unlikely(PageTransHuge(page)))
1308 flags |= TTU_SPLIT_HUGE_PMD;
Olivier Deprez157378f2022-04-04 15:47:50 +02001309
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001310 if (!try_to_unmap(page, flags)) {
David Brazdil0f672f62019-12-10 10:32:29 +00001311 stat->nr_unmap_fail += nr_pages;
Olivier Deprez157378f2022-04-04 15:47:50 +02001312 if (!was_swapbacked && PageSwapBacked(page))
1313 stat->nr_lazyfree_fail += nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001314 goto activate_locked;
1315 }
1316 }
1317
1318 if (PageDirty(page)) {
1319 /*
1320 * Only kswapd can writeback filesystem pages
1321 * to avoid risk of stack overflow. But avoid
1322 * injecting inefficient single-page IO into
1323 * flusher writeback as much as possible: only
1324 * write pages when we've encountered many
1325 * dirty pages, and when we've already scanned
1326 * the rest of the LRU for clean pages and see
1327 * the same dirty pages again (PageReclaim).
1328 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001329 if (page_is_file_lru(page) &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001330 (!current_is_kswapd() || !PageReclaim(page) ||
1331 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1332 /*
1333 * Immediately reclaim when written back.
1334 * Similar in principal to deactivate_page()
1335 * except we already have the page isolated
1336 * and know it's dirty
1337 */
1338 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1339 SetPageReclaim(page);
1340
1341 goto activate_locked;
1342 }
1343
1344 if (references == PAGEREF_RECLAIM_CLEAN)
1345 goto keep_locked;
1346 if (!may_enter_fs)
1347 goto keep_locked;
1348 if (!sc->may_writepage)
1349 goto keep_locked;
1350
1351 /*
1352 * Page is dirty. Flush the TLB if a writable entry
1353 * potentially exists to avoid CPU writes after IO
1354 * starts and then write it out here.
1355 */
1356 try_to_unmap_flush_dirty();
Olivier Deprez157378f2022-04-04 15:47:50 +02001357 switch (pageout(page, mapping)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001358 case PAGE_KEEP:
1359 goto keep_locked;
1360 case PAGE_ACTIVATE:
1361 goto activate_locked;
1362 case PAGE_SUCCESS:
Olivier Deprez157378f2022-04-04 15:47:50 +02001363 stat->nr_pageout += thp_nr_pages(page);
1364
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001365 if (PageWriteback(page))
1366 goto keep;
1367 if (PageDirty(page))
1368 goto keep;
1369
1370 /*
1371 * A synchronous write - probably a ramdisk. Go
1372 * ahead and try to reclaim the page.
1373 */
1374 if (!trylock_page(page))
1375 goto keep;
1376 if (PageDirty(page) || PageWriteback(page))
1377 goto keep_locked;
1378 mapping = page_mapping(page);
1379 case PAGE_CLEAN:
1380 ; /* try to free the page below */
1381 }
1382 }
1383
1384 /*
1385 * If the page has buffers, try to free the buffer mappings
1386 * associated with this page. If we succeed we try to free
1387 * the page as well.
1388 *
1389 * We do this even if the page is PageDirty().
1390 * try_to_release_page() does not perform I/O, but it is
1391 * possible for a page to have PageDirty set, but it is actually
1392 * clean (all its buffers are clean). This happens if the
1393 * buffers were written out directly, with submit_bh(). ext3
1394 * will do this, as well as the blockdev mapping.
1395 * try_to_release_page() will discover that cleanness and will
1396 * drop the buffers and mark the page clean - it can be freed.
1397 *
1398 * Rarely, pages can have buffers and no ->mapping. These are
1399 * the pages which were not successfully invalidated in
1400 * truncate_complete_page(). We try to drop those buffers here
1401 * and if that worked, and the page is no longer mapped into
1402 * process address space (page_count == 1) it can be freed.
1403 * Otherwise, leave the page on the LRU so it is swappable.
1404 */
1405 if (page_has_private(page)) {
1406 if (!try_to_release_page(page, sc->gfp_mask))
1407 goto activate_locked;
1408 if (!mapping && page_count(page) == 1) {
1409 unlock_page(page);
1410 if (put_page_testzero(page))
1411 goto free_it;
1412 else {
1413 /*
1414 * rare race with speculative reference.
1415 * the speculative reference will free
1416 * this page shortly, so we may
1417 * increment nr_reclaimed here (and
1418 * leave it off the LRU).
1419 */
1420 nr_reclaimed++;
1421 continue;
1422 }
1423 }
1424 }
1425
1426 if (PageAnon(page) && !PageSwapBacked(page)) {
1427 /* follow __remove_mapping for reference */
1428 if (!page_ref_freeze(page, 1))
1429 goto keep_locked;
1430 if (PageDirty(page)) {
1431 page_ref_unfreeze(page, 1);
1432 goto keep_locked;
1433 }
1434
1435 count_vm_event(PGLAZYFREED);
1436 count_memcg_page_event(page, PGLAZYFREED);
Olivier Deprez157378f2022-04-04 15:47:50 +02001437 } else if (!mapping || !__remove_mapping(mapping, page, true,
1438 sc->target_mem_cgroup))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001439 goto keep_locked;
David Brazdil0f672f62019-12-10 10:32:29 +00001440
1441 unlock_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001442free_it:
David Brazdil0f672f62019-12-10 10:32:29 +00001443 /*
1444 * THP may get swapped out in a whole, need account
1445 * all base pages.
1446 */
1447 nr_reclaimed += nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001448
1449 /*
1450 * Is there need to periodically free_page_list? It would
1451 * appear not as the counts should be low
1452 */
David Brazdil0f672f62019-12-10 10:32:29 +00001453 if (unlikely(PageTransHuge(page)))
Olivier Deprez157378f2022-04-04 15:47:50 +02001454 destroy_compound_page(page);
David Brazdil0f672f62019-12-10 10:32:29 +00001455 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001456 list_add(&page->lru, &free_pages);
1457 continue;
1458
David Brazdil0f672f62019-12-10 10:32:29 +00001459activate_locked_split:
1460 /*
1461 * The tail pages that are failed to add into swap cache
1462 * reach here. Fixup nr_scanned and nr_pages.
1463 */
1464 if (nr_pages > 1) {
1465 sc->nr_scanned -= (nr_pages - 1);
1466 nr_pages = 1;
1467 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001468activate_locked:
1469 /* Not a candidate for swapping, so reclaim swap space. */
1470 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1471 PageMlocked(page)))
1472 try_to_free_swap(page);
1473 VM_BUG_ON_PAGE(PageActive(page), page);
1474 if (!PageMlocked(page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001475 int type = page_is_file_lru(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001476 SetPageActive(page);
David Brazdil0f672f62019-12-10 10:32:29 +00001477 stat->nr_activate[type] += nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001478 count_memcg_page_event(page, PGACTIVATE);
1479 }
1480keep_locked:
1481 unlock_page(page);
1482keep:
1483 list_add(&page->lru, &ret_pages);
1484 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1485 }
1486
David Brazdil0f672f62019-12-10 10:32:29 +00001487 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1488
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001489 mem_cgroup_uncharge_list(&free_pages);
1490 try_to_unmap_flush();
1491 free_unref_page_list(&free_pages);
1492
1493 list_splice(&ret_pages, page_list);
1494 count_vm_events(PGACTIVATE, pgactivate);
1495
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001496 return nr_reclaimed;
1497}
1498
Olivier Deprez157378f2022-04-04 15:47:50 +02001499unsigned int reclaim_clean_pages_from_list(struct zone *zone,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001500 struct list_head *page_list)
1501{
1502 struct scan_control sc = {
1503 .gfp_mask = GFP_KERNEL,
1504 .priority = DEF_PRIORITY,
1505 .may_unmap = 1,
1506 };
Olivier Deprez157378f2022-04-04 15:47:50 +02001507 struct reclaim_stat stat;
1508 unsigned int nr_reclaimed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001509 struct page *page, *next;
1510 LIST_HEAD(clean_pages);
1511
1512 list_for_each_entry_safe(page, next, page_list, lru) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001513 if (page_is_file_lru(page) && !PageDirty(page) &&
David Brazdil0f672f62019-12-10 10:32:29 +00001514 !__PageMovable(page) && !PageUnevictable(page)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001515 ClearPageActive(page);
1516 list_move(&page->lru, &clean_pages);
1517 }
1518 }
1519
Olivier Deprez157378f2022-04-04 15:47:50 +02001520 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1521 &stat, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001522 list_splice(&clean_pages, page_list);
Olivier Deprez157378f2022-04-04 15:47:50 +02001523 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1524 -(long)nr_reclaimed);
1525 /*
1526 * Since lazyfree pages are isolated from file LRU from the beginning,
1527 * they will rotate back to anonymous LRU in the end if it failed to
1528 * discard so isolated count will be mismatched.
1529 * Compensate the isolated count for both LRU lists.
1530 */
1531 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1532 stat.nr_lazyfree_fail);
1533 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1534 -(long)stat.nr_lazyfree_fail);
1535 return nr_reclaimed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001536}
1537
1538/*
1539 * Attempt to remove the specified page from its LRU. Only take this page
1540 * if it is of the appropriate PageActive status. Pages which are being
1541 * freed elsewhere are also ignored.
1542 *
1543 * page: page to consider
1544 * mode: one of the LRU isolation modes defined above
1545 *
1546 * returns 0 on success, -ve errno on failure.
1547 */
1548int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1549{
1550 int ret = -EINVAL;
1551
1552 /* Only take pages on the LRU. */
1553 if (!PageLRU(page))
1554 return ret;
1555
1556 /* Compaction should not handle unevictable pages but CMA can do so */
1557 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1558 return ret;
1559
1560 ret = -EBUSY;
1561
1562 /*
1563 * To minimise LRU disruption, the caller can indicate that it only
1564 * wants to isolate pages it will be able to operate on without
1565 * blocking - clean pages for the most part.
1566 *
1567 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1568 * that it is possible to migrate without blocking
1569 */
1570 if (mode & ISOLATE_ASYNC_MIGRATE) {
1571 /* All the caller can do on PageWriteback is block */
1572 if (PageWriteback(page))
1573 return ret;
1574
1575 if (PageDirty(page)) {
1576 struct address_space *mapping;
1577 bool migrate_dirty;
1578
1579 /*
1580 * Only pages without mappings or that have a
1581 * ->migratepage callback are possible to migrate
1582 * without blocking. However, we can be racing with
1583 * truncation so it's necessary to lock the page
1584 * to stabilise the mapping as truncation holds
1585 * the page lock until after the page is removed
1586 * from the page cache.
1587 */
1588 if (!trylock_page(page))
1589 return ret;
1590
1591 mapping = page_mapping(page);
1592 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1593 unlock_page(page);
1594 if (!migrate_dirty)
1595 return ret;
1596 }
1597 }
1598
1599 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1600 return ret;
1601
1602 if (likely(get_page_unless_zero(page))) {
1603 /*
1604 * Be careful not to clear PageLRU until after we're
1605 * sure the page is not being freed elsewhere -- the
1606 * page release code relies on it.
1607 */
1608 ClearPageLRU(page);
1609 ret = 0;
1610 }
1611
1612 return ret;
1613}
1614
1615
1616/*
1617 * Update LRU sizes after isolating pages. The LRU size updates must
Olivier Deprez157378f2022-04-04 15:47:50 +02001618 * be complete before mem_cgroup_update_lru_size due to a sanity check.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001619 */
1620static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1621 enum lru_list lru, unsigned long *nr_zone_taken)
1622{
1623 int zid;
1624
1625 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1626 if (!nr_zone_taken[zid])
1627 continue;
1628
Olivier Deprez157378f2022-04-04 15:47:50 +02001629 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001630 }
1631
1632}
1633
David Brazdil0f672f62019-12-10 10:32:29 +00001634/**
1635 * pgdat->lru_lock is heavily contended. Some of the functions that
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001636 * shrink the lists perform better by taking out a batch of pages
1637 * and working on them outside the LRU lock.
1638 *
1639 * For pagecache intensive workloads, this function is the hottest
1640 * spot in the kernel (apart from copy_*_user functions).
1641 *
1642 * Appropriate locks must be held before calling this function.
1643 *
1644 * @nr_to_scan: The number of eligible pages to look through on the list.
1645 * @lruvec: The LRU vector to pull pages from.
1646 * @dst: The temp list to put pages on to.
1647 * @nr_scanned: The number of pages that were scanned.
1648 * @sc: The scan_control struct for this reclaim session
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001649 * @lru: LRU list id for isolating
1650 *
1651 * returns how many pages were moved onto *@dst.
1652 */
1653static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1654 struct lruvec *lruvec, struct list_head *dst,
1655 unsigned long *nr_scanned, struct scan_control *sc,
David Brazdil0f672f62019-12-10 10:32:29 +00001656 enum lru_list lru)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001657{
1658 struct list_head *src = &lruvec->lists[lru];
1659 unsigned long nr_taken = 0;
1660 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1661 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1662 unsigned long skipped = 0;
1663 unsigned long scan, total_scan, nr_pages;
1664 LIST_HEAD(pages_skipped);
David Brazdil0f672f62019-12-10 10:32:29 +00001665 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001666
David Brazdil0f672f62019-12-10 10:32:29 +00001667 total_scan = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001668 scan = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001669 while (scan < nr_to_scan && !list_empty(src)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001670 struct page *page;
1671
1672 page = lru_to_page(src);
1673 prefetchw_prev_lru_page(page, src, flags);
1674
1675 VM_BUG_ON_PAGE(!PageLRU(page), page);
1676
David Brazdil0f672f62019-12-10 10:32:29 +00001677 nr_pages = compound_nr(page);
1678 total_scan += nr_pages;
1679
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001680 if (page_zonenum(page) > sc->reclaim_idx) {
1681 list_move(&page->lru, &pages_skipped);
David Brazdil0f672f62019-12-10 10:32:29 +00001682 nr_skipped[page_zonenum(page)] += nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001683 continue;
1684 }
1685
1686 /*
1687 * Do not count skipped pages because that makes the function
1688 * return with no isolated pages if the LRU mostly contains
1689 * ineligible pages. This causes the VM to not reclaim any
1690 * pages, triggering a premature OOM.
David Brazdil0f672f62019-12-10 10:32:29 +00001691 *
1692 * Account all tail pages of THP. This would not cause
1693 * premature OOM since __isolate_lru_page() returns -EBUSY
1694 * only when the page is being freed somewhere else.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001695 */
David Brazdil0f672f62019-12-10 10:32:29 +00001696 scan += nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001697 switch (__isolate_lru_page(page, mode)) {
1698 case 0:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001699 nr_taken += nr_pages;
1700 nr_zone_taken[page_zonenum(page)] += nr_pages;
1701 list_move(&page->lru, dst);
1702 break;
1703
1704 case -EBUSY:
1705 /* else it is being freed elsewhere */
1706 list_move(&page->lru, src);
1707 continue;
1708
1709 default:
1710 BUG();
1711 }
1712 }
1713
1714 /*
1715 * Splice any skipped pages to the start of the LRU list. Note that
1716 * this disrupts the LRU order when reclaiming for lower zones but
1717 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1718 * scanning would soon rescan the same pages to skip and put the
1719 * system at risk of premature OOM.
1720 */
1721 if (!list_empty(&pages_skipped)) {
1722 int zid;
1723
1724 list_splice(&pages_skipped, src);
1725 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1726 if (!nr_skipped[zid])
1727 continue;
1728
1729 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1730 skipped += nr_skipped[zid];
1731 }
1732 }
1733 *nr_scanned = total_scan;
1734 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1735 total_scan, skipped, nr_taken, mode, lru);
1736 update_lru_sizes(lruvec, lru, nr_zone_taken);
1737 return nr_taken;
1738}
1739
1740/**
1741 * isolate_lru_page - tries to isolate a page from its LRU list
1742 * @page: page to isolate from its LRU list
1743 *
1744 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1745 * vmstat statistic corresponding to whatever LRU list the page was on.
1746 *
1747 * Returns 0 if the page was removed from an LRU list.
1748 * Returns -EBUSY if the page was not on an LRU list.
1749 *
1750 * The returned page will have PageLRU() cleared. If it was found on
1751 * the active list, it will have PageActive set. If it was found on
1752 * the unevictable list, it will have the PageUnevictable bit set. That flag
1753 * may need to be cleared by the caller before letting the page go.
1754 *
1755 * The vmstat statistic corresponding to the list on which the page was
1756 * found will be decremented.
1757 *
1758 * Restrictions:
1759 *
1760 * (1) Must be called with an elevated refcount on the page. This is a
Olivier Deprez157378f2022-04-04 15:47:50 +02001761 * fundamental difference from isolate_lru_pages (which is called
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001762 * without a stable reference).
1763 * (2) the lru_lock must not be held.
1764 * (3) interrupts must be enabled.
1765 */
1766int isolate_lru_page(struct page *page)
1767{
1768 int ret = -EBUSY;
1769
1770 VM_BUG_ON_PAGE(!page_count(page), page);
1771 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1772
1773 if (PageLRU(page)) {
David Brazdil0f672f62019-12-10 10:32:29 +00001774 pg_data_t *pgdat = page_pgdat(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001775 struct lruvec *lruvec;
1776
David Brazdil0f672f62019-12-10 10:32:29 +00001777 spin_lock_irq(&pgdat->lru_lock);
1778 lruvec = mem_cgroup_page_lruvec(page, pgdat);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001779 if (PageLRU(page)) {
1780 int lru = page_lru(page);
1781 get_page(page);
1782 ClearPageLRU(page);
1783 del_page_from_lru_list(page, lruvec, lru);
1784 ret = 0;
1785 }
David Brazdil0f672f62019-12-10 10:32:29 +00001786 spin_unlock_irq(&pgdat->lru_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001787 }
1788 return ret;
1789}
1790
1791/*
1792 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
Olivier Deprez157378f2022-04-04 15:47:50 +02001793 * then get rescheduled. When there are massive number of tasks doing page
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001794 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1795 * the LRU list will go small and be scanned faster than necessary, leading to
1796 * unnecessary swapping, thrashing and OOM.
1797 */
1798static int too_many_isolated(struct pglist_data *pgdat, int file,
1799 struct scan_control *sc)
1800{
1801 unsigned long inactive, isolated;
1802
1803 if (current_is_kswapd())
1804 return 0;
1805
Olivier Deprez157378f2022-04-04 15:47:50 +02001806 if (!writeback_throttling_sane(sc))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001807 return 0;
1808
1809 if (file) {
1810 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1811 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1812 } else {
1813 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1814 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1815 }
1816
1817 /*
1818 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1819 * won't get blocked by normal direct-reclaimers, forming a circular
1820 * deadlock.
1821 */
1822 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1823 inactive >>= 3;
1824
1825 return isolated > inactive;
1826}
1827
David Brazdil0f672f62019-12-10 10:32:29 +00001828/*
1829 * This moves pages from @list to corresponding LRU list.
1830 *
1831 * We move them the other way if the page is referenced by one or more
1832 * processes, from rmap.
1833 *
1834 * If the pages are mostly unmapped, the processing is fast and it is
1835 * appropriate to hold zone_lru_lock across the whole operation. But if
1836 * the pages are mapped, the processing is slow (page_referenced()) so we
1837 * should drop zone_lru_lock around each page. It's impossible to balance
1838 * this, so instead we remove the pages from the LRU while processing them.
1839 * It is safe to rely on PG_active against the non-LRU pages in here because
1840 * nobody will play with that bit on a non-LRU page.
1841 *
1842 * The downside is that we have to touch page->_refcount against each page.
1843 * But we had to alter page->flags anyway.
1844 *
1845 * Returns the number of pages moved to the given lruvec.
1846 */
1847
1848static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1849 struct list_head *list)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001850{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001851 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
David Brazdil0f672f62019-12-10 10:32:29 +00001852 int nr_pages, nr_moved = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001853 LIST_HEAD(pages_to_free);
David Brazdil0f672f62019-12-10 10:32:29 +00001854 struct page *page;
1855 enum lru_list lru;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001856
David Brazdil0f672f62019-12-10 10:32:29 +00001857 while (!list_empty(list)) {
1858 page = lru_to_page(list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001859 VM_BUG_ON_PAGE(PageLRU(page), page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001860 if (unlikely(!page_evictable(page))) {
David Brazdil0f672f62019-12-10 10:32:29 +00001861 list_del(&page->lru);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001862 spin_unlock_irq(&pgdat->lru_lock);
1863 putback_lru_page(page);
1864 spin_lock_irq(&pgdat->lru_lock);
1865 continue;
1866 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001867 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1868
1869 SetPageLRU(page);
1870 lru = page_lru(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001871
Olivier Deprez157378f2022-04-04 15:47:50 +02001872 nr_pages = thp_nr_pages(page);
David Brazdil0f672f62019-12-10 10:32:29 +00001873 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1874 list_move(&page->lru, &lruvec->lists[lru]);
1875
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001876 if (put_page_testzero(page)) {
1877 __ClearPageLRU(page);
1878 __ClearPageActive(page);
1879 del_page_from_lru_list(page, lruvec, lru);
1880
1881 if (unlikely(PageCompound(page))) {
1882 spin_unlock_irq(&pgdat->lru_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02001883 destroy_compound_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001884 spin_lock_irq(&pgdat->lru_lock);
1885 } else
1886 list_add(&page->lru, &pages_to_free);
David Brazdil0f672f62019-12-10 10:32:29 +00001887 } else {
1888 nr_moved += nr_pages;
Olivier Deprez157378f2022-04-04 15:47:50 +02001889 if (PageActive(page))
1890 workingset_age_nonresident(lruvec, nr_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001891 }
1892 }
1893
1894 /*
1895 * To save our caller's stack, now use input list for pages to free.
1896 */
David Brazdil0f672f62019-12-10 10:32:29 +00001897 list_splice(&pages_to_free, list);
1898
1899 return nr_moved;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001900}
1901
1902/*
1903 * If a kernel thread (such as nfsd for loop-back mounts) services
Olivier Deprez157378f2022-04-04 15:47:50 +02001904 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001905 * In that case we should only throttle if the backing device it is
1906 * writing to is congested. In other cases it is safe to throttle.
1907 */
1908static int current_may_throttle(void)
1909{
Olivier Deprez157378f2022-04-04 15:47:50 +02001910 return !(current->flags & PF_LOCAL_THROTTLE) ||
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001911 current->backing_dev_info == NULL ||
1912 bdi_write_congested(current->backing_dev_info);
1913}
1914
1915/*
1916 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1917 * of reclaimed pages
1918 */
1919static noinline_for_stack unsigned long
1920shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1921 struct scan_control *sc, enum lru_list lru)
1922{
1923 LIST_HEAD(page_list);
1924 unsigned long nr_scanned;
Olivier Deprez157378f2022-04-04 15:47:50 +02001925 unsigned int nr_reclaimed = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001926 unsigned long nr_taken;
David Brazdil0f672f62019-12-10 10:32:29 +00001927 struct reclaim_stat stat;
Olivier Deprez157378f2022-04-04 15:47:50 +02001928 bool file = is_file_lru(lru);
David Brazdil0f672f62019-12-10 10:32:29 +00001929 enum vm_event_item item;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001930 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001931 bool stalled = false;
1932
1933 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1934 if (stalled)
1935 return 0;
1936
1937 /* wait a bit for the reclaimer. */
1938 msleep(100);
1939 stalled = true;
1940
1941 /* We are about to die and free our memory. Return now. */
1942 if (fatal_signal_pending(current))
1943 return SWAP_CLUSTER_MAX;
1944 }
1945
1946 lru_add_drain();
1947
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001948 spin_lock_irq(&pgdat->lru_lock);
1949
1950 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
David Brazdil0f672f62019-12-10 10:32:29 +00001951 &nr_scanned, sc, lru);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001952
1953 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
David Brazdil0f672f62019-12-10 10:32:29 +00001954 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
Olivier Deprez157378f2022-04-04 15:47:50 +02001955 if (!cgroup_reclaim(sc))
David Brazdil0f672f62019-12-10 10:32:29 +00001956 __count_vm_events(item, nr_scanned);
1957 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
Olivier Deprez157378f2022-04-04 15:47:50 +02001958 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1959
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001960 spin_unlock_irq(&pgdat->lru_lock);
1961
1962 if (nr_taken == 0)
1963 return 0;
1964
Olivier Deprez157378f2022-04-04 15:47:50 +02001965 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001966
1967 spin_lock_irq(&pgdat->lru_lock);
1968
David Brazdil0f672f62019-12-10 10:32:29 +00001969 move_pages_to_lru(lruvec, &page_list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001970
1971 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
Olivier Deprez157378f2022-04-04 15:47:50 +02001972 lru_note_cost(lruvec, file, stat.nr_pageout);
1973 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1974 if (!cgroup_reclaim(sc))
1975 __count_vm_events(item, nr_reclaimed);
1976 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1977 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001978
1979 spin_unlock_irq(&pgdat->lru_lock);
1980
1981 mem_cgroup_uncharge_list(&page_list);
1982 free_unref_page_list(&page_list);
1983
1984 /*
1985 * If dirty pages are scanned that are not queued for IO, it
1986 * implies that flushers are not doing their job. This can
1987 * happen when memory pressure pushes dirty pages to the end of
1988 * the LRU before the dirty limits are breached and the dirty
1989 * data has expired. It can also happen when the proportion of
1990 * dirty pages grows not through writes but through memory
1991 * pressure reclaiming all the clean cache. And in some cases,
1992 * the flushers simply cannot keep up with the allocation
1993 * rate. Nudge the flusher threads in case they are asleep.
1994 */
1995 if (stat.nr_unqueued_dirty == nr_taken)
1996 wakeup_flusher_threads(WB_REASON_VMSCAN);
1997
1998 sc->nr.dirty += stat.nr_dirty;
1999 sc->nr.congested += stat.nr_congested;
2000 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2001 sc->nr.writeback += stat.nr_writeback;
2002 sc->nr.immediate += stat.nr_immediate;
2003 sc->nr.taken += nr_taken;
2004 if (file)
2005 sc->nr.file_taken += nr_taken;
2006
2007 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2008 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2009 return nr_reclaimed;
2010}
2011
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002012static void shrink_active_list(unsigned long nr_to_scan,
2013 struct lruvec *lruvec,
2014 struct scan_control *sc,
2015 enum lru_list lru)
2016{
2017 unsigned long nr_taken;
2018 unsigned long nr_scanned;
2019 unsigned long vm_flags;
2020 LIST_HEAD(l_hold); /* The pages which were snipped off */
2021 LIST_HEAD(l_active);
2022 LIST_HEAD(l_inactive);
2023 struct page *page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002024 unsigned nr_deactivate, nr_activate;
2025 unsigned nr_rotated = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002026 int file = is_file_lru(lru);
2027 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2028
2029 lru_add_drain();
2030
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002031 spin_lock_irq(&pgdat->lru_lock);
2032
2033 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
David Brazdil0f672f62019-12-10 10:32:29 +00002034 &nr_scanned, sc, lru);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002035
2036 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002037
Olivier Deprez157378f2022-04-04 15:47:50 +02002038 if (!cgroup_reclaim(sc))
2039 __count_vm_events(PGREFILL, nr_scanned);
David Brazdil0f672f62019-12-10 10:32:29 +00002040 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002041
2042 spin_unlock_irq(&pgdat->lru_lock);
2043
2044 while (!list_empty(&l_hold)) {
2045 cond_resched();
2046 page = lru_to_page(&l_hold);
2047 list_del(&page->lru);
2048
2049 if (unlikely(!page_evictable(page))) {
2050 putback_lru_page(page);
2051 continue;
2052 }
2053
2054 if (unlikely(buffer_heads_over_limit)) {
2055 if (page_has_private(page) && trylock_page(page)) {
2056 if (page_has_private(page))
2057 try_to_release_page(page, 0);
2058 unlock_page(page);
2059 }
2060 }
2061
2062 if (page_referenced(page, 0, sc->target_mem_cgroup,
2063 &vm_flags)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002064 /*
2065 * Identify referenced, file-backed active pages and
2066 * give them one more trip around the active list. So
2067 * that executable code get better chances to stay in
2068 * memory under moderate memory pressure. Anon pages
2069 * are not likely to be evicted by use-once streaming
2070 * IO, plus JVM can create lots of anon VM_EXEC pages,
2071 * so we ignore them here.
2072 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002073 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2074 nr_rotated += thp_nr_pages(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002075 list_add(&page->lru, &l_active);
2076 continue;
2077 }
2078 }
2079
2080 ClearPageActive(page); /* we are de-activating */
David Brazdil0f672f62019-12-10 10:32:29 +00002081 SetPageWorkingset(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002082 list_add(&page->lru, &l_inactive);
2083 }
2084
2085 /*
2086 * Move pages back to the lru list.
2087 */
2088 spin_lock_irq(&pgdat->lru_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002089
David Brazdil0f672f62019-12-10 10:32:29 +00002090 nr_activate = move_pages_to_lru(lruvec, &l_active);
2091 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2092 /* Keep all free pages in l_active list */
2093 list_splice(&l_inactive, &l_active);
2094
2095 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2096 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2097
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002098 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2099 spin_unlock_irq(&pgdat->lru_lock);
2100
David Brazdil0f672f62019-12-10 10:32:29 +00002101 mem_cgroup_uncharge_list(&l_active);
2102 free_unref_page_list(&l_active);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002103 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2104 nr_deactivate, nr_rotated, sc->priority, file);
2105}
2106
David Brazdil0f672f62019-12-10 10:32:29 +00002107unsigned long reclaim_pages(struct list_head *page_list)
2108{
Olivier Deprez157378f2022-04-04 15:47:50 +02002109 int nid = NUMA_NO_NODE;
2110 unsigned int nr_reclaimed = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00002111 LIST_HEAD(node_page_list);
2112 struct reclaim_stat dummy_stat;
2113 struct page *page;
2114 struct scan_control sc = {
2115 .gfp_mask = GFP_KERNEL,
2116 .priority = DEF_PRIORITY,
2117 .may_writepage = 1,
2118 .may_unmap = 1,
2119 .may_swap = 1,
2120 };
2121
2122 while (!list_empty(page_list)) {
2123 page = lru_to_page(page_list);
Olivier Deprez157378f2022-04-04 15:47:50 +02002124 if (nid == NUMA_NO_NODE) {
David Brazdil0f672f62019-12-10 10:32:29 +00002125 nid = page_to_nid(page);
2126 INIT_LIST_HEAD(&node_page_list);
2127 }
2128
2129 if (nid == page_to_nid(page)) {
2130 ClearPageActive(page);
2131 list_move(&page->lru, &node_page_list);
2132 continue;
2133 }
2134
2135 nr_reclaimed += shrink_page_list(&node_page_list,
2136 NODE_DATA(nid),
Olivier Deprez157378f2022-04-04 15:47:50 +02002137 &sc, &dummy_stat, false);
David Brazdil0f672f62019-12-10 10:32:29 +00002138 while (!list_empty(&node_page_list)) {
2139 page = lru_to_page(&node_page_list);
2140 list_del(&page->lru);
2141 putback_lru_page(page);
2142 }
2143
Olivier Deprez157378f2022-04-04 15:47:50 +02002144 nid = NUMA_NO_NODE;
David Brazdil0f672f62019-12-10 10:32:29 +00002145 }
2146
2147 if (!list_empty(&node_page_list)) {
2148 nr_reclaimed += shrink_page_list(&node_page_list,
2149 NODE_DATA(nid),
Olivier Deprez157378f2022-04-04 15:47:50 +02002150 &sc, &dummy_stat, false);
David Brazdil0f672f62019-12-10 10:32:29 +00002151 while (!list_empty(&node_page_list)) {
2152 page = lru_to_page(&node_page_list);
2153 list_del(&page->lru);
2154 putback_lru_page(page);
2155 }
2156 }
2157
2158 return nr_reclaimed;
2159}
2160
Olivier Deprez157378f2022-04-04 15:47:50 +02002161static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2162 struct lruvec *lruvec, struct scan_control *sc)
2163{
2164 if (is_active_lru(lru)) {
2165 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2166 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2167 else
2168 sc->skipped_deactivate = 1;
2169 return 0;
2170 }
2171
2172 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2173}
2174
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002175/*
2176 * The inactive anon list should be small enough that the VM never has
2177 * to do too much work.
2178 *
2179 * The inactive file list should be small enough to leave most memory
2180 * to the established workingset on the scan-resistant active list,
2181 * but large enough to avoid thrashing the aggregate readahead window.
2182 *
2183 * Both inactive lists should also be large enough that each inactive
2184 * page has a chance to be referenced again before it is reclaimed.
2185 *
2186 * If that fails and refaulting is observed, the inactive list grows.
2187 *
2188 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2189 * on this LRU, maintained by the pageout code. An inactive_ratio
2190 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2191 *
2192 * total target max
2193 * memory ratio inactive
2194 * -------------------------------------
2195 * 10MB 1 5MB
2196 * 100MB 1 50MB
2197 * 1GB 3 250MB
2198 * 10GB 10 0.9GB
2199 * 100GB 31 3GB
2200 * 1TB 101 10GB
2201 * 10TB 320 32GB
2202 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002203static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002204{
Olivier Deprez157378f2022-04-04 15:47:50 +02002205 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002206 unsigned long inactive, active;
2207 unsigned long inactive_ratio;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002208 unsigned long gb;
2209
Olivier Deprez157378f2022-04-04 15:47:50 +02002210 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2211 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002212
Olivier Deprez157378f2022-04-04 15:47:50 +02002213 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2214 if (gb)
2215 inactive_ratio = int_sqrt(10 * gb);
2216 else
2217 inactive_ratio = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002218
2219 return inactive * inactive_ratio < active;
2220}
2221
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002222enum scan_balance {
2223 SCAN_EQUAL,
2224 SCAN_FRACT,
2225 SCAN_ANON,
2226 SCAN_FILE,
2227};
2228
2229/*
2230 * Determine how aggressively the anon and file LRU lists should be
2231 * scanned. The relative value of each set of LRU lists is determined
2232 * by looking at the fraction of the pages scanned we did rotate back
2233 * onto the active list instead of evict.
2234 *
2235 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2236 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2237 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002238static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2239 unsigned long *nr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002240{
Olivier Deprez157378f2022-04-04 15:47:50 +02002241 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2242 unsigned long anon_cost, file_cost, total_cost;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002243 int swappiness = mem_cgroup_swappiness(memcg);
Olivier Deprez157378f2022-04-04 15:47:50 +02002244 u64 fraction[ANON_AND_FILE];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002245 u64 denominator = 0; /* gcc */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002246 enum scan_balance scan_balance;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002247 unsigned long ap, fp;
2248 enum lru_list lru;
2249
2250 /* If we have no swap space, do not bother scanning anon pages. */
2251 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2252 scan_balance = SCAN_FILE;
2253 goto out;
2254 }
2255
2256 /*
2257 * Global reclaim will swap to prevent OOM even with no
2258 * swappiness, but memcg users want to use this knob to
2259 * disable swapping for individual groups completely when
2260 * using the memory controller's swap limit feature would be
2261 * too expensive.
2262 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002263 if (cgroup_reclaim(sc) && !swappiness) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002264 scan_balance = SCAN_FILE;
2265 goto out;
2266 }
2267
2268 /*
2269 * Do not apply any pressure balancing cleverness when the
2270 * system is close to OOM, scan both anon and file equally
2271 * (unless the swappiness setting disagrees with swapping).
2272 */
2273 if (!sc->priority && swappiness) {
2274 scan_balance = SCAN_EQUAL;
2275 goto out;
2276 }
2277
2278 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002279 * If the system is almost out of file pages, force-scan anon.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002280 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002281 if (sc->file_is_tiny) {
2282 scan_balance = SCAN_ANON;
2283 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002284 }
2285
2286 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002287 * If there is enough inactive page cache, we do not reclaim
2288 * anything from the anonymous working right now.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002289 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002290 if (sc->cache_trim_mode) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002291 scan_balance = SCAN_FILE;
2292 goto out;
2293 }
2294
2295 scan_balance = SCAN_FRACT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002296 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002297 * Calculate the pressure balance between anon and file pages.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002298 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002299 * The amount of pressure we put on each LRU is inversely
2300 * proportional to the cost of reclaiming each list, as
2301 * determined by the share of pages that are refaulting, times
2302 * the relative IO cost of bringing back a swapped out
2303 * anonymous page vs reloading a filesystem page (swappiness).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002304 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002305 * Although we limit that influence to ensure no list gets
2306 * left behind completely: at least a third of the pressure is
2307 * applied, before swappiness.
2308 *
2309 * With swappiness at 100, anon and file have equal IO cost.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002310 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002311 total_cost = sc->anon_cost + sc->file_cost;
2312 anon_cost = total_cost + sc->anon_cost;
2313 file_cost = total_cost + sc->file_cost;
2314 total_cost = anon_cost + file_cost;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002315
Olivier Deprez157378f2022-04-04 15:47:50 +02002316 ap = swappiness * (total_cost + 1);
2317 ap /= anon_cost + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002318
Olivier Deprez157378f2022-04-04 15:47:50 +02002319 fp = (200 - swappiness) * (total_cost + 1);
2320 fp /= file_cost + 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002321
2322 fraction[0] = ap;
2323 fraction[1] = fp;
Olivier Deprez157378f2022-04-04 15:47:50 +02002324 denominator = ap + fp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002325out:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002326 for_each_evictable_lru(lru) {
2327 int file = is_file_lru(lru);
David Brazdil0f672f62019-12-10 10:32:29 +00002328 unsigned long lruvec_size;
Olivier Deprez0e641232021-09-23 10:07:05 +02002329 unsigned long low, min;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002330 unsigned long scan;
2331
David Brazdil0f672f62019-12-10 10:32:29 +00002332 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
Olivier Deprez0e641232021-09-23 10:07:05 +02002333 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2334 &min, &low);
David Brazdil0f672f62019-12-10 10:32:29 +00002335
Olivier Deprez0e641232021-09-23 10:07:05 +02002336 if (min || low) {
David Brazdil0f672f62019-12-10 10:32:29 +00002337 /*
2338 * Scale a cgroup's reclaim pressure by proportioning
2339 * its current usage to its memory.low or memory.min
2340 * setting.
2341 *
2342 * This is important, as otherwise scanning aggression
2343 * becomes extremely binary -- from nothing as we
2344 * approach the memory protection threshold, to totally
2345 * nominal as we exceed it. This results in requiring
2346 * setting extremely liberal protection thresholds. It
2347 * also means we simply get no protection at all if we
2348 * set it too low, which is not ideal.
2349 *
2350 * If there is any protection in place, we reduce scan
2351 * pressure by how much of the total memory used is
2352 * within protection thresholds.
2353 *
2354 * There is one special case: in the first reclaim pass,
2355 * we skip over all groups that are within their low
2356 * protection. If that fails to reclaim enough pages to
2357 * satisfy the reclaim goal, we come back and override
2358 * the best-effort low protection. However, we still
2359 * ideally want to honor how well-behaved groups are in
2360 * that case instead of simply punishing them all
2361 * equally. As such, we reclaim them based on how much
2362 * memory they are using, reducing the scan pressure
2363 * again by how much of the total memory used is under
2364 * hard protection.
2365 */
2366 unsigned long cgroup_size = mem_cgroup_size(memcg);
Olivier Deprez0e641232021-09-23 10:07:05 +02002367 unsigned long protection;
2368
2369 /* memory.low scaling, make sure we retry before OOM */
2370 if (!sc->memcg_low_reclaim && low > min) {
2371 protection = low;
2372 sc->memcg_low_skipped = 1;
2373 } else {
2374 protection = min;
2375 }
David Brazdil0f672f62019-12-10 10:32:29 +00002376
2377 /* Avoid TOCTOU with earlier protection check */
2378 cgroup_size = max(cgroup_size, protection);
2379
2380 scan = lruvec_size - lruvec_size * protection /
Olivier Deprez0e641232021-09-23 10:07:05 +02002381 (cgroup_size + 1);
David Brazdil0f672f62019-12-10 10:32:29 +00002382
2383 /*
2384 * Minimally target SWAP_CLUSTER_MAX pages to keep
Olivier Deprez157378f2022-04-04 15:47:50 +02002385 * reclaim moving forwards, avoiding decrementing
David Brazdil0f672f62019-12-10 10:32:29 +00002386 * sc->priority further than desirable.
2387 */
2388 scan = max(scan, SWAP_CLUSTER_MAX);
2389 } else {
2390 scan = lruvec_size;
2391 }
2392
2393 scan >>= sc->priority;
2394
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002395 /*
2396 * If the cgroup's already been deleted, make sure to
2397 * scrape out the remaining cache.
2398 */
2399 if (!scan && !mem_cgroup_online(memcg))
David Brazdil0f672f62019-12-10 10:32:29 +00002400 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002401
2402 switch (scan_balance) {
2403 case SCAN_EQUAL:
2404 /* Scan lists relative to size */
2405 break;
2406 case SCAN_FRACT:
2407 /*
2408 * Scan types proportional to swappiness and
2409 * their relative recent reclaim efficiency.
Olivier Deprez0e641232021-09-23 10:07:05 +02002410 * Make sure we don't miss the last page on
2411 * the offlined memory cgroups because of a
2412 * round-off error.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002413 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002414 scan = mem_cgroup_online(memcg) ?
2415 div64_u64(scan * fraction[file], denominator) :
2416 DIV64_U64_ROUND_UP(scan * fraction[file],
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002417 denominator);
2418 break;
2419 case SCAN_FILE:
2420 case SCAN_ANON:
2421 /* Scan one type exclusively */
Olivier Deprez157378f2022-04-04 15:47:50 +02002422 if ((scan_balance == SCAN_FILE) != file)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002423 scan = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002424 break;
2425 default:
2426 /* Look ma, no brain */
2427 BUG();
2428 }
2429
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002430 nr[lru] = scan;
2431 }
2432}
2433
Olivier Deprez157378f2022-04-04 15:47:50 +02002434static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002435{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002436 unsigned long nr[NR_LRU_LISTS];
2437 unsigned long targets[NR_LRU_LISTS];
2438 unsigned long nr_to_scan;
2439 enum lru_list lru;
2440 unsigned long nr_reclaimed = 0;
2441 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2442 struct blk_plug plug;
2443 bool scan_adjusted;
2444
Olivier Deprez157378f2022-04-04 15:47:50 +02002445 get_scan_count(lruvec, sc, nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002446
2447 /* Record the original scan target for proportional adjustments later */
2448 memcpy(targets, nr, sizeof(nr));
2449
2450 /*
2451 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2452 * event that can occur when there is little memory pressure e.g.
2453 * multiple streaming readers/writers. Hence, we do not abort scanning
2454 * when the requested number of pages are reclaimed when scanning at
2455 * DEF_PRIORITY on the assumption that the fact we are direct
2456 * reclaiming implies that kswapd is not keeping up and it is best to
2457 * do a batch of work at once. For memcg reclaim one check is made to
2458 * abort proportional reclaim if either the file or anon lru has already
2459 * dropped to zero at the first pass.
2460 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002461 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002462 sc->priority == DEF_PRIORITY);
2463
2464 blk_start_plug(&plug);
2465 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2466 nr[LRU_INACTIVE_FILE]) {
2467 unsigned long nr_anon, nr_file, percentage;
2468 unsigned long nr_scanned;
2469
2470 for_each_evictable_lru(lru) {
2471 if (nr[lru]) {
2472 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2473 nr[lru] -= nr_to_scan;
2474
2475 nr_reclaimed += shrink_list(lru, nr_to_scan,
David Brazdil0f672f62019-12-10 10:32:29 +00002476 lruvec, sc);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002477 }
2478 }
2479
2480 cond_resched();
2481
2482 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2483 continue;
2484
2485 /*
2486 * For kswapd and memcg, reclaim at least the number of pages
2487 * requested. Ensure that the anon and file LRUs are scanned
2488 * proportionally what was requested by get_scan_count(). We
2489 * stop reclaiming one LRU and reduce the amount scanning
2490 * proportional to the original scan target.
2491 */
2492 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2493 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2494
2495 /*
2496 * It's just vindictive to attack the larger once the smaller
2497 * has gone to zero. And given the way we stop scanning the
2498 * smaller below, this makes sure that we only make one nudge
2499 * towards proportionality once we've got nr_to_reclaim.
2500 */
2501 if (!nr_file || !nr_anon)
2502 break;
2503
2504 if (nr_file > nr_anon) {
2505 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2506 targets[LRU_ACTIVE_ANON] + 1;
2507 lru = LRU_BASE;
2508 percentage = nr_anon * 100 / scan_target;
2509 } else {
2510 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2511 targets[LRU_ACTIVE_FILE] + 1;
2512 lru = LRU_FILE;
2513 percentage = nr_file * 100 / scan_target;
2514 }
2515
2516 /* Stop scanning the smaller of the LRU */
2517 nr[lru] = 0;
2518 nr[lru + LRU_ACTIVE] = 0;
2519
2520 /*
2521 * Recalculate the other LRU scan count based on its original
2522 * scan target and the percentage scanning already complete
2523 */
2524 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2525 nr_scanned = targets[lru] - nr[lru];
2526 nr[lru] = targets[lru] * (100 - percentage) / 100;
2527 nr[lru] -= min(nr[lru], nr_scanned);
2528
2529 lru += LRU_ACTIVE;
2530 nr_scanned = targets[lru] - nr[lru];
2531 nr[lru] = targets[lru] * (100 - percentage) / 100;
2532 nr[lru] -= min(nr[lru], nr_scanned);
2533
2534 scan_adjusted = true;
2535 }
2536 blk_finish_plug(&plug);
2537 sc->nr_reclaimed += nr_reclaimed;
2538
2539 /*
2540 * Even if we did not try to evict anon pages at all, we want to
2541 * rebalance the anon lru active/inactive ratio.
2542 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002543 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002544 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2545 sc, LRU_ACTIVE_ANON);
2546}
2547
2548/* Use reclaim/compaction for costly allocs or under memory pressure */
2549static bool in_reclaim_compaction(struct scan_control *sc)
2550{
2551 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2552 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2553 sc->priority < DEF_PRIORITY - 2))
2554 return true;
2555
2556 return false;
2557}
2558
2559/*
2560 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2561 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2562 * true if more pages should be reclaimed such that when the page allocator
Olivier Deprez157378f2022-04-04 15:47:50 +02002563 * calls try_to_compact_pages() that it will have enough free pages to succeed.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002564 * It will give up earlier than that if there is difficulty reclaiming pages.
2565 */
2566static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2567 unsigned long nr_reclaimed,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002568 struct scan_control *sc)
2569{
2570 unsigned long pages_for_compaction;
2571 unsigned long inactive_lru_pages;
2572 int z;
2573
2574 /* If not in reclaim/compaction mode, stop */
2575 if (!in_reclaim_compaction(sc))
2576 return false;
2577
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002578 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002579 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2580 * number of pages that were scanned. This will return to the caller
2581 * with the risk reclaim/compaction and the resulting allocation attempt
2582 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2583 * allocations through requiring that the full LRU list has been scanned
2584 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2585 * scan, but that approximation was wrong, and there were corner cases
2586 * where always a non-zero amount of pages were scanned.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002587 */
David Brazdil0f672f62019-12-10 10:32:29 +00002588 if (!nr_reclaimed)
2589 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002590
2591 /* If compaction would go ahead or the allocation would succeed, stop */
2592 for (z = 0; z <= sc->reclaim_idx; z++) {
2593 struct zone *zone = &pgdat->node_zones[z];
2594 if (!managed_zone(zone))
2595 continue;
2596
2597 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2598 case COMPACT_SUCCESS:
2599 case COMPACT_CONTINUE:
2600 return false;
2601 default:
2602 /* check next zone */
2603 ;
2604 }
2605 }
David Brazdil0f672f62019-12-10 10:32:29 +00002606
2607 /*
2608 * If we have not reclaimed enough pages for compaction and the
2609 * inactive lists are large enough, continue reclaiming
2610 */
2611 pages_for_compaction = compact_gap(sc->order);
2612 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2613 if (get_nr_swap_pages() > 0)
2614 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2615
2616 return inactive_lru_pages > pages_for_compaction;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002617}
2618
Olivier Deprez157378f2022-04-04 15:47:50 +02002619static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002620{
Olivier Deprez157378f2022-04-04 15:47:50 +02002621 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2622 struct mem_cgroup *memcg;
2623
2624 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2625 do {
2626 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2627 unsigned long reclaimed;
2628 unsigned long scanned;
2629
2630 /*
2631 * This loop can become CPU-bound when target memcgs
2632 * aren't eligible for reclaim - either because they
2633 * don't have any reclaimable pages, or because their
2634 * memory is explicitly protected. Avoid soft lockups.
2635 */
2636 cond_resched();
2637
2638 mem_cgroup_calculate_protection(target_memcg, memcg);
2639
2640 if (mem_cgroup_below_min(memcg)) {
2641 /*
2642 * Hard protection.
2643 * If there is no reclaimable memory, OOM.
2644 */
2645 continue;
2646 } else if (mem_cgroup_below_low(memcg)) {
2647 /*
2648 * Soft protection.
2649 * Respect the protection only as long as
2650 * there is an unprotected supply
2651 * of reclaimable memory from other cgroups.
2652 */
2653 if (!sc->memcg_low_reclaim) {
2654 sc->memcg_low_skipped = 1;
2655 continue;
2656 }
2657 memcg_memory_event(memcg, MEMCG_LOW);
2658 }
2659
2660 reclaimed = sc->nr_reclaimed;
2661 scanned = sc->nr_scanned;
2662
2663 shrink_lruvec(lruvec, sc);
2664
2665 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2666 sc->priority);
2667
2668 /* Record the group's reclaim efficiency */
2669 vmpressure(sc->gfp_mask, memcg, false,
2670 sc->nr_scanned - scanned,
2671 sc->nr_reclaimed - reclaimed);
2672
2673 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002674}
2675
Olivier Deprez157378f2022-04-04 15:47:50 +02002676static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002677{
2678 struct reclaim_state *reclaim_state = current->reclaim_state;
2679 unsigned long nr_reclaimed, nr_scanned;
Olivier Deprez157378f2022-04-04 15:47:50 +02002680 struct lruvec *target_lruvec;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002681 bool reclaimable = false;
Olivier Deprez157378f2022-04-04 15:47:50 +02002682 unsigned long file;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002683
Olivier Deprez157378f2022-04-04 15:47:50 +02002684 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002685
Olivier Deprez157378f2022-04-04 15:47:50 +02002686again:
2687 memset(&sc->nr, 0, sizeof(sc->nr));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002688
Olivier Deprez157378f2022-04-04 15:47:50 +02002689 nr_reclaimed = sc->nr_reclaimed;
2690 nr_scanned = sc->nr_scanned;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002691
Olivier Deprez157378f2022-04-04 15:47:50 +02002692 /*
2693 * Determine the scan balance between anon and file LRUs.
2694 */
2695 spin_lock_irq(&pgdat->lru_lock);
2696 sc->anon_cost = target_lruvec->anon_cost;
2697 sc->file_cost = target_lruvec->file_cost;
2698 spin_unlock_irq(&pgdat->lru_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002699
Olivier Deprez157378f2022-04-04 15:47:50 +02002700 /*
2701 * Target desirable inactive:active list ratios for the anon
2702 * and file LRU lists.
2703 */
2704 if (!sc->force_deactivate) {
2705 unsigned long refaults;
Olivier Deprez0e641232021-09-23 10:07:05 +02002706
Olivier Deprez157378f2022-04-04 15:47:50 +02002707 refaults = lruvec_page_state(target_lruvec,
2708 WORKINGSET_ACTIVATE_ANON);
2709 if (refaults != target_lruvec->refaults[0] ||
2710 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2711 sc->may_deactivate |= DEACTIVATE_ANON;
2712 else
2713 sc->may_deactivate &= ~DEACTIVATE_ANON;
2714
2715 /*
2716 * When refaults are being observed, it means a new
2717 * workingset is being established. Deactivate to get
2718 * rid of any stale active pages quickly.
2719 */
2720 refaults = lruvec_page_state(target_lruvec,
2721 WORKINGSET_ACTIVATE_FILE);
2722 if (refaults != target_lruvec->refaults[1] ||
2723 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2724 sc->may_deactivate |= DEACTIVATE_FILE;
2725 else
2726 sc->may_deactivate &= ~DEACTIVATE_FILE;
2727 } else
2728 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2729
2730 /*
2731 * If we have plenty of inactive file pages that aren't
2732 * thrashing, try to reclaim those first before touching
2733 * anonymous pages.
2734 */
2735 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2736 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2737 sc->cache_trim_mode = 1;
2738 else
2739 sc->cache_trim_mode = 0;
2740
2741 /*
2742 * Prevent the reclaimer from falling into the cache trap: as
2743 * cache pages start out inactive, every cache fault will tip
2744 * the scan balance towards the file LRU. And as the file LRU
2745 * shrinks, so does the window for rotation from references.
2746 * This means we have a runaway feedback loop where a tiny
2747 * thrashing file LRU becomes infinitely more attractive than
2748 * anon pages. Try to detect this based on file LRU size.
2749 */
2750 if (!cgroup_reclaim(sc)) {
2751 unsigned long total_high_wmark = 0;
2752 unsigned long free, anon;
2753 int z;
2754
2755 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2756 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2757 node_page_state(pgdat, NR_INACTIVE_FILE);
2758
2759 for (z = 0; z < MAX_NR_ZONES; z++) {
2760 struct zone *zone = &pgdat->node_zones[z];
2761 if (!managed_zone(zone))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002762 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002763
Olivier Deprez157378f2022-04-04 15:47:50 +02002764 total_high_wmark += high_wmark_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002765 }
2766
2767 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002768 * Consider anon: if that's low too, this isn't a
2769 * runaway file reclaim problem, but rather just
2770 * extreme pressure. Reclaim as per usual then.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002771 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002772 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2773
2774 sc->file_is_tiny =
2775 file + free <= total_high_wmark &&
2776 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2777 anon >> sc->priority;
2778 }
2779
2780 shrink_node_memcgs(pgdat, sc);
2781
2782 if (reclaim_state) {
2783 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2784 reclaim_state->reclaimed_slab = 0;
2785 }
2786
2787 /* Record the subtree's reclaim efficiency */
2788 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2789 sc->nr_scanned - nr_scanned,
2790 sc->nr_reclaimed - nr_reclaimed);
2791
2792 if (sc->nr_reclaimed - nr_reclaimed)
2793 reclaimable = true;
2794
2795 if (current_is_kswapd()) {
2796 /*
2797 * If reclaim is isolating dirty pages under writeback,
2798 * it implies that the long-lived page allocation rate
2799 * is exceeding the page laundering rate. Either the
2800 * global limits are not being effective at throttling
2801 * processes due to the page distribution throughout
2802 * zones or there is heavy usage of a slow backing
2803 * device. The only option is to throttle from reclaim
2804 * context which is not ideal as there is no guarantee
2805 * the dirtying process is throttled in the same way
2806 * balance_dirty_pages() manages.
2807 *
2808 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2809 * count the number of pages under pages flagged for
2810 * immediate reclaim and stall if any are encountered
2811 * in the nr_immediate check below.
2812 */
2813 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2814 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2815
2816 /* Allow kswapd to start writing pages during reclaim.*/
2817 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2818 set_bit(PGDAT_DIRTY, &pgdat->flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002819
2820 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02002821 * If kswapd scans pages marked for immediate
2822 * reclaim and under writeback (nr_immediate), it
2823 * implies that pages are cycling through the LRU
2824 * faster than they are written so also forcibly stall.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002825 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002826 if (sc->nr.immediate)
2827 congestion_wait(BLK_RW_ASYNC, HZ/10);
2828 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002829
Olivier Deprez157378f2022-04-04 15:47:50 +02002830 /*
2831 * Tag a node/memcg as congested if all the dirty pages
2832 * scanned were backed by a congested BDI and
2833 * wait_iff_congested will stall.
2834 *
2835 * Legacy memcg will stall in page writeback so avoid forcibly
2836 * stalling in wait_iff_congested().
2837 */
2838 if ((current_is_kswapd() ||
2839 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2840 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2841 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2842
2843 /*
2844 * Stall direct reclaim for IO completions if underlying BDIs
2845 * and node is congested. Allow kswapd to continue until it
2846 * starts encountering unqueued dirty pages or cycling through
2847 * the LRU too quickly.
2848 */
2849 if (!current_is_kswapd() && current_may_throttle() &&
2850 !sc->hibernation_mode &&
2851 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2852 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2853
2854 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2855 sc))
2856 goto again;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002857
2858 /*
2859 * Kswapd gives up on balancing particular nodes after too
2860 * many failures to reclaim anything from them and goes to
2861 * sleep. On reclaim progress, reset the failure counter. A
2862 * successful direct reclaim run will revive a dormant kswapd.
2863 */
2864 if (reclaimable)
2865 pgdat->kswapd_failures = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002866}
2867
2868/*
2869 * Returns true if compaction should go ahead for a costly-order request, or
2870 * the allocation would already succeed without compaction. Return false if we
2871 * should reclaim first.
2872 */
2873static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2874{
2875 unsigned long watermark;
2876 enum compact_result suitable;
2877
2878 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2879 if (suitable == COMPACT_SUCCESS)
2880 /* Allocation should succeed already. Don't reclaim. */
2881 return true;
2882 if (suitable == COMPACT_SKIPPED)
2883 /* Compaction cannot yet proceed. Do reclaim. */
2884 return false;
2885
2886 /*
2887 * Compaction is already possible, but it takes time to run and there
2888 * are potentially other callers using the pages just freed. So proceed
2889 * with reclaim to make a buffer of free pages available to give
2890 * compaction a reasonable chance of completing and allocating the page.
2891 * Note that we won't actually reclaim the whole buffer in one attempt
2892 * as the target watermark in should_continue_reclaim() is lower. But if
2893 * we are already above the high+gap watermark, don't reclaim at all.
2894 */
2895 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2896
2897 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2898}
2899
2900/*
2901 * This is the direct reclaim path, for page-allocating processes. We only
2902 * try to reclaim pages from zones which will satisfy the caller's allocation
2903 * request.
2904 *
2905 * If a zone is deemed to be full of pinned pages then just give it a light
2906 * scan then give up on it.
2907 */
2908static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2909{
2910 struct zoneref *z;
2911 struct zone *zone;
2912 unsigned long nr_soft_reclaimed;
2913 unsigned long nr_soft_scanned;
2914 gfp_t orig_mask;
2915 pg_data_t *last_pgdat = NULL;
2916
2917 /*
2918 * If the number of buffer_heads in the machine exceeds the maximum
2919 * allowed level, force direct reclaim to scan the highmem zone as
2920 * highmem pages could be pinning lowmem pages storing buffer_heads
2921 */
2922 orig_mask = sc->gfp_mask;
2923 if (buffer_heads_over_limit) {
2924 sc->gfp_mask |= __GFP_HIGHMEM;
2925 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2926 }
2927
2928 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2929 sc->reclaim_idx, sc->nodemask) {
2930 /*
2931 * Take care memory controller reclaiming has small influence
2932 * to global LRU.
2933 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002934 if (!cgroup_reclaim(sc)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002935 if (!cpuset_zone_allowed(zone,
2936 GFP_KERNEL | __GFP_HARDWALL))
2937 continue;
2938
2939 /*
2940 * If we already have plenty of memory free for
2941 * compaction in this zone, don't free any more.
2942 * Even though compaction is invoked for any
2943 * non-zero order, only frequent costly order
2944 * reclamation is disruptive enough to become a
2945 * noticeable problem, like transparent huge
2946 * page allocations.
2947 */
2948 if (IS_ENABLED(CONFIG_COMPACTION) &&
2949 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2950 compaction_ready(zone, sc)) {
2951 sc->compaction_ready = true;
2952 continue;
2953 }
2954
2955 /*
2956 * Shrink each node in the zonelist once. If the
2957 * zonelist is ordered by zone (not the default) then a
2958 * node may be shrunk multiple times but in that case
2959 * the user prefers lower zones being preserved.
2960 */
2961 if (zone->zone_pgdat == last_pgdat)
2962 continue;
2963
2964 /*
2965 * This steals pages from memory cgroups over softlimit
2966 * and returns the number of reclaimed pages and
2967 * scanned pages. This works for global memory pressure
2968 * and balancing, not for a memcg's limit.
2969 */
2970 nr_soft_scanned = 0;
2971 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2972 sc->order, sc->gfp_mask,
2973 &nr_soft_scanned);
2974 sc->nr_reclaimed += nr_soft_reclaimed;
2975 sc->nr_scanned += nr_soft_scanned;
2976 /* need some check for avoid more shrink_zone() */
2977 }
2978
2979 /* See comment about same check for global reclaim above */
2980 if (zone->zone_pgdat == last_pgdat)
2981 continue;
2982 last_pgdat = zone->zone_pgdat;
2983 shrink_node(zone->zone_pgdat, sc);
2984 }
2985
2986 /*
2987 * Restore to original mask to avoid the impact on the caller if we
2988 * promoted it to __GFP_HIGHMEM.
2989 */
2990 sc->gfp_mask = orig_mask;
2991}
2992
Olivier Deprez157378f2022-04-04 15:47:50 +02002993static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002994{
Olivier Deprez157378f2022-04-04 15:47:50 +02002995 struct lruvec *target_lruvec;
2996 unsigned long refaults;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002997
Olivier Deprez157378f2022-04-04 15:47:50 +02002998 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2999 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3000 target_lruvec->refaults[0] = refaults;
3001 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3002 target_lruvec->refaults[1] = refaults;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003003}
3004
3005/*
3006 * This is the main entry point to direct page reclaim.
3007 *
3008 * If a full scan of the inactive list fails to free enough memory then we
3009 * are "out of memory" and something needs to be killed.
3010 *
3011 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3012 * high - the zone may be full of dirty or under-writeback pages, which this
3013 * caller can't do much about. We kick the writeback threads and take explicit
3014 * naps in the hope that some of these pages can be written. But if the
3015 * allocating task holds filesystem locks which prevent writeout this might not
3016 * work, and the allocation attempt will fail.
3017 *
3018 * returns: 0, if no pages reclaimed
3019 * else, the number of pages reclaimed
3020 */
3021static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3022 struct scan_control *sc)
3023{
3024 int initial_priority = sc->priority;
3025 pg_data_t *last_pgdat;
3026 struct zoneref *z;
3027 struct zone *zone;
3028retry:
3029 delayacct_freepages_start();
3030
Olivier Deprez157378f2022-04-04 15:47:50 +02003031 if (!cgroup_reclaim(sc))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003032 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3033
3034 do {
3035 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3036 sc->priority);
3037 sc->nr_scanned = 0;
3038 shrink_zones(zonelist, sc);
3039
3040 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3041 break;
3042
3043 if (sc->compaction_ready)
3044 break;
3045
3046 /*
3047 * If we're getting trouble reclaiming, start doing
3048 * writepage even in laptop mode.
3049 */
3050 if (sc->priority < DEF_PRIORITY - 2)
3051 sc->may_writepage = 1;
3052 } while (--sc->priority >= 0);
3053
3054 last_pgdat = NULL;
3055 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3056 sc->nodemask) {
3057 if (zone->zone_pgdat == last_pgdat)
3058 continue;
3059 last_pgdat = zone->zone_pgdat;
Olivier Deprez157378f2022-04-04 15:47:50 +02003060
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003061 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
Olivier Deprez157378f2022-04-04 15:47:50 +02003062
3063 if (cgroup_reclaim(sc)) {
3064 struct lruvec *lruvec;
3065
3066 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3067 zone->zone_pgdat);
3068 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3069 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003070 }
3071
3072 delayacct_freepages_end();
3073
3074 if (sc->nr_reclaimed)
3075 return sc->nr_reclaimed;
3076
3077 /* Aborted reclaim to try compaction? don't OOM, then */
3078 if (sc->compaction_ready)
3079 return 1;
3080
Olivier Deprez157378f2022-04-04 15:47:50 +02003081 /*
3082 * We make inactive:active ratio decisions based on the node's
3083 * composition of memory, but a restrictive reclaim_idx or a
3084 * memory.low cgroup setting can exempt large amounts of
3085 * memory from reclaim. Neither of which are very common, so
3086 * instead of doing costly eligibility calculations of the
3087 * entire cgroup subtree up front, we assume the estimates are
3088 * good, and retry with forcible deactivation if that fails.
3089 */
3090 if (sc->skipped_deactivate) {
3091 sc->priority = initial_priority;
3092 sc->force_deactivate = 1;
3093 sc->skipped_deactivate = 0;
3094 goto retry;
3095 }
3096
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003097 /* Untapped cgroup reserves? Don't OOM, retry. */
3098 if (sc->memcg_low_skipped) {
3099 sc->priority = initial_priority;
Olivier Deprez157378f2022-04-04 15:47:50 +02003100 sc->force_deactivate = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003101 sc->memcg_low_reclaim = 1;
3102 sc->memcg_low_skipped = 0;
3103 goto retry;
3104 }
3105
3106 return 0;
3107}
3108
3109static bool allow_direct_reclaim(pg_data_t *pgdat)
3110{
3111 struct zone *zone;
3112 unsigned long pfmemalloc_reserve = 0;
3113 unsigned long free_pages = 0;
3114 int i;
3115 bool wmark_ok;
3116
3117 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3118 return true;
3119
3120 for (i = 0; i <= ZONE_NORMAL; i++) {
3121 zone = &pgdat->node_zones[i];
3122 if (!managed_zone(zone))
3123 continue;
3124
3125 if (!zone_reclaimable_pages(zone))
3126 continue;
3127
3128 pfmemalloc_reserve += min_wmark_pages(zone);
3129 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3130 }
3131
3132 /* If there are no reserves (unexpected config) then do not throttle */
3133 if (!pfmemalloc_reserve)
3134 return true;
3135
3136 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3137
3138 /* kswapd must be awake if processes are being throttled */
3139 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003140 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3141 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
Olivier Deprez0e641232021-09-23 10:07:05 +02003142
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003143 wake_up_interruptible(&pgdat->kswapd_wait);
3144 }
3145
3146 return wmark_ok;
3147}
3148
3149/*
3150 * Throttle direct reclaimers if backing storage is backed by the network
3151 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3152 * depleted. kswapd will continue to make progress and wake the processes
3153 * when the low watermark is reached.
3154 *
3155 * Returns true if a fatal signal was delivered during throttling. If this
3156 * happens, the page allocator should not consider triggering the OOM killer.
3157 */
3158static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3159 nodemask_t *nodemask)
3160{
3161 struct zoneref *z;
3162 struct zone *zone;
3163 pg_data_t *pgdat = NULL;
3164
3165 /*
3166 * Kernel threads should not be throttled as they may be indirectly
3167 * responsible for cleaning pages necessary for reclaim to make forward
3168 * progress. kjournald for example may enter direct reclaim while
3169 * committing a transaction where throttling it could forcing other
3170 * processes to block on log_wait_commit().
3171 */
3172 if (current->flags & PF_KTHREAD)
3173 goto out;
3174
3175 /*
3176 * If a fatal signal is pending, this process should not throttle.
3177 * It should return quickly so it can exit and free its memory
3178 */
3179 if (fatal_signal_pending(current))
3180 goto out;
3181
3182 /*
3183 * Check if the pfmemalloc reserves are ok by finding the first node
3184 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3185 * GFP_KERNEL will be required for allocating network buffers when
3186 * swapping over the network so ZONE_HIGHMEM is unusable.
3187 *
3188 * Throttling is based on the first usable node and throttled processes
3189 * wait on a queue until kswapd makes progress and wakes them. There
3190 * is an affinity then between processes waking up and where reclaim
3191 * progress has been made assuming the process wakes on the same node.
3192 * More importantly, processes running on remote nodes will not compete
3193 * for remote pfmemalloc reserves and processes on different nodes
3194 * should make reasonable progress.
3195 */
3196 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3197 gfp_zone(gfp_mask), nodemask) {
3198 if (zone_idx(zone) > ZONE_NORMAL)
3199 continue;
3200
3201 /* Throttle based on the first usable node */
3202 pgdat = zone->zone_pgdat;
3203 if (allow_direct_reclaim(pgdat))
3204 goto out;
3205 break;
3206 }
3207
3208 /* If no zone was usable by the allocation flags then do not throttle */
3209 if (!pgdat)
3210 goto out;
3211
3212 /* Account for the throttling */
3213 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3214
3215 /*
3216 * If the caller cannot enter the filesystem, it's possible that it
3217 * is due to the caller holding an FS lock or performing a journal
3218 * transaction in the case of a filesystem like ext[3|4]. In this case,
3219 * it is not safe to block on pfmemalloc_wait as kswapd could be
3220 * blocked waiting on the same lock. Instead, throttle for up to a
3221 * second before continuing.
3222 */
3223 if (!(gfp_mask & __GFP_FS)) {
3224 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3225 allow_direct_reclaim(pgdat), HZ);
3226
3227 goto check_pending;
3228 }
3229
3230 /* Throttle until kswapd wakes the process */
3231 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3232 allow_direct_reclaim(pgdat));
3233
3234check_pending:
3235 if (fatal_signal_pending(current))
3236 return true;
3237
3238out:
3239 return false;
3240}
3241
3242unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3243 gfp_t gfp_mask, nodemask_t *nodemask)
3244{
3245 unsigned long nr_reclaimed;
3246 struct scan_control sc = {
3247 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3248 .gfp_mask = current_gfp_context(gfp_mask),
3249 .reclaim_idx = gfp_zone(gfp_mask),
3250 .order = order,
3251 .nodemask = nodemask,
3252 .priority = DEF_PRIORITY,
3253 .may_writepage = !laptop_mode,
3254 .may_unmap = 1,
3255 .may_swap = 1,
3256 };
3257
3258 /*
3259 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3260 * Confirm they are large enough for max values.
3261 */
3262 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3263 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3264 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3265
3266 /*
3267 * Do not enter reclaim if fatal signal was delivered while throttled.
3268 * 1 is returned so that the page allocator does not OOM kill at this
3269 * point.
3270 */
3271 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3272 return 1;
3273
David Brazdil0f672f62019-12-10 10:32:29 +00003274 set_task_reclaim_state(current, &sc.reclaim_state);
3275 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003276
3277 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3278
3279 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
David Brazdil0f672f62019-12-10 10:32:29 +00003280 set_task_reclaim_state(current, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003281
3282 return nr_reclaimed;
3283}
3284
3285#ifdef CONFIG_MEMCG
3286
David Brazdil0f672f62019-12-10 10:32:29 +00003287/* Only used by soft limit reclaim. Do not reuse for anything else. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003288unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3289 gfp_t gfp_mask, bool noswap,
3290 pg_data_t *pgdat,
3291 unsigned long *nr_scanned)
3292{
Olivier Deprez157378f2022-04-04 15:47:50 +02003293 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003294 struct scan_control sc = {
3295 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3296 .target_mem_cgroup = memcg,
3297 .may_writepage = !laptop_mode,
3298 .may_unmap = 1,
3299 .reclaim_idx = MAX_NR_ZONES - 1,
3300 .may_swap = !noswap,
3301 };
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003302
David Brazdil0f672f62019-12-10 10:32:29 +00003303 WARN_ON_ONCE(!current->reclaim_state);
3304
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003305 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3306 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3307
3308 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
David Brazdil0f672f62019-12-10 10:32:29 +00003309 sc.gfp_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003310
3311 /*
3312 * NOTE: Although we can get the priority field, using it
3313 * here is not a good idea, since it limits the pages we can scan.
3314 * if we don't reclaim here, the shrink_node from balance_pgdat
3315 * will pick up pages from other mem cgroup's as well. We hack
3316 * the priority and make it zero.
3317 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003318 shrink_lruvec(lruvec, &sc);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003319
3320 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3321
3322 *nr_scanned = sc.nr_scanned;
David Brazdil0f672f62019-12-10 10:32:29 +00003323
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003324 return sc.nr_reclaimed;
3325}
3326
3327unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3328 unsigned long nr_pages,
3329 gfp_t gfp_mask,
3330 bool may_swap)
3331{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003332 unsigned long nr_reclaimed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003333 unsigned int noreclaim_flag;
3334 struct scan_control sc = {
3335 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3336 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3337 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3338 .reclaim_idx = MAX_NR_ZONES - 1,
3339 .target_mem_cgroup = memcg,
3340 .priority = DEF_PRIORITY,
3341 .may_writepage = !laptop_mode,
3342 .may_unmap = 1,
3343 .may_swap = may_swap,
3344 };
Olivier Deprez157378f2022-04-04 15:47:50 +02003345 /*
3346 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3347 * equal pressure on all the nodes. This is based on the assumption that
3348 * the reclaim does not bail out early.
3349 */
3350 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003351
David Brazdil0f672f62019-12-10 10:32:29 +00003352 set_task_reclaim_state(current, &sc.reclaim_state);
David Brazdil0f672f62019-12-10 10:32:29 +00003353 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003354 noreclaim_flag = memalloc_noreclaim_save();
David Brazdil0f672f62019-12-10 10:32:29 +00003355
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003356 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
David Brazdil0f672f62019-12-10 10:32:29 +00003357
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003358 memalloc_noreclaim_restore(noreclaim_flag);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003359 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
David Brazdil0f672f62019-12-10 10:32:29 +00003360 set_task_reclaim_state(current, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003361
3362 return nr_reclaimed;
3363}
3364#endif
3365
3366static void age_active_anon(struct pglist_data *pgdat,
3367 struct scan_control *sc)
3368{
3369 struct mem_cgroup *memcg;
Olivier Deprez157378f2022-04-04 15:47:50 +02003370 struct lruvec *lruvec;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003371
3372 if (!total_swap_pages)
3373 return;
3374
Olivier Deprez157378f2022-04-04 15:47:50 +02003375 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3376 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3377 return;
3378
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003379 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3380 do {
Olivier Deprez157378f2022-04-04 15:47:50 +02003381 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3382 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3383 sc, LRU_ACTIVE_ANON);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003384 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3385 } while (memcg);
3386}
3387
Olivier Deprez157378f2022-04-04 15:47:50 +02003388static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
David Brazdil0f672f62019-12-10 10:32:29 +00003389{
3390 int i;
3391 struct zone *zone;
3392
3393 /*
3394 * Check for watermark boosts top-down as the higher zones
3395 * are more likely to be boosted. Both watermarks and boosts
Olivier Deprez157378f2022-04-04 15:47:50 +02003396 * should not be checked at the same time as reclaim would
David Brazdil0f672f62019-12-10 10:32:29 +00003397 * start prematurely when there is no boosting and a lower
3398 * zone is balanced.
3399 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003400 for (i = highest_zoneidx; i >= 0; i--) {
David Brazdil0f672f62019-12-10 10:32:29 +00003401 zone = pgdat->node_zones + i;
3402 if (!managed_zone(zone))
3403 continue;
3404
3405 if (zone->watermark_boost)
3406 return true;
3407 }
3408
3409 return false;
3410}
3411
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003412/*
3413 * Returns true if there is an eligible zone balanced for the request order
Olivier Deprez157378f2022-04-04 15:47:50 +02003414 * and highest_zoneidx
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003415 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003416static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003417{
3418 int i;
3419 unsigned long mark = -1;
3420 struct zone *zone;
3421
David Brazdil0f672f62019-12-10 10:32:29 +00003422 /*
3423 * Check watermarks bottom-up as lower zones are more likely to
3424 * meet watermarks.
3425 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003426 for (i = 0; i <= highest_zoneidx; i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003427 zone = pgdat->node_zones + i;
3428
3429 if (!managed_zone(zone))
3430 continue;
3431
3432 mark = high_wmark_pages(zone);
Olivier Deprez157378f2022-04-04 15:47:50 +02003433 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003434 return true;
3435 }
3436
3437 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02003438 * If a node has no populated zone within highest_zoneidx, it does not
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003439 * need balancing by definition. This can happen if a zone-restricted
3440 * allocation tries to wake a remote kswapd.
3441 */
3442 if (mark == -1)
3443 return true;
3444
3445 return false;
3446}
3447
3448/* Clear pgdat state for congested, dirty or under writeback. */
3449static void clear_pgdat_congested(pg_data_t *pgdat)
3450{
Olivier Deprez157378f2022-04-04 15:47:50 +02003451 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3452
3453 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003454 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3455 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3456}
3457
3458/*
3459 * Prepare kswapd for sleeping. This verifies that there are no processes
3460 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3461 *
3462 * Returns true if kswapd is ready to sleep
3463 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003464static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3465 int highest_zoneidx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003466{
3467 /*
3468 * The throttled processes are normally woken up in balance_pgdat() as
3469 * soon as allow_direct_reclaim() is true. But there is a potential
3470 * race between when kswapd checks the watermarks and a process gets
3471 * throttled. There is also a potential race if processes get
3472 * throttled, kswapd wakes, a large process exits thereby balancing the
3473 * zones, which causes kswapd to exit balance_pgdat() before reaching
3474 * the wake up checks. If kswapd is going to sleep, no process should
3475 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3476 * the wake up is premature, processes will wake kswapd and get
3477 * throttled again. The difference from wake ups in balance_pgdat() is
3478 * that here we are under prepare_to_wait().
3479 */
3480 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3481 wake_up_all(&pgdat->pfmemalloc_wait);
3482
3483 /* Hopeless node, leave it to direct reclaim */
3484 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3485 return true;
3486
Olivier Deprez157378f2022-04-04 15:47:50 +02003487 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003488 clear_pgdat_congested(pgdat);
3489 return true;
3490 }
3491
3492 return false;
3493}
3494
3495/*
3496 * kswapd shrinks a node of pages that are at or below the highest usable
3497 * zone that is currently unbalanced.
3498 *
3499 * Returns true if kswapd scanned at least the requested number of pages to
3500 * reclaim or if the lack of progress was due to pages under writeback.
3501 * This is used to determine if the scanning priority needs to be raised.
3502 */
3503static bool kswapd_shrink_node(pg_data_t *pgdat,
3504 struct scan_control *sc)
3505{
3506 struct zone *zone;
3507 int z;
3508
3509 /* Reclaim a number of pages proportional to the number of zones */
3510 sc->nr_to_reclaim = 0;
3511 for (z = 0; z <= sc->reclaim_idx; z++) {
3512 zone = pgdat->node_zones + z;
3513 if (!managed_zone(zone))
3514 continue;
3515
3516 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3517 }
3518
3519 /*
3520 * Historically care was taken to put equal pressure on all zones but
3521 * now pressure is applied based on node LRU order.
3522 */
3523 shrink_node(pgdat, sc);
3524
3525 /*
3526 * Fragmentation may mean that the system cannot be rebalanced for
3527 * high-order allocations. If twice the allocation size has been
3528 * reclaimed then recheck watermarks only at order-0 to prevent
3529 * excessive reclaim. Assume that a process requested a high-order
3530 * can direct reclaim/compact.
3531 */
3532 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3533 sc->order = 0;
3534
3535 return sc->nr_scanned >= sc->nr_to_reclaim;
3536}
3537
3538/*
3539 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3540 * that are eligible for use by the caller until at least one zone is
3541 * balanced.
3542 *
3543 * Returns the order kswapd finished reclaiming at.
3544 *
3545 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3546 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
David Brazdil0f672f62019-12-10 10:32:29 +00003547 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003548 * or lower is eligible for reclaim until at least one usable zone is
3549 * balanced.
3550 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003551static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003552{
3553 int i;
3554 unsigned long nr_soft_reclaimed;
3555 unsigned long nr_soft_scanned;
David Brazdil0f672f62019-12-10 10:32:29 +00003556 unsigned long pflags;
3557 unsigned long nr_boost_reclaim;
3558 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3559 bool boosted;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003560 struct zone *zone;
3561 struct scan_control sc = {
3562 .gfp_mask = GFP_KERNEL,
3563 .order = order,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003564 .may_unmap = 1,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003565 };
3566
David Brazdil0f672f62019-12-10 10:32:29 +00003567 set_task_reclaim_state(current, &sc.reclaim_state);
3568 psi_memstall_enter(&pflags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003569 __fs_reclaim_acquire();
3570
3571 count_vm_event(PAGEOUTRUN);
3572
David Brazdil0f672f62019-12-10 10:32:29 +00003573 /*
3574 * Account for the reclaim boost. Note that the zone boost is left in
3575 * place so that parallel allocations that are near the watermark will
3576 * stall or direct reclaim until kswapd is finished.
3577 */
3578 nr_boost_reclaim = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02003579 for (i = 0; i <= highest_zoneidx; i++) {
David Brazdil0f672f62019-12-10 10:32:29 +00003580 zone = pgdat->node_zones + i;
3581 if (!managed_zone(zone))
3582 continue;
3583
3584 nr_boost_reclaim += zone->watermark_boost;
3585 zone_boosts[i] = zone->watermark_boost;
3586 }
3587 boosted = nr_boost_reclaim;
3588
3589restart:
3590 sc.priority = DEF_PRIORITY;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003591 do {
3592 unsigned long nr_reclaimed = sc.nr_reclaimed;
3593 bool raise_priority = true;
David Brazdil0f672f62019-12-10 10:32:29 +00003594 bool balanced;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003595 bool ret;
3596
Olivier Deprez157378f2022-04-04 15:47:50 +02003597 sc.reclaim_idx = highest_zoneidx;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003598
3599 /*
3600 * If the number of buffer_heads exceeds the maximum allowed
3601 * then consider reclaiming from all zones. This has a dual
3602 * purpose -- on 64-bit systems it is expected that
3603 * buffer_heads are stripped during active rotation. On 32-bit
3604 * systems, highmem pages can pin lowmem memory and shrinking
3605 * buffers can relieve lowmem pressure. Reclaim may still not
3606 * go ahead if all eligible zones for the original allocation
3607 * request are balanced to avoid excessive reclaim from kswapd.
3608 */
3609 if (buffer_heads_over_limit) {
3610 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3611 zone = pgdat->node_zones + i;
3612 if (!managed_zone(zone))
3613 continue;
3614
3615 sc.reclaim_idx = i;
3616 break;
3617 }
3618 }
3619
3620 /*
David Brazdil0f672f62019-12-10 10:32:29 +00003621 * If the pgdat is imbalanced then ignore boosting and preserve
3622 * the watermarks for a later time and restart. Note that the
3623 * zone watermarks will be still reset at the end of balancing
3624 * on the grounds that the normal reclaim should be enough to
3625 * re-evaluate if boosting is required when kswapd next wakes.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003626 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003627 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
David Brazdil0f672f62019-12-10 10:32:29 +00003628 if (!balanced && nr_boost_reclaim) {
3629 nr_boost_reclaim = 0;
3630 goto restart;
3631 }
3632
3633 /*
3634 * If boosting is not active then only reclaim if there are no
3635 * eligible zones. Note that sc.reclaim_idx is not used as
3636 * buffer_heads_over_limit may have adjusted it.
3637 */
3638 if (!nr_boost_reclaim && balanced)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003639 goto out;
3640
David Brazdil0f672f62019-12-10 10:32:29 +00003641 /* Limit the priority of boosting to avoid reclaim writeback */
3642 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3643 raise_priority = false;
3644
3645 /*
3646 * Do not writeback or swap pages for boosted reclaim. The
3647 * intent is to relieve pressure not issue sub-optimal IO
3648 * from reclaim context. If no pages are reclaimed, the
3649 * reclaim will be aborted.
3650 */
3651 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3652 sc.may_swap = !nr_boost_reclaim;
3653
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003654 /*
3655 * Do some background aging of the anon list, to give
3656 * pages a chance to be referenced before reclaiming. All
3657 * pages are rotated regardless of classzone as this is
3658 * about consistent aging.
3659 */
3660 age_active_anon(pgdat, &sc);
3661
3662 /*
3663 * If we're getting trouble reclaiming, start doing writepage
3664 * even in laptop mode.
3665 */
3666 if (sc.priority < DEF_PRIORITY - 2)
3667 sc.may_writepage = 1;
3668
3669 /* Call soft limit reclaim before calling shrink_node. */
3670 sc.nr_scanned = 0;
3671 nr_soft_scanned = 0;
3672 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3673 sc.gfp_mask, &nr_soft_scanned);
3674 sc.nr_reclaimed += nr_soft_reclaimed;
3675
3676 /*
3677 * There should be no need to raise the scanning priority if
3678 * enough pages are already being scanned that that high
3679 * watermark would be met at 100% efficiency.
3680 */
3681 if (kswapd_shrink_node(pgdat, &sc))
3682 raise_priority = false;
3683
3684 /*
3685 * If the low watermark is met there is no need for processes
3686 * to be throttled on pfmemalloc_wait as they should not be
3687 * able to safely make forward progress. Wake them
3688 */
3689 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3690 allow_direct_reclaim(pgdat))
3691 wake_up_all(&pgdat->pfmemalloc_wait);
3692
3693 /* Check if kswapd should be suspending */
3694 __fs_reclaim_release();
3695 ret = try_to_freeze();
3696 __fs_reclaim_acquire();
3697 if (ret || kthread_should_stop())
3698 break;
3699
3700 /*
3701 * Raise priority if scanning rate is too low or there was no
3702 * progress in reclaiming pages
3703 */
3704 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
David Brazdil0f672f62019-12-10 10:32:29 +00003705 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3706
3707 /*
3708 * If reclaim made no progress for a boost, stop reclaim as
3709 * IO cannot be queued and it could be an infinite loop in
3710 * extreme circumstances.
3711 */
3712 if (nr_boost_reclaim && !nr_reclaimed)
3713 break;
3714
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003715 if (raise_priority || !nr_reclaimed)
3716 sc.priority--;
3717 } while (sc.priority >= 1);
3718
3719 if (!sc.nr_reclaimed)
3720 pgdat->kswapd_failures++;
3721
3722out:
David Brazdil0f672f62019-12-10 10:32:29 +00003723 /* If reclaim was boosted, account for the reclaim done in this pass */
3724 if (boosted) {
3725 unsigned long flags;
3726
Olivier Deprez157378f2022-04-04 15:47:50 +02003727 for (i = 0; i <= highest_zoneidx; i++) {
David Brazdil0f672f62019-12-10 10:32:29 +00003728 if (!zone_boosts[i])
3729 continue;
3730
3731 /* Increments are under the zone lock */
3732 zone = pgdat->node_zones + i;
3733 spin_lock_irqsave(&zone->lock, flags);
3734 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3735 spin_unlock_irqrestore(&zone->lock, flags);
3736 }
3737
3738 /*
3739 * As there is now likely space, wakeup kcompact to defragment
3740 * pageblocks.
3741 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003742 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
David Brazdil0f672f62019-12-10 10:32:29 +00003743 }
3744
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003745 snapshot_refaults(NULL, pgdat);
3746 __fs_reclaim_release();
David Brazdil0f672f62019-12-10 10:32:29 +00003747 psi_memstall_leave(&pflags);
3748 set_task_reclaim_state(current, NULL);
3749
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003750 /*
3751 * Return the order kswapd stopped reclaiming at as
3752 * prepare_kswapd_sleep() takes it into account. If another caller
3753 * entered the allocator slow path while kswapd was awake, order will
3754 * remain at the higher level.
3755 */
3756 return sc.order;
3757}
3758
3759/*
Olivier Deprez157378f2022-04-04 15:47:50 +02003760 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3761 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3762 * not a valid index then either kswapd runs for first time or kswapd couldn't
3763 * sleep after previous reclaim attempt (node is still unbalanced). In that
3764 * case return the zone index of the previous kswapd reclaim cycle.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003765 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003766static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3767 enum zone_type prev_highest_zoneidx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003768{
Olivier Deprez157378f2022-04-04 15:47:50 +02003769 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
Olivier Deprez0e641232021-09-23 10:07:05 +02003770
Olivier Deprez157378f2022-04-04 15:47:50 +02003771 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003772}
3773
3774static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
Olivier Deprez157378f2022-04-04 15:47:50 +02003775 unsigned int highest_zoneidx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003776{
3777 long remaining = 0;
3778 DEFINE_WAIT(wait);
3779
3780 if (freezing(current) || kthread_should_stop())
3781 return;
3782
3783 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3784
3785 /*
3786 * Try to sleep for a short interval. Note that kcompactd will only be
3787 * woken if it is possible to sleep for a short interval. This is
3788 * deliberate on the assumption that if reclaim cannot keep an
3789 * eligible zone balanced that it's also unlikely that compaction will
3790 * succeed.
3791 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003792 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003793 /*
3794 * Compaction records what page blocks it recently failed to
3795 * isolate pages from and skips them in the future scanning.
3796 * When kswapd is going to sleep, it is reasonable to assume
3797 * that pages and compaction may succeed so reset the cache.
3798 */
3799 reset_isolation_suitable(pgdat);
3800
3801 /*
3802 * We have freed the memory, now we should compact it to make
3803 * allocation of the requested order possible.
3804 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003805 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003806
3807 remaining = schedule_timeout(HZ/10);
3808
3809 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02003810 * If woken prematurely then reset kswapd_highest_zoneidx and
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003811 * order. The values will either be from a wakeup request or
3812 * the previous request that slept prematurely.
3813 */
3814 if (remaining) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003815 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3816 kswapd_highest_zoneidx(pgdat,
3817 highest_zoneidx));
Olivier Deprez0e641232021-09-23 10:07:05 +02003818
3819 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3820 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003821 }
3822
3823 finish_wait(&pgdat->kswapd_wait, &wait);
3824 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3825 }
3826
3827 /*
3828 * After a short sleep, check if it was a premature sleep. If not, then
3829 * go fully to sleep until explicitly woken up.
3830 */
3831 if (!remaining &&
Olivier Deprez157378f2022-04-04 15:47:50 +02003832 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003833 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3834
3835 /*
3836 * vmstat counters are not perfectly accurate and the estimated
3837 * value for counters such as NR_FREE_PAGES can deviate from the
3838 * true value by nr_online_cpus * threshold. To avoid the zone
3839 * watermarks being breached while under pressure, we reduce the
3840 * per-cpu vmstat threshold while kswapd is awake and restore
3841 * them before going back to sleep.
3842 */
3843 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3844
3845 if (!kthread_should_stop())
3846 schedule();
3847
3848 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3849 } else {
3850 if (remaining)
3851 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3852 else
3853 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3854 }
3855 finish_wait(&pgdat->kswapd_wait, &wait);
3856}
3857
3858/*
3859 * The background pageout daemon, started as a kernel thread
3860 * from the init process.
3861 *
3862 * This basically trickles out pages so that we have _some_
3863 * free memory available even if there is no other activity
3864 * that frees anything up. This is needed for things like routing
3865 * etc, where we otherwise might have all activity going on in
3866 * asynchronous contexts that cannot page things out.
3867 *
3868 * If there are applications that are active memory-allocators
3869 * (most normal use), this basically shouldn't matter.
3870 */
3871static int kswapd(void *p)
3872{
3873 unsigned int alloc_order, reclaim_order;
Olivier Deprez157378f2022-04-04 15:47:50 +02003874 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003875 pg_data_t *pgdat = (pg_data_t*)p;
3876 struct task_struct *tsk = current;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003877 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3878
3879 if (!cpumask_empty(cpumask))
3880 set_cpus_allowed_ptr(tsk, cpumask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003881
3882 /*
3883 * Tell the memory management that we're a "memory allocator",
3884 * and that if we need more memory we should get access to it
3885 * regardless (see "__alloc_pages()"). "kswapd" should
3886 * never get caught in the normal page freeing logic.
3887 *
3888 * (Kswapd normally doesn't need memory anyway, but sometimes
3889 * you need a small amount of memory in order to be able to
3890 * page out something else, and this flag essentially protects
3891 * us from recursively trying to free more memory as we're
3892 * trying to free the first piece of memory in the first place).
3893 */
3894 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3895 set_freezable();
3896
Olivier Deprez0e641232021-09-23 10:07:05 +02003897 WRITE_ONCE(pgdat->kswapd_order, 0);
Olivier Deprez157378f2022-04-04 15:47:50 +02003898 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003899 for ( ; ; ) {
3900 bool ret;
3901
Olivier Deprez0e641232021-09-23 10:07:05 +02003902 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
Olivier Deprez157378f2022-04-04 15:47:50 +02003903 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3904 highest_zoneidx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003905
3906kswapd_try_sleep:
3907 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
Olivier Deprez157378f2022-04-04 15:47:50 +02003908 highest_zoneidx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003909
Olivier Deprez157378f2022-04-04 15:47:50 +02003910 /* Read the new order and highest_zoneidx */
Olivier Deprez0e641232021-09-23 10:07:05 +02003911 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
Olivier Deprez157378f2022-04-04 15:47:50 +02003912 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3913 highest_zoneidx);
Olivier Deprez0e641232021-09-23 10:07:05 +02003914 WRITE_ONCE(pgdat->kswapd_order, 0);
Olivier Deprez157378f2022-04-04 15:47:50 +02003915 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003916
3917 ret = try_to_freeze();
3918 if (kthread_should_stop())
3919 break;
3920
3921 /*
3922 * We can speed up thawing tasks if we don't call balance_pgdat
3923 * after returning from the refrigerator
3924 */
3925 if (ret)
3926 continue;
3927
3928 /*
3929 * Reclaim begins at the requested order but if a high-order
3930 * reclaim fails then kswapd falls back to reclaiming for
3931 * order-0. If that happens, kswapd will consider sleeping
3932 * for the order it finished reclaiming at (reclaim_order)
3933 * but kcompactd is woken to compact for the original
3934 * request (alloc_order).
3935 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003936 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003937 alloc_order);
Olivier Deprez157378f2022-04-04 15:47:50 +02003938 reclaim_order = balance_pgdat(pgdat, alloc_order,
3939 highest_zoneidx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003940 if (reclaim_order < alloc_order)
3941 goto kswapd_try_sleep;
3942 }
3943
3944 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003945
3946 return 0;
3947}
3948
3949/*
3950 * A zone is low on free memory or too fragmented for high-order memory. If
3951 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3952 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3953 * has failed or is not needed, still wake up kcompactd if only compaction is
3954 * needed.
3955 */
3956void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
Olivier Deprez157378f2022-04-04 15:47:50 +02003957 enum zone_type highest_zoneidx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003958{
3959 pg_data_t *pgdat;
Olivier Deprez0e641232021-09-23 10:07:05 +02003960 enum zone_type curr_idx;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003961
3962 if (!managed_zone(zone))
3963 return;
3964
3965 if (!cpuset_zone_allowed(zone, gfp_flags))
3966 return;
David Brazdil0f672f62019-12-10 10:32:29 +00003967
Olivier Deprez0e641232021-09-23 10:07:05 +02003968 pgdat = zone->zone_pgdat;
Olivier Deprez157378f2022-04-04 15:47:50 +02003969 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
Olivier Deprez0e641232021-09-23 10:07:05 +02003970
Olivier Deprez157378f2022-04-04 15:47:50 +02003971 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3972 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
Olivier Deprez0e641232021-09-23 10:07:05 +02003973
3974 if (READ_ONCE(pgdat->kswapd_order) < order)
3975 WRITE_ONCE(pgdat->kswapd_order, order);
3976
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003977 if (!waitqueue_active(&pgdat->kswapd_wait))
3978 return;
3979
3980 /* Hopeless node, leave it to direct reclaim if possible */
3981 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
Olivier Deprez157378f2022-04-04 15:47:50 +02003982 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3983 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003984 /*
3985 * There may be plenty of free memory available, but it's too
3986 * fragmented for high-order allocations. Wake up kcompactd
3987 * and rely on compaction_suitable() to determine if it's
3988 * needed. If it fails, it will defer subsequent attempts to
3989 * ratelimit its work.
3990 */
3991 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
Olivier Deprez157378f2022-04-04 15:47:50 +02003992 wakeup_kcompactd(pgdat, order, highest_zoneidx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003993 return;
3994 }
3995
Olivier Deprez157378f2022-04-04 15:47:50 +02003996 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003997 gfp_flags);
3998 wake_up_interruptible(&pgdat->kswapd_wait);
3999}
4000
4001#ifdef CONFIG_HIBERNATION
4002/*
4003 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4004 * freed pages.
4005 *
4006 * Rather than trying to age LRUs the aim is to preserve the overall
4007 * LRU order by reclaiming preferentially
4008 * inactive > active > active referenced > active mapped
4009 */
4010unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4011{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004012 struct scan_control sc = {
4013 .nr_to_reclaim = nr_to_reclaim,
4014 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4015 .reclaim_idx = MAX_NR_ZONES - 1,
4016 .priority = DEF_PRIORITY,
4017 .may_writepage = 1,
4018 .may_unmap = 1,
4019 .may_swap = 1,
4020 .hibernation_mode = 1,
4021 };
4022 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004023 unsigned long nr_reclaimed;
4024 unsigned int noreclaim_flag;
4025
4026 fs_reclaim_acquire(sc.gfp_mask);
4027 noreclaim_flag = memalloc_noreclaim_save();
David Brazdil0f672f62019-12-10 10:32:29 +00004028 set_task_reclaim_state(current, &sc.reclaim_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004029
4030 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4031
David Brazdil0f672f62019-12-10 10:32:29 +00004032 set_task_reclaim_state(current, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004033 memalloc_noreclaim_restore(noreclaim_flag);
4034 fs_reclaim_release(sc.gfp_mask);
4035
4036 return nr_reclaimed;
4037}
4038#endif /* CONFIG_HIBERNATION */
4039
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004040/*
4041 * This kswapd start function will be called by init and node-hot-add.
4042 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4043 */
4044int kswapd_run(int nid)
4045{
4046 pg_data_t *pgdat = NODE_DATA(nid);
4047 int ret = 0;
4048
4049 if (pgdat->kswapd)
4050 return 0;
4051
4052 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4053 if (IS_ERR(pgdat->kswapd)) {
4054 /* failure at boot is fatal */
4055 BUG_ON(system_state < SYSTEM_RUNNING);
4056 pr_err("Failed to start kswapd on node %d\n", nid);
4057 ret = PTR_ERR(pgdat->kswapd);
4058 pgdat->kswapd = NULL;
4059 }
4060 return ret;
4061}
4062
4063/*
4064 * Called by memory hotplug when all memory in a node is offlined. Caller must
4065 * hold mem_hotplug_begin/end().
4066 */
4067void kswapd_stop(int nid)
4068{
4069 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4070
4071 if (kswapd) {
4072 kthread_stop(kswapd);
4073 NODE_DATA(nid)->kswapd = NULL;
4074 }
4075}
4076
4077static int __init kswapd_init(void)
4078{
Olivier Deprez157378f2022-04-04 15:47:50 +02004079 int nid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004080
4081 swap_setup();
4082 for_each_node_state(nid, N_MEMORY)
4083 kswapd_run(nid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004084 return 0;
4085}
4086
4087module_init(kswapd_init)
4088
4089#ifdef CONFIG_NUMA
4090/*
4091 * Node reclaim mode
4092 *
4093 * If non-zero call node_reclaim when the number of free pages falls below
4094 * the watermarks.
4095 */
4096int node_reclaim_mode __read_mostly;
4097
Olivier Deprez157378f2022-04-04 15:47:50 +02004098/*
4099 * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
4100 * ABI. New bits are OK, but existing bits can never change.
4101 */
4102#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4103#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4104#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004105
4106/*
4107 * Priority for NODE_RECLAIM. This determines the fraction of pages
4108 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4109 * a zone.
4110 */
4111#define NODE_RECLAIM_PRIORITY 4
4112
4113/*
4114 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4115 * occur.
4116 */
4117int sysctl_min_unmapped_ratio = 1;
4118
4119/*
4120 * If the number of slab pages in a zone grows beyond this percentage then
4121 * slab reclaim needs to occur.
4122 */
4123int sysctl_min_slab_ratio = 5;
4124
4125static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4126{
4127 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4128 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4129 node_page_state(pgdat, NR_ACTIVE_FILE);
4130
4131 /*
4132 * It's possible for there to be more file mapped pages than
4133 * accounted for by the pages on the file LRU lists because
4134 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4135 */
4136 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4137}
4138
4139/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4140static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4141{
4142 unsigned long nr_pagecache_reclaimable;
4143 unsigned long delta = 0;
4144
4145 /*
4146 * If RECLAIM_UNMAP is set, then all file pages are considered
4147 * potentially reclaimable. Otherwise, we have to worry about
4148 * pages like swapcache and node_unmapped_file_pages() provides
4149 * a better estimate
4150 */
4151 if (node_reclaim_mode & RECLAIM_UNMAP)
4152 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4153 else
4154 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4155
4156 /* If we can't clean pages, remove dirty pages from consideration */
4157 if (!(node_reclaim_mode & RECLAIM_WRITE))
4158 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4159
4160 /* Watch for any possible underflows due to delta */
4161 if (unlikely(delta > nr_pagecache_reclaimable))
4162 delta = nr_pagecache_reclaimable;
4163
4164 return nr_pagecache_reclaimable - delta;
4165}
4166
4167/*
4168 * Try to free up some pages from this node through reclaim.
4169 */
4170static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4171{
4172 /* Minimum pages needed in order to stay on node */
4173 const unsigned long nr_pages = 1 << order;
4174 struct task_struct *p = current;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004175 unsigned int noreclaim_flag;
4176 struct scan_control sc = {
4177 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4178 .gfp_mask = current_gfp_context(gfp_mask),
4179 .order = order,
4180 .priority = NODE_RECLAIM_PRIORITY,
4181 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4182 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4183 .may_swap = 1,
4184 .reclaim_idx = gfp_zone(gfp_mask),
4185 };
4186
David Brazdil0f672f62019-12-10 10:32:29 +00004187 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4188 sc.gfp_mask);
4189
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004190 cond_resched();
4191 fs_reclaim_acquire(sc.gfp_mask);
4192 /*
4193 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4194 * and we also need to be able to write out pages for RECLAIM_WRITE
4195 * and RECLAIM_UNMAP.
4196 */
4197 noreclaim_flag = memalloc_noreclaim_save();
4198 p->flags |= PF_SWAPWRITE;
David Brazdil0f672f62019-12-10 10:32:29 +00004199 set_task_reclaim_state(p, &sc.reclaim_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004200
4201 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4202 /*
4203 * Free memory by calling shrink node with increasing
4204 * priorities until we have enough memory freed.
4205 */
4206 do {
4207 shrink_node(pgdat, &sc);
4208 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4209 }
4210
David Brazdil0f672f62019-12-10 10:32:29 +00004211 set_task_reclaim_state(p, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004212 current->flags &= ~PF_SWAPWRITE;
4213 memalloc_noreclaim_restore(noreclaim_flag);
4214 fs_reclaim_release(sc.gfp_mask);
David Brazdil0f672f62019-12-10 10:32:29 +00004215
4216 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4217
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004218 return sc.nr_reclaimed >= nr_pages;
4219}
4220
4221int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4222{
4223 int ret;
4224
4225 /*
4226 * Node reclaim reclaims unmapped file backed pages and
4227 * slab pages if we are over the defined limits.
4228 *
4229 * A small portion of unmapped file backed pages is needed for
4230 * file I/O otherwise pages read by file I/O will be immediately
4231 * thrown out if the node is overallocated. So we do not reclaim
4232 * if less than a specified percentage of the node is used by
4233 * unmapped file backed pages.
4234 */
4235 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
Olivier Deprez157378f2022-04-04 15:47:50 +02004236 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4237 pgdat->min_slab_pages)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004238 return NODE_RECLAIM_FULL;
4239
4240 /*
4241 * Do not scan if the allocation should not be delayed.
4242 */
4243 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4244 return NODE_RECLAIM_NOSCAN;
4245
4246 /*
4247 * Only run node reclaim on the local node or on nodes that do not
4248 * have associated processors. This will favor the local processor
4249 * over remote processors and spread off node memory allocations
4250 * as wide as possible.
4251 */
4252 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4253 return NODE_RECLAIM_NOSCAN;
4254
4255 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4256 return NODE_RECLAIM_NOSCAN;
4257
4258 ret = __node_reclaim(pgdat, gfp_mask, order);
4259 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4260
4261 if (!ret)
4262 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4263
4264 return ret;
4265}
4266#endif
4267
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004268/**
David Brazdil0f672f62019-12-10 10:32:29 +00004269 * check_move_unevictable_pages - check pages for evictability and move to
4270 * appropriate zone lru list
4271 * @pvec: pagevec with lru pages to check
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004272 *
David Brazdil0f672f62019-12-10 10:32:29 +00004273 * Checks pages for evictability, if an evictable page is in the unevictable
4274 * lru list, moves it to the appropriate evictable lru list. This function
4275 * should be only used for lru pages.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004276 */
David Brazdil0f672f62019-12-10 10:32:29 +00004277void check_move_unevictable_pages(struct pagevec *pvec)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004278{
4279 struct lruvec *lruvec;
4280 struct pglist_data *pgdat = NULL;
4281 int pgscanned = 0;
4282 int pgrescued = 0;
4283 int i;
4284
David Brazdil0f672f62019-12-10 10:32:29 +00004285 for (i = 0; i < pvec->nr; i++) {
4286 struct page *page = pvec->pages[i];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004287 struct pglist_data *pagepgdat = page_pgdat(page);
Olivier Deprez157378f2022-04-04 15:47:50 +02004288 int nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004289
Olivier Deprez157378f2022-04-04 15:47:50 +02004290 if (PageTransTail(page))
4291 continue;
4292
4293 nr_pages = thp_nr_pages(page);
4294 pgscanned += nr_pages;
4295
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004296 if (pagepgdat != pgdat) {
4297 if (pgdat)
4298 spin_unlock_irq(&pgdat->lru_lock);
4299 pgdat = pagepgdat;
4300 spin_lock_irq(&pgdat->lru_lock);
4301 }
4302 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4303
4304 if (!PageLRU(page) || !PageUnevictable(page))
4305 continue;
4306
4307 if (page_evictable(page)) {
4308 enum lru_list lru = page_lru_base_type(page);
4309
4310 VM_BUG_ON_PAGE(PageActive(page), page);
4311 ClearPageUnevictable(page);
4312 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4313 add_page_to_lru_list(page, lruvec, lru);
Olivier Deprez157378f2022-04-04 15:47:50 +02004314 pgrescued += nr_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004315 }
4316 }
4317
4318 if (pgdat) {
4319 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4320 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4321 spin_unlock_irq(&pgdat->lru_lock);
4322 }
4323}
David Brazdil0f672f62019-12-10 10:32:29 +00004324EXPORT_SYMBOL_GPL(check_move_unevictable_pages);