blob: 5af6b0f770de626c8ab644563c01e8f3081c6aee [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9#include <linux/mm.h>
10#include <linux/sched/mm.h>
11#include <linux/sched/task.h>
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
20#include <linux/shmem_fs.h>
21#include <linux/blkdev.h>
22#include <linux/random.h>
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
27#include <linux/ksm.h>
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
31#include <linux/mutex.h>
32#include <linux/capability.h>
33#include <linux/syscalls.h>
34#include <linux/memcontrol.h>
35#include <linux/poll.h>
36#include <linux/oom.h>
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
39#include <linux/export.h>
40#include <linux/swap_slots.h>
41#include <linux/sort.h>
42
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000043#include <asm/tlbflush.h>
44#include <linux/swapops.h>
45#include <linux/swap_cgroup.h>
46
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52DEFINE_SPINLOCK(swap_lock);
53static unsigned int nr_swapfiles;
54atomic_long_t nr_swap_pages;
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62long total_swap_pages;
63static int least_priority = -1;
64
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88static struct plist_head *swap_avail_heads;
89static DEFINE_SPINLOCK(swap_avail_lock);
90
91struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93static DEFINE_MUTEX(swapon_mutex);
94
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
David Brazdil0f672f62019-12-10 10:32:29 +0000101static struct swap_info_struct *swap_type_to_swap_info(int type)
102{
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
105
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
108}
109
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000110static inline unsigned char swap_count(unsigned char ent)
111{
112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
113}
114
David Brazdil0f672f62019-12-10 10:32:29 +0000115/* Reclaim the swap entry anyway if possible */
116#define TTRS_ANYWAY 0x1
117/*
118 * Reclaim the swap entry if there are no more mappings of the
119 * corresponding page
120 */
121#define TTRS_UNMAPPED 0x2
122/* Reclaim the swap entry if swap is getting full*/
123#define TTRS_FULL 0x4
124
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000125/* returns 1 if swap entry is freed */
David Brazdil0f672f62019-12-10 10:32:29 +0000126static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 unsigned long offset, unsigned long flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000128{
129 swp_entry_t entry = swp_entry(si->type, offset);
130 struct page *page;
131 int ret = 0;
132
David Brazdil0f672f62019-12-10 10:32:29 +0000133 page = find_get_page(swap_address_space(entry), offset);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000134 if (!page)
135 return 0;
136 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
142 */
143 if (trylock_page(page)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000144 if ((flags & TTRS_ANYWAY) ||
145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 ret = try_to_free_swap(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000148 unlock_page(page);
149 }
150 put_page(page);
151 return ret;
152}
153
David Brazdil0f672f62019-12-10 10:32:29 +0000154static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155{
156 struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 return rb_entry(rb, struct swap_extent, rb_node);
158}
159
160static inline struct swap_extent *next_se(struct swap_extent *se)
161{
162 struct rb_node *rb = rb_next(&se->rb_node);
163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164}
165
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000166/*
167 * swapon tell device that all the old swap contents can be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
170static int discard_swap(struct swap_info_struct *si)
171{
172 struct swap_extent *se;
173 sector_t start_block;
174 sector_t nr_blocks;
175 int err = 0;
176
177 /* Do not discard the swap header page! */
David Brazdil0f672f62019-12-10 10:32:29 +0000178 se = first_se(si);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 if (nr_blocks) {
182 err = blkdev_issue_discard(si->bdev, start_block,
183 nr_blocks, GFP_KERNEL, 0);
184 if (err)
185 return err;
186 cond_resched();
187 }
188
David Brazdil0f672f62019-12-10 10:32:29 +0000189 for (se = next_se(se); se; se = next_se(se)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000190 start_block = se->start_block << (PAGE_SHIFT - 9);
191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193 err = blkdev_issue_discard(si->bdev, start_block,
194 nr_blocks, GFP_KERNEL, 0);
195 if (err)
196 break;
197
198 cond_resched();
199 }
200 return err; /* That will often be -EOPNOTSUPP */
201}
202
David Brazdil0f672f62019-12-10 10:32:29 +0000203static struct swap_extent *
204offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205{
206 struct swap_extent *se;
207 struct rb_node *rb;
208
209 rb = sis->swap_extent_root.rb_node;
210 while (rb) {
211 se = rb_entry(rb, struct swap_extent, rb_node);
212 if (offset < se->start_page)
213 rb = rb->rb_left;
214 else if (offset >= se->start_page + se->nr_pages)
215 rb = rb->rb_right;
216 else
217 return se;
218 }
219 /* It *must* be present */
220 BUG();
221}
222
Olivier Deprez0e641232021-09-23 10:07:05 +0200223sector_t swap_page_sector(struct page *page)
224{
225 struct swap_info_struct *sis = page_swap_info(page);
226 struct swap_extent *se;
227 sector_t sector;
228 pgoff_t offset;
229
230 offset = __page_file_index(page);
231 se = offset_to_swap_extent(sis, offset);
232 sector = se->start_block + (offset - se->start_page);
233 return sector << (PAGE_SHIFT - 9);
234}
235
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000236/*
237 * swap allocation tell device that a cluster of swap can now be discarded,
238 * to allow the swap device to optimize its wear-levelling.
239 */
240static void discard_swap_cluster(struct swap_info_struct *si,
241 pgoff_t start_page, pgoff_t nr_pages)
242{
David Brazdil0f672f62019-12-10 10:32:29 +0000243 struct swap_extent *se = offset_to_swap_extent(si, start_page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000244
245 while (nr_pages) {
David Brazdil0f672f62019-12-10 10:32:29 +0000246 pgoff_t offset = start_page - se->start_page;
247 sector_t start_block = se->start_block + offset;
248 sector_t nr_blocks = se->nr_pages - offset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000249
David Brazdil0f672f62019-12-10 10:32:29 +0000250 if (nr_blocks > nr_pages)
251 nr_blocks = nr_pages;
252 start_page += nr_blocks;
253 nr_pages -= nr_blocks;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000254
David Brazdil0f672f62019-12-10 10:32:29 +0000255 start_block <<= PAGE_SHIFT - 9;
256 nr_blocks <<= PAGE_SHIFT - 9;
257 if (blkdev_issue_discard(si->bdev, start_block,
258 nr_blocks, GFP_NOIO, 0))
259 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000260
David Brazdil0f672f62019-12-10 10:32:29 +0000261 se = next_se(se);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000262 }
263}
264
265#ifdef CONFIG_THP_SWAP
266#define SWAPFILE_CLUSTER HPAGE_PMD_NR
267
268#define swap_entry_size(size) (size)
269#else
270#define SWAPFILE_CLUSTER 256
271
272/*
273 * Define swap_entry_size() as constant to let compiler to optimize
274 * out some code if !CONFIG_THP_SWAP
275 */
276#define swap_entry_size(size) 1
277#endif
278#define LATENCY_LIMIT 256
279
280static inline void cluster_set_flag(struct swap_cluster_info *info,
281 unsigned int flag)
282{
283 info->flags = flag;
284}
285
286static inline unsigned int cluster_count(struct swap_cluster_info *info)
287{
288 return info->data;
289}
290
291static inline void cluster_set_count(struct swap_cluster_info *info,
292 unsigned int c)
293{
294 info->data = c;
295}
296
297static inline void cluster_set_count_flag(struct swap_cluster_info *info,
298 unsigned int c, unsigned int f)
299{
300 info->flags = f;
301 info->data = c;
302}
303
304static inline unsigned int cluster_next(struct swap_cluster_info *info)
305{
306 return info->data;
307}
308
309static inline void cluster_set_next(struct swap_cluster_info *info,
310 unsigned int n)
311{
312 info->data = n;
313}
314
315static inline void cluster_set_next_flag(struct swap_cluster_info *info,
316 unsigned int n, unsigned int f)
317{
318 info->flags = f;
319 info->data = n;
320}
321
322static inline bool cluster_is_free(struct swap_cluster_info *info)
323{
324 return info->flags & CLUSTER_FLAG_FREE;
325}
326
327static inline bool cluster_is_null(struct swap_cluster_info *info)
328{
329 return info->flags & CLUSTER_FLAG_NEXT_NULL;
330}
331
332static inline void cluster_set_null(struct swap_cluster_info *info)
333{
334 info->flags = CLUSTER_FLAG_NEXT_NULL;
335 info->data = 0;
336}
337
338static inline bool cluster_is_huge(struct swap_cluster_info *info)
339{
340 if (IS_ENABLED(CONFIG_THP_SWAP))
341 return info->flags & CLUSTER_FLAG_HUGE;
342 return false;
343}
344
345static inline void cluster_clear_huge(struct swap_cluster_info *info)
346{
347 info->flags &= ~CLUSTER_FLAG_HUGE;
348}
349
350static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
351 unsigned long offset)
352{
353 struct swap_cluster_info *ci;
354
355 ci = si->cluster_info;
356 if (ci) {
357 ci += offset / SWAPFILE_CLUSTER;
358 spin_lock(&ci->lock);
359 }
360 return ci;
361}
362
363static inline void unlock_cluster(struct swap_cluster_info *ci)
364{
365 if (ci)
366 spin_unlock(&ci->lock);
367}
368
369/*
370 * Determine the locking method in use for this device. Return
371 * swap_cluster_info if SSD-style cluster-based locking is in place.
372 */
373static inline struct swap_cluster_info *lock_cluster_or_swap_info(
374 struct swap_info_struct *si, unsigned long offset)
375{
376 struct swap_cluster_info *ci;
377
378 /* Try to use fine-grained SSD-style locking if available: */
379 ci = lock_cluster(si, offset);
380 /* Otherwise, fall back to traditional, coarse locking: */
381 if (!ci)
382 spin_lock(&si->lock);
383
384 return ci;
385}
386
387static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
388 struct swap_cluster_info *ci)
389{
390 if (ci)
391 unlock_cluster(ci);
392 else
393 spin_unlock(&si->lock);
394}
395
396static inline bool cluster_list_empty(struct swap_cluster_list *list)
397{
398 return cluster_is_null(&list->head);
399}
400
401static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402{
403 return cluster_next(&list->head);
404}
405
406static void cluster_list_init(struct swap_cluster_list *list)
407{
408 cluster_set_null(&list->head);
409 cluster_set_null(&list->tail);
410}
411
412static void cluster_list_add_tail(struct swap_cluster_list *list,
413 struct swap_cluster_info *ci,
414 unsigned int idx)
415{
416 if (cluster_list_empty(list)) {
417 cluster_set_next_flag(&list->head, idx, 0);
418 cluster_set_next_flag(&list->tail, idx, 0);
419 } else {
420 struct swap_cluster_info *ci_tail;
421 unsigned int tail = cluster_next(&list->tail);
422
423 /*
424 * Nested cluster lock, but both cluster locks are
425 * only acquired when we held swap_info_struct->lock
426 */
427 ci_tail = ci + tail;
428 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
429 cluster_set_next(ci_tail, idx);
430 spin_unlock(&ci_tail->lock);
431 cluster_set_next_flag(&list->tail, idx, 0);
432 }
433}
434
435static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
436 struct swap_cluster_info *ci)
437{
438 unsigned int idx;
439
440 idx = cluster_next(&list->head);
441 if (cluster_next(&list->tail) == idx) {
442 cluster_set_null(&list->head);
443 cluster_set_null(&list->tail);
444 } else
445 cluster_set_next_flag(&list->head,
446 cluster_next(&ci[idx]), 0);
447
448 return idx;
449}
450
451/* Add a cluster to discard list and schedule it to do discard */
452static void swap_cluster_schedule_discard(struct swap_info_struct *si,
453 unsigned int idx)
454{
455 /*
456 * If scan_swap_map() can't find a free cluster, it will check
457 * si->swap_map directly. To make sure the discarding cluster isn't
458 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
459 * will be cleared after discard
460 */
461 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463
464 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
465
466 schedule_work(&si->discard_work);
467}
468
469static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470{
471 struct swap_cluster_info *ci = si->cluster_info;
472
473 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
474 cluster_list_add_tail(&si->free_clusters, ci, idx);
475}
476
477/*
478 * Doing discard actually. After a cluster discard is finished, the cluster
479 * will be added to free cluster list. caller should hold si->lock.
480*/
481static void swap_do_scheduled_discard(struct swap_info_struct *si)
482{
483 struct swap_cluster_info *info, *ci;
484 unsigned int idx;
485
486 info = si->cluster_info;
487
488 while (!cluster_list_empty(&si->discard_clusters)) {
489 idx = cluster_list_del_first(&si->discard_clusters, info);
490 spin_unlock(&si->lock);
491
492 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
493 SWAPFILE_CLUSTER);
494
495 spin_lock(&si->lock);
496 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
497 __free_cluster(si, idx);
498 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
499 0, SWAPFILE_CLUSTER);
500 unlock_cluster(ci);
501 }
502}
503
504static void swap_discard_work(struct work_struct *work)
505{
506 struct swap_info_struct *si;
507
508 si = container_of(work, struct swap_info_struct, discard_work);
509
510 spin_lock(&si->lock);
511 swap_do_scheduled_discard(si);
512 spin_unlock(&si->lock);
513}
514
515static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
516{
517 struct swap_cluster_info *ci = si->cluster_info;
518
519 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
520 cluster_list_del_first(&si->free_clusters, ci);
521 cluster_set_count_flag(ci + idx, 0, 0);
522}
523
524static void free_cluster(struct swap_info_struct *si, unsigned long idx)
525{
526 struct swap_cluster_info *ci = si->cluster_info + idx;
527
528 VM_BUG_ON(cluster_count(ci) != 0);
529 /*
530 * If the swap is discardable, prepare discard the cluster
531 * instead of free it immediately. The cluster will be freed
532 * after discard.
533 */
534 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
535 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
536 swap_cluster_schedule_discard(si, idx);
537 return;
538 }
539
540 __free_cluster(si, idx);
541}
542
543/*
544 * The cluster corresponding to page_nr will be used. The cluster will be
545 * removed from free cluster list and its usage counter will be increased.
546 */
547static void inc_cluster_info_page(struct swap_info_struct *p,
548 struct swap_cluster_info *cluster_info, unsigned long page_nr)
549{
550 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
551
552 if (!cluster_info)
553 return;
554 if (cluster_is_free(&cluster_info[idx]))
555 alloc_cluster(p, idx);
556
557 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
558 cluster_set_count(&cluster_info[idx],
559 cluster_count(&cluster_info[idx]) + 1);
560}
561
562/*
563 * The cluster corresponding to page_nr decreases one usage. If the usage
564 * counter becomes 0, which means no page in the cluster is in using, we can
565 * optionally discard the cluster and add it to free cluster list.
566 */
567static void dec_cluster_info_page(struct swap_info_struct *p,
568 struct swap_cluster_info *cluster_info, unsigned long page_nr)
569{
570 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
571
572 if (!cluster_info)
573 return;
574
575 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
576 cluster_set_count(&cluster_info[idx],
577 cluster_count(&cluster_info[idx]) - 1);
578
579 if (cluster_count(&cluster_info[idx]) == 0)
580 free_cluster(p, idx);
581}
582
583/*
584 * It's possible scan_swap_map() uses a free cluster in the middle of free
585 * cluster list. Avoiding such abuse to avoid list corruption.
586 */
587static bool
588scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
589 unsigned long offset)
590{
591 struct percpu_cluster *percpu_cluster;
592 bool conflict;
593
594 offset /= SWAPFILE_CLUSTER;
595 conflict = !cluster_list_empty(&si->free_clusters) &&
596 offset != cluster_list_first(&si->free_clusters) &&
597 cluster_is_free(&si->cluster_info[offset]);
598
599 if (!conflict)
600 return false;
601
602 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
603 cluster_set_null(&percpu_cluster->index);
604 return true;
605}
606
607/*
608 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
609 * might involve allocating a new cluster for current CPU too.
610 */
611static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
612 unsigned long *offset, unsigned long *scan_base)
613{
614 struct percpu_cluster *cluster;
615 struct swap_cluster_info *ci;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000616 unsigned long tmp, max;
617
618new_cluster:
619 cluster = this_cpu_ptr(si->percpu_cluster);
620 if (cluster_is_null(&cluster->index)) {
621 if (!cluster_list_empty(&si->free_clusters)) {
622 cluster->index = si->free_clusters.head;
623 cluster->next = cluster_next(&cluster->index) *
624 SWAPFILE_CLUSTER;
625 } else if (!cluster_list_empty(&si->discard_clusters)) {
626 /*
627 * we don't have free cluster but have some clusters in
Olivier Deprez157378f2022-04-04 15:47:50 +0200628 * discarding, do discard now and reclaim them, then
629 * reread cluster_next_cpu since we dropped si->lock
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000630 */
631 swap_do_scheduled_discard(si);
Olivier Deprez157378f2022-04-04 15:47:50 +0200632 *scan_base = this_cpu_read(*si->cluster_next_cpu);
633 *offset = *scan_base;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000634 goto new_cluster;
635 } else
636 return false;
637 }
638
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000639 /*
640 * Other CPUs can use our cluster if they can't find a free cluster,
641 * check if there is still free entry in the cluster
642 */
643 tmp = cluster->next;
644 max = min_t(unsigned long, si->max,
645 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
Olivier Deprez157378f2022-04-04 15:47:50 +0200646 if (tmp < max) {
647 ci = lock_cluster(si, tmp);
648 while (tmp < max) {
649 if (!si->swap_map[tmp])
650 break;
651 tmp++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000652 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200653 unlock_cluster(ci);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000654 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200655 if (tmp >= max) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000656 cluster_set_null(&cluster->index);
657 goto new_cluster;
658 }
659 cluster->next = tmp + 1;
660 *offset = tmp;
661 *scan_base = tmp;
Olivier Deprez157378f2022-04-04 15:47:50 +0200662 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000663}
664
665static void __del_from_avail_list(struct swap_info_struct *p)
666{
667 int nid;
668
669 for_each_node(nid)
670 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
671}
672
673static void del_from_avail_list(struct swap_info_struct *p)
674{
675 spin_lock(&swap_avail_lock);
676 __del_from_avail_list(p);
677 spin_unlock(&swap_avail_lock);
678}
679
680static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
681 unsigned int nr_entries)
682{
683 unsigned int end = offset + nr_entries - 1;
684
685 if (offset == si->lowest_bit)
686 si->lowest_bit += nr_entries;
687 if (end == si->highest_bit)
Olivier Deprez157378f2022-04-04 15:47:50 +0200688 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000689 si->inuse_pages += nr_entries;
690 if (si->inuse_pages == si->pages) {
691 si->lowest_bit = si->max;
692 si->highest_bit = 0;
693 del_from_avail_list(si);
694 }
695}
696
697static void add_to_avail_list(struct swap_info_struct *p)
698{
699 int nid;
700
701 spin_lock(&swap_avail_lock);
702 for_each_node(nid) {
703 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
704 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
705 }
706 spin_unlock(&swap_avail_lock);
707}
708
709static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
710 unsigned int nr_entries)
711{
Olivier Deprez157378f2022-04-04 15:47:50 +0200712 unsigned long begin = offset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000713 unsigned long end = offset + nr_entries - 1;
714 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
715
716 if (offset < si->lowest_bit)
717 si->lowest_bit = offset;
718 if (end > si->highest_bit) {
719 bool was_full = !si->highest_bit;
720
Olivier Deprez157378f2022-04-04 15:47:50 +0200721 WRITE_ONCE(si->highest_bit, end);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000722 if (was_full && (si->flags & SWP_WRITEOK))
723 add_to_avail_list(si);
724 }
725 atomic_long_add(nr_entries, &nr_swap_pages);
726 si->inuse_pages -= nr_entries;
727 if (si->flags & SWP_BLKDEV)
728 swap_slot_free_notify =
729 si->bdev->bd_disk->fops->swap_slot_free_notify;
730 else
731 swap_slot_free_notify = NULL;
732 while (offset <= end) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200733 arch_swap_invalidate_page(si->type, offset);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000734 frontswap_invalidate_page(si->type, offset);
735 if (swap_slot_free_notify)
736 swap_slot_free_notify(si->bdev, offset);
737 offset++;
738 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200739 clear_shadow_from_swap_cache(si->type, begin, end);
740}
741
742static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
743{
744 unsigned long prev;
745
746 if (!(si->flags & SWP_SOLIDSTATE)) {
747 si->cluster_next = next;
748 return;
749 }
750
751 prev = this_cpu_read(*si->cluster_next_cpu);
752 /*
753 * Cross the swap address space size aligned trunk, choose
754 * another trunk randomly to avoid lock contention on swap
755 * address space if possible.
756 */
757 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
758 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
759 /* No free swap slots available */
760 if (si->highest_bit <= si->lowest_bit)
761 return;
762 next = si->lowest_bit +
763 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
764 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
765 next = max_t(unsigned int, next, si->lowest_bit);
766 }
767 this_cpu_write(*si->cluster_next_cpu, next);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000768}
769
770static int scan_swap_map_slots(struct swap_info_struct *si,
771 unsigned char usage, int nr,
772 swp_entry_t slots[])
773{
774 struct swap_cluster_info *ci;
775 unsigned long offset;
776 unsigned long scan_base;
777 unsigned long last_in_cluster = 0;
778 int latency_ration = LATENCY_LIMIT;
779 int n_ret = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +0200780 bool scanned_many = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000781
782 /*
783 * We try to cluster swap pages by allocating them sequentially
784 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
785 * way, however, we resort to first-free allocation, starting
786 * a new cluster. This prevents us from scattering swap pages
787 * all over the entire swap partition, so that we reduce
788 * overall disk seek times between swap pages. -- sct
789 * But we do now try to find an empty cluster. -Andrea
790 * And we let swap pages go all over an SSD partition. Hugh
791 */
792
793 si->flags += SWP_SCANNING;
Olivier Deprez157378f2022-04-04 15:47:50 +0200794 /*
795 * Use percpu scan base for SSD to reduce lock contention on
796 * cluster and swap cache. For HDD, sequential access is more
797 * important.
798 */
799 if (si->flags & SWP_SOLIDSTATE)
800 scan_base = this_cpu_read(*si->cluster_next_cpu);
801 else
802 scan_base = si->cluster_next;
803 offset = scan_base;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000804
805 /* SSD algorithm */
806 if (si->cluster_info) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200807 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000808 goto scan;
Olivier Deprez157378f2022-04-04 15:47:50 +0200809 } else if (unlikely(!si->cluster_nr--)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000810 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
811 si->cluster_nr = SWAPFILE_CLUSTER - 1;
812 goto checks;
813 }
814
815 spin_unlock(&si->lock);
816
817 /*
818 * If seek is expensive, start searching for new cluster from
819 * start of partition, to minimize the span of allocated swap.
820 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
821 * case, just handled by scan_swap_map_try_ssd_cluster() above.
822 */
823 scan_base = offset = si->lowest_bit;
824 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
825
826 /* Locate the first empty (unaligned) cluster */
827 for (; last_in_cluster <= si->highest_bit; offset++) {
828 if (si->swap_map[offset])
829 last_in_cluster = offset + SWAPFILE_CLUSTER;
830 else if (offset == last_in_cluster) {
831 spin_lock(&si->lock);
832 offset -= SWAPFILE_CLUSTER - 1;
833 si->cluster_next = offset;
834 si->cluster_nr = SWAPFILE_CLUSTER - 1;
835 goto checks;
836 }
837 if (unlikely(--latency_ration < 0)) {
838 cond_resched();
839 latency_ration = LATENCY_LIMIT;
840 }
841 }
842
843 offset = scan_base;
844 spin_lock(&si->lock);
845 si->cluster_nr = SWAPFILE_CLUSTER - 1;
846 }
847
848checks:
849 if (si->cluster_info) {
850 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
851 /* take a break if we already got some slots */
852 if (n_ret)
853 goto done;
854 if (!scan_swap_map_try_ssd_cluster(si, &offset,
855 &scan_base))
856 goto scan;
857 }
858 }
859 if (!(si->flags & SWP_WRITEOK))
860 goto no_page;
861 if (!si->highest_bit)
862 goto no_page;
863 if (offset > si->highest_bit)
864 scan_base = offset = si->lowest_bit;
865
866 ci = lock_cluster(si, offset);
867 /* reuse swap entry of cache-only swap if not busy. */
868 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
869 int swap_was_freed;
870 unlock_cluster(ci);
871 spin_unlock(&si->lock);
David Brazdil0f672f62019-12-10 10:32:29 +0000872 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000873 spin_lock(&si->lock);
874 /* entry was freed successfully, try to use this again */
875 if (swap_was_freed)
876 goto checks;
877 goto scan; /* check next one */
878 }
879
880 if (si->swap_map[offset]) {
881 unlock_cluster(ci);
882 if (!n_ret)
883 goto scan;
884 else
885 goto done;
886 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200887 WRITE_ONCE(si->swap_map[offset], usage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000888 inc_cluster_info_page(si, si->cluster_info, offset);
889 unlock_cluster(ci);
890
891 swap_range_alloc(si, offset, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000892 slots[n_ret++] = swp_entry(si->type, offset);
893
894 /* got enough slots or reach max slots? */
895 if ((n_ret == nr) || (offset >= si->highest_bit))
896 goto done;
897
898 /* search for next available slot */
899
900 /* time to take a break? */
901 if (unlikely(--latency_ration < 0)) {
902 if (n_ret)
903 goto done;
904 spin_unlock(&si->lock);
905 cond_resched();
906 spin_lock(&si->lock);
907 latency_ration = LATENCY_LIMIT;
908 }
909
910 /* try to get more slots in cluster */
911 if (si->cluster_info) {
912 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
913 goto checks;
Olivier Deprez157378f2022-04-04 15:47:50 +0200914 } else if (si->cluster_nr && !si->swap_map[++offset]) {
915 /* non-ssd case, still more slots in cluster? */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000916 --si->cluster_nr;
917 goto checks;
918 }
919
Olivier Deprez157378f2022-04-04 15:47:50 +0200920 /*
921 * Even if there's no free clusters available (fragmented),
922 * try to scan a little more quickly with lock held unless we
923 * have scanned too many slots already.
924 */
925 if (!scanned_many) {
926 unsigned long scan_limit;
927
928 if (offset < scan_base)
929 scan_limit = scan_base;
930 else
931 scan_limit = si->highest_bit;
932 for (; offset <= scan_limit && --latency_ration > 0;
933 offset++) {
934 if (!si->swap_map[offset])
935 goto checks;
936 }
937 }
938
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000939done:
Olivier Deprez157378f2022-04-04 15:47:50 +0200940 set_cluster_next(si, offset + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000941 si->flags -= SWP_SCANNING;
942 return n_ret;
943
944scan:
945 spin_unlock(&si->lock);
Olivier Deprez157378f2022-04-04 15:47:50 +0200946 while (++offset <= READ_ONCE(si->highest_bit)) {
947 if (data_race(!si->swap_map[offset])) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000948 spin_lock(&si->lock);
949 goto checks;
950 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200951 if (vm_swap_full() &&
952 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000953 spin_lock(&si->lock);
954 goto checks;
955 }
956 if (unlikely(--latency_ration < 0)) {
957 cond_resched();
958 latency_ration = LATENCY_LIMIT;
Olivier Deprez157378f2022-04-04 15:47:50 +0200959 scanned_many = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000960 }
961 }
962 offset = si->lowest_bit;
963 while (offset < scan_base) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200964 if (data_race(!si->swap_map[offset])) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000965 spin_lock(&si->lock);
966 goto checks;
967 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200968 if (vm_swap_full() &&
969 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000970 spin_lock(&si->lock);
971 goto checks;
972 }
973 if (unlikely(--latency_ration < 0)) {
974 cond_resched();
975 latency_ration = LATENCY_LIMIT;
Olivier Deprez157378f2022-04-04 15:47:50 +0200976 scanned_many = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000977 }
978 offset++;
979 }
980 spin_lock(&si->lock);
981
982no_page:
983 si->flags -= SWP_SCANNING;
984 return n_ret;
985}
986
987static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
988{
989 unsigned long idx;
990 struct swap_cluster_info *ci;
991 unsigned long offset, i;
992 unsigned char *map;
993
994 /*
995 * Should not even be attempting cluster allocations when huge
996 * page swap is disabled. Warn and fail the allocation.
997 */
998 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
999 VM_WARN_ON_ONCE(1);
1000 return 0;
1001 }
1002
1003 if (cluster_list_empty(&si->free_clusters))
1004 return 0;
1005
1006 idx = cluster_list_first(&si->free_clusters);
1007 offset = idx * SWAPFILE_CLUSTER;
1008 ci = lock_cluster(si, offset);
1009 alloc_cluster(si, idx);
1010 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1011
1012 map = si->swap_map + offset;
1013 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1014 map[i] = SWAP_HAS_CACHE;
1015 unlock_cluster(ci);
1016 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1017 *slot = swp_entry(si->type, offset);
1018
1019 return 1;
1020}
1021
1022static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1023{
1024 unsigned long offset = idx * SWAPFILE_CLUSTER;
1025 struct swap_cluster_info *ci;
1026
1027 ci = lock_cluster(si, offset);
David Brazdil0f672f62019-12-10 10:32:29 +00001028 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001029 cluster_set_count_flag(ci, 0, 0);
1030 free_cluster(si, idx);
1031 unlock_cluster(ci);
1032 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1033}
1034
1035static unsigned long scan_swap_map(struct swap_info_struct *si,
1036 unsigned char usage)
1037{
1038 swp_entry_t entry;
1039 int n_ret;
1040
1041 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1042
1043 if (n_ret)
1044 return swp_offset(entry);
1045 else
1046 return 0;
1047
1048}
1049
1050int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1051{
1052 unsigned long size = swap_entry_size(entry_size);
1053 struct swap_info_struct *si, *next;
1054 long avail_pgs;
1055 int n_ret = 0;
1056 int node;
1057
1058 /* Only single cluster request supported */
1059 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1060
Olivier Deprez157378f2022-04-04 15:47:50 +02001061 spin_lock(&swap_avail_lock);
1062
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001063 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
Olivier Deprez157378f2022-04-04 15:47:50 +02001064 if (avail_pgs <= 0) {
1065 spin_unlock(&swap_avail_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001066 goto noswap;
Olivier Deprez157378f2022-04-04 15:47:50 +02001067 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001068
Olivier Deprez157378f2022-04-04 15:47:50 +02001069 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001070
1071 atomic_long_sub(n_goal * size, &nr_swap_pages);
1072
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001073start_over:
1074 node = numa_node_id();
1075 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1076 /* requeue si to after same-priority siblings */
1077 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1078 spin_unlock(&swap_avail_lock);
1079 spin_lock(&si->lock);
1080 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1081 spin_lock(&swap_avail_lock);
1082 if (plist_node_empty(&si->avail_lists[node])) {
1083 spin_unlock(&si->lock);
1084 goto nextsi;
1085 }
1086 WARN(!si->highest_bit,
1087 "swap_info %d in list but !highest_bit\n",
1088 si->type);
1089 WARN(!(si->flags & SWP_WRITEOK),
1090 "swap_info %d in list but !SWP_WRITEOK\n",
1091 si->type);
1092 __del_from_avail_list(si);
1093 spin_unlock(&si->lock);
1094 goto nextsi;
1095 }
1096 if (size == SWAPFILE_CLUSTER) {
Olivier Deprez0e641232021-09-23 10:07:05 +02001097 if (si->flags & SWP_BLKDEV)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001098 n_ret = swap_alloc_cluster(si, swp_entries);
1099 } else
1100 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1101 n_goal, swp_entries);
1102 spin_unlock(&si->lock);
1103 if (n_ret || size == SWAPFILE_CLUSTER)
1104 goto check_out;
1105 pr_debug("scan_swap_map of si %d failed to find offset\n",
1106 si->type);
1107
1108 spin_lock(&swap_avail_lock);
1109nextsi:
1110 /*
1111 * if we got here, it's likely that si was almost full before,
1112 * and since scan_swap_map() can drop the si->lock, multiple
1113 * callers probably all tried to get a page from the same si
1114 * and it filled up before we could get one; or, the si filled
1115 * up between us dropping swap_avail_lock and taking si->lock.
1116 * Since we dropped the swap_avail_lock, the swap_avail_head
1117 * list may have been modified; so if next is still in the
1118 * swap_avail_head list then try it, otherwise start over
1119 * if we have not gotten any slots.
1120 */
1121 if (plist_node_empty(&next->avail_lists[node]))
1122 goto start_over;
1123 }
1124
1125 spin_unlock(&swap_avail_lock);
1126
1127check_out:
1128 if (n_ret < n_goal)
1129 atomic_long_add((long)(n_goal - n_ret) * size,
1130 &nr_swap_pages);
1131noswap:
1132 return n_ret;
1133}
1134
1135/* The only caller of this function is now suspend routine */
1136swp_entry_t get_swap_page_of_type(int type)
1137{
David Brazdil0f672f62019-12-10 10:32:29 +00001138 struct swap_info_struct *si = swap_type_to_swap_info(type);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001139 pgoff_t offset;
1140
David Brazdil0f672f62019-12-10 10:32:29 +00001141 if (!si)
1142 goto fail;
1143
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001144 spin_lock(&si->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001145 if (si->flags & SWP_WRITEOK) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001146 /* This is called for allocating swap entry, not cache */
1147 offset = scan_swap_map(si, 1);
1148 if (offset) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001149 atomic_long_dec(&nr_swap_pages);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001150 spin_unlock(&si->lock);
1151 return swp_entry(type, offset);
1152 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001153 }
1154 spin_unlock(&si->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001155fail:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001156 return (swp_entry_t) {0};
1157}
1158
1159static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1160{
1161 struct swap_info_struct *p;
David Brazdil0f672f62019-12-10 10:32:29 +00001162 unsigned long offset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001163
1164 if (!entry.val)
1165 goto out;
David Brazdil0f672f62019-12-10 10:32:29 +00001166 p = swp_swap_info(entry);
1167 if (!p)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001168 goto bad_nofile;
Olivier Deprez157378f2022-04-04 15:47:50 +02001169 if (data_race(!(p->flags & SWP_USED)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001170 goto bad_device;
1171 offset = swp_offset(entry);
1172 if (offset >= p->max)
1173 goto bad_offset;
1174 return p;
1175
1176bad_offset:
1177 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1178 goto out;
1179bad_device:
1180 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1181 goto out;
1182bad_nofile:
1183 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1184out:
1185 return NULL;
1186}
1187
1188static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1189{
1190 struct swap_info_struct *p;
1191
1192 p = __swap_info_get(entry);
1193 if (!p)
1194 goto out;
Olivier Deprez157378f2022-04-04 15:47:50 +02001195 if (data_race(!p->swap_map[swp_offset(entry)]))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001196 goto bad_free;
1197 return p;
1198
1199bad_free:
1200 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001201out:
1202 return NULL;
1203}
1204
1205static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1206{
1207 struct swap_info_struct *p;
1208
1209 p = _swap_info_get(entry);
1210 if (p)
1211 spin_lock(&p->lock);
1212 return p;
1213}
1214
1215static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1216 struct swap_info_struct *q)
1217{
1218 struct swap_info_struct *p;
1219
1220 p = _swap_info_get(entry);
1221
1222 if (p != q) {
1223 if (q != NULL)
1224 spin_unlock(&q->lock);
1225 if (p != NULL)
1226 spin_lock(&p->lock);
1227 }
1228 return p;
1229}
1230
1231static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1232 unsigned long offset,
1233 unsigned char usage)
1234{
1235 unsigned char count;
1236 unsigned char has_cache;
1237
1238 count = p->swap_map[offset];
1239
1240 has_cache = count & SWAP_HAS_CACHE;
1241 count &= ~SWAP_HAS_CACHE;
1242
1243 if (usage == SWAP_HAS_CACHE) {
1244 VM_BUG_ON(!has_cache);
1245 has_cache = 0;
1246 } else if (count == SWAP_MAP_SHMEM) {
1247 /*
1248 * Or we could insist on shmem.c using a special
1249 * swap_shmem_free() and free_shmem_swap_and_cache()...
1250 */
1251 count = 0;
1252 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1253 if (count == COUNT_CONTINUED) {
1254 if (swap_count_continued(p, offset, count))
1255 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1256 else
1257 count = SWAP_MAP_MAX;
1258 } else
1259 count--;
1260 }
1261
1262 usage = count | has_cache;
Olivier Deprez157378f2022-04-04 15:47:50 +02001263 if (usage)
1264 WRITE_ONCE(p->swap_map[offset], usage);
1265 else
1266 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001267
1268 return usage;
1269}
1270
David Brazdil0f672f62019-12-10 10:32:29 +00001271/*
1272 * Check whether swap entry is valid in the swap device. If so,
1273 * return pointer to swap_info_struct, and keep the swap entry valid
1274 * via preventing the swap device from being swapoff, until
1275 * put_swap_device() is called. Otherwise return NULL.
1276 *
1277 * The entirety of the RCU read critical section must come before the
1278 * return from or after the call to synchronize_rcu() in
1279 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1280 * true, the si->map, si->cluster_info, etc. must be valid in the
1281 * critical section.
1282 *
1283 * Notice that swapoff or swapoff+swapon can still happen before the
1284 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1285 * in put_swap_device() if there isn't any other way to prevent
1286 * swapoff, such as page lock, page table lock, etc. The caller must
1287 * be prepared for that. For example, the following situation is
1288 * possible.
1289 *
1290 * CPU1 CPU2
1291 * do_swap_page()
1292 * ... swapoff+swapon
1293 * __read_swap_cache_async()
1294 * swapcache_prepare()
1295 * __swap_duplicate()
1296 * // check swap_map
1297 * // verify PTE not changed
1298 *
1299 * In __swap_duplicate(), the swap_map need to be checked before
1300 * changing partly because the specified swap entry may be for another
1301 * swap device which has been swapoff. And in do_swap_page(), after
1302 * the page is read from the swap device, the PTE is verified not
1303 * changed with the page table locked to check whether the swap device
1304 * has been swapoff or swapoff+swapon.
1305 */
1306struct swap_info_struct *get_swap_device(swp_entry_t entry)
1307{
1308 struct swap_info_struct *si;
1309 unsigned long offset;
1310
1311 if (!entry.val)
1312 goto out;
1313 si = swp_swap_info(entry);
1314 if (!si)
1315 goto bad_nofile;
1316
1317 rcu_read_lock();
Olivier Deprez157378f2022-04-04 15:47:50 +02001318 if (data_race(!(si->flags & SWP_VALID)))
David Brazdil0f672f62019-12-10 10:32:29 +00001319 goto unlock_out;
1320 offset = swp_offset(entry);
1321 if (offset >= si->max)
1322 goto unlock_out;
1323
1324 return si;
1325bad_nofile:
1326 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1327out:
1328 return NULL;
1329unlock_out:
1330 rcu_read_unlock();
1331 return NULL;
1332}
1333
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001334static unsigned char __swap_entry_free(struct swap_info_struct *p,
Olivier Deprez157378f2022-04-04 15:47:50 +02001335 swp_entry_t entry)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001336{
1337 struct swap_cluster_info *ci;
1338 unsigned long offset = swp_offset(entry);
Olivier Deprez157378f2022-04-04 15:47:50 +02001339 unsigned char usage;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001340
1341 ci = lock_cluster_or_swap_info(p, offset);
Olivier Deprez157378f2022-04-04 15:47:50 +02001342 usage = __swap_entry_free_locked(p, offset, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001343 unlock_cluster_or_swap_info(p, ci);
David Brazdil0f672f62019-12-10 10:32:29 +00001344 if (!usage)
1345 free_swap_slot(entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001346
1347 return usage;
1348}
1349
1350static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1351{
1352 struct swap_cluster_info *ci;
1353 unsigned long offset = swp_offset(entry);
1354 unsigned char count;
1355
1356 ci = lock_cluster(p, offset);
1357 count = p->swap_map[offset];
1358 VM_BUG_ON(count != SWAP_HAS_CACHE);
1359 p->swap_map[offset] = 0;
1360 dec_cluster_info_page(p, p->cluster_info, offset);
1361 unlock_cluster(ci);
1362
1363 mem_cgroup_uncharge_swap(entry, 1);
1364 swap_range_free(p, offset, 1);
1365}
1366
1367/*
1368 * Caller has made sure that the swap device corresponding to entry
1369 * is still around or has not been recycled.
1370 */
1371void swap_free(swp_entry_t entry)
1372{
1373 struct swap_info_struct *p;
1374
1375 p = _swap_info_get(entry);
David Brazdil0f672f62019-12-10 10:32:29 +00001376 if (p)
Olivier Deprez157378f2022-04-04 15:47:50 +02001377 __swap_entry_free(p, entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001378}
1379
1380/*
1381 * Called after dropping swapcache to decrease refcnt to swap entries.
1382 */
1383void put_swap_page(struct page *page, swp_entry_t entry)
1384{
1385 unsigned long offset = swp_offset(entry);
1386 unsigned long idx = offset / SWAPFILE_CLUSTER;
1387 struct swap_cluster_info *ci;
1388 struct swap_info_struct *si;
1389 unsigned char *map;
1390 unsigned int i, free_entries = 0;
1391 unsigned char val;
Olivier Deprez157378f2022-04-04 15:47:50 +02001392 int size = swap_entry_size(thp_nr_pages(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001393
1394 si = _swap_info_get(entry);
1395 if (!si)
1396 return;
1397
1398 ci = lock_cluster_or_swap_info(si, offset);
1399 if (size == SWAPFILE_CLUSTER) {
1400 VM_BUG_ON(!cluster_is_huge(ci));
1401 map = si->swap_map + offset;
1402 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1403 val = map[i];
1404 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1405 if (val == SWAP_HAS_CACHE)
1406 free_entries++;
1407 }
1408 cluster_clear_huge(ci);
1409 if (free_entries == SWAPFILE_CLUSTER) {
1410 unlock_cluster_or_swap_info(si, ci);
1411 spin_lock(&si->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001412 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1413 swap_free_cluster(si, idx);
1414 spin_unlock(&si->lock);
1415 return;
1416 }
1417 }
1418 for (i = 0; i < size; i++, entry.val++) {
1419 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1420 unlock_cluster_or_swap_info(si, ci);
1421 free_swap_slot(entry);
1422 if (i == size - 1)
1423 return;
1424 lock_cluster_or_swap_info(si, offset);
1425 }
1426 }
1427 unlock_cluster_or_swap_info(si, ci);
1428}
1429
1430#ifdef CONFIG_THP_SWAP
1431int split_swap_cluster(swp_entry_t entry)
1432{
1433 struct swap_info_struct *si;
1434 struct swap_cluster_info *ci;
1435 unsigned long offset = swp_offset(entry);
1436
1437 si = _swap_info_get(entry);
1438 if (!si)
1439 return -EBUSY;
1440 ci = lock_cluster(si, offset);
1441 cluster_clear_huge(ci);
1442 unlock_cluster(ci);
1443 return 0;
1444}
1445#endif
1446
1447static int swp_entry_cmp(const void *ent1, const void *ent2)
1448{
1449 const swp_entry_t *e1 = ent1, *e2 = ent2;
1450
1451 return (int)swp_type(*e1) - (int)swp_type(*e2);
1452}
1453
1454void swapcache_free_entries(swp_entry_t *entries, int n)
1455{
1456 struct swap_info_struct *p, *prev;
1457 int i;
1458
1459 if (n <= 0)
1460 return;
1461
1462 prev = NULL;
1463 p = NULL;
1464
1465 /*
1466 * Sort swap entries by swap device, so each lock is only taken once.
1467 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1468 * so low that it isn't necessary to optimize further.
1469 */
1470 if (nr_swapfiles > 1)
1471 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1472 for (i = 0; i < n; ++i) {
1473 p = swap_info_get_cont(entries[i], prev);
1474 if (p)
1475 swap_entry_free(p, entries[i]);
1476 prev = p;
1477 }
1478 if (p)
1479 spin_unlock(&p->lock);
1480}
1481
1482/*
1483 * How many references to page are currently swapped out?
1484 * This does not give an exact answer when swap count is continued,
1485 * but does include the high COUNT_CONTINUED flag to allow for that.
1486 */
1487int page_swapcount(struct page *page)
1488{
1489 int count = 0;
1490 struct swap_info_struct *p;
1491 struct swap_cluster_info *ci;
1492 swp_entry_t entry;
1493 unsigned long offset;
1494
1495 entry.val = page_private(page);
1496 p = _swap_info_get(entry);
1497 if (p) {
1498 offset = swp_offset(entry);
1499 ci = lock_cluster_or_swap_info(p, offset);
1500 count = swap_count(p->swap_map[offset]);
1501 unlock_cluster_or_swap_info(p, ci);
1502 }
1503 return count;
1504}
1505
David Brazdil0f672f62019-12-10 10:32:29 +00001506int __swap_count(swp_entry_t entry)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001507{
David Brazdil0f672f62019-12-10 10:32:29 +00001508 struct swap_info_struct *si;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001509 pgoff_t offset = swp_offset(entry);
David Brazdil0f672f62019-12-10 10:32:29 +00001510 int count = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001511
David Brazdil0f672f62019-12-10 10:32:29 +00001512 si = get_swap_device(entry);
1513 if (si) {
1514 count = swap_count(si->swap_map[offset]);
1515 put_swap_device(si);
1516 }
1517 return count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001518}
1519
1520static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1521{
1522 int count = 0;
1523 pgoff_t offset = swp_offset(entry);
1524 struct swap_cluster_info *ci;
1525
1526 ci = lock_cluster_or_swap_info(si, offset);
1527 count = swap_count(si->swap_map[offset]);
1528 unlock_cluster_or_swap_info(si, ci);
1529 return count;
1530}
1531
1532/*
1533 * How many references to @entry are currently swapped out?
1534 * This does not give an exact answer when swap count is continued,
1535 * but does include the high COUNT_CONTINUED flag to allow for that.
1536 */
1537int __swp_swapcount(swp_entry_t entry)
1538{
1539 int count = 0;
1540 struct swap_info_struct *si;
1541
David Brazdil0f672f62019-12-10 10:32:29 +00001542 si = get_swap_device(entry);
1543 if (si) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001544 count = swap_swapcount(si, entry);
David Brazdil0f672f62019-12-10 10:32:29 +00001545 put_swap_device(si);
1546 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001547 return count;
1548}
1549
1550/*
1551 * How many references to @entry are currently swapped out?
1552 * This considers COUNT_CONTINUED so it returns exact answer.
1553 */
1554int swp_swapcount(swp_entry_t entry)
1555{
1556 int count, tmp_count, n;
1557 struct swap_info_struct *p;
1558 struct swap_cluster_info *ci;
1559 struct page *page;
1560 pgoff_t offset;
1561 unsigned char *map;
1562
1563 p = _swap_info_get(entry);
1564 if (!p)
1565 return 0;
1566
1567 offset = swp_offset(entry);
1568
1569 ci = lock_cluster_or_swap_info(p, offset);
1570
1571 count = swap_count(p->swap_map[offset]);
1572 if (!(count & COUNT_CONTINUED))
1573 goto out;
1574
1575 count &= ~COUNT_CONTINUED;
1576 n = SWAP_MAP_MAX + 1;
1577
1578 page = vmalloc_to_page(p->swap_map + offset);
1579 offset &= ~PAGE_MASK;
1580 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1581
1582 do {
1583 page = list_next_entry(page, lru);
1584 map = kmap_atomic(page);
1585 tmp_count = map[offset];
1586 kunmap_atomic(map);
1587
1588 count += (tmp_count & ~COUNT_CONTINUED) * n;
1589 n *= (SWAP_CONT_MAX + 1);
1590 } while (tmp_count & COUNT_CONTINUED);
1591out:
1592 unlock_cluster_or_swap_info(p, ci);
1593 return count;
1594}
1595
1596static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1597 swp_entry_t entry)
1598{
1599 struct swap_cluster_info *ci;
1600 unsigned char *map = si->swap_map;
1601 unsigned long roffset = swp_offset(entry);
1602 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1603 int i;
1604 bool ret = false;
1605
1606 ci = lock_cluster_or_swap_info(si, offset);
1607 if (!ci || !cluster_is_huge(ci)) {
1608 if (swap_count(map[roffset]))
1609 ret = true;
1610 goto unlock_out;
1611 }
1612 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1613 if (swap_count(map[offset + i])) {
1614 ret = true;
1615 break;
1616 }
1617 }
1618unlock_out:
1619 unlock_cluster_or_swap_info(si, ci);
1620 return ret;
1621}
1622
1623static bool page_swapped(struct page *page)
1624{
1625 swp_entry_t entry;
1626 struct swap_info_struct *si;
1627
1628 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1629 return page_swapcount(page) != 0;
1630
1631 page = compound_head(page);
1632 entry.val = page_private(page);
1633 si = _swap_info_get(entry);
1634 if (si)
1635 return swap_page_trans_huge_swapped(si, entry);
1636 return false;
1637}
1638
1639static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1640 int *total_swapcount)
1641{
1642 int i, map_swapcount, _total_mapcount, _total_swapcount;
1643 unsigned long offset = 0;
1644 struct swap_info_struct *si;
1645 struct swap_cluster_info *ci = NULL;
1646 unsigned char *map = NULL;
1647 int mapcount, swapcount = 0;
1648
1649 /* hugetlbfs shouldn't call it */
1650 VM_BUG_ON_PAGE(PageHuge(page), page);
1651
1652 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1653 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1654 if (PageSwapCache(page))
1655 swapcount = page_swapcount(page);
1656 if (total_swapcount)
1657 *total_swapcount = swapcount;
1658 return mapcount + swapcount;
1659 }
1660
1661 page = compound_head(page);
1662
1663 _total_mapcount = _total_swapcount = map_swapcount = 0;
1664 if (PageSwapCache(page)) {
1665 swp_entry_t entry;
1666
1667 entry.val = page_private(page);
1668 si = _swap_info_get(entry);
1669 if (si) {
1670 map = si->swap_map;
1671 offset = swp_offset(entry);
1672 }
1673 }
1674 if (map)
1675 ci = lock_cluster(si, offset);
1676 for (i = 0; i < HPAGE_PMD_NR; i++) {
1677 mapcount = atomic_read(&page[i]._mapcount) + 1;
1678 _total_mapcount += mapcount;
1679 if (map) {
1680 swapcount = swap_count(map[offset + i]);
1681 _total_swapcount += swapcount;
1682 }
1683 map_swapcount = max(map_swapcount, mapcount + swapcount);
1684 }
1685 unlock_cluster(ci);
1686 if (PageDoubleMap(page)) {
1687 map_swapcount -= 1;
1688 _total_mapcount -= HPAGE_PMD_NR;
1689 }
1690 mapcount = compound_mapcount(page);
1691 map_swapcount += mapcount;
1692 _total_mapcount += mapcount;
1693 if (total_mapcount)
1694 *total_mapcount = _total_mapcount;
1695 if (total_swapcount)
1696 *total_swapcount = _total_swapcount;
1697
1698 return map_swapcount;
1699}
1700
1701/*
1702 * We can write to an anon page without COW if there are no other references
1703 * to it. And as a side-effect, free up its swap: because the old content
1704 * on disk will never be read, and seeking back there to write new content
1705 * later would only waste time away from clustering.
1706 *
1707 * NOTE: total_map_swapcount should not be relied upon by the caller if
1708 * reuse_swap_page() returns false, but it may be always overwritten
1709 * (see the other implementation for CONFIG_SWAP=n).
1710 */
1711bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1712{
1713 int count, total_mapcount, total_swapcount;
1714
1715 VM_BUG_ON_PAGE(!PageLocked(page), page);
1716 if (unlikely(PageKsm(page)))
1717 return false;
1718 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1719 &total_swapcount);
1720 if (total_map_swapcount)
1721 *total_map_swapcount = total_mapcount + total_swapcount;
1722 if (count == 1 && PageSwapCache(page) &&
1723 (likely(!PageTransCompound(page)) ||
1724 /* The remaining swap count will be freed soon */
1725 total_swapcount == page_swapcount(page))) {
1726 if (!PageWriteback(page)) {
1727 page = compound_head(page);
1728 delete_from_swap_cache(page);
1729 SetPageDirty(page);
1730 } else {
1731 swp_entry_t entry;
1732 struct swap_info_struct *p;
1733
1734 entry.val = page_private(page);
1735 p = swap_info_get(entry);
1736 if (p->flags & SWP_STABLE_WRITES) {
1737 spin_unlock(&p->lock);
1738 return false;
1739 }
1740 spin_unlock(&p->lock);
1741 }
1742 }
1743
1744 return count <= 1;
1745}
1746
1747/*
1748 * If swap is getting full, or if there are no more mappings of this page,
1749 * then try_to_free_swap is called to free its swap space.
1750 */
1751int try_to_free_swap(struct page *page)
1752{
1753 VM_BUG_ON_PAGE(!PageLocked(page), page);
1754
1755 if (!PageSwapCache(page))
1756 return 0;
1757 if (PageWriteback(page))
1758 return 0;
1759 if (page_swapped(page))
1760 return 0;
1761
1762 /*
1763 * Once hibernation has begun to create its image of memory,
1764 * there's a danger that one of the calls to try_to_free_swap()
1765 * - most probably a call from __try_to_reclaim_swap() while
1766 * hibernation is allocating its own swap pages for the image,
1767 * but conceivably even a call from memory reclaim - will free
1768 * the swap from a page which has already been recorded in the
1769 * image as a clean swapcache page, and then reuse its swap for
1770 * another page of the image. On waking from hibernation, the
1771 * original page might be freed under memory pressure, then
1772 * later read back in from swap, now with the wrong data.
1773 *
1774 * Hibernation suspends storage while it is writing the image
1775 * to disk so check that here.
1776 */
1777 if (pm_suspended_storage())
1778 return 0;
1779
1780 page = compound_head(page);
1781 delete_from_swap_cache(page);
1782 SetPageDirty(page);
1783 return 1;
1784}
1785
1786/*
1787 * Free the swap entry like above, but also try to
1788 * free the page cache entry if it is the last user.
1789 */
1790int free_swap_and_cache(swp_entry_t entry)
1791{
1792 struct swap_info_struct *p;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001793 unsigned char count;
1794
1795 if (non_swap_entry(entry))
1796 return 1;
1797
1798 p = _swap_info_get(entry);
1799 if (p) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001800 count = __swap_entry_free(p, entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001801 if (count == SWAP_HAS_CACHE &&
David Brazdil0f672f62019-12-10 10:32:29 +00001802 !swap_page_trans_huge_swapped(p, entry))
1803 __try_to_reclaim_swap(p, swp_offset(entry),
1804 TTRS_UNMAPPED | TTRS_FULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001805 }
1806 return p != NULL;
1807}
1808
1809#ifdef CONFIG_HIBERNATION
1810/*
1811 * Find the swap type that corresponds to given device (if any).
1812 *
1813 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1814 * from 0, in which the swap header is expected to be located.
1815 *
1816 * This is needed for the suspend to disk (aka swsusp).
1817 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001818int swap_type_of(dev_t device, sector_t offset)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001819{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001820 int type;
1821
Olivier Deprez157378f2022-04-04 15:47:50 +02001822 if (!device)
1823 return -1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001824
1825 spin_lock(&swap_lock);
1826 for (type = 0; type < nr_swapfiles; type++) {
1827 struct swap_info_struct *sis = swap_info[type];
1828
1829 if (!(sis->flags & SWP_WRITEOK))
1830 continue;
1831
Olivier Deprez157378f2022-04-04 15:47:50 +02001832 if (device == sis->bdev->bd_dev) {
David Brazdil0f672f62019-12-10 10:32:29 +00001833 struct swap_extent *se = first_se(sis);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001834
1835 if (se->start_block == offset) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001836 spin_unlock(&swap_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001837 return type;
1838 }
1839 }
1840 }
1841 spin_unlock(&swap_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02001842 return -ENODEV;
1843}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001844
Olivier Deprez157378f2022-04-04 15:47:50 +02001845int find_first_swap(dev_t *device)
1846{
1847 int type;
1848
1849 spin_lock(&swap_lock);
1850 for (type = 0; type < nr_swapfiles; type++) {
1851 struct swap_info_struct *sis = swap_info[type];
1852
1853 if (!(sis->flags & SWP_WRITEOK))
1854 continue;
1855 *device = sis->bdev->bd_dev;
1856 spin_unlock(&swap_lock);
1857 return type;
1858 }
1859 spin_unlock(&swap_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001860 return -ENODEV;
1861}
1862
1863/*
1864 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1865 * corresponding to given index in swap_info (swap type).
1866 */
1867sector_t swapdev_block(int type, pgoff_t offset)
1868{
1869 struct block_device *bdev;
David Brazdil0f672f62019-12-10 10:32:29 +00001870 struct swap_info_struct *si = swap_type_to_swap_info(type);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001871
David Brazdil0f672f62019-12-10 10:32:29 +00001872 if (!si || !(si->flags & SWP_WRITEOK))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001873 return 0;
1874 return map_swap_entry(swp_entry(type, offset), &bdev);
1875}
1876
1877/*
1878 * Return either the total number of swap pages of given type, or the number
1879 * of free pages of that type (depending on @free)
1880 *
1881 * This is needed for software suspend
1882 */
1883unsigned int count_swap_pages(int type, int free)
1884{
1885 unsigned int n = 0;
1886
1887 spin_lock(&swap_lock);
1888 if ((unsigned int)type < nr_swapfiles) {
1889 struct swap_info_struct *sis = swap_info[type];
1890
1891 spin_lock(&sis->lock);
1892 if (sis->flags & SWP_WRITEOK) {
1893 n = sis->pages;
1894 if (free)
1895 n -= sis->inuse_pages;
1896 }
1897 spin_unlock(&sis->lock);
1898 }
1899 spin_unlock(&swap_lock);
1900 return n;
1901}
1902#endif /* CONFIG_HIBERNATION */
1903
1904static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1905{
Olivier Deprez157378f2022-04-04 15:47:50 +02001906 return pte_same(pte_swp_clear_flags(pte), swp_pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001907}
1908
1909/*
1910 * No need to decide whether this PTE shares the swap entry with others,
1911 * just let do_wp_page work it out if a write is requested later - to
1912 * force COW, vm_page_prot omits write permission from any private vma.
1913 */
1914static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1915 unsigned long addr, swp_entry_t entry, struct page *page)
1916{
1917 struct page *swapcache;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001918 spinlock_t *ptl;
1919 pte_t *pte;
1920 int ret = 1;
1921
1922 swapcache = page;
1923 page = ksm_might_need_to_copy(page, vma, addr);
1924 if (unlikely(!page))
1925 return -ENOMEM;
1926
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001927 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1928 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001929 ret = 0;
1930 goto out;
1931 }
1932
1933 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1934 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1935 get_page(page);
1936 set_pte_at(vma->vm_mm, addr, pte,
1937 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1938 if (page == swapcache) {
1939 page_add_anon_rmap(page, vma, addr, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001940 } else { /* ksm created a completely new copy */
1941 page_add_new_anon_rmap(page, vma, addr, false);
Olivier Deprez157378f2022-04-04 15:47:50 +02001942 lru_cache_add_inactive_or_unevictable(page, vma);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001943 }
1944 swap_free(entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001945out:
1946 pte_unmap_unlock(pte, ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001947 if (page != swapcache) {
1948 unlock_page(page);
1949 put_page(page);
1950 }
1951 return ret;
1952}
1953
1954static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
David Brazdil0f672f62019-12-10 10:32:29 +00001955 unsigned long addr, unsigned long end,
1956 unsigned int type, bool frontswap,
1957 unsigned long *fs_pages_to_unuse)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001958{
David Brazdil0f672f62019-12-10 10:32:29 +00001959 struct page *page;
1960 swp_entry_t entry;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001961 pte_t *pte;
David Brazdil0f672f62019-12-10 10:32:29 +00001962 struct swap_info_struct *si;
1963 unsigned long offset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001964 int ret = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001965 volatile unsigned char *swap_map;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001966
David Brazdil0f672f62019-12-10 10:32:29 +00001967 si = swap_info[type];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001968 pte = pte_offset_map(pmd, addr);
1969 do {
David Brazdil0f672f62019-12-10 10:32:29 +00001970 struct vm_fault vmf;
1971
1972 if (!is_swap_pte(*pte))
1973 continue;
1974
1975 entry = pte_to_swp_entry(*pte);
1976 if (swp_type(entry) != type)
1977 continue;
1978
1979 offset = swp_offset(entry);
1980 if (frontswap && !frontswap_test(si, offset))
1981 continue;
1982
1983 pte_unmap(pte);
1984 swap_map = &si->swap_map[offset];
Olivier Deprez157378f2022-04-04 15:47:50 +02001985 page = lookup_swap_cache(entry, vma, addr);
1986 if (!page) {
1987 vmf.vma = vma;
1988 vmf.address = addr;
1989 vmf.pmd = pmd;
1990 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1991 &vmf);
1992 }
David Brazdil0f672f62019-12-10 10:32:29 +00001993 if (!page) {
1994 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1995 goto try_next;
1996 return -ENOMEM;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001997 }
David Brazdil0f672f62019-12-10 10:32:29 +00001998
1999 lock_page(page);
2000 wait_on_page_writeback(page);
2001 ret = unuse_pte(vma, pmd, addr, entry, page);
2002 if (ret < 0) {
2003 unlock_page(page);
2004 put_page(page);
2005 goto out;
2006 }
2007
2008 try_to_free_swap(page);
2009 unlock_page(page);
2010 put_page(page);
2011
2012 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2013 ret = FRONTSWAP_PAGES_UNUSED;
2014 goto out;
2015 }
2016try_next:
2017 pte = pte_offset_map(pmd, addr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002018 } while (pte++, addr += PAGE_SIZE, addr != end);
2019 pte_unmap(pte - 1);
David Brazdil0f672f62019-12-10 10:32:29 +00002020
2021 ret = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002022out:
2023 return ret;
2024}
2025
2026static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2027 unsigned long addr, unsigned long end,
David Brazdil0f672f62019-12-10 10:32:29 +00002028 unsigned int type, bool frontswap,
2029 unsigned long *fs_pages_to_unuse)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002030{
2031 pmd_t *pmd;
2032 unsigned long next;
2033 int ret;
2034
2035 pmd = pmd_offset(pud, addr);
2036 do {
2037 cond_resched();
2038 next = pmd_addr_end(addr, end);
2039 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2040 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00002041 ret = unuse_pte_range(vma, pmd, addr, next, type,
2042 frontswap, fs_pages_to_unuse);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002043 if (ret)
2044 return ret;
2045 } while (pmd++, addr = next, addr != end);
2046 return 0;
2047}
2048
2049static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2050 unsigned long addr, unsigned long end,
David Brazdil0f672f62019-12-10 10:32:29 +00002051 unsigned int type, bool frontswap,
2052 unsigned long *fs_pages_to_unuse)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002053{
2054 pud_t *pud;
2055 unsigned long next;
2056 int ret;
2057
2058 pud = pud_offset(p4d, addr);
2059 do {
2060 next = pud_addr_end(addr, end);
2061 if (pud_none_or_clear_bad(pud))
2062 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00002063 ret = unuse_pmd_range(vma, pud, addr, next, type,
2064 frontswap, fs_pages_to_unuse);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002065 if (ret)
2066 return ret;
2067 } while (pud++, addr = next, addr != end);
2068 return 0;
2069}
2070
2071static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2072 unsigned long addr, unsigned long end,
David Brazdil0f672f62019-12-10 10:32:29 +00002073 unsigned int type, bool frontswap,
2074 unsigned long *fs_pages_to_unuse)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002075{
2076 p4d_t *p4d;
2077 unsigned long next;
2078 int ret;
2079
2080 p4d = p4d_offset(pgd, addr);
2081 do {
2082 next = p4d_addr_end(addr, end);
2083 if (p4d_none_or_clear_bad(p4d))
2084 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00002085 ret = unuse_pud_range(vma, p4d, addr, next, type,
2086 frontswap, fs_pages_to_unuse);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002087 if (ret)
2088 return ret;
2089 } while (p4d++, addr = next, addr != end);
2090 return 0;
2091}
2092
David Brazdil0f672f62019-12-10 10:32:29 +00002093static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2094 bool frontswap, unsigned long *fs_pages_to_unuse)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002095{
2096 pgd_t *pgd;
2097 unsigned long addr, end, next;
2098 int ret;
2099
David Brazdil0f672f62019-12-10 10:32:29 +00002100 addr = vma->vm_start;
2101 end = vma->vm_end;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002102
2103 pgd = pgd_offset(vma->vm_mm, addr);
2104 do {
2105 next = pgd_addr_end(addr, end);
2106 if (pgd_none_or_clear_bad(pgd))
2107 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00002108 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2109 frontswap, fs_pages_to_unuse);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002110 if (ret)
2111 return ret;
2112 } while (pgd++, addr = next, addr != end);
2113 return 0;
2114}
2115
David Brazdil0f672f62019-12-10 10:32:29 +00002116static int unuse_mm(struct mm_struct *mm, unsigned int type,
2117 bool frontswap, unsigned long *fs_pages_to_unuse)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002118{
2119 struct vm_area_struct *vma;
2120 int ret = 0;
2121
Olivier Deprez157378f2022-04-04 15:47:50 +02002122 mmap_read_lock(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002123 for (vma = mm->mmap; vma; vma = vma->vm_next) {
David Brazdil0f672f62019-12-10 10:32:29 +00002124 if (vma->anon_vma) {
2125 ret = unuse_vma(vma, type, frontswap,
2126 fs_pages_to_unuse);
2127 if (ret)
2128 break;
2129 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002130 cond_resched();
2131 }
Olivier Deprez157378f2022-04-04 15:47:50 +02002132 mmap_read_unlock(mm);
David Brazdil0f672f62019-12-10 10:32:29 +00002133 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002134}
2135
2136/*
2137 * Scan swap_map (or frontswap_map if frontswap parameter is true)
David Brazdil0f672f62019-12-10 10:32:29 +00002138 * from current position to next entry still in use. Return 0
2139 * if there are no inuse entries after prev till end of the map.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002140 */
2141static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2142 unsigned int prev, bool frontswap)
2143{
David Brazdil0f672f62019-12-10 10:32:29 +00002144 unsigned int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002145 unsigned char count;
2146
2147 /*
2148 * No need for swap_lock here: we're just looking
2149 * for whether an entry is in use, not modifying it; false
2150 * hits are okay, and sys_swapoff() has already prevented new
2151 * allocations from this area (while holding swap_lock).
2152 */
David Brazdil0f672f62019-12-10 10:32:29 +00002153 for (i = prev + 1; i < si->max; i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002154 count = READ_ONCE(si->swap_map[i]);
2155 if (count && swap_count(count) != SWAP_MAP_BAD)
2156 if (!frontswap || frontswap_test(si, i))
2157 break;
2158 if ((i % LATENCY_LIMIT) == 0)
2159 cond_resched();
2160 }
David Brazdil0f672f62019-12-10 10:32:29 +00002161
2162 if (i == si->max)
2163 i = 0;
2164
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002165 return i;
2166}
2167
2168/*
David Brazdil0f672f62019-12-10 10:32:29 +00002169 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002170 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2171 */
2172int try_to_unuse(unsigned int type, bool frontswap,
2173 unsigned long pages_to_unuse)
2174{
David Brazdil0f672f62019-12-10 10:32:29 +00002175 struct mm_struct *prev_mm;
2176 struct mm_struct *mm;
2177 struct list_head *p;
2178 int retval = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002179 struct swap_info_struct *si = swap_info[type];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002180 struct page *page;
2181 swp_entry_t entry;
David Brazdil0f672f62019-12-10 10:32:29 +00002182 unsigned int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002183
Olivier Deprez0e641232021-09-23 10:07:05 +02002184 if (!READ_ONCE(si->inuse_pages))
David Brazdil0f672f62019-12-10 10:32:29 +00002185 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002186
David Brazdil0f672f62019-12-10 10:32:29 +00002187 if (!frontswap)
2188 pages_to_unuse = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002189
David Brazdil0f672f62019-12-10 10:32:29 +00002190retry:
2191 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2192 if (retval)
2193 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002194
David Brazdil0f672f62019-12-10 10:32:29 +00002195 prev_mm = &init_mm;
2196 mmget(prev_mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002197
David Brazdil0f672f62019-12-10 10:32:29 +00002198 spin_lock(&mmlist_lock);
2199 p = &init_mm.mmlist;
Olivier Deprez0e641232021-09-23 10:07:05 +02002200 while (READ_ONCE(si->inuse_pages) &&
David Brazdil0f672f62019-12-10 10:32:29 +00002201 !signal_pending(current) &&
2202 (p = p->next) != &init_mm.mmlist) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002203
David Brazdil0f672f62019-12-10 10:32:29 +00002204 mm = list_entry(p, struct mm_struct, mmlist);
2205 if (!mmget_not_zero(mm))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002206 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00002207 spin_unlock(&mmlist_lock);
2208 mmput(prev_mm);
2209 prev_mm = mm;
2210 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002211
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002212 if (retval) {
David Brazdil0f672f62019-12-10 10:32:29 +00002213 mmput(prev_mm);
2214 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002215 }
2216
2217 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002218 * Make sure that we aren't completely killing
2219 * interactive performance.
2220 */
2221 cond_resched();
David Brazdil0f672f62019-12-10 10:32:29 +00002222 spin_lock(&mmlist_lock);
2223 }
2224 spin_unlock(&mmlist_lock);
2225
2226 mmput(prev_mm);
2227
2228 i = 0;
Olivier Deprez0e641232021-09-23 10:07:05 +02002229 while (READ_ONCE(si->inuse_pages) &&
David Brazdil0f672f62019-12-10 10:32:29 +00002230 !signal_pending(current) &&
2231 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2232
2233 entry = swp_entry(type, i);
2234 page = find_get_page(swap_address_space(entry), i);
2235 if (!page)
2236 continue;
2237
2238 /*
2239 * It is conceivable that a racing task removed this page from
2240 * swap cache just before we acquired the page lock. The page
2241 * might even be back in swap cache on another swap area. But
2242 * that is okay, try_to_free_swap() only removes stale pages.
2243 */
2244 lock_page(page);
2245 wait_on_page_writeback(page);
2246 try_to_free_swap(page);
2247 unlock_page(page);
2248 put_page(page);
2249
2250 /*
2251 * For frontswap, we just need to unuse pages_to_unuse, if
2252 * it was specified. Need not check frontswap again here as
2253 * we already zeroed out pages_to_unuse if not frontswap.
2254 */
2255 if (pages_to_unuse && --pages_to_unuse == 0)
2256 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002257 }
2258
David Brazdil0f672f62019-12-10 10:32:29 +00002259 /*
2260 * Lets check again to see if there are still swap entries in the map.
2261 * If yes, we would need to do retry the unuse logic again.
2262 * Under global memory pressure, swap entries can be reinserted back
2263 * into process space after the mmlist loop above passes over them.
2264 *
2265 * Limit the number of retries? No: when mmget_not_zero() above fails,
2266 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2267 * at its own independent pace; and even shmem_writepage() could have
2268 * been preempted after get_swap_page(), temporarily hiding that swap.
2269 * It's easy and robust (though cpu-intensive) just to keep retrying.
2270 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002271 if (READ_ONCE(si->inuse_pages)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002272 if (!signal_pending(current))
2273 goto retry;
2274 retval = -EINTR;
2275 }
2276out:
2277 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002278}
2279
2280/*
2281 * After a successful try_to_unuse, if no swap is now in use, we know
2282 * we can empty the mmlist. swap_lock must be held on entry and exit.
2283 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2284 * added to the mmlist just after page_duplicate - before would be racy.
2285 */
2286static void drain_mmlist(void)
2287{
2288 struct list_head *p, *next;
2289 unsigned int type;
2290
2291 for (type = 0; type < nr_swapfiles; type++)
2292 if (swap_info[type]->inuse_pages)
2293 return;
2294 spin_lock(&mmlist_lock);
2295 list_for_each_safe(p, next, &init_mm.mmlist)
2296 list_del_init(p);
2297 spin_unlock(&mmlist_lock);
2298}
2299
2300/*
2301 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2302 * corresponds to page offset for the specified swap entry.
2303 * Note that the type of this function is sector_t, but it returns page offset
2304 * into the bdev, not sector offset.
2305 */
2306static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2307{
2308 struct swap_info_struct *sis;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002309 struct swap_extent *se;
2310 pgoff_t offset;
2311
David Brazdil0f672f62019-12-10 10:32:29 +00002312 sis = swp_swap_info(entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002313 *bdev = sis->bdev;
2314
2315 offset = swp_offset(entry);
David Brazdil0f672f62019-12-10 10:32:29 +00002316 se = offset_to_swap_extent(sis, offset);
2317 return se->start_block + (offset - se->start_page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002318}
2319
2320/*
2321 * Returns the page offset into bdev for the specified page's swap entry.
2322 */
2323sector_t map_swap_page(struct page *page, struct block_device **bdev)
2324{
2325 swp_entry_t entry;
2326 entry.val = page_private(page);
2327 return map_swap_entry(entry, bdev);
2328}
2329
2330/*
2331 * Free all of a swapdev's extent information
2332 */
2333static void destroy_swap_extents(struct swap_info_struct *sis)
2334{
David Brazdil0f672f62019-12-10 10:32:29 +00002335 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2336 struct rb_node *rb = sis->swap_extent_root.rb_node;
2337 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002338
David Brazdil0f672f62019-12-10 10:32:29 +00002339 rb_erase(rb, &sis->swap_extent_root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002340 kfree(se);
2341 }
2342
David Brazdil0f672f62019-12-10 10:32:29 +00002343 if (sis->flags & SWP_ACTIVATED) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002344 struct file *swap_file = sis->swap_file;
2345 struct address_space *mapping = swap_file->f_mapping;
2346
David Brazdil0f672f62019-12-10 10:32:29 +00002347 sis->flags &= ~SWP_ACTIVATED;
2348 if (mapping->a_ops->swap_deactivate)
2349 mapping->a_ops->swap_deactivate(swap_file);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002350 }
2351}
2352
2353/*
2354 * Add a block range (and the corresponding page range) into this swapdev's
David Brazdil0f672f62019-12-10 10:32:29 +00002355 * extent tree.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002356 *
2357 * This function rather assumes that it is called in ascending page order.
2358 */
2359int
2360add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2361 unsigned long nr_pages, sector_t start_block)
2362{
David Brazdil0f672f62019-12-10 10:32:29 +00002363 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002364 struct swap_extent *se;
2365 struct swap_extent *new_se;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002366
David Brazdil0f672f62019-12-10 10:32:29 +00002367 /*
2368 * place the new node at the right most since the
2369 * function is called in ascending page order.
2370 */
2371 while (*link) {
2372 parent = *link;
2373 link = &parent->rb_right;
2374 }
2375
2376 if (parent) {
2377 se = rb_entry(parent, struct swap_extent, rb_node);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002378 BUG_ON(se->start_page + se->nr_pages != start_page);
2379 if (se->start_block + se->nr_pages == start_block) {
2380 /* Merge it */
2381 se->nr_pages += nr_pages;
2382 return 0;
2383 }
2384 }
2385
David Brazdil0f672f62019-12-10 10:32:29 +00002386 /* No merge, insert a new extent. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002387 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2388 if (new_se == NULL)
2389 return -ENOMEM;
2390 new_se->start_page = start_page;
2391 new_se->nr_pages = nr_pages;
2392 new_se->start_block = start_block;
2393
David Brazdil0f672f62019-12-10 10:32:29 +00002394 rb_link_node(&new_se->rb_node, parent, link);
2395 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002396 return 1;
2397}
David Brazdil0f672f62019-12-10 10:32:29 +00002398EXPORT_SYMBOL_GPL(add_swap_extent);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002399
2400/*
2401 * A `swap extent' is a simple thing which maps a contiguous range of pages
2402 * onto a contiguous range of disk blocks. An ordered list of swap extents
2403 * is built at swapon time and is then used at swap_writepage/swap_readpage
2404 * time for locating where on disk a page belongs.
2405 *
2406 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2407 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2408 * swap files identically.
2409 *
2410 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2411 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2412 * swapfiles are handled *identically* after swapon time.
2413 *
2414 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2415 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2416 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2417 * requirements, they are simply tossed out - we will never use those blocks
2418 * for swapping.
2419 *
David Brazdil0f672f62019-12-10 10:32:29 +00002420 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2421 * prevents users from writing to the swap device, which will corrupt memory.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002422 *
2423 * The amount of disk space which a single swap extent represents varies.
2424 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2425 * extents in the list. To avoid much list walking, we cache the previous
2426 * search location in `curr_swap_extent', and start new searches from there.
2427 * This is extremely effective. The average number of iterations in
2428 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2429 */
2430static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2431{
2432 struct file *swap_file = sis->swap_file;
2433 struct address_space *mapping = swap_file->f_mapping;
2434 struct inode *inode = mapping->host;
2435 int ret;
2436
2437 if (S_ISBLK(inode->i_mode)) {
2438 ret = add_swap_extent(sis, 0, sis->max, 0);
2439 *span = sis->pages;
2440 return ret;
2441 }
2442
2443 if (mapping->a_ops->swap_activate) {
2444 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
David Brazdil0f672f62019-12-10 10:32:29 +00002445 if (ret >= 0)
2446 sis->flags |= SWP_ACTIVATED;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002447 if (!ret) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002448 sis->flags |= SWP_FS_OPS;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002449 ret = add_swap_extent(sis, 0, sis->max, 0);
2450 *span = sis->pages;
2451 }
2452 return ret;
2453 }
2454
2455 return generic_swapfile_activate(sis, swap_file, span);
2456}
2457
2458static int swap_node(struct swap_info_struct *p)
2459{
2460 struct block_device *bdev;
2461
2462 if (p->bdev)
2463 bdev = p->bdev;
2464 else
2465 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2466
2467 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2468}
2469
David Brazdil0f672f62019-12-10 10:32:29 +00002470static void setup_swap_info(struct swap_info_struct *p, int prio,
2471 unsigned char *swap_map,
2472 struct swap_cluster_info *cluster_info)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002473{
2474 int i;
2475
2476 if (prio >= 0)
2477 p->prio = prio;
2478 else
2479 p->prio = --least_priority;
2480 /*
2481 * the plist prio is negated because plist ordering is
2482 * low-to-high, while swap ordering is high-to-low
2483 */
2484 p->list.prio = -p->prio;
2485 for_each_node(i) {
2486 if (p->prio >= 0)
2487 p->avail_lists[i].prio = -p->prio;
2488 else {
2489 if (swap_node(p) == i)
2490 p->avail_lists[i].prio = 1;
2491 else
2492 p->avail_lists[i].prio = -p->prio;
2493 }
2494 }
2495 p->swap_map = swap_map;
2496 p->cluster_info = cluster_info;
David Brazdil0f672f62019-12-10 10:32:29 +00002497}
2498
2499static void _enable_swap_info(struct swap_info_struct *p)
2500{
2501 p->flags |= SWP_WRITEOK | SWP_VALID;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002502 atomic_long_add(p->pages, &nr_swap_pages);
2503 total_swap_pages += p->pages;
2504
2505 assert_spin_locked(&swap_lock);
2506 /*
2507 * both lists are plists, and thus priority ordered.
2508 * swap_active_head needs to be priority ordered for swapoff(),
2509 * which on removal of any swap_info_struct with an auto-assigned
2510 * (i.e. negative) priority increments the auto-assigned priority
2511 * of any lower-priority swap_info_structs.
2512 * swap_avail_head needs to be priority ordered for get_swap_page(),
2513 * which allocates swap pages from the highest available priority
2514 * swap_info_struct.
2515 */
2516 plist_add(&p->list, &swap_active_head);
2517 add_to_avail_list(p);
2518}
2519
2520static void enable_swap_info(struct swap_info_struct *p, int prio,
2521 unsigned char *swap_map,
2522 struct swap_cluster_info *cluster_info,
2523 unsigned long *frontswap_map)
2524{
2525 frontswap_init(p->type, frontswap_map);
2526 spin_lock(&swap_lock);
2527 spin_lock(&p->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00002528 setup_swap_info(p, prio, swap_map, cluster_info);
2529 spin_unlock(&p->lock);
2530 spin_unlock(&swap_lock);
2531 /*
2532 * Guarantee swap_map, cluster_info, etc. fields are valid
2533 * between get/put_swap_device() if SWP_VALID bit is set
2534 */
2535 synchronize_rcu();
2536 spin_lock(&swap_lock);
2537 spin_lock(&p->lock);
2538 _enable_swap_info(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002539 spin_unlock(&p->lock);
2540 spin_unlock(&swap_lock);
2541}
2542
2543static void reinsert_swap_info(struct swap_info_struct *p)
2544{
2545 spin_lock(&swap_lock);
2546 spin_lock(&p->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00002547 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2548 _enable_swap_info(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002549 spin_unlock(&p->lock);
2550 spin_unlock(&swap_lock);
2551}
2552
2553bool has_usable_swap(void)
2554{
2555 bool ret = true;
2556
2557 spin_lock(&swap_lock);
2558 if (plist_head_empty(&swap_active_head))
2559 ret = false;
2560 spin_unlock(&swap_lock);
2561 return ret;
2562}
2563
2564SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2565{
2566 struct swap_info_struct *p = NULL;
2567 unsigned char *swap_map;
2568 struct swap_cluster_info *cluster_info;
2569 unsigned long *frontswap_map;
2570 struct file *swap_file, *victim;
2571 struct address_space *mapping;
2572 struct inode *inode;
2573 struct filename *pathname;
2574 int err, found = 0;
2575 unsigned int old_block_size;
2576
2577 if (!capable(CAP_SYS_ADMIN))
2578 return -EPERM;
2579
2580 BUG_ON(!current->mm);
2581
2582 pathname = getname(specialfile);
2583 if (IS_ERR(pathname))
2584 return PTR_ERR(pathname);
2585
2586 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2587 err = PTR_ERR(victim);
2588 if (IS_ERR(victim))
2589 goto out;
2590
2591 mapping = victim->f_mapping;
2592 spin_lock(&swap_lock);
2593 plist_for_each_entry(p, &swap_active_head, list) {
2594 if (p->flags & SWP_WRITEOK) {
2595 if (p->swap_file->f_mapping == mapping) {
2596 found = 1;
2597 break;
2598 }
2599 }
2600 }
2601 if (!found) {
2602 err = -EINVAL;
2603 spin_unlock(&swap_lock);
2604 goto out_dput;
2605 }
2606 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2607 vm_unacct_memory(p->pages);
2608 else {
2609 err = -ENOMEM;
2610 spin_unlock(&swap_lock);
2611 goto out_dput;
2612 }
2613 del_from_avail_list(p);
2614 spin_lock(&p->lock);
2615 if (p->prio < 0) {
2616 struct swap_info_struct *si = p;
2617 int nid;
2618
2619 plist_for_each_entry_continue(si, &swap_active_head, list) {
2620 si->prio++;
2621 si->list.prio--;
2622 for_each_node(nid) {
2623 if (si->avail_lists[nid].prio != 1)
2624 si->avail_lists[nid].prio--;
2625 }
2626 }
2627 least_priority++;
2628 }
2629 plist_del(&p->list, &swap_active_head);
2630 atomic_long_sub(p->pages, &nr_swap_pages);
2631 total_swap_pages -= p->pages;
2632 p->flags &= ~SWP_WRITEOK;
2633 spin_unlock(&p->lock);
2634 spin_unlock(&swap_lock);
2635
2636 disable_swap_slots_cache_lock();
2637
2638 set_current_oom_origin();
2639 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2640 clear_current_oom_origin();
2641
2642 if (err) {
2643 /* re-insert swap space back into swap_list */
2644 reinsert_swap_info(p);
2645 reenable_swap_slots_cache_unlock();
2646 goto out_dput;
2647 }
2648
2649 reenable_swap_slots_cache_unlock();
2650
David Brazdil0f672f62019-12-10 10:32:29 +00002651 spin_lock(&swap_lock);
2652 spin_lock(&p->lock);
2653 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2654 spin_unlock(&p->lock);
2655 spin_unlock(&swap_lock);
2656 /*
2657 * wait for swap operations protected by get/put_swap_device()
2658 * to complete
2659 */
2660 synchronize_rcu();
2661
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002662 flush_work(&p->discard_work);
2663
2664 destroy_swap_extents(p);
2665 if (p->flags & SWP_CONTINUED)
2666 free_swap_count_continuations(p);
2667
2668 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2669 atomic_dec(&nr_rotate_swap);
2670
2671 mutex_lock(&swapon_mutex);
2672 spin_lock(&swap_lock);
2673 spin_lock(&p->lock);
2674 drain_mmlist();
2675
2676 /* wait for anyone still in scan_swap_map */
2677 p->highest_bit = 0; /* cuts scans short */
2678 while (p->flags >= SWP_SCANNING) {
2679 spin_unlock(&p->lock);
2680 spin_unlock(&swap_lock);
2681 schedule_timeout_uninterruptible(1);
2682 spin_lock(&swap_lock);
2683 spin_lock(&p->lock);
2684 }
2685
2686 swap_file = p->swap_file;
2687 old_block_size = p->old_block_size;
2688 p->swap_file = NULL;
2689 p->max = 0;
2690 swap_map = p->swap_map;
2691 p->swap_map = NULL;
2692 cluster_info = p->cluster_info;
2693 p->cluster_info = NULL;
2694 frontswap_map = frontswap_map_get(p);
2695 spin_unlock(&p->lock);
2696 spin_unlock(&swap_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02002697 arch_swap_invalidate_area(p->type);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002698 frontswap_invalidate_area(p->type);
2699 frontswap_map_set(p, NULL);
2700 mutex_unlock(&swapon_mutex);
2701 free_percpu(p->percpu_cluster);
2702 p->percpu_cluster = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02002703 free_percpu(p->cluster_next_cpu);
2704 p->cluster_next_cpu = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002705 vfree(swap_map);
2706 kvfree(cluster_info);
2707 kvfree(frontswap_map);
2708 /* Destroy swap account information */
2709 swap_cgroup_swapoff(p->type);
2710 exit_swap_address_space(p->type);
2711
2712 inode = mapping->host;
2713 if (S_ISBLK(inode->i_mode)) {
2714 struct block_device *bdev = I_BDEV(inode);
David Brazdil0f672f62019-12-10 10:32:29 +00002715
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002716 set_blocksize(bdev, old_block_size);
2717 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002718 }
David Brazdil0f672f62019-12-10 10:32:29 +00002719
2720 inode_lock(inode);
2721 inode->i_flags &= ~S_SWAPFILE;
2722 inode_unlock(inode);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002723 filp_close(swap_file, NULL);
2724
2725 /*
2726 * Clear the SWP_USED flag after all resources are freed so that swapon
2727 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2728 * not hold p->lock after we cleared its SWP_WRITEOK.
2729 */
2730 spin_lock(&swap_lock);
2731 p->flags = 0;
2732 spin_unlock(&swap_lock);
2733
2734 err = 0;
2735 atomic_inc(&proc_poll_event);
2736 wake_up_interruptible(&proc_poll_wait);
2737
2738out_dput:
2739 filp_close(victim, NULL);
2740out:
2741 putname(pathname);
2742 return err;
2743}
2744
2745#ifdef CONFIG_PROC_FS
2746static __poll_t swaps_poll(struct file *file, poll_table *wait)
2747{
2748 struct seq_file *seq = file->private_data;
2749
2750 poll_wait(file, &proc_poll_wait, wait);
2751
2752 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2753 seq->poll_event = atomic_read(&proc_poll_event);
2754 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2755 }
2756
2757 return EPOLLIN | EPOLLRDNORM;
2758}
2759
2760/* iterator */
2761static void *swap_start(struct seq_file *swap, loff_t *pos)
2762{
2763 struct swap_info_struct *si;
2764 int type;
2765 loff_t l = *pos;
2766
2767 mutex_lock(&swapon_mutex);
2768
2769 if (!l)
2770 return SEQ_START_TOKEN;
2771
David Brazdil0f672f62019-12-10 10:32:29 +00002772 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002773 if (!(si->flags & SWP_USED) || !si->swap_map)
2774 continue;
2775 if (!--l)
2776 return si;
2777 }
2778
2779 return NULL;
2780}
2781
2782static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2783{
2784 struct swap_info_struct *si = v;
2785 int type;
2786
2787 if (v == SEQ_START_TOKEN)
2788 type = 0;
2789 else
2790 type = si->type + 1;
2791
Olivier Deprez0e641232021-09-23 10:07:05 +02002792 ++(*pos);
David Brazdil0f672f62019-12-10 10:32:29 +00002793 for (; (si = swap_type_to_swap_info(type)); type++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002794 if (!(si->flags & SWP_USED) || !si->swap_map)
2795 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002796 return si;
2797 }
2798
2799 return NULL;
2800}
2801
2802static void swap_stop(struct seq_file *swap, void *v)
2803{
2804 mutex_unlock(&swapon_mutex);
2805}
2806
2807static int swap_show(struct seq_file *swap, void *v)
2808{
2809 struct swap_info_struct *si = v;
2810 struct file *file;
2811 int len;
Olivier Deprez157378f2022-04-04 15:47:50 +02002812 unsigned int bytes, inuse;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002813
2814 if (si == SEQ_START_TOKEN) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002815 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002816 return 0;
2817 }
2818
Olivier Deprez157378f2022-04-04 15:47:50 +02002819 bytes = si->pages << (PAGE_SHIFT - 10);
2820 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2821
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002822 file = si->swap_file;
2823 len = seq_file_path(swap, file, " \t\n\\");
Olivier Deprez157378f2022-04-04 15:47:50 +02002824 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002825 len < 40 ? 40 - len : 1, " ",
2826 S_ISBLK(file_inode(file)->i_mode) ?
2827 "partition" : "file\t",
Olivier Deprez157378f2022-04-04 15:47:50 +02002828 bytes, bytes < 10000000 ? "\t" : "",
2829 inuse, inuse < 10000000 ? "\t" : "",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002830 si->prio);
2831 return 0;
2832}
2833
2834static const struct seq_operations swaps_op = {
2835 .start = swap_start,
2836 .next = swap_next,
2837 .stop = swap_stop,
2838 .show = swap_show
2839};
2840
2841static int swaps_open(struct inode *inode, struct file *file)
2842{
2843 struct seq_file *seq;
2844 int ret;
2845
2846 ret = seq_open(file, &swaps_op);
2847 if (ret)
2848 return ret;
2849
2850 seq = file->private_data;
2851 seq->poll_event = atomic_read(&proc_poll_event);
2852 return 0;
2853}
2854
Olivier Deprez157378f2022-04-04 15:47:50 +02002855static const struct proc_ops swaps_proc_ops = {
2856 .proc_flags = PROC_ENTRY_PERMANENT,
2857 .proc_open = swaps_open,
2858 .proc_read = seq_read,
2859 .proc_lseek = seq_lseek,
2860 .proc_release = seq_release,
2861 .proc_poll = swaps_poll,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002862};
2863
2864static int __init procswaps_init(void)
2865{
Olivier Deprez157378f2022-04-04 15:47:50 +02002866 proc_create("swaps", 0, NULL, &swaps_proc_ops);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002867 return 0;
2868}
2869__initcall(procswaps_init);
2870#endif /* CONFIG_PROC_FS */
2871
2872#ifdef MAX_SWAPFILES_CHECK
2873static int __init max_swapfiles_check(void)
2874{
2875 MAX_SWAPFILES_CHECK();
2876 return 0;
2877}
2878late_initcall(max_swapfiles_check);
2879#endif
2880
2881static struct swap_info_struct *alloc_swap_info(void)
2882{
2883 struct swap_info_struct *p;
Olivier Deprez0e641232021-09-23 10:07:05 +02002884 struct swap_info_struct *defer = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002885 unsigned int type;
2886 int i;
2887
David Brazdil0f672f62019-12-10 10:32:29 +00002888 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002889 if (!p)
2890 return ERR_PTR(-ENOMEM);
2891
2892 spin_lock(&swap_lock);
2893 for (type = 0; type < nr_swapfiles; type++) {
2894 if (!(swap_info[type]->flags & SWP_USED))
2895 break;
2896 }
2897 if (type >= MAX_SWAPFILES) {
2898 spin_unlock(&swap_lock);
2899 kvfree(p);
2900 return ERR_PTR(-EPERM);
2901 }
2902 if (type >= nr_swapfiles) {
2903 p->type = type;
David Brazdil0f672f62019-12-10 10:32:29 +00002904 WRITE_ONCE(swap_info[type], p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002905 /*
2906 * Write swap_info[type] before nr_swapfiles, in case a
2907 * racing procfs swap_start() or swap_next() is reading them.
2908 * (We never shrink nr_swapfiles, we never free this entry.)
2909 */
2910 smp_wmb();
David Brazdil0f672f62019-12-10 10:32:29 +00002911 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002912 } else {
Olivier Deprez0e641232021-09-23 10:07:05 +02002913 defer = p;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002914 p = swap_info[type];
2915 /*
2916 * Do not memset this entry: a racing procfs swap_next()
2917 * would be relying on p->type to remain valid.
2918 */
2919 }
David Brazdil0f672f62019-12-10 10:32:29 +00002920 p->swap_extent_root = RB_ROOT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002921 plist_node_init(&p->list, 0);
2922 for_each_node(i)
2923 plist_node_init(&p->avail_lists[i], 0);
2924 p->flags = SWP_USED;
2925 spin_unlock(&swap_lock);
Olivier Deprez0e641232021-09-23 10:07:05 +02002926 kvfree(defer);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002927 spin_lock_init(&p->lock);
2928 spin_lock_init(&p->cont_lock);
2929
2930 return p;
2931}
2932
2933static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2934{
2935 int error;
2936
2937 if (S_ISBLK(inode->i_mode)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002938 p->bdev = blkdev_get_by_dev(inode->i_rdev,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002939 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
Olivier Deprez157378f2022-04-04 15:47:50 +02002940 if (IS_ERR(p->bdev)) {
2941 error = PTR_ERR(p->bdev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002942 p->bdev = NULL;
2943 return error;
2944 }
2945 p->old_block_size = block_size(p->bdev);
2946 error = set_blocksize(p->bdev, PAGE_SIZE);
2947 if (error < 0)
2948 return error;
Olivier Deprez157378f2022-04-04 15:47:50 +02002949 /*
2950 * Zoned block devices contain zones that have a sequential
2951 * write only restriction. Hence zoned block devices are not
2952 * suitable for swapping. Disallow them here.
2953 */
2954 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2955 return -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002956 p->flags |= SWP_BLKDEV;
2957 } else if (S_ISREG(inode->i_mode)) {
2958 p->bdev = inode->i_sb->s_bdev;
David Brazdil0f672f62019-12-10 10:32:29 +00002959 }
2960
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002961 return 0;
2962}
2963
2964
2965/*
2966 * Find out how many pages are allowed for a single swap device. There
2967 * are two limiting factors:
2968 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2969 * 2) the number of bits in the swap pte, as defined by the different
2970 * architectures.
2971 *
2972 * In order to find the largest possible bit mask, a swap entry with
2973 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2974 * decoded to a swp_entry_t again, and finally the swap offset is
2975 * extracted.
2976 *
2977 * This will mask all the bits from the initial ~0UL mask that can't
2978 * be encoded in either the swp_entry_t or the architecture definition
2979 * of a swap pte.
2980 */
2981unsigned long generic_max_swapfile_size(void)
2982{
2983 return swp_offset(pte_to_swp_entry(
2984 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2985}
2986
2987/* Can be overridden by an architecture for additional checks. */
2988__weak unsigned long max_swapfile_size(void)
2989{
2990 return generic_max_swapfile_size();
2991}
2992
2993static unsigned long read_swap_header(struct swap_info_struct *p,
2994 union swap_header *swap_header,
2995 struct inode *inode)
2996{
2997 int i;
2998 unsigned long maxpages;
2999 unsigned long swapfilepages;
3000 unsigned long last_page;
3001
3002 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3003 pr_err("Unable to find swap-space signature\n");
3004 return 0;
3005 }
3006
3007 /* swap partition endianess hack... */
3008 if (swab32(swap_header->info.version) == 1) {
3009 swab32s(&swap_header->info.version);
3010 swab32s(&swap_header->info.last_page);
3011 swab32s(&swap_header->info.nr_badpages);
3012 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3013 return 0;
3014 for (i = 0; i < swap_header->info.nr_badpages; i++)
3015 swab32s(&swap_header->info.badpages[i]);
3016 }
3017 /* Check the swap header's sub-version */
3018 if (swap_header->info.version != 1) {
3019 pr_warn("Unable to handle swap header version %d\n",
3020 swap_header->info.version);
3021 return 0;
3022 }
3023
3024 p->lowest_bit = 1;
3025 p->cluster_next = 1;
3026 p->cluster_nr = 0;
3027
3028 maxpages = max_swapfile_size();
3029 last_page = swap_header->info.last_page;
3030 if (!last_page) {
3031 pr_warn("Empty swap-file\n");
3032 return 0;
3033 }
3034 if (last_page > maxpages) {
3035 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3036 maxpages << (PAGE_SHIFT - 10),
3037 last_page << (PAGE_SHIFT - 10));
3038 }
3039 if (maxpages > last_page) {
3040 maxpages = last_page + 1;
3041 /* p->max is an unsigned int: don't overflow it */
3042 if ((unsigned int)maxpages == 0)
3043 maxpages = UINT_MAX;
3044 }
3045 p->highest_bit = maxpages - 1;
3046
3047 if (!maxpages)
3048 return 0;
3049 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3050 if (swapfilepages && maxpages > swapfilepages) {
3051 pr_warn("Swap area shorter than signature indicates\n");
3052 return 0;
3053 }
3054 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3055 return 0;
3056 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3057 return 0;
3058
3059 return maxpages;
3060}
3061
3062#define SWAP_CLUSTER_INFO_COLS \
3063 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3064#define SWAP_CLUSTER_SPACE_COLS \
3065 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3066#define SWAP_CLUSTER_COLS \
3067 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3068
3069static int setup_swap_map_and_extents(struct swap_info_struct *p,
3070 union swap_header *swap_header,
3071 unsigned char *swap_map,
3072 struct swap_cluster_info *cluster_info,
3073 unsigned long maxpages,
3074 sector_t *span)
3075{
3076 unsigned int j, k;
3077 unsigned int nr_good_pages;
3078 int nr_extents;
3079 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3080 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3081 unsigned long i, idx;
3082
3083 nr_good_pages = maxpages - 1; /* omit header page */
3084
3085 cluster_list_init(&p->free_clusters);
3086 cluster_list_init(&p->discard_clusters);
3087
3088 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3089 unsigned int page_nr = swap_header->info.badpages[i];
3090 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3091 return -EINVAL;
3092 if (page_nr < maxpages) {
3093 swap_map[page_nr] = SWAP_MAP_BAD;
3094 nr_good_pages--;
3095 /*
3096 * Haven't marked the cluster free yet, no list
3097 * operation involved
3098 */
3099 inc_cluster_info_page(p, cluster_info, page_nr);
3100 }
3101 }
3102
3103 /* Haven't marked the cluster free yet, no list operation involved */
3104 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3105 inc_cluster_info_page(p, cluster_info, i);
3106
3107 if (nr_good_pages) {
3108 swap_map[0] = SWAP_MAP_BAD;
3109 /*
3110 * Not mark the cluster free yet, no list
3111 * operation involved
3112 */
3113 inc_cluster_info_page(p, cluster_info, 0);
3114 p->max = maxpages;
3115 p->pages = nr_good_pages;
3116 nr_extents = setup_swap_extents(p, span);
3117 if (nr_extents < 0)
3118 return nr_extents;
3119 nr_good_pages = p->pages;
3120 }
3121 if (!nr_good_pages) {
3122 pr_warn("Empty swap-file\n");
3123 return -EINVAL;
3124 }
3125
3126 if (!cluster_info)
3127 return nr_extents;
3128
3129
3130 /*
3131 * Reduce false cache line sharing between cluster_info and
3132 * sharing same address space.
3133 */
3134 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3135 j = (k + col) % SWAP_CLUSTER_COLS;
3136 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3137 idx = i * SWAP_CLUSTER_COLS + j;
3138 if (idx >= nr_clusters)
3139 continue;
3140 if (cluster_count(&cluster_info[idx]))
3141 continue;
3142 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3143 cluster_list_add_tail(&p->free_clusters, cluster_info,
3144 idx);
3145 }
3146 }
3147 return nr_extents;
3148}
3149
3150/*
3151 * Helper to sys_swapon determining if a given swap
3152 * backing device queue supports DISCARD operations.
3153 */
3154static bool swap_discardable(struct swap_info_struct *si)
3155{
3156 struct request_queue *q = bdev_get_queue(si->bdev);
3157
3158 if (!q || !blk_queue_discard(q))
3159 return false;
3160
3161 return true;
3162}
3163
3164SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3165{
3166 struct swap_info_struct *p;
3167 struct filename *name;
3168 struct file *swap_file = NULL;
3169 struct address_space *mapping;
3170 int prio;
3171 int error;
3172 union swap_header *swap_header;
3173 int nr_extents;
3174 sector_t span;
3175 unsigned long maxpages;
3176 unsigned char *swap_map = NULL;
3177 struct swap_cluster_info *cluster_info = NULL;
3178 unsigned long *frontswap_map = NULL;
3179 struct page *page = NULL;
3180 struct inode *inode = NULL;
3181 bool inced_nr_rotate_swap = false;
3182
3183 if (swap_flags & ~SWAP_FLAGS_VALID)
3184 return -EINVAL;
3185
3186 if (!capable(CAP_SYS_ADMIN))
3187 return -EPERM;
3188
3189 if (!swap_avail_heads)
3190 return -ENOMEM;
3191
3192 p = alloc_swap_info();
3193 if (IS_ERR(p))
3194 return PTR_ERR(p);
3195
3196 INIT_WORK(&p->discard_work, swap_discard_work);
3197
3198 name = getname(specialfile);
3199 if (IS_ERR(name)) {
3200 error = PTR_ERR(name);
3201 name = NULL;
3202 goto bad_swap;
3203 }
3204 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3205 if (IS_ERR(swap_file)) {
3206 error = PTR_ERR(swap_file);
3207 swap_file = NULL;
3208 goto bad_swap;
3209 }
3210
3211 p->swap_file = swap_file;
3212 mapping = swap_file->f_mapping;
3213 inode = mapping->host;
3214
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003215 error = claim_swapfile(p, inode);
3216 if (unlikely(error))
3217 goto bad_swap;
3218
Olivier Deprez0e641232021-09-23 10:07:05 +02003219 inode_lock(inode);
3220 if (IS_SWAPFILE(inode)) {
3221 error = -EBUSY;
3222 goto bad_swap_unlock_inode;
3223 }
3224
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003225 /*
3226 * Read the swap header.
3227 */
3228 if (!mapping->a_ops->readpage) {
3229 error = -EINVAL;
Olivier Deprez0e641232021-09-23 10:07:05 +02003230 goto bad_swap_unlock_inode;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003231 }
3232 page = read_mapping_page(mapping, 0, swap_file);
3233 if (IS_ERR(page)) {
3234 error = PTR_ERR(page);
Olivier Deprez157378f2022-04-04 15:47:50 +02003235 goto bad_swap_unlock_inode;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003236 }
3237 swap_header = kmap(page);
3238
3239 maxpages = read_swap_header(p, swap_header, inode);
3240 if (unlikely(!maxpages)) {
3241 error = -EINVAL;
Olivier Deprez0e641232021-09-23 10:07:05 +02003242 goto bad_swap_unlock_inode;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003243 }
3244
3245 /* OK, set up the swap map and apply the bad block list */
3246 swap_map = vzalloc(maxpages);
3247 if (!swap_map) {
3248 error = -ENOMEM;
Olivier Deprez0e641232021-09-23 10:07:05 +02003249 goto bad_swap_unlock_inode;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003250 }
3251
Olivier Deprez157378f2022-04-04 15:47:50 +02003252 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003253 p->flags |= SWP_STABLE_WRITES;
3254
Olivier Deprez157378f2022-04-04 15:47:50 +02003255 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003256 p->flags |= SWP_SYNCHRONOUS_IO;
3257
3258 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3259 int cpu;
3260 unsigned long ci, nr_cluster;
3261
3262 p->flags |= SWP_SOLIDSTATE;
Olivier Deprez157378f2022-04-04 15:47:50 +02003263 p->cluster_next_cpu = alloc_percpu(unsigned int);
3264 if (!p->cluster_next_cpu) {
3265 error = -ENOMEM;
3266 goto bad_swap_unlock_inode;
3267 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003268 /*
3269 * select a random position to start with to help wear leveling
3270 * SSD
3271 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003272 for_each_possible_cpu(cpu) {
3273 per_cpu(*p->cluster_next_cpu, cpu) =
3274 1 + prandom_u32_max(p->highest_bit);
3275 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003276 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3277
3278 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3279 GFP_KERNEL);
3280 if (!cluster_info) {
3281 error = -ENOMEM;
Olivier Deprez0e641232021-09-23 10:07:05 +02003282 goto bad_swap_unlock_inode;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003283 }
3284
3285 for (ci = 0; ci < nr_cluster; ci++)
3286 spin_lock_init(&((cluster_info + ci)->lock));
3287
3288 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3289 if (!p->percpu_cluster) {
3290 error = -ENOMEM;
Olivier Deprez0e641232021-09-23 10:07:05 +02003291 goto bad_swap_unlock_inode;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003292 }
3293 for_each_possible_cpu(cpu) {
3294 struct percpu_cluster *cluster;
3295 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3296 cluster_set_null(&cluster->index);
3297 }
3298 } else {
3299 atomic_inc(&nr_rotate_swap);
3300 inced_nr_rotate_swap = true;
3301 }
3302
3303 error = swap_cgroup_swapon(p->type, maxpages);
3304 if (error)
Olivier Deprez0e641232021-09-23 10:07:05 +02003305 goto bad_swap_unlock_inode;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003306
3307 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3308 cluster_info, maxpages, &span);
3309 if (unlikely(nr_extents < 0)) {
3310 error = nr_extents;
Olivier Deprez0e641232021-09-23 10:07:05 +02003311 goto bad_swap_unlock_inode;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003312 }
3313 /* frontswap enabled? set up bit-per-page map for frontswap */
3314 if (IS_ENABLED(CONFIG_FRONTSWAP))
3315 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3316 sizeof(long),
3317 GFP_KERNEL);
3318
3319 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3320 /*
3321 * When discard is enabled for swap with no particular
3322 * policy flagged, we set all swap discard flags here in
3323 * order to sustain backward compatibility with older
3324 * swapon(8) releases.
3325 */
3326 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3327 SWP_PAGE_DISCARD);
3328
3329 /*
3330 * By flagging sys_swapon, a sysadmin can tell us to
3331 * either do single-time area discards only, or to just
3332 * perform discards for released swap page-clusters.
3333 * Now it's time to adjust the p->flags accordingly.
3334 */
3335 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3336 p->flags &= ~SWP_PAGE_DISCARD;
3337 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3338 p->flags &= ~SWP_AREA_DISCARD;
3339
3340 /* issue a swapon-time discard if it's still required */
3341 if (p->flags & SWP_AREA_DISCARD) {
3342 int err = discard_swap(p);
3343 if (unlikely(err))
3344 pr_err("swapon: discard_swap(%p): %d\n",
3345 p, err);
3346 }
3347 }
3348
3349 error = init_swap_address_space(p->type, maxpages);
3350 if (error)
Olivier Deprez0e641232021-09-23 10:07:05 +02003351 goto bad_swap_unlock_inode;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003352
David Brazdil0f672f62019-12-10 10:32:29 +00003353 /*
3354 * Flush any pending IO and dirty mappings before we start using this
3355 * swap device.
3356 */
3357 inode->i_flags |= S_SWAPFILE;
3358 error = inode_drain_writes(inode);
3359 if (error) {
3360 inode->i_flags &= ~S_SWAPFILE;
Olivier Deprez0e641232021-09-23 10:07:05 +02003361 goto free_swap_address_space;
David Brazdil0f672f62019-12-10 10:32:29 +00003362 }
3363
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003364 mutex_lock(&swapon_mutex);
3365 prio = -1;
3366 if (swap_flags & SWAP_FLAG_PREFER)
3367 prio =
3368 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3369 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3370
3371 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3372 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3373 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3374 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3375 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3376 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3377 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3378 (frontswap_map) ? "FS" : "");
3379
3380 mutex_unlock(&swapon_mutex);
3381 atomic_inc(&proc_poll_event);
3382 wake_up_interruptible(&proc_poll_wait);
3383
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003384 error = 0;
3385 goto out;
Olivier Deprez0e641232021-09-23 10:07:05 +02003386free_swap_address_space:
3387 exit_swap_address_space(p->type);
3388bad_swap_unlock_inode:
3389 inode_unlock(inode);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003390bad_swap:
3391 free_percpu(p->percpu_cluster);
3392 p->percpu_cluster = NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02003393 free_percpu(p->cluster_next_cpu);
3394 p->cluster_next_cpu = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003395 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3396 set_blocksize(p->bdev, p->old_block_size);
3397 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3398 }
Olivier Deprez0e641232021-09-23 10:07:05 +02003399 inode = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003400 destroy_swap_extents(p);
3401 swap_cgroup_swapoff(p->type);
3402 spin_lock(&swap_lock);
3403 p->swap_file = NULL;
3404 p->flags = 0;
3405 spin_unlock(&swap_lock);
3406 vfree(swap_map);
3407 kvfree(cluster_info);
3408 kvfree(frontswap_map);
3409 if (inced_nr_rotate_swap)
3410 atomic_dec(&nr_rotate_swap);
Olivier Deprez0e641232021-09-23 10:07:05 +02003411 if (swap_file)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003412 filp_close(swap_file, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003413out:
3414 if (page && !IS_ERR(page)) {
3415 kunmap(page);
3416 put_page(page);
3417 }
3418 if (name)
3419 putname(name);
David Brazdil0f672f62019-12-10 10:32:29 +00003420 if (inode)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003421 inode_unlock(inode);
3422 if (!error)
3423 enable_swap_slots_cache();
3424 return error;
3425}
3426
3427void si_swapinfo(struct sysinfo *val)
3428{
3429 unsigned int type;
3430 unsigned long nr_to_be_unused = 0;
3431
3432 spin_lock(&swap_lock);
3433 for (type = 0; type < nr_swapfiles; type++) {
3434 struct swap_info_struct *si = swap_info[type];
3435
3436 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3437 nr_to_be_unused += si->inuse_pages;
3438 }
3439 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3440 val->totalswap = total_swap_pages + nr_to_be_unused;
3441 spin_unlock(&swap_lock);
3442}
3443
3444/*
3445 * Verify that a swap entry is valid and increment its swap map count.
3446 *
3447 * Returns error code in following case.
3448 * - success -> 0
3449 * - swp_entry is invalid -> EINVAL
3450 * - swp_entry is migration entry -> EINVAL
3451 * - swap-cache reference is requested but there is already one. -> EEXIST
3452 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3453 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3454 */
3455static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3456{
3457 struct swap_info_struct *p;
3458 struct swap_cluster_info *ci;
David Brazdil0f672f62019-12-10 10:32:29 +00003459 unsigned long offset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003460 unsigned char count;
3461 unsigned char has_cache;
3462 int err = -EINVAL;
3463
David Brazdil0f672f62019-12-10 10:32:29 +00003464 p = get_swap_device(entry);
3465 if (!p)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003466 goto out;
3467
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003468 offset = swp_offset(entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003469 ci = lock_cluster_or_swap_info(p, offset);
3470
3471 count = p->swap_map[offset];
3472
3473 /*
3474 * swapin_readahead() doesn't check if a swap entry is valid, so the
3475 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3476 */
3477 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3478 err = -ENOENT;
3479 goto unlock_out;
3480 }
3481
3482 has_cache = count & SWAP_HAS_CACHE;
3483 count &= ~SWAP_HAS_CACHE;
3484 err = 0;
3485
3486 if (usage == SWAP_HAS_CACHE) {
3487
3488 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3489 if (!has_cache && count)
3490 has_cache = SWAP_HAS_CACHE;
3491 else if (has_cache) /* someone else added cache */
3492 err = -EEXIST;
3493 else /* no users remaining */
3494 err = -ENOENT;
3495
3496 } else if (count || has_cache) {
3497
3498 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3499 count += usage;
3500 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3501 err = -EINVAL;
3502 else if (swap_count_continued(p, offset, count))
3503 count = COUNT_CONTINUED;
3504 else
3505 err = -ENOMEM;
3506 } else
3507 err = -ENOENT; /* unused swap entry */
3508
Olivier Deprez157378f2022-04-04 15:47:50 +02003509 WRITE_ONCE(p->swap_map[offset], count | has_cache);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003510
3511unlock_out:
3512 unlock_cluster_or_swap_info(p, ci);
3513out:
David Brazdil0f672f62019-12-10 10:32:29 +00003514 if (p)
3515 put_swap_device(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003516 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003517}
3518
3519/*
3520 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3521 * (in which case its reference count is never incremented).
3522 */
3523void swap_shmem_alloc(swp_entry_t entry)
3524{
3525 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3526}
3527
3528/*
3529 * Increase reference count of swap entry by 1.
3530 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3531 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3532 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3533 * might occur if a page table entry has got corrupted.
3534 */
3535int swap_duplicate(swp_entry_t entry)
3536{
3537 int err = 0;
3538
3539 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3540 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3541 return err;
3542}
3543
3544/*
3545 * @entry: swap entry for which we allocate swap cache.
3546 *
3547 * Called when allocating swap cache for existing swap entry,
3548 * This can return error codes. Returns 0 at success.
Olivier Deprez157378f2022-04-04 15:47:50 +02003549 * -EEXIST means there is a swap cache.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003550 * Note: return code is different from swap_duplicate().
3551 */
3552int swapcache_prepare(swp_entry_t entry)
3553{
3554 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3555}
3556
3557struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3558{
David Brazdil0f672f62019-12-10 10:32:29 +00003559 return swap_type_to_swap_info(swp_type(entry));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003560}
3561
3562struct swap_info_struct *page_swap_info(struct page *page)
3563{
3564 swp_entry_t entry = { .val = page_private(page) };
3565 return swp_swap_info(entry);
3566}
3567
3568/*
3569 * out-of-line __page_file_ methods to avoid include hell.
3570 */
3571struct address_space *__page_file_mapping(struct page *page)
3572{
3573 return page_swap_info(page)->swap_file->f_mapping;
3574}
3575EXPORT_SYMBOL_GPL(__page_file_mapping);
3576
3577pgoff_t __page_file_index(struct page *page)
3578{
3579 swp_entry_t swap = { .val = page_private(page) };
3580 return swp_offset(swap);
3581}
3582EXPORT_SYMBOL_GPL(__page_file_index);
3583
3584/*
3585 * add_swap_count_continuation - called when a swap count is duplicated
3586 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3587 * page of the original vmalloc'ed swap_map, to hold the continuation count
3588 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3589 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3590 *
3591 * These continuation pages are seldom referenced: the common paths all work
3592 * on the original swap_map, only referring to a continuation page when the
3593 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3594 *
3595 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3596 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3597 * can be called after dropping locks.
3598 */
3599int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3600{
3601 struct swap_info_struct *si;
3602 struct swap_cluster_info *ci;
3603 struct page *head;
3604 struct page *page;
3605 struct page *list_page;
3606 pgoff_t offset;
3607 unsigned char count;
David Brazdil0f672f62019-12-10 10:32:29 +00003608 int ret = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003609
3610 /*
3611 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3612 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3613 */
3614 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3615
David Brazdil0f672f62019-12-10 10:32:29 +00003616 si = get_swap_device(entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003617 if (!si) {
3618 /*
3619 * An acceptable race has occurred since the failing
David Brazdil0f672f62019-12-10 10:32:29 +00003620 * __swap_duplicate(): the swap device may be swapoff
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003621 */
3622 goto outer;
3623 }
David Brazdil0f672f62019-12-10 10:32:29 +00003624 spin_lock(&si->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003625
3626 offset = swp_offset(entry);
3627
3628 ci = lock_cluster(si, offset);
3629
3630 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3631
3632 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3633 /*
3634 * The higher the swap count, the more likely it is that tasks
3635 * will race to add swap count continuation: we need to avoid
3636 * over-provisioning.
3637 */
3638 goto out;
3639 }
3640
3641 if (!page) {
David Brazdil0f672f62019-12-10 10:32:29 +00003642 ret = -ENOMEM;
3643 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003644 }
3645
3646 /*
3647 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3648 * no architecture is using highmem pages for kernel page tables: so it
3649 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3650 */
3651 head = vmalloc_to_page(si->swap_map + offset);
3652 offset &= ~PAGE_MASK;
3653
3654 spin_lock(&si->cont_lock);
3655 /*
3656 * Page allocation does not initialize the page's lru field,
3657 * but it does always reset its private field.
3658 */
3659 if (!page_private(head)) {
3660 BUG_ON(count & COUNT_CONTINUED);
3661 INIT_LIST_HEAD(&head->lru);
3662 set_page_private(head, SWP_CONTINUED);
3663 si->flags |= SWP_CONTINUED;
3664 }
3665
3666 list_for_each_entry(list_page, &head->lru, lru) {
3667 unsigned char *map;
3668
3669 /*
3670 * If the previous map said no continuation, but we've found
3671 * a continuation page, free our allocation and use this one.
3672 */
3673 if (!(count & COUNT_CONTINUED))
3674 goto out_unlock_cont;
3675
3676 map = kmap_atomic(list_page) + offset;
3677 count = *map;
3678 kunmap_atomic(map);
3679
3680 /*
3681 * If this continuation count now has some space in it,
3682 * free our allocation and use this one.
3683 */
3684 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3685 goto out_unlock_cont;
3686 }
3687
3688 list_add_tail(&page->lru, &head->lru);
3689 page = NULL; /* now it's attached, don't free it */
3690out_unlock_cont:
3691 spin_unlock(&si->cont_lock);
3692out:
3693 unlock_cluster(ci);
3694 spin_unlock(&si->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00003695 put_swap_device(si);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003696outer:
3697 if (page)
3698 __free_page(page);
David Brazdil0f672f62019-12-10 10:32:29 +00003699 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003700}
3701
3702/*
3703 * swap_count_continued - when the original swap_map count is incremented
3704 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3705 * into, carry if so, or else fail until a new continuation page is allocated;
3706 * when the original swap_map count is decremented from 0 with continuation,
3707 * borrow from the continuation and report whether it still holds more.
3708 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3709 * lock.
3710 */
3711static bool swap_count_continued(struct swap_info_struct *si,
3712 pgoff_t offset, unsigned char count)
3713{
3714 struct page *head;
3715 struct page *page;
3716 unsigned char *map;
3717 bool ret;
3718
3719 head = vmalloc_to_page(si->swap_map + offset);
3720 if (page_private(head) != SWP_CONTINUED) {
3721 BUG_ON(count & COUNT_CONTINUED);
3722 return false; /* need to add count continuation */
3723 }
3724
3725 spin_lock(&si->cont_lock);
3726 offset &= ~PAGE_MASK;
Olivier Deprez157378f2022-04-04 15:47:50 +02003727 page = list_next_entry(head, lru);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003728 map = kmap_atomic(page) + offset;
3729
3730 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3731 goto init_map; /* jump over SWAP_CONT_MAX checks */
3732
3733 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3734 /*
3735 * Think of how you add 1 to 999
3736 */
3737 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3738 kunmap_atomic(map);
Olivier Deprez157378f2022-04-04 15:47:50 +02003739 page = list_next_entry(page, lru);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003740 BUG_ON(page == head);
3741 map = kmap_atomic(page) + offset;
3742 }
3743 if (*map == SWAP_CONT_MAX) {
3744 kunmap_atomic(map);
Olivier Deprez157378f2022-04-04 15:47:50 +02003745 page = list_next_entry(page, lru);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003746 if (page == head) {
3747 ret = false; /* add count continuation */
3748 goto out;
3749 }
3750 map = kmap_atomic(page) + offset;
3751init_map: *map = 0; /* we didn't zero the page */
3752 }
3753 *map += 1;
3754 kunmap_atomic(map);
Olivier Deprez157378f2022-04-04 15:47:50 +02003755 while ((page = list_prev_entry(page, lru)) != head) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003756 map = kmap_atomic(page) + offset;
3757 *map = COUNT_CONTINUED;
3758 kunmap_atomic(map);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003759 }
3760 ret = true; /* incremented */
3761
3762 } else { /* decrementing */
3763 /*
3764 * Think of how you subtract 1 from 1000
3765 */
3766 BUG_ON(count != COUNT_CONTINUED);
3767 while (*map == COUNT_CONTINUED) {
3768 kunmap_atomic(map);
Olivier Deprez157378f2022-04-04 15:47:50 +02003769 page = list_next_entry(page, lru);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003770 BUG_ON(page == head);
3771 map = kmap_atomic(page) + offset;
3772 }
3773 BUG_ON(*map == 0);
3774 *map -= 1;
3775 if (*map == 0)
3776 count = 0;
3777 kunmap_atomic(map);
Olivier Deprez157378f2022-04-04 15:47:50 +02003778 while ((page = list_prev_entry(page, lru)) != head) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003779 map = kmap_atomic(page) + offset;
3780 *map = SWAP_CONT_MAX | count;
3781 count = COUNT_CONTINUED;
3782 kunmap_atomic(map);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003783 }
3784 ret = count == COUNT_CONTINUED;
3785 }
3786out:
3787 spin_unlock(&si->cont_lock);
3788 return ret;
3789}
3790
3791/*
3792 * free_swap_count_continuations - swapoff free all the continuation pages
3793 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3794 */
3795static void free_swap_count_continuations(struct swap_info_struct *si)
3796{
3797 pgoff_t offset;
3798
3799 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3800 struct page *head;
3801 head = vmalloc_to_page(si->swap_map + offset);
3802 if (page_private(head)) {
3803 struct page *page, *next;
3804
3805 list_for_each_entry_safe(page, next, &head->lru, lru) {
3806 list_del(&page->lru);
3807 __free_page(page);
3808 }
3809 }
3810 }
3811}
3812
3813#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
Olivier Deprez157378f2022-04-04 15:47:50 +02003814void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003815{
3816 struct swap_info_struct *si, *next;
Olivier Deprez157378f2022-04-04 15:47:50 +02003817 int nid = page_to_nid(page);
3818
3819 if (!(gfp_mask & __GFP_IO))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003820 return;
3821
3822 if (!blk_cgroup_congested())
3823 return;
3824
3825 /*
3826 * We've already scheduled a throttle, avoid taking the global swap
3827 * lock.
3828 */
3829 if (current->throttle_queue)
3830 return;
3831
3832 spin_lock(&swap_avail_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02003833 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3834 avail_lists[nid]) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003835 if (si->bdev) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003836 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003837 break;
3838 }
3839 }
3840 spin_unlock(&swap_avail_lock);
3841}
3842#endif
3843
3844static int __init swapfile_init(void)
3845{
3846 int nid;
3847
3848 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3849 GFP_KERNEL);
3850 if (!swap_avail_heads) {
3851 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3852 return -ENOMEM;
3853 }
3854
3855 for_each_node(nid)
3856 plist_head_init(&swap_avail_heads[nid]);
3857
3858 return 0;
3859}
3860subsys_initcall(swapfile_init);