Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/mm/mlock.c |
| 4 | * |
| 5 | * (C) Copyright 1995 Linus Torvalds |
| 6 | * (C) Copyright 2002 Christoph Hellwig |
| 7 | */ |
| 8 | |
| 9 | #include <linux/capability.h> |
| 10 | #include <linux/mman.h> |
| 11 | #include <linux/mm.h> |
| 12 | #include <linux/sched/user.h> |
| 13 | #include <linux/swap.h> |
| 14 | #include <linux/swapops.h> |
| 15 | #include <linux/pagemap.h> |
| 16 | #include <linux/pagevec.h> |
| 17 | #include <linux/mempolicy.h> |
| 18 | #include <linux/syscalls.h> |
| 19 | #include <linux/sched.h> |
| 20 | #include <linux/export.h> |
| 21 | #include <linux/rmap.h> |
| 22 | #include <linux/mmzone.h> |
| 23 | #include <linux/hugetlb.h> |
| 24 | #include <linux/memcontrol.h> |
| 25 | #include <linux/mm_inline.h> |
| 26 | |
| 27 | #include "internal.h" |
| 28 | |
| 29 | bool can_do_mlock(void) |
| 30 | { |
| 31 | if (rlimit(RLIMIT_MEMLOCK) != 0) |
| 32 | return true; |
| 33 | if (capable(CAP_IPC_LOCK)) |
| 34 | return true; |
| 35 | return false; |
| 36 | } |
| 37 | EXPORT_SYMBOL(can_do_mlock); |
| 38 | |
| 39 | /* |
| 40 | * Mlocked pages are marked with PageMlocked() flag for efficient testing |
| 41 | * in vmscan and, possibly, the fault path; and to support semi-accurate |
| 42 | * statistics. |
| 43 | * |
| 44 | * An mlocked page [PageMlocked(page)] is unevictable. As such, it will |
| 45 | * be placed on the LRU "unevictable" list, rather than the [in]active lists. |
| 46 | * The unevictable list is an LRU sibling list to the [in]active lists. |
| 47 | * PageUnevictable is set to indicate the unevictable state. |
| 48 | * |
| 49 | * When lazy mlocking via vmscan, it is important to ensure that the |
| 50 | * vma's VM_LOCKED status is not concurrently being modified, otherwise we |
| 51 | * may have mlocked a page that is being munlocked. So lazy mlock must take |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 52 | * the mmap_lock for read, and verify that the vma really is locked |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 53 | * (see mm/rmap.c). |
| 54 | */ |
| 55 | |
| 56 | /* |
| 57 | * LRU accounting for clear_page_mlock() |
| 58 | */ |
| 59 | void clear_page_mlock(struct page *page) |
| 60 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 61 | int nr_pages; |
| 62 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 63 | if (!TestClearPageMlocked(page)) |
| 64 | return; |
| 65 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 66 | nr_pages = thp_nr_pages(page); |
| 67 | mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); |
| 68 | count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 69 | /* |
| 70 | * The previous TestClearPageMlocked() corresponds to the smp_mb() |
| 71 | * in __pagevec_lru_add_fn(). |
| 72 | * |
| 73 | * See __pagevec_lru_add_fn for more explanation. |
| 74 | */ |
| 75 | if (!isolate_lru_page(page)) { |
| 76 | putback_lru_page(page); |
| 77 | } else { |
| 78 | /* |
| 79 | * We lost the race. the page already moved to evictable list. |
| 80 | */ |
| 81 | if (PageUnevictable(page)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 82 | count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 83 | } |
| 84 | } |
| 85 | |
| 86 | /* |
| 87 | * Mark page as mlocked if not already. |
| 88 | * If page on LRU, isolate and putback to move to unevictable list. |
| 89 | */ |
| 90 | void mlock_vma_page(struct page *page) |
| 91 | { |
| 92 | /* Serialize with page migration */ |
| 93 | BUG_ON(!PageLocked(page)); |
| 94 | |
| 95 | VM_BUG_ON_PAGE(PageTail(page), page); |
| 96 | VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); |
| 97 | |
| 98 | if (!TestSetPageMlocked(page)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 99 | int nr_pages = thp_nr_pages(page); |
| 100 | |
| 101 | mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); |
| 102 | count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 103 | if (!isolate_lru_page(page)) |
| 104 | putback_lru_page(page); |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * Isolate a page from LRU with optional get_page() pin. |
| 110 | * Assumes lru_lock already held and page already pinned. |
| 111 | */ |
| 112 | static bool __munlock_isolate_lru_page(struct page *page, bool getpage) |
| 113 | { |
| 114 | if (PageLRU(page)) { |
| 115 | struct lruvec *lruvec; |
| 116 | |
| 117 | lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); |
| 118 | if (getpage) |
| 119 | get_page(page); |
| 120 | ClearPageLRU(page); |
| 121 | del_page_from_lru_list(page, lruvec, page_lru(page)); |
| 122 | return true; |
| 123 | } |
| 124 | |
| 125 | return false; |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | * Finish munlock after successful page isolation |
| 130 | * |
| 131 | * Page must be locked. This is a wrapper for try_to_munlock() |
| 132 | * and putback_lru_page() with munlock accounting. |
| 133 | */ |
| 134 | static void __munlock_isolated_page(struct page *page) |
| 135 | { |
| 136 | /* |
| 137 | * Optimization: if the page was mapped just once, that's our mapping |
| 138 | * and we don't need to check all the other vmas. |
| 139 | */ |
| 140 | if (page_mapcount(page) > 1) |
| 141 | try_to_munlock(page); |
| 142 | |
| 143 | /* Did try_to_unlock() succeed or punt? */ |
| 144 | if (!PageMlocked(page)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 145 | count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 146 | |
| 147 | putback_lru_page(page); |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * Accounting for page isolation fail during munlock |
| 152 | * |
| 153 | * Performs accounting when page isolation fails in munlock. There is nothing |
| 154 | * else to do because it means some other task has already removed the page |
| 155 | * from the LRU. putback_lru_page() will take care of removing the page from |
| 156 | * the unevictable list, if necessary. vmscan [page_referenced()] will move |
| 157 | * the page back to the unevictable list if some other vma has it mlocked. |
| 158 | */ |
| 159 | static void __munlock_isolation_failed(struct page *page) |
| 160 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 161 | int nr_pages = thp_nr_pages(page); |
| 162 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 163 | if (PageUnevictable(page)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 164 | __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 165 | else |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 166 | __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 167 | } |
| 168 | |
| 169 | /** |
| 170 | * munlock_vma_page - munlock a vma page |
| 171 | * @page: page to be unlocked, either a normal page or THP page head |
| 172 | * |
| 173 | * returns the size of the page as a page mask (0 for normal page, |
| 174 | * HPAGE_PMD_NR - 1 for THP head page) |
| 175 | * |
| 176 | * called from munlock()/munmap() path with page supposedly on the LRU. |
| 177 | * When we munlock a page, because the vma where we found the page is being |
| 178 | * munlock()ed or munmap()ed, we want to check whether other vmas hold the |
| 179 | * page locked so that we can leave it on the unevictable lru list and not |
| 180 | * bother vmscan with it. However, to walk the page's rmap list in |
| 181 | * try_to_munlock() we must isolate the page from the LRU. If some other |
| 182 | * task has removed the page from the LRU, we won't be able to do that. |
| 183 | * So we clear the PageMlocked as we might not get another chance. If we |
| 184 | * can't isolate the page, we leave it for putback_lru_page() and vmscan |
| 185 | * [page_referenced()/try_to_unmap()] to deal with. |
| 186 | */ |
| 187 | unsigned int munlock_vma_page(struct page *page) |
| 188 | { |
| 189 | int nr_pages; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 190 | pg_data_t *pgdat = page_pgdat(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 191 | |
| 192 | /* For try_to_munlock() and to serialize with page migration */ |
| 193 | BUG_ON(!PageLocked(page)); |
| 194 | |
| 195 | VM_BUG_ON_PAGE(PageTail(page), page); |
| 196 | |
| 197 | /* |
| 198 | * Serialize with any parallel __split_huge_page_refcount() which |
| 199 | * might otherwise copy PageMlocked to part of the tail pages before |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 200 | * we clear it in the head page. It also stabilizes thp_nr_pages(). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 201 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 202 | spin_lock_irq(&pgdat->lru_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 203 | |
| 204 | if (!TestClearPageMlocked(page)) { |
| 205 | /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ |
| 206 | nr_pages = 1; |
| 207 | goto unlock_out; |
| 208 | } |
| 209 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 210 | nr_pages = thp_nr_pages(page); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 211 | __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 212 | |
| 213 | if (__munlock_isolate_lru_page(page, true)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 214 | spin_unlock_irq(&pgdat->lru_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 215 | __munlock_isolated_page(page); |
| 216 | goto out; |
| 217 | } |
| 218 | __munlock_isolation_failed(page); |
| 219 | |
| 220 | unlock_out: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 221 | spin_unlock_irq(&pgdat->lru_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 222 | |
| 223 | out: |
| 224 | return nr_pages - 1; |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * convert get_user_pages() return value to posix mlock() error |
| 229 | */ |
| 230 | static int __mlock_posix_error_return(long retval) |
| 231 | { |
| 232 | if (retval == -EFAULT) |
| 233 | retval = -ENOMEM; |
| 234 | else if (retval == -ENOMEM) |
| 235 | retval = -EAGAIN; |
| 236 | return retval; |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() |
| 241 | * |
| 242 | * The fast path is available only for evictable pages with single mapping. |
| 243 | * Then we can bypass the per-cpu pvec and get better performance. |
| 244 | * when mapcount > 1 we need try_to_munlock() which can fail. |
| 245 | * when !page_evictable(), we need the full redo logic of putback_lru_page to |
| 246 | * avoid leaving evictable page in unevictable list. |
| 247 | * |
| 248 | * In case of success, @page is added to @pvec and @pgrescued is incremented |
| 249 | * in case that the page was previously unevictable. @page is also unlocked. |
| 250 | */ |
| 251 | static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, |
| 252 | int *pgrescued) |
| 253 | { |
| 254 | VM_BUG_ON_PAGE(PageLRU(page), page); |
| 255 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
| 256 | |
| 257 | if (page_mapcount(page) <= 1 && page_evictable(page)) { |
| 258 | pagevec_add(pvec, page); |
| 259 | if (TestClearPageUnevictable(page)) |
| 260 | (*pgrescued)++; |
| 261 | unlock_page(page); |
| 262 | return true; |
| 263 | } |
| 264 | |
| 265 | return false; |
| 266 | } |
| 267 | |
| 268 | /* |
| 269 | * Putback multiple evictable pages to the LRU |
| 270 | * |
| 271 | * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of |
| 272 | * the pages might have meanwhile become unevictable but that is OK. |
| 273 | */ |
| 274 | static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) |
| 275 | { |
| 276 | count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); |
| 277 | /* |
| 278 | *__pagevec_lru_add() calls release_pages() so we don't call |
| 279 | * put_page() explicitly |
| 280 | */ |
| 281 | __pagevec_lru_add(pvec); |
| 282 | count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * Munlock a batch of pages from the same zone |
| 287 | * |
| 288 | * The work is split to two main phases. First phase clears the Mlocked flag |
| 289 | * and attempts to isolate the pages, all under a single zone lru lock. |
| 290 | * The second phase finishes the munlock only for pages where isolation |
| 291 | * succeeded. |
| 292 | * |
| 293 | * Note that the pagevec may be modified during the process. |
| 294 | */ |
| 295 | static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) |
| 296 | { |
| 297 | int i; |
| 298 | int nr = pagevec_count(pvec); |
| 299 | int delta_munlocked = -nr; |
| 300 | struct pagevec pvec_putback; |
| 301 | int pgrescued = 0; |
| 302 | |
| 303 | pagevec_init(&pvec_putback); |
| 304 | |
| 305 | /* Phase 1: page isolation */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 306 | spin_lock_irq(&zone->zone_pgdat->lru_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 307 | for (i = 0; i < nr; i++) { |
| 308 | struct page *page = pvec->pages[i]; |
| 309 | |
| 310 | if (TestClearPageMlocked(page)) { |
| 311 | /* |
| 312 | * We already have pin from follow_page_mask() |
| 313 | * so we can spare the get_page() here. |
| 314 | */ |
| 315 | if (__munlock_isolate_lru_page(page, false)) |
| 316 | continue; |
| 317 | else |
| 318 | __munlock_isolation_failed(page); |
| 319 | } else { |
| 320 | delta_munlocked++; |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * We won't be munlocking this page in the next phase |
| 325 | * but we still need to release the follow_page_mask() |
| 326 | * pin. We cannot do it under lru_lock however. If it's |
| 327 | * the last pin, __page_cache_release() would deadlock. |
| 328 | */ |
| 329 | pagevec_add(&pvec_putback, pvec->pages[i]); |
| 330 | pvec->pages[i] = NULL; |
| 331 | } |
| 332 | __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 333 | spin_unlock_irq(&zone->zone_pgdat->lru_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 334 | |
| 335 | /* Now we can release pins of pages that we are not munlocking */ |
| 336 | pagevec_release(&pvec_putback); |
| 337 | |
| 338 | /* Phase 2: page munlock */ |
| 339 | for (i = 0; i < nr; i++) { |
| 340 | struct page *page = pvec->pages[i]; |
| 341 | |
| 342 | if (page) { |
| 343 | lock_page(page); |
| 344 | if (!__putback_lru_fast_prepare(page, &pvec_putback, |
| 345 | &pgrescued)) { |
| 346 | /* |
| 347 | * Slow path. We don't want to lose the last |
| 348 | * pin before unlock_page() |
| 349 | */ |
| 350 | get_page(page); /* for putback_lru_page() */ |
| 351 | __munlock_isolated_page(page); |
| 352 | unlock_page(page); |
| 353 | put_page(page); /* from follow_page_mask() */ |
| 354 | } |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * Phase 3: page putback for pages that qualified for the fast path |
| 360 | * This will also call put_page() to return pin from follow_page_mask() |
| 361 | */ |
| 362 | if (pagevec_count(&pvec_putback)) |
| 363 | __putback_lru_fast(&pvec_putback, pgrescued); |
| 364 | } |
| 365 | |
| 366 | /* |
| 367 | * Fill up pagevec for __munlock_pagevec using pte walk |
| 368 | * |
| 369 | * The function expects that the struct page corresponding to @start address is |
| 370 | * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. |
| 371 | * |
| 372 | * The rest of @pvec is filled by subsequent pages within the same pmd and same |
| 373 | * zone, as long as the pte's are present and vm_normal_page() succeeds. These |
| 374 | * pages also get pinned. |
| 375 | * |
| 376 | * Returns the address of the next page that should be scanned. This equals |
| 377 | * @start + PAGE_SIZE when no page could be added by the pte walk. |
| 378 | */ |
| 379 | static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, |
| 380 | struct vm_area_struct *vma, struct zone *zone, |
| 381 | unsigned long start, unsigned long end) |
| 382 | { |
| 383 | pte_t *pte; |
| 384 | spinlock_t *ptl; |
| 385 | |
| 386 | /* |
| 387 | * Initialize pte walk starting at the already pinned page where we |
| 388 | * are sure that there is a pte, as it was pinned under the same |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 389 | * mmap_lock write op. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 390 | */ |
| 391 | pte = get_locked_pte(vma->vm_mm, start, &ptl); |
| 392 | /* Make sure we do not cross the page table boundary */ |
| 393 | end = pgd_addr_end(start, end); |
| 394 | end = p4d_addr_end(start, end); |
| 395 | end = pud_addr_end(start, end); |
| 396 | end = pmd_addr_end(start, end); |
| 397 | |
| 398 | /* The page next to the pinned page is the first we will try to get */ |
| 399 | start += PAGE_SIZE; |
| 400 | while (start < end) { |
| 401 | struct page *page = NULL; |
| 402 | pte++; |
| 403 | if (pte_present(*pte)) |
| 404 | page = vm_normal_page(vma, start, *pte); |
| 405 | /* |
| 406 | * Break if page could not be obtained or the page's node+zone does not |
| 407 | * match |
| 408 | */ |
| 409 | if (!page || page_zone(page) != zone) |
| 410 | break; |
| 411 | |
| 412 | /* |
| 413 | * Do not use pagevec for PTE-mapped THP, |
| 414 | * munlock_vma_pages_range() will handle them. |
| 415 | */ |
| 416 | if (PageTransCompound(page)) |
| 417 | break; |
| 418 | |
| 419 | get_page(page); |
| 420 | /* |
| 421 | * Increase the address that will be returned *before* the |
| 422 | * eventual break due to pvec becoming full by adding the page |
| 423 | */ |
| 424 | start += PAGE_SIZE; |
| 425 | if (pagevec_add(pvec, page) == 0) |
| 426 | break; |
| 427 | } |
| 428 | pte_unmap_unlock(pte, ptl); |
| 429 | return start; |
| 430 | } |
| 431 | |
| 432 | /* |
| 433 | * munlock_vma_pages_range() - munlock all pages in the vma range.' |
| 434 | * @vma - vma containing range to be munlock()ed. |
| 435 | * @start - start address in @vma of the range |
| 436 | * @end - end of range in @vma. |
| 437 | * |
| 438 | * For mremap(), munmap() and exit(). |
| 439 | * |
| 440 | * Called with @vma VM_LOCKED. |
| 441 | * |
| 442 | * Returns with VM_LOCKED cleared. Callers must be prepared to |
| 443 | * deal with this. |
| 444 | * |
| 445 | * We don't save and restore VM_LOCKED here because pages are |
| 446 | * still on lru. In unmap path, pages might be scanned by reclaim |
| 447 | * and re-mlocked by try_to_{munlock|unmap} before we unmap and |
| 448 | * free them. This will result in freeing mlocked pages. |
| 449 | */ |
| 450 | void munlock_vma_pages_range(struct vm_area_struct *vma, |
| 451 | unsigned long start, unsigned long end) |
| 452 | { |
| 453 | vma->vm_flags &= VM_LOCKED_CLEAR_MASK; |
| 454 | |
| 455 | while (start < end) { |
| 456 | struct page *page; |
| 457 | unsigned int page_mask = 0; |
| 458 | unsigned long page_increm; |
| 459 | struct pagevec pvec; |
| 460 | struct zone *zone; |
| 461 | |
| 462 | pagevec_init(&pvec); |
| 463 | /* |
| 464 | * Although FOLL_DUMP is intended for get_dump_page(), |
| 465 | * it just so happens that its special treatment of the |
| 466 | * ZERO_PAGE (returning an error instead of doing get_page) |
| 467 | * suits munlock very well (and if somehow an abnormal page |
| 468 | * has sneaked into the range, we won't oops here: great). |
| 469 | */ |
| 470 | page = follow_page(vma, start, FOLL_GET | FOLL_DUMP); |
| 471 | |
| 472 | if (page && !IS_ERR(page)) { |
| 473 | if (PageTransTail(page)) { |
| 474 | VM_BUG_ON_PAGE(PageMlocked(page), page); |
| 475 | put_page(page); /* follow_page_mask() */ |
| 476 | } else if (PageTransHuge(page)) { |
| 477 | lock_page(page); |
| 478 | /* |
| 479 | * Any THP page found by follow_page_mask() may |
| 480 | * have gotten split before reaching |
| 481 | * munlock_vma_page(), so we need to compute |
| 482 | * the page_mask here instead. |
| 483 | */ |
| 484 | page_mask = munlock_vma_page(page); |
| 485 | unlock_page(page); |
| 486 | put_page(page); /* follow_page_mask() */ |
| 487 | } else { |
| 488 | /* |
| 489 | * Non-huge pages are handled in batches via |
| 490 | * pagevec. The pin from follow_page_mask() |
| 491 | * prevents them from collapsing by THP. |
| 492 | */ |
| 493 | pagevec_add(&pvec, page); |
| 494 | zone = page_zone(page); |
| 495 | |
| 496 | /* |
| 497 | * Try to fill the rest of pagevec using fast |
| 498 | * pte walk. This will also update start to |
| 499 | * the next page to process. Then munlock the |
| 500 | * pagevec. |
| 501 | */ |
| 502 | start = __munlock_pagevec_fill(&pvec, vma, |
| 503 | zone, start, end); |
| 504 | __munlock_pagevec(&pvec, zone); |
| 505 | goto next; |
| 506 | } |
| 507 | } |
| 508 | page_increm = 1 + page_mask; |
| 509 | start += page_increm * PAGE_SIZE; |
| 510 | next: |
| 511 | cond_resched(); |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * mlock_fixup - handle mlock[all]/munlock[all] requests. |
| 517 | * |
| 518 | * Filters out "special" vmas -- VM_LOCKED never gets set for these, and |
| 519 | * munlock is a no-op. However, for some special vmas, we go ahead and |
| 520 | * populate the ptes. |
| 521 | * |
| 522 | * For vmas that pass the filters, merge/split as appropriate. |
| 523 | */ |
| 524 | static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, |
| 525 | unsigned long start, unsigned long end, vm_flags_t newflags) |
| 526 | { |
| 527 | struct mm_struct *mm = vma->vm_mm; |
| 528 | pgoff_t pgoff; |
| 529 | int nr_pages; |
| 530 | int ret = 0; |
| 531 | int lock = !!(newflags & VM_LOCKED); |
| 532 | vm_flags_t old_flags = vma->vm_flags; |
| 533 | |
| 534 | if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || |
| 535 | is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || |
| 536 | vma_is_dax(vma)) |
| 537 | /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ |
| 538 | goto out; |
| 539 | |
| 540 | pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); |
| 541 | *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, |
| 542 | vma->vm_file, pgoff, vma_policy(vma), |
| 543 | vma->vm_userfaultfd_ctx); |
| 544 | if (*prev) { |
| 545 | vma = *prev; |
| 546 | goto success; |
| 547 | } |
| 548 | |
| 549 | if (start != vma->vm_start) { |
| 550 | ret = split_vma(mm, vma, start, 1); |
| 551 | if (ret) |
| 552 | goto out; |
| 553 | } |
| 554 | |
| 555 | if (end != vma->vm_end) { |
| 556 | ret = split_vma(mm, vma, end, 0); |
| 557 | if (ret) |
| 558 | goto out; |
| 559 | } |
| 560 | |
| 561 | success: |
| 562 | /* |
| 563 | * Keep track of amount of locked VM. |
| 564 | */ |
| 565 | nr_pages = (end - start) >> PAGE_SHIFT; |
| 566 | if (!lock) |
| 567 | nr_pages = -nr_pages; |
| 568 | else if (old_flags & VM_LOCKED) |
| 569 | nr_pages = 0; |
| 570 | mm->locked_vm += nr_pages; |
| 571 | |
| 572 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 573 | * vm_flags is protected by the mmap_lock held in write mode. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 574 | * It's okay if try_to_unmap_one unmaps a page just after we |
| 575 | * set VM_LOCKED, populate_vma_page_range will bring it back. |
| 576 | */ |
| 577 | |
| 578 | if (lock) |
| 579 | vma->vm_flags = newflags; |
| 580 | else |
| 581 | munlock_vma_pages_range(vma, start, end); |
| 582 | |
| 583 | out: |
| 584 | *prev = vma; |
| 585 | return ret; |
| 586 | } |
| 587 | |
| 588 | static int apply_vma_lock_flags(unsigned long start, size_t len, |
| 589 | vm_flags_t flags) |
| 590 | { |
| 591 | unsigned long nstart, end, tmp; |
| 592 | struct vm_area_struct * vma, * prev; |
| 593 | int error; |
| 594 | |
| 595 | VM_BUG_ON(offset_in_page(start)); |
| 596 | VM_BUG_ON(len != PAGE_ALIGN(len)); |
| 597 | end = start + len; |
| 598 | if (end < start) |
| 599 | return -EINVAL; |
| 600 | if (end == start) |
| 601 | return 0; |
| 602 | vma = find_vma(current->mm, start); |
| 603 | if (!vma || vma->vm_start > start) |
| 604 | return -ENOMEM; |
| 605 | |
| 606 | prev = vma->vm_prev; |
| 607 | if (start > vma->vm_start) |
| 608 | prev = vma; |
| 609 | |
| 610 | for (nstart = start ; ; ) { |
| 611 | vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; |
| 612 | |
| 613 | newflags |= flags; |
| 614 | |
| 615 | /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ |
| 616 | tmp = vma->vm_end; |
| 617 | if (tmp > end) |
| 618 | tmp = end; |
| 619 | error = mlock_fixup(vma, &prev, nstart, tmp, newflags); |
| 620 | if (error) |
| 621 | break; |
| 622 | nstart = tmp; |
| 623 | if (nstart < prev->vm_end) |
| 624 | nstart = prev->vm_end; |
| 625 | if (nstart >= end) |
| 626 | break; |
| 627 | |
| 628 | vma = prev->vm_next; |
| 629 | if (!vma || vma->vm_start != nstart) { |
| 630 | error = -ENOMEM; |
| 631 | break; |
| 632 | } |
| 633 | } |
| 634 | return error; |
| 635 | } |
| 636 | |
| 637 | /* |
| 638 | * Go through vma areas and sum size of mlocked |
| 639 | * vma pages, as return value. |
| 640 | * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) |
| 641 | * is also counted. |
| 642 | * Return value: previously mlocked page counts |
| 643 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 644 | static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 645 | unsigned long start, size_t len) |
| 646 | { |
| 647 | struct vm_area_struct *vma; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 648 | unsigned long count = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 649 | |
| 650 | if (mm == NULL) |
| 651 | mm = current->mm; |
| 652 | |
| 653 | vma = find_vma(mm, start); |
| 654 | if (vma == NULL) |
| 655 | vma = mm->mmap; |
| 656 | |
| 657 | for (; vma ; vma = vma->vm_next) { |
| 658 | if (start >= vma->vm_end) |
| 659 | continue; |
| 660 | if (start + len <= vma->vm_start) |
| 661 | break; |
| 662 | if (vma->vm_flags & VM_LOCKED) { |
| 663 | if (start > vma->vm_start) |
| 664 | count -= (start - vma->vm_start); |
| 665 | if (start + len < vma->vm_end) { |
| 666 | count += start + len - vma->vm_start; |
| 667 | break; |
| 668 | } |
| 669 | count += vma->vm_end - vma->vm_start; |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | return count >> PAGE_SHIFT; |
| 674 | } |
| 675 | |
| 676 | static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) |
| 677 | { |
| 678 | unsigned long locked; |
| 679 | unsigned long lock_limit; |
| 680 | int error = -ENOMEM; |
| 681 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 682 | start = untagged_addr(start); |
| 683 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 684 | if (!can_do_mlock()) |
| 685 | return -EPERM; |
| 686 | |
| 687 | len = PAGE_ALIGN(len + (offset_in_page(start))); |
| 688 | start &= PAGE_MASK; |
| 689 | |
| 690 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
| 691 | lock_limit >>= PAGE_SHIFT; |
| 692 | locked = len >> PAGE_SHIFT; |
| 693 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 694 | if (mmap_write_lock_killable(current->mm)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 695 | return -EINTR; |
| 696 | |
| 697 | locked += current->mm->locked_vm; |
| 698 | if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { |
| 699 | /* |
| 700 | * It is possible that the regions requested intersect with |
| 701 | * previously mlocked areas, that part area in "mm->locked_vm" |
| 702 | * should not be counted to new mlock increment count. So check |
| 703 | * and adjust locked count if necessary. |
| 704 | */ |
| 705 | locked -= count_mm_mlocked_page_nr(current->mm, |
| 706 | start, len); |
| 707 | } |
| 708 | |
| 709 | /* check against resource limits */ |
| 710 | if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) |
| 711 | error = apply_vma_lock_flags(start, len, flags); |
| 712 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 713 | mmap_write_unlock(current->mm); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 714 | if (error) |
| 715 | return error; |
| 716 | |
| 717 | error = __mm_populate(start, len, 0); |
| 718 | if (error) |
| 719 | return __mlock_posix_error_return(error); |
| 720 | return 0; |
| 721 | } |
| 722 | |
| 723 | SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) |
| 724 | { |
| 725 | return do_mlock(start, len, VM_LOCKED); |
| 726 | } |
| 727 | |
| 728 | SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) |
| 729 | { |
| 730 | vm_flags_t vm_flags = VM_LOCKED; |
| 731 | |
| 732 | if (flags & ~MLOCK_ONFAULT) |
| 733 | return -EINVAL; |
| 734 | |
| 735 | if (flags & MLOCK_ONFAULT) |
| 736 | vm_flags |= VM_LOCKONFAULT; |
| 737 | |
| 738 | return do_mlock(start, len, vm_flags); |
| 739 | } |
| 740 | |
| 741 | SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) |
| 742 | { |
| 743 | int ret; |
| 744 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 745 | start = untagged_addr(start); |
| 746 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 747 | len = PAGE_ALIGN(len + (offset_in_page(start))); |
| 748 | start &= PAGE_MASK; |
| 749 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 750 | if (mmap_write_lock_killable(current->mm)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 751 | return -EINTR; |
| 752 | ret = apply_vma_lock_flags(start, len, 0); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 753 | mmap_write_unlock(current->mm); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 754 | |
| 755 | return ret; |
| 756 | } |
| 757 | |
| 758 | /* |
| 759 | * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) |
| 760 | * and translate into the appropriate modifications to mm->def_flags and/or the |
| 761 | * flags for all current VMAs. |
| 762 | * |
| 763 | * There are a couple of subtleties with this. If mlockall() is called multiple |
| 764 | * times with different flags, the values do not necessarily stack. If mlockall |
| 765 | * is called once including the MCL_FUTURE flag and then a second time without |
| 766 | * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. |
| 767 | */ |
| 768 | static int apply_mlockall_flags(int flags) |
| 769 | { |
| 770 | struct vm_area_struct * vma, * prev = NULL; |
| 771 | vm_flags_t to_add = 0; |
| 772 | |
| 773 | current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; |
| 774 | if (flags & MCL_FUTURE) { |
| 775 | current->mm->def_flags |= VM_LOCKED; |
| 776 | |
| 777 | if (flags & MCL_ONFAULT) |
| 778 | current->mm->def_flags |= VM_LOCKONFAULT; |
| 779 | |
| 780 | if (!(flags & MCL_CURRENT)) |
| 781 | goto out; |
| 782 | } |
| 783 | |
| 784 | if (flags & MCL_CURRENT) { |
| 785 | to_add |= VM_LOCKED; |
| 786 | if (flags & MCL_ONFAULT) |
| 787 | to_add |= VM_LOCKONFAULT; |
| 788 | } |
| 789 | |
| 790 | for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { |
| 791 | vm_flags_t newflags; |
| 792 | |
| 793 | newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; |
| 794 | newflags |= to_add; |
| 795 | |
| 796 | /* Ignore errors */ |
| 797 | mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); |
| 798 | cond_resched(); |
| 799 | } |
| 800 | out: |
| 801 | return 0; |
| 802 | } |
| 803 | |
| 804 | SYSCALL_DEFINE1(mlockall, int, flags) |
| 805 | { |
| 806 | unsigned long lock_limit; |
| 807 | int ret; |
| 808 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 809 | if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || |
| 810 | flags == MCL_ONFAULT) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 811 | return -EINVAL; |
| 812 | |
| 813 | if (!can_do_mlock()) |
| 814 | return -EPERM; |
| 815 | |
| 816 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
| 817 | lock_limit >>= PAGE_SHIFT; |
| 818 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 819 | if (mmap_write_lock_killable(current->mm)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 820 | return -EINTR; |
| 821 | |
| 822 | ret = -ENOMEM; |
| 823 | if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || |
| 824 | capable(CAP_IPC_LOCK)) |
| 825 | ret = apply_mlockall_flags(flags); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 826 | mmap_write_unlock(current->mm); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 827 | if (!ret && (flags & MCL_CURRENT)) |
| 828 | mm_populate(0, TASK_SIZE); |
| 829 | |
| 830 | return ret; |
| 831 | } |
| 832 | |
| 833 | SYSCALL_DEFINE0(munlockall) |
| 834 | { |
| 835 | int ret; |
| 836 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 837 | if (mmap_write_lock_killable(current->mm)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 838 | return -EINTR; |
| 839 | ret = apply_mlockall_flags(0); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 840 | mmap_write_unlock(current->mm); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 841 | return ret; |
| 842 | } |
| 843 | |
| 844 | /* |
| 845 | * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB |
| 846 | * shm segments) get accounted against the user_struct instead. |
| 847 | */ |
| 848 | static DEFINE_SPINLOCK(shmlock_user_lock); |
| 849 | |
| 850 | int user_shm_lock(size_t size, struct user_struct *user) |
| 851 | { |
| 852 | unsigned long lock_limit, locked; |
| 853 | int allowed = 0; |
| 854 | |
| 855 | locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 856 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
| 857 | if (lock_limit == RLIM_INFINITY) |
| 858 | allowed = 1; |
| 859 | lock_limit >>= PAGE_SHIFT; |
| 860 | spin_lock(&shmlock_user_lock); |
| 861 | if (!allowed && |
| 862 | locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) |
| 863 | goto out; |
| 864 | get_uid(user); |
| 865 | user->locked_shm += locked; |
| 866 | allowed = 1; |
| 867 | out: |
| 868 | spin_unlock(&shmlock_user_lock); |
| 869 | return allowed; |
| 870 | } |
| 871 | |
| 872 | void user_shm_unlock(size_t size, struct user_struct *user) |
| 873 | { |
| 874 | spin_lock(&shmlock_user_lock); |
| 875 | user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 876 | spin_unlock(&shmlock_user_lock); |
| 877 | free_uid(user); |
| 878 | } |