blob: ff2c6d3ba6c793d761c5497e8215ed88d2b1d5d5 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Scheduler topology setup/handling methods
4 */
5#include "sched.h"
6
7DEFINE_MUTEX(sched_domains_mutex);
8
9/* Protected by sched_domains_mutex: */
David Brazdil0f672f62019-12-10 10:32:29 +000010static cpumask_var_t sched_domains_tmpmask;
11static cpumask_var_t sched_domains_tmpmask2;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012
13#ifdef CONFIG_SCHED_DEBUG
14
15static int __init sched_debug_setup(char *str)
16{
17 sched_debug_enabled = true;
18
19 return 0;
20}
21early_param("sched_debug", sched_debug_setup);
22
23static inline bool sched_debug(void)
24{
25 return sched_debug_enabled;
26}
27
Olivier Deprez157378f2022-04-04 15:47:50 +020028#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
29const struct sd_flag_debug sd_flag_debug[] = {
30#include <linux/sched/sd_flags.h>
31};
32#undef SD_FLAG
33
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000034static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
35 struct cpumask *groupmask)
36{
37 struct sched_group *group = sd->groups;
Olivier Deprez157378f2022-04-04 15:47:50 +020038 unsigned long flags = sd->flags;
39 unsigned int idx;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000040
41 cpumask_clear(groupmask);
42
43 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000044 printk(KERN_CONT "span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd)), sd->name);
46
47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 }
50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 }
53
Olivier Deprez157378f2022-04-04 15:47:50 +020054 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
55 unsigned int flag = BIT(idx);
56 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
57
58 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
59 !(sd->child->flags & flag))
60 printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
61 sd_flag_debug[idx].name);
62
63 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
64 !(sd->parent->flags & flag))
65 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
66 sd_flag_debug[idx].name);
67 }
68
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000069 printk(KERN_DEBUG "%*s groups:", level + 1, "");
70 do {
71 if (!group) {
72 printk("\n");
73 printk(KERN_ERR "ERROR: group is NULL\n");
74 break;
75 }
76
77 if (!cpumask_weight(sched_group_span(group))) {
78 printk(KERN_CONT "\n");
79 printk(KERN_ERR "ERROR: empty group\n");
80 break;
81 }
82
83 if (!(sd->flags & SD_OVERLAP) &&
84 cpumask_intersects(groupmask, sched_group_span(group))) {
85 printk(KERN_CONT "\n");
86 printk(KERN_ERR "ERROR: repeated CPUs\n");
87 break;
88 }
89
90 cpumask_or(groupmask, groupmask, sched_group_span(group));
91
92 printk(KERN_CONT " %d:{ span=%*pbl",
93 group->sgc->id,
94 cpumask_pr_args(sched_group_span(group)));
95
96 if ((sd->flags & SD_OVERLAP) &&
97 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
98 printk(KERN_CONT " mask=%*pbl",
99 cpumask_pr_args(group_balance_mask(group)));
100 }
101
102 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
103 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
104
105 if (group == sd->groups && sd->child &&
106 !cpumask_equal(sched_domain_span(sd->child),
107 sched_group_span(group))) {
108 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
109 }
110
111 printk(KERN_CONT " }");
112
113 group = group->next;
114
115 if (group != sd->groups)
116 printk(KERN_CONT ",");
117
118 } while (group != sd->groups);
119 printk(KERN_CONT "\n");
120
121 if (!cpumask_equal(sched_domain_span(sd), groupmask))
122 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
123
124 if (sd->parent &&
125 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
126 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
127 return 0;
128}
129
130static void sched_domain_debug(struct sched_domain *sd, int cpu)
131{
132 int level = 0;
133
134 if (!sched_debug_enabled)
135 return;
136
137 if (!sd) {
138 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
139 return;
140 }
141
142 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
143
144 for (;;) {
145 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
146 break;
147 level++;
148 sd = sd->parent;
149 if (!sd)
150 break;
151 }
152}
153#else /* !CONFIG_SCHED_DEBUG */
154
155# define sched_debug_enabled 0
156# define sched_domain_debug(sd, cpu) do { } while (0)
157static inline bool sched_debug(void)
158{
159 return false;
160}
161#endif /* CONFIG_SCHED_DEBUG */
162
Olivier Deprez157378f2022-04-04 15:47:50 +0200163/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165static const unsigned int SD_DEGENERATE_GROUPS_MASK =
166#include <linux/sched/sd_flags.h>
1670;
168#undef SD_FLAG
169
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000170static int sd_degenerate(struct sched_domain *sd)
171{
172 if (cpumask_weight(sched_domain_span(sd)) == 1)
173 return 1;
174
175 /* Following flags need at least 2 groups */
Olivier Deprez157378f2022-04-04 15:47:50 +0200176 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
177 (sd->groups != sd->groups->next))
178 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000179
180 /* Following flags don't use groups */
181 if (sd->flags & (SD_WAKE_AFFINE))
182 return 0;
183
184 return 1;
185}
186
187static int
188sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
189{
190 unsigned long cflags = sd->flags, pflags = parent->flags;
191
192 if (sd_degenerate(parent))
193 return 1;
194
195 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
196 return 0;
197
198 /* Flags needing groups don't count if only 1 group in parent */
Olivier Deprez157378f2022-04-04 15:47:50 +0200199 if (parent->groups == parent->groups->next)
200 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
201
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000202 if (~cflags & pflags)
203 return 0;
204
205 return 1;
206}
207
David Brazdil0f672f62019-12-10 10:32:29 +0000208#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
209DEFINE_STATIC_KEY_FALSE(sched_energy_present);
210unsigned int sysctl_sched_energy_aware = 1;
211DEFINE_MUTEX(sched_energy_mutex);
212bool sched_energy_update;
213
214#ifdef CONFIG_PROC_SYSCTL
215int sched_energy_aware_handler(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +0200216 void *buffer, size_t *lenp, loff_t *ppos)
David Brazdil0f672f62019-12-10 10:32:29 +0000217{
218 int ret, state;
219
220 if (write && !capable(CAP_SYS_ADMIN))
221 return -EPERM;
222
223 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
224 if (!ret && write) {
225 state = static_branch_unlikely(&sched_energy_present);
226 if (state != sysctl_sched_energy_aware) {
227 mutex_lock(&sched_energy_mutex);
228 sched_energy_update = 1;
229 rebuild_sched_domains();
230 sched_energy_update = 0;
231 mutex_unlock(&sched_energy_mutex);
232 }
233 }
234
235 return ret;
236}
237#endif
238
239static void free_pd(struct perf_domain *pd)
240{
241 struct perf_domain *tmp;
242
243 while (pd) {
244 tmp = pd->next;
245 kfree(pd);
246 pd = tmp;
247 }
248}
249
250static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
251{
252 while (pd) {
253 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
254 return pd;
255 pd = pd->next;
256 }
257
258 return NULL;
259}
260
261static struct perf_domain *pd_init(int cpu)
262{
263 struct em_perf_domain *obj = em_cpu_get(cpu);
264 struct perf_domain *pd;
265
266 if (!obj) {
267 if (sched_debug())
268 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
269 return NULL;
270 }
271
272 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
273 if (!pd)
274 return NULL;
275 pd->em_pd = obj;
276
277 return pd;
278}
279
280static void perf_domain_debug(const struct cpumask *cpu_map,
281 struct perf_domain *pd)
282{
283 if (!sched_debug() || !pd)
284 return;
285
286 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
287
288 while (pd) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200289 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
David Brazdil0f672f62019-12-10 10:32:29 +0000290 cpumask_first(perf_domain_span(pd)),
291 cpumask_pr_args(perf_domain_span(pd)),
Olivier Deprez157378f2022-04-04 15:47:50 +0200292 em_pd_nr_perf_states(pd->em_pd));
David Brazdil0f672f62019-12-10 10:32:29 +0000293 pd = pd->next;
294 }
295
296 printk(KERN_CONT "\n");
297}
298
299static void destroy_perf_domain_rcu(struct rcu_head *rp)
300{
301 struct perf_domain *pd;
302
303 pd = container_of(rp, struct perf_domain, rcu);
304 free_pd(pd);
305}
306
307static void sched_energy_set(bool has_eas)
308{
309 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
310 if (sched_debug())
311 pr_info("%s: stopping EAS\n", __func__);
312 static_branch_disable_cpuslocked(&sched_energy_present);
313 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
314 if (sched_debug())
315 pr_info("%s: starting EAS\n", __func__);
316 static_branch_enable_cpuslocked(&sched_energy_present);
317 }
318}
319
320/*
321 * EAS can be used on a root domain if it meets all the following conditions:
322 * 1. an Energy Model (EM) is available;
323 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
Olivier Deprez157378f2022-04-04 15:47:50 +0200324 * 3. no SMT is detected.
325 * 4. the EM complexity is low enough to keep scheduling overheads low;
326 * 5. schedutil is driving the frequency of all CPUs of the rd;
David Brazdil0f672f62019-12-10 10:32:29 +0000327 *
328 * The complexity of the Energy Model is defined as:
329 *
Olivier Deprez157378f2022-04-04 15:47:50 +0200330 * C = nr_pd * (nr_cpus + nr_ps)
David Brazdil0f672f62019-12-10 10:32:29 +0000331 *
332 * with parameters defined as:
333 * - nr_pd: the number of performance domains
334 * - nr_cpus: the number of CPUs
Olivier Deprez157378f2022-04-04 15:47:50 +0200335 * - nr_ps: the sum of the number of performance states of all performance
David Brazdil0f672f62019-12-10 10:32:29 +0000336 * domains (for example, on a system with 2 performance domains,
Olivier Deprez157378f2022-04-04 15:47:50 +0200337 * with 10 performance states each, nr_ps = 2 * 10 = 20).
David Brazdil0f672f62019-12-10 10:32:29 +0000338 *
339 * It is generally not a good idea to use such a model in the wake-up path on
340 * very complex platforms because of the associated scheduling overheads. The
341 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
Olivier Deprez157378f2022-04-04 15:47:50 +0200342 * with per-CPU DVFS and less than 8 performance states each, for example.
David Brazdil0f672f62019-12-10 10:32:29 +0000343 */
344#define EM_MAX_COMPLEXITY 2048
345
346extern struct cpufreq_governor schedutil_gov;
347static bool build_perf_domains(const struct cpumask *cpu_map)
348{
Olivier Deprez157378f2022-04-04 15:47:50 +0200349 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
David Brazdil0f672f62019-12-10 10:32:29 +0000350 struct perf_domain *pd = NULL, *tmp;
351 int cpu = cpumask_first(cpu_map);
352 struct root_domain *rd = cpu_rq(cpu)->rd;
353 struct cpufreq_policy *policy;
354 struct cpufreq_governor *gov;
355
356 if (!sysctl_sched_energy_aware)
357 goto free;
358
359 /* EAS is enabled for asymmetric CPU capacity topologies. */
360 if (!per_cpu(sd_asym_cpucapacity, cpu)) {
361 if (sched_debug()) {
362 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
363 cpumask_pr_args(cpu_map));
364 }
365 goto free;
366 }
367
Olivier Deprez157378f2022-04-04 15:47:50 +0200368 /* EAS definitely does *not* handle SMT */
369 if (sched_smt_active()) {
370 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
371 cpumask_pr_args(cpu_map));
372 goto free;
373 }
374
David Brazdil0f672f62019-12-10 10:32:29 +0000375 for_each_cpu(i, cpu_map) {
376 /* Skip already covered CPUs. */
377 if (find_pd(pd, i))
378 continue;
379
380 /* Do not attempt EAS if schedutil is not being used. */
381 policy = cpufreq_cpu_get(i);
382 if (!policy)
383 goto free;
384 gov = policy->governor;
385 cpufreq_cpu_put(policy);
386 if (gov != &schedutil_gov) {
387 if (rd->pd)
388 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
389 cpumask_pr_args(cpu_map));
390 goto free;
391 }
392
393 /* Create the new pd and add it to the local list. */
394 tmp = pd_init(i);
395 if (!tmp)
396 goto free;
397 tmp->next = pd;
398 pd = tmp;
399
400 /*
Olivier Deprez157378f2022-04-04 15:47:50 +0200401 * Count performance domains and performance states for the
David Brazdil0f672f62019-12-10 10:32:29 +0000402 * complexity check.
403 */
404 nr_pd++;
Olivier Deprez157378f2022-04-04 15:47:50 +0200405 nr_ps += em_pd_nr_perf_states(pd->em_pd);
David Brazdil0f672f62019-12-10 10:32:29 +0000406 }
407
408 /* Bail out if the Energy Model complexity is too high. */
Olivier Deprez157378f2022-04-04 15:47:50 +0200409 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
David Brazdil0f672f62019-12-10 10:32:29 +0000410 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
411 cpumask_pr_args(cpu_map));
412 goto free;
413 }
414
415 perf_domain_debug(cpu_map, pd);
416
417 /* Attach the new list of performance domains to the root domain. */
418 tmp = rd->pd;
419 rcu_assign_pointer(rd->pd, pd);
420 if (tmp)
421 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
422
423 return !!pd;
424
425free:
426 free_pd(pd);
427 tmp = rd->pd;
428 rcu_assign_pointer(rd->pd, NULL);
429 if (tmp)
430 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
431
432 return false;
433}
434#else
435static void free_pd(struct perf_domain *pd) { }
436#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
437
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000438static void free_rootdomain(struct rcu_head *rcu)
439{
440 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
441
442 cpupri_cleanup(&rd->cpupri);
443 cpudl_cleanup(&rd->cpudl);
444 free_cpumask_var(rd->dlo_mask);
445 free_cpumask_var(rd->rto_mask);
446 free_cpumask_var(rd->online);
447 free_cpumask_var(rd->span);
David Brazdil0f672f62019-12-10 10:32:29 +0000448 free_pd(rd->pd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000449 kfree(rd);
450}
451
452void rq_attach_root(struct rq *rq, struct root_domain *rd)
453{
454 struct root_domain *old_rd = NULL;
455 unsigned long flags;
456
457 raw_spin_lock_irqsave(&rq->lock, flags);
458
459 if (rq->rd) {
460 old_rd = rq->rd;
461
462 if (cpumask_test_cpu(rq->cpu, old_rd->online))
463 set_rq_offline(rq);
464
465 cpumask_clear_cpu(rq->cpu, old_rd->span);
466
467 /*
468 * If we dont want to free the old_rd yet then
469 * set old_rd to NULL to skip the freeing later
470 * in this function:
471 */
472 if (!atomic_dec_and_test(&old_rd->refcount))
473 old_rd = NULL;
474 }
475
476 atomic_inc(&rd->refcount);
477 rq->rd = rd;
478
479 cpumask_set_cpu(rq->cpu, rd->span);
480 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
481 set_rq_online(rq);
482
483 raw_spin_unlock_irqrestore(&rq->lock, flags);
484
485 if (old_rd)
David Brazdil0f672f62019-12-10 10:32:29 +0000486 call_rcu(&old_rd->rcu, free_rootdomain);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000487}
488
489void sched_get_rd(struct root_domain *rd)
490{
491 atomic_inc(&rd->refcount);
492}
493
494void sched_put_rd(struct root_domain *rd)
495{
496 if (!atomic_dec_and_test(&rd->refcount))
497 return;
498
David Brazdil0f672f62019-12-10 10:32:29 +0000499 call_rcu(&rd->rcu, free_rootdomain);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000500}
501
502static int init_rootdomain(struct root_domain *rd)
503{
504 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
505 goto out;
506 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
507 goto free_span;
508 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
509 goto free_online;
510 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
511 goto free_dlo_mask;
512
513#ifdef HAVE_RT_PUSH_IPI
514 rd->rto_cpu = -1;
515 raw_spin_lock_init(&rd->rto_lock);
516 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
517#endif
518
519 init_dl_bw(&rd->dl_bw);
520 if (cpudl_init(&rd->cpudl) != 0)
521 goto free_rto_mask;
522
523 if (cpupri_init(&rd->cpupri) != 0)
524 goto free_cpudl;
525 return 0;
526
527free_cpudl:
528 cpudl_cleanup(&rd->cpudl);
529free_rto_mask:
530 free_cpumask_var(rd->rto_mask);
531free_dlo_mask:
532 free_cpumask_var(rd->dlo_mask);
533free_online:
534 free_cpumask_var(rd->online);
535free_span:
536 free_cpumask_var(rd->span);
537out:
538 return -ENOMEM;
539}
540
541/*
542 * By default the system creates a single root-domain with all CPUs as
543 * members (mimicking the global state we have today).
544 */
545struct root_domain def_root_domain;
546
547void init_defrootdomain(void)
548{
549 init_rootdomain(&def_root_domain);
550
551 atomic_set(&def_root_domain.refcount, 1);
552}
553
554static struct root_domain *alloc_rootdomain(void)
555{
556 struct root_domain *rd;
557
558 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
559 if (!rd)
560 return NULL;
561
562 if (init_rootdomain(rd) != 0) {
563 kfree(rd);
564 return NULL;
565 }
566
567 return rd;
568}
569
570static void free_sched_groups(struct sched_group *sg, int free_sgc)
571{
572 struct sched_group *tmp, *first;
573
574 if (!sg)
575 return;
576
577 first = sg;
578 do {
579 tmp = sg->next;
580
581 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
582 kfree(sg->sgc);
583
584 if (atomic_dec_and_test(&sg->ref))
585 kfree(sg);
586 sg = tmp;
587 } while (sg != first);
588}
589
590static void destroy_sched_domain(struct sched_domain *sd)
591{
592 /*
593 * A normal sched domain may have multiple group references, an
594 * overlapping domain, having private groups, only one. Iterate,
595 * dropping group/capacity references, freeing where none remain.
596 */
597 free_sched_groups(sd->groups, 1);
598
599 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
600 kfree(sd->shared);
601 kfree(sd);
602}
603
604static void destroy_sched_domains_rcu(struct rcu_head *rcu)
605{
606 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
607
608 while (sd) {
609 struct sched_domain *parent = sd->parent;
610 destroy_sched_domain(sd);
611 sd = parent;
612 }
613}
614
615static void destroy_sched_domains(struct sched_domain *sd)
616{
617 if (sd)
618 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
619}
620
621/*
622 * Keep a special pointer to the highest sched_domain that has
623 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
624 * allows us to avoid some pointer chasing select_idle_sibling().
625 *
626 * Also keep a unique ID per domain (we use the first CPU number in
627 * the cpumask of the domain), this allows us to quickly tell if
628 * two CPUs are in the same cache domain, see cpus_share_cache().
629 */
David Brazdil0f672f62019-12-10 10:32:29 +0000630DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000631DEFINE_PER_CPU(int, sd_llc_size);
632DEFINE_PER_CPU(int, sd_llc_id);
David Brazdil0f672f62019-12-10 10:32:29 +0000633DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
634DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
635DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
636DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
637DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000638
639static void update_top_cache_domain(int cpu)
640{
641 struct sched_domain_shared *sds = NULL;
642 struct sched_domain *sd;
643 int id = cpu;
644 int size = 1;
645
646 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
647 if (sd) {
648 id = cpumask_first(sched_domain_span(sd));
649 size = cpumask_weight(sched_domain_span(sd));
650 sds = sd->shared;
651 }
652
653 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
654 per_cpu(sd_llc_size, cpu) = size;
655 per_cpu(sd_llc_id, cpu) = id;
656 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
657
658 sd = lowest_flag_domain(cpu, SD_NUMA);
659 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
660
661 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
David Brazdil0f672f62019-12-10 10:32:29 +0000662 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
663
664 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
665 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000666}
667
668/*
669 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
670 * hold the hotplug lock.
671 */
672static void
673cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
674{
675 struct rq *rq = cpu_rq(cpu);
676 struct sched_domain *tmp;
677
678 /* Remove the sched domains which do not contribute to scheduling. */
679 for (tmp = sd; tmp; ) {
680 struct sched_domain *parent = tmp->parent;
681 if (!parent)
682 break;
683
684 if (sd_parent_degenerate(tmp, parent)) {
685 tmp->parent = parent->parent;
686 if (parent->parent)
687 parent->parent->child = tmp;
688 /*
689 * Transfer SD_PREFER_SIBLING down in case of a
690 * degenerate parent; the spans match for this
691 * so the property transfers.
692 */
693 if (parent->flags & SD_PREFER_SIBLING)
694 tmp->flags |= SD_PREFER_SIBLING;
695 destroy_sched_domain(parent);
696 } else
697 tmp = tmp->parent;
698 }
699
700 if (sd && sd_degenerate(sd)) {
701 tmp = sd;
702 sd = sd->parent;
703 destroy_sched_domain(tmp);
704 if (sd)
705 sd->child = NULL;
706 }
707
708 sched_domain_debug(sd, cpu);
709
710 rq_attach_root(rq, rd);
711 tmp = rq->sd;
712 rcu_assign_pointer(rq->sd, sd);
713 dirty_sched_domain_sysctl(cpu);
714 destroy_sched_domains(tmp);
715
716 update_top_cache_domain(cpu);
717}
718
719struct s_data {
David Brazdil0f672f62019-12-10 10:32:29 +0000720 struct sched_domain * __percpu *sd;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000721 struct root_domain *rd;
722};
723
724enum s_alloc {
725 sa_rootdomain,
726 sa_sd,
727 sa_sd_storage,
728 sa_none,
729};
730
731/*
732 * Return the canonical balance CPU for this group, this is the first CPU
733 * of this group that's also in the balance mask.
734 *
735 * The balance mask are all those CPUs that could actually end up at this
736 * group. See build_balance_mask().
737 *
738 * Also see should_we_balance().
739 */
740int group_balance_cpu(struct sched_group *sg)
741{
742 return cpumask_first(group_balance_mask(sg));
743}
744
745
746/*
747 * NUMA topology (first read the regular topology blurb below)
748 *
749 * Given a node-distance table, for example:
750 *
751 * node 0 1 2 3
752 * 0: 10 20 30 20
753 * 1: 20 10 20 30
754 * 2: 30 20 10 20
755 * 3: 20 30 20 10
756 *
757 * which represents a 4 node ring topology like:
758 *
759 * 0 ----- 1
760 * | |
761 * | |
762 * | |
763 * 3 ----- 2
764 *
765 * We want to construct domains and groups to represent this. The way we go
766 * about doing this is to build the domains on 'hops'. For each NUMA level we
767 * construct the mask of all nodes reachable in @level hops.
768 *
769 * For the above NUMA topology that gives 3 levels:
770 *
771 * NUMA-2 0-3 0-3 0-3 0-3
772 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
773 *
774 * NUMA-1 0-1,3 0-2 1-3 0,2-3
775 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
776 *
777 * NUMA-0 0 1 2 3
778 *
779 *
780 * As can be seen; things don't nicely line up as with the regular topology.
781 * When we iterate a domain in child domain chunks some nodes can be
782 * represented multiple times -- hence the "overlap" naming for this part of
783 * the topology.
784 *
785 * In order to minimize this overlap, we only build enough groups to cover the
786 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
787 *
788 * Because:
789 *
790 * - the first group of each domain is its child domain; this
791 * gets us the first 0-1,3
792 * - the only uncovered node is 2, who's child domain is 1-3.
793 *
794 * However, because of the overlap, computing a unique CPU for each group is
795 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
796 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
797 * end up at those groups (they would end up in group: 0-1,3).
798 *
799 * To correct this we have to introduce the group balance mask. This mask
800 * will contain those CPUs in the group that can reach this group given the
801 * (child) domain tree.
802 *
803 * With this we can once again compute balance_cpu and sched_group_capacity
804 * relations.
805 *
806 * XXX include words on how balance_cpu is unique and therefore can be
807 * used for sched_group_capacity links.
808 *
809 *
810 * Another 'interesting' topology is:
811 *
812 * node 0 1 2 3
813 * 0: 10 20 20 30
814 * 1: 20 10 20 20
815 * 2: 20 20 10 20
816 * 3: 30 20 20 10
817 *
818 * Which looks a little like:
819 *
820 * 0 ----- 1
821 * | / |
822 * | / |
823 * | / |
824 * 2 ----- 3
825 *
826 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
827 * are not.
828 *
829 * This leads to a few particularly weird cases where the sched_domain's are
830 * not of the same number for each CPU. Consider:
831 *
832 * NUMA-2 0-3 0-3
833 * groups: {0-2},{1-3} {1-3},{0-2}
834 *
835 * NUMA-1 0-2 0-3 0-3 1-3
836 *
837 * NUMA-0 0 1 2 3
838 *
839 */
840
841
842/*
843 * Build the balance mask; it contains only those CPUs that can arrive at this
844 * group and should be considered to continue balancing.
845 *
846 * We do this during the group creation pass, therefore the group information
847 * isn't complete yet, however since each group represents a (child) domain we
848 * can fully construct this using the sched_domain bits (which are already
849 * complete).
850 */
851static void
852build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
853{
854 const struct cpumask *sg_span = sched_group_span(sg);
855 struct sd_data *sdd = sd->private;
856 struct sched_domain *sibling;
857 int i;
858
859 cpumask_clear(mask);
860
861 for_each_cpu(i, sg_span) {
862 sibling = *per_cpu_ptr(sdd->sd, i);
863
864 /*
865 * Can happen in the asymmetric case, where these siblings are
866 * unused. The mask will not be empty because those CPUs that
867 * do have the top domain _should_ span the domain.
868 */
869 if (!sibling->child)
870 continue;
871
872 /* If we would not end up here, we can't continue from here */
873 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
874 continue;
875
876 cpumask_set_cpu(i, mask);
877 }
878
879 /* We must not have empty masks here */
880 WARN_ON_ONCE(cpumask_empty(mask));
881}
882
883/*
884 * XXX: This creates per-node group entries; since the load-balancer will
885 * immediately access remote memory to construct this group's load-balance
886 * statistics having the groups node local is of dubious benefit.
887 */
888static struct sched_group *
889build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
890{
891 struct sched_group *sg;
892 struct cpumask *sg_span;
893
894 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
895 GFP_KERNEL, cpu_to_node(cpu));
896
897 if (!sg)
898 return NULL;
899
900 sg_span = sched_group_span(sg);
901 if (sd->child)
902 cpumask_copy(sg_span, sched_domain_span(sd->child));
903 else
904 cpumask_copy(sg_span, sched_domain_span(sd));
905
906 atomic_inc(&sg->ref);
907 return sg;
908}
909
910static void init_overlap_sched_group(struct sched_domain *sd,
911 struct sched_group *sg)
912{
913 struct cpumask *mask = sched_domains_tmpmask2;
914 struct sd_data *sdd = sd->private;
915 struct cpumask *sg_span;
916 int cpu;
917
918 build_balance_mask(sd, sg, mask);
919 cpu = cpumask_first_and(sched_group_span(sg), mask);
920
921 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
922 if (atomic_inc_return(&sg->sgc->ref) == 1)
923 cpumask_copy(group_balance_mask(sg), mask);
924 else
925 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
926
927 /*
928 * Initialize sgc->capacity such that even if we mess up the
929 * domains and no possible iteration will get us here, we won't
930 * die on a /0 trap.
931 */
932 sg_span = sched_group_span(sg);
933 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
934 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
David Brazdil0f672f62019-12-10 10:32:29 +0000935 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000936}
937
938static int
939build_overlap_sched_groups(struct sched_domain *sd, int cpu)
940{
941 struct sched_group *first = NULL, *last = NULL, *sg;
942 const struct cpumask *span = sched_domain_span(sd);
943 struct cpumask *covered = sched_domains_tmpmask;
944 struct sd_data *sdd = sd->private;
945 struct sched_domain *sibling;
946 int i;
947
948 cpumask_clear(covered);
949
950 for_each_cpu_wrap(i, span, cpu) {
951 struct cpumask *sg_span;
952
953 if (cpumask_test_cpu(i, covered))
954 continue;
955
956 sibling = *per_cpu_ptr(sdd->sd, i);
957
958 /*
959 * Asymmetric node setups can result in situations where the
960 * domain tree is of unequal depth, make sure to skip domains
961 * that already cover the entire range.
962 *
963 * In that case build_sched_domains() will have terminated the
964 * iteration early and our sibling sd spans will be empty.
965 * Domains should always include the CPU they're built on, so
966 * check that.
967 */
968 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
969 continue;
970
971 sg = build_group_from_child_sched_domain(sibling, cpu);
972 if (!sg)
973 goto fail;
974
975 sg_span = sched_group_span(sg);
976 cpumask_or(covered, covered, sg_span);
977
978 init_overlap_sched_group(sd, sg);
979
980 if (!first)
981 first = sg;
982 if (last)
983 last->next = sg;
984 last = sg;
985 last->next = first;
986 }
987 sd->groups = first;
988
989 return 0;
990
991fail:
992 free_sched_groups(first, 0);
993
994 return -ENOMEM;
995}
996
997
998/*
999 * Package topology (also see the load-balance blurb in fair.c)
1000 *
1001 * The scheduler builds a tree structure to represent a number of important
1002 * topology features. By default (default_topology[]) these include:
1003 *
1004 * - Simultaneous multithreading (SMT)
1005 * - Multi-Core Cache (MC)
1006 * - Package (DIE)
1007 *
1008 * Where the last one more or less denotes everything up to a NUMA node.
1009 *
1010 * The tree consists of 3 primary data structures:
1011 *
1012 * sched_domain -> sched_group -> sched_group_capacity
1013 * ^ ^ ^ ^
1014 * `-' `-'
1015 *
1016 * The sched_domains are per-CPU and have a two way link (parent & child) and
1017 * denote the ever growing mask of CPUs belonging to that level of topology.
1018 *
1019 * Each sched_domain has a circular (double) linked list of sched_group's, each
1020 * denoting the domains of the level below (or individual CPUs in case of the
1021 * first domain level). The sched_group linked by a sched_domain includes the
1022 * CPU of that sched_domain [*].
1023 *
1024 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1025 *
1026 * CPU 0 1 2 3 4 5 6 7
1027 *
1028 * DIE [ ]
1029 * MC [ ] [ ]
1030 * SMT [ ] [ ] [ ] [ ]
1031 *
1032 * - or -
1033 *
1034 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1035 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1036 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1037 *
1038 * CPU 0 1 2 3 4 5 6 7
1039 *
1040 * One way to think about it is: sched_domain moves you up and down among these
1041 * topology levels, while sched_group moves you sideways through it, at child
1042 * domain granularity.
1043 *
1044 * sched_group_capacity ensures each unique sched_group has shared storage.
1045 *
1046 * There are two related construction problems, both require a CPU that
1047 * uniquely identify each group (for a given domain):
1048 *
1049 * - The first is the balance_cpu (see should_we_balance() and the
1050 * load-balance blub in fair.c); for each group we only want 1 CPU to
1051 * continue balancing at a higher domain.
1052 *
1053 * - The second is the sched_group_capacity; we want all identical groups
1054 * to share a single sched_group_capacity.
1055 *
1056 * Since these topologies are exclusive by construction. That is, its
1057 * impossible for an SMT thread to belong to multiple cores, and cores to
1058 * be part of multiple caches. There is a very clear and unique location
1059 * for each CPU in the hierarchy.
1060 *
1061 * Therefore computing a unique CPU for each group is trivial (the iteration
1062 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1063 * group), we can simply pick the first CPU in each group.
1064 *
1065 *
1066 * [*] in other words, the first group of each domain is its child domain.
1067 */
1068
1069static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1070{
1071 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1072 struct sched_domain *child = sd->child;
1073 struct sched_group *sg;
David Brazdil0f672f62019-12-10 10:32:29 +00001074 bool already_visited;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001075
1076 if (child)
1077 cpu = cpumask_first(sched_domain_span(child));
1078
1079 sg = *per_cpu_ptr(sdd->sg, cpu);
1080 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1081
David Brazdil0f672f62019-12-10 10:32:29 +00001082 /* Increase refcounts for claim_allocations: */
1083 already_visited = atomic_inc_return(&sg->ref) > 1;
1084 /* sgc visits should follow a similar trend as sg */
1085 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1086
1087 /* If we have already visited that group, it's already initialized. */
1088 if (already_visited)
1089 return sg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001090
1091 if (child) {
1092 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1093 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1094 } else {
1095 cpumask_set_cpu(cpu, sched_group_span(sg));
1096 cpumask_set_cpu(cpu, group_balance_mask(sg));
1097 }
1098
1099 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1100 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
David Brazdil0f672f62019-12-10 10:32:29 +00001101 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001102
1103 return sg;
1104}
1105
1106/*
1107 * build_sched_groups will build a circular linked list of the groups
David Brazdil0f672f62019-12-10 10:32:29 +00001108 * covered by the given span, will set each group's ->cpumask correctly,
1109 * and will initialize their ->sgc.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001110 *
1111 * Assumes the sched_domain tree is fully constructed
1112 */
1113static int
1114build_sched_groups(struct sched_domain *sd, int cpu)
1115{
1116 struct sched_group *first = NULL, *last = NULL;
1117 struct sd_data *sdd = sd->private;
1118 const struct cpumask *span = sched_domain_span(sd);
1119 struct cpumask *covered;
1120 int i;
1121
1122 lockdep_assert_held(&sched_domains_mutex);
1123 covered = sched_domains_tmpmask;
1124
1125 cpumask_clear(covered);
1126
1127 for_each_cpu_wrap(i, span, cpu) {
1128 struct sched_group *sg;
1129
1130 if (cpumask_test_cpu(i, covered))
1131 continue;
1132
1133 sg = get_group(i, sdd);
1134
1135 cpumask_or(covered, covered, sched_group_span(sg));
1136
1137 if (!first)
1138 first = sg;
1139 if (last)
1140 last->next = sg;
1141 last = sg;
1142 }
1143 last->next = first;
1144 sd->groups = first;
1145
1146 return 0;
1147}
1148
1149/*
1150 * Initialize sched groups cpu_capacity.
1151 *
1152 * cpu_capacity indicates the capacity of sched group, which is used while
1153 * distributing the load between different sched groups in a sched domain.
1154 * Typically cpu_capacity for all the groups in a sched domain will be same
1155 * unless there are asymmetries in the topology. If there are asymmetries,
1156 * group having more cpu_capacity will pickup more load compared to the
1157 * group having less cpu_capacity.
1158 */
1159static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1160{
1161 struct sched_group *sg = sd->groups;
1162
1163 WARN_ON(!sg);
1164
1165 do {
1166 int cpu, max_cpu = -1;
1167
1168 sg->group_weight = cpumask_weight(sched_group_span(sg));
1169
1170 if (!(sd->flags & SD_ASYM_PACKING))
1171 goto next;
1172
1173 for_each_cpu(cpu, sched_group_span(sg)) {
1174 if (max_cpu < 0)
1175 max_cpu = cpu;
1176 else if (sched_asym_prefer(cpu, max_cpu))
1177 max_cpu = cpu;
1178 }
1179 sg->asym_prefer_cpu = max_cpu;
1180
1181next:
1182 sg = sg->next;
1183 } while (sg != sd->groups);
1184
1185 if (cpu != group_balance_cpu(sg))
1186 return;
1187
1188 update_group_capacity(sd, cpu);
1189}
1190
1191/*
1192 * Initializers for schedule domains
1193 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1194 */
1195
1196static int default_relax_domain_level = -1;
1197int sched_domain_level_max;
1198
1199static int __init setup_relax_domain_level(char *str)
1200{
1201 if (kstrtoint(str, 0, &default_relax_domain_level))
1202 pr_warn("Unable to set relax_domain_level\n");
1203
1204 return 1;
1205}
1206__setup("relax_domain_level=", setup_relax_domain_level);
1207
1208static void set_domain_attribute(struct sched_domain *sd,
1209 struct sched_domain_attr *attr)
1210{
1211 int request;
1212
1213 if (!attr || attr->relax_domain_level < 0) {
1214 if (default_relax_domain_level < 0)
1215 return;
Olivier Deprez157378f2022-04-04 15:47:50 +02001216 request = default_relax_domain_level;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001217 } else
1218 request = attr->relax_domain_level;
Olivier Deprez157378f2022-04-04 15:47:50 +02001219
1220 if (sd->level > request) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001221 /* Turn off idle balance on this domain: */
1222 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001223 }
1224}
1225
1226static void __sdt_free(const struct cpumask *cpu_map);
1227static int __sdt_alloc(const struct cpumask *cpu_map);
1228
1229static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1230 const struct cpumask *cpu_map)
1231{
1232 switch (what) {
1233 case sa_rootdomain:
1234 if (!atomic_read(&d->rd->refcount))
1235 free_rootdomain(&d->rd->rcu);
Olivier Deprez157378f2022-04-04 15:47:50 +02001236 fallthrough;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001237 case sa_sd:
1238 free_percpu(d->sd);
Olivier Deprez157378f2022-04-04 15:47:50 +02001239 fallthrough;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001240 case sa_sd_storage:
1241 __sdt_free(cpu_map);
Olivier Deprez157378f2022-04-04 15:47:50 +02001242 fallthrough;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001243 case sa_none:
1244 break;
1245 }
1246}
1247
1248static enum s_alloc
1249__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1250{
1251 memset(d, 0, sizeof(*d));
1252
1253 if (__sdt_alloc(cpu_map))
1254 return sa_sd_storage;
1255 d->sd = alloc_percpu(struct sched_domain *);
1256 if (!d->sd)
1257 return sa_sd_storage;
1258 d->rd = alloc_rootdomain();
1259 if (!d->rd)
1260 return sa_sd;
1261
1262 return sa_rootdomain;
1263}
1264
1265/*
1266 * NULL the sd_data elements we've used to build the sched_domain and
1267 * sched_group structure so that the subsequent __free_domain_allocs()
1268 * will not free the data we're using.
1269 */
1270static void claim_allocations(int cpu, struct sched_domain *sd)
1271{
1272 struct sd_data *sdd = sd->private;
1273
1274 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1275 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1276
1277 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1278 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1279
1280 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1281 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1282
1283 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1284 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1285}
1286
1287#ifdef CONFIG_NUMA
1288enum numa_topology_type sched_numa_topology_type;
1289
1290static int sched_domains_numa_levels;
1291static int sched_domains_curr_level;
1292
1293int sched_max_numa_distance;
1294static int *sched_domains_numa_distance;
1295static struct cpumask ***sched_domains_numa_masks;
David Brazdil0f672f62019-12-10 10:32:29 +00001296int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001297#endif
1298
1299/*
1300 * SD_flags allowed in topology descriptions.
1301 *
1302 * These flags are purely descriptive of the topology and do not prescribe
1303 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1304 * function:
1305 *
1306 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1307 * SD_SHARE_PKG_RESOURCES - describes shared caches
1308 * SD_NUMA - describes NUMA topologies
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001309 *
1310 * Odd one out, which beside describing the topology has a quirk also
1311 * prescribes the desired behaviour that goes along with it:
1312 *
1313 * SD_ASYM_PACKING - describes SMT quirks
1314 */
1315#define TOPOLOGY_SD_FLAGS \
1316 (SD_SHARE_CPUCAPACITY | \
1317 SD_SHARE_PKG_RESOURCES | \
1318 SD_NUMA | \
Olivier Deprez157378f2022-04-04 15:47:50 +02001319 SD_ASYM_PACKING)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001320
1321static struct sched_domain *
1322sd_init(struct sched_domain_topology_level *tl,
1323 const struct cpumask *cpu_map,
David Brazdil0f672f62019-12-10 10:32:29 +00001324 struct sched_domain *child, int dflags, int cpu)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001325{
1326 struct sd_data *sdd = &tl->data;
1327 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1328 int sd_id, sd_weight, sd_flags = 0;
1329
1330#ifdef CONFIG_NUMA
1331 /*
1332 * Ugly hack to pass state to sd_numa_mask()...
1333 */
1334 sched_domains_curr_level = tl->numa_level;
1335#endif
1336
1337 sd_weight = cpumask_weight(tl->mask(cpu));
1338
1339 if (tl->sd_flags)
1340 sd_flags = (*tl->sd_flags)();
1341 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1342 "wrong sd_flags in topology description\n"))
Olivier Deprez0e641232021-09-23 10:07:05 +02001343 sd_flags &= TOPOLOGY_SD_FLAGS;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001344
David Brazdil0f672f62019-12-10 10:32:29 +00001345 /* Apply detected topology flags */
1346 sd_flags |= dflags;
1347
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001348 *sd = (struct sched_domain){
1349 .min_interval = sd_weight,
1350 .max_interval = 2*sd_weight,
Olivier Deprez157378f2022-04-04 15:47:50 +02001351 .busy_factor = 16,
1352 .imbalance_pct = 117,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001353
1354 .cache_nice_tries = 0,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001355
Olivier Deprez157378f2022-04-04 15:47:50 +02001356 .flags = 1*SD_BALANCE_NEWIDLE
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001357 | 1*SD_BALANCE_EXEC
1358 | 1*SD_BALANCE_FORK
1359 | 0*SD_BALANCE_WAKE
1360 | 1*SD_WAKE_AFFINE
1361 | 0*SD_SHARE_CPUCAPACITY
1362 | 0*SD_SHARE_PKG_RESOURCES
1363 | 0*SD_SERIALIZE
David Brazdil0f672f62019-12-10 10:32:29 +00001364 | 1*SD_PREFER_SIBLING
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001365 | 0*SD_NUMA
1366 | sd_flags
1367 ,
1368
1369 .last_balance = jiffies,
1370 .balance_interval = sd_weight,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001371 .max_newidle_lb_cost = 0,
1372 .next_decay_max_lb_cost = jiffies,
1373 .child = child,
1374#ifdef CONFIG_SCHED_DEBUG
1375 .name = tl->name,
1376#endif
1377 };
1378
1379 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1380 sd_id = cpumask_first(sched_domain_span(sd));
1381
1382 /*
1383 * Convert topological properties into behaviour.
1384 */
1385
Olivier Deprez157378f2022-04-04 15:47:50 +02001386 /* Don't attempt to spread across CPUs of different capacities. */
1387 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1388 sd->child->flags &= ~SD_PREFER_SIBLING;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001389
1390 if (sd->flags & SD_SHARE_CPUCAPACITY) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001391 sd->imbalance_pct = 110;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001392
1393 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001394 sd->imbalance_pct = 117;
1395 sd->cache_nice_tries = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001396
1397#ifdef CONFIG_NUMA
1398 } else if (sd->flags & SD_NUMA) {
1399 sd->cache_nice_tries = 2;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001400
David Brazdil0f672f62019-12-10 10:32:29 +00001401 sd->flags &= ~SD_PREFER_SIBLING;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001402 sd->flags |= SD_SERIALIZE;
David Brazdil0f672f62019-12-10 10:32:29 +00001403 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001404 sd->flags &= ~(SD_BALANCE_EXEC |
1405 SD_BALANCE_FORK |
1406 SD_WAKE_AFFINE);
1407 }
1408
1409#endif
1410 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001411 sd->cache_nice_tries = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001412 }
1413
1414 /*
1415 * For all levels sharing cache; connect a sched_domain_shared
1416 * instance.
1417 */
1418 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1419 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1420 atomic_inc(&sd->shared->ref);
1421 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1422 }
1423
1424 sd->private = sdd;
1425
1426 return sd;
1427}
1428
1429/*
1430 * Topology list, bottom-up.
1431 */
1432static struct sched_domain_topology_level default_topology[] = {
1433#ifdef CONFIG_SCHED_SMT
1434 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1435#endif
1436#ifdef CONFIG_SCHED_MC
1437 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1438#endif
1439 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1440 { NULL, },
1441};
1442
1443static struct sched_domain_topology_level *sched_domain_topology =
1444 default_topology;
1445
1446#define for_each_sd_topology(tl) \
1447 for (tl = sched_domain_topology; tl->mask; tl++)
1448
1449void set_sched_topology(struct sched_domain_topology_level *tl)
1450{
1451 if (WARN_ON_ONCE(sched_smp_initialized))
1452 return;
1453
1454 sched_domain_topology = tl;
1455}
1456
1457#ifdef CONFIG_NUMA
1458
1459static const struct cpumask *sd_numa_mask(int cpu)
1460{
1461 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1462}
1463
1464static void sched_numa_warn(const char *str)
1465{
1466 static int done = false;
1467 int i,j;
1468
1469 if (done)
1470 return;
1471
1472 done = true;
1473
1474 printk(KERN_WARNING "ERROR: %s\n\n", str);
1475
1476 for (i = 0; i < nr_node_ids; i++) {
1477 printk(KERN_WARNING " ");
1478 for (j = 0; j < nr_node_ids; j++)
1479 printk(KERN_CONT "%02d ", node_distance(i,j));
1480 printk(KERN_CONT "\n");
1481 }
1482 printk(KERN_WARNING "\n");
1483}
1484
1485bool find_numa_distance(int distance)
1486{
1487 int i;
1488
1489 if (distance == node_distance(0, 0))
1490 return true;
1491
1492 for (i = 0; i < sched_domains_numa_levels; i++) {
1493 if (sched_domains_numa_distance[i] == distance)
1494 return true;
1495 }
1496
1497 return false;
1498}
1499
1500/*
1501 * A system can have three types of NUMA topology:
1502 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1503 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1504 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1505 *
1506 * The difference between a glueless mesh topology and a backplane
1507 * topology lies in whether communication between not directly
1508 * connected nodes goes through intermediary nodes (where programs
1509 * could run), or through backplane controllers. This affects
1510 * placement of programs.
1511 *
1512 * The type of topology can be discerned with the following tests:
1513 * - If the maximum distance between any nodes is 1 hop, the system
1514 * is directly connected.
1515 * - If for two nodes A and B, located N > 1 hops away from each other,
1516 * there is an intermediary node C, which is < N hops away from both
1517 * nodes A and B, the system is a glueless mesh.
1518 */
1519static void init_numa_topology_type(void)
1520{
1521 int a, b, c, n;
1522
1523 n = sched_max_numa_distance;
1524
1525 if (sched_domains_numa_levels <= 2) {
1526 sched_numa_topology_type = NUMA_DIRECT;
1527 return;
1528 }
1529
1530 for_each_online_node(a) {
1531 for_each_online_node(b) {
1532 /* Find two nodes furthest removed from each other. */
1533 if (node_distance(a, b) < n)
1534 continue;
1535
1536 /* Is there an intermediary node between a and b? */
1537 for_each_online_node(c) {
1538 if (node_distance(a, c) < n &&
1539 node_distance(b, c) < n) {
1540 sched_numa_topology_type =
1541 NUMA_GLUELESS_MESH;
1542 return;
1543 }
1544 }
1545
1546 sched_numa_topology_type = NUMA_BACKPLANE;
1547 return;
1548 }
1549 }
1550}
1551
Olivier Deprez157378f2022-04-04 15:47:50 +02001552
1553#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1554
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001555void sched_init_numa(void)
1556{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001557 struct sched_domain_topology_level *tl;
Olivier Deprez157378f2022-04-04 15:47:50 +02001558 unsigned long *distance_map;
1559 int nr_levels = 0;
1560 int i, j;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001561
1562 /*
1563 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1564 * unique distances in the node_distance() table.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001565 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001566 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1567 if (!distance_map)
1568 return;
1569
1570 bitmap_zero(distance_map, NR_DISTANCE_VALUES);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001571 for (i = 0; i < nr_node_ids; i++) {
1572 for (j = 0; j < nr_node_ids; j++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001573 int distance = node_distance(i, j);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001574
Olivier Deprez157378f2022-04-04 15:47:50 +02001575 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1576 sched_numa_warn("Invalid distance value range");
1577 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001578 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001579
Olivier Deprez157378f2022-04-04 15:47:50 +02001580 bitmap_set(distance_map, distance, 1);
1581 }
1582 }
1583 /*
1584 * We can now figure out how many unique distance values there are and
1585 * allocate memory accordingly.
1586 */
1587 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1588
1589 sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1590 if (!sched_domains_numa_distance) {
1591 bitmap_free(distance_map);
1592 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001593 }
1594
Olivier Deprez157378f2022-04-04 15:47:50 +02001595 for (i = 0, j = 0; i < nr_levels; i++, j++) {
1596 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1597 sched_domains_numa_distance[i] = j;
1598 }
1599
1600 bitmap_free(distance_map);
1601
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001602 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02001603 * 'nr_levels' contains the number of unique distances
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001604 *
1605 * The sched_domains_numa_distance[] array includes the actual distance
1606 * numbers.
1607 */
1608
1609 /*
1610 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1611 * If it fails to allocate memory for array sched_domains_numa_masks[][],
Olivier Deprez157378f2022-04-04 15:47:50 +02001612 * the array will contain less then 'nr_levels' members. This could be
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001613 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1614 * in other functions.
1615 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001616 * We reset it to 'nr_levels' at the end of this function.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001617 */
1618 sched_domains_numa_levels = 0;
1619
Olivier Deprez157378f2022-04-04 15:47:50 +02001620 sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001621 if (!sched_domains_numa_masks)
1622 return;
1623
1624 /*
1625 * Now for each level, construct a mask per node which contains all
1626 * CPUs of nodes that are that many hops away from us.
1627 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001628 for (i = 0; i < nr_levels; i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001629 sched_domains_numa_masks[i] =
1630 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1631 if (!sched_domains_numa_masks[i])
1632 return;
1633
1634 for (j = 0; j < nr_node_ids; j++) {
1635 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
Olivier Deprez157378f2022-04-04 15:47:50 +02001636 int k;
1637
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001638 if (!mask)
1639 return;
1640
1641 sched_domains_numa_masks[i][j] = mask;
1642
1643 for_each_node(k) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001644 if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1645 sched_numa_warn("Node-distance not symmetric");
1646
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001647 if (node_distance(j, k) > sched_domains_numa_distance[i])
1648 continue;
1649
1650 cpumask_or(mask, mask, cpumask_of_node(k));
1651 }
1652 }
1653 }
1654
1655 /* Compute default topology size */
1656 for (i = 0; sched_domain_topology[i].mask; i++);
1657
Olivier Deprez157378f2022-04-04 15:47:50 +02001658 tl = kzalloc((i + nr_levels + 1) *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001659 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1660 if (!tl)
1661 return;
1662
1663 /*
1664 * Copy the default topology bits..
1665 */
1666 for (i = 0; sched_domain_topology[i].mask; i++)
1667 tl[i] = sched_domain_topology[i];
1668
1669 /*
1670 * Add the NUMA identity distance, aka single NODE.
1671 */
1672 tl[i++] = (struct sched_domain_topology_level){
1673 .mask = sd_numa_mask,
1674 .numa_level = 0,
1675 SD_INIT_NAME(NODE)
1676 };
1677
1678 /*
1679 * .. and append 'j' levels of NUMA goodness.
1680 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001681 for (j = 1; j < nr_levels; i++, j++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001682 tl[i] = (struct sched_domain_topology_level){
1683 .mask = sd_numa_mask,
1684 .sd_flags = cpu_numa_flags,
1685 .flags = SDTL_OVERLAP,
1686 .numa_level = j,
1687 SD_INIT_NAME(NUMA)
1688 };
1689 }
1690
1691 sched_domain_topology = tl;
1692
Olivier Deprez157378f2022-04-04 15:47:50 +02001693 sched_domains_numa_levels = nr_levels;
1694 sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001695
1696 init_numa_topology_type();
1697}
1698
1699void sched_domains_numa_masks_set(unsigned int cpu)
1700{
1701 int node = cpu_to_node(cpu);
1702 int i, j;
1703
1704 for (i = 0; i < sched_domains_numa_levels; i++) {
1705 for (j = 0; j < nr_node_ids; j++) {
1706 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1707 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1708 }
1709 }
1710}
1711
1712void sched_domains_numa_masks_clear(unsigned int cpu)
1713{
1714 int i, j;
1715
1716 for (i = 0; i < sched_domains_numa_levels; i++) {
1717 for (j = 0; j < nr_node_ids; j++)
1718 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1719 }
1720}
1721
David Brazdil0f672f62019-12-10 10:32:29 +00001722/*
1723 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1724 * closest to @cpu from @cpumask.
1725 * cpumask: cpumask to find a cpu from
1726 * cpu: cpu to be close to
1727 *
1728 * returns: cpu, or nr_cpu_ids when nothing found.
1729 */
1730int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1731{
1732 int i, j = cpu_to_node(cpu);
1733
1734 for (i = 0; i < sched_domains_numa_levels; i++) {
1735 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1736 if (cpu < nr_cpu_ids)
1737 return cpu;
1738 }
1739 return nr_cpu_ids;
1740}
1741
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001742#endif /* CONFIG_NUMA */
1743
1744static int __sdt_alloc(const struct cpumask *cpu_map)
1745{
1746 struct sched_domain_topology_level *tl;
1747 int j;
1748
1749 for_each_sd_topology(tl) {
1750 struct sd_data *sdd = &tl->data;
1751
1752 sdd->sd = alloc_percpu(struct sched_domain *);
1753 if (!sdd->sd)
1754 return -ENOMEM;
1755
1756 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1757 if (!sdd->sds)
1758 return -ENOMEM;
1759
1760 sdd->sg = alloc_percpu(struct sched_group *);
1761 if (!sdd->sg)
1762 return -ENOMEM;
1763
1764 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1765 if (!sdd->sgc)
1766 return -ENOMEM;
1767
1768 for_each_cpu(j, cpu_map) {
1769 struct sched_domain *sd;
1770 struct sched_domain_shared *sds;
1771 struct sched_group *sg;
1772 struct sched_group_capacity *sgc;
1773
1774 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1775 GFP_KERNEL, cpu_to_node(j));
1776 if (!sd)
1777 return -ENOMEM;
1778
1779 *per_cpu_ptr(sdd->sd, j) = sd;
1780
1781 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1782 GFP_KERNEL, cpu_to_node(j));
1783 if (!sds)
1784 return -ENOMEM;
1785
1786 *per_cpu_ptr(sdd->sds, j) = sds;
1787
1788 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1789 GFP_KERNEL, cpu_to_node(j));
1790 if (!sg)
1791 return -ENOMEM;
1792
1793 sg->next = sg;
1794
1795 *per_cpu_ptr(sdd->sg, j) = sg;
1796
1797 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1798 GFP_KERNEL, cpu_to_node(j));
1799 if (!sgc)
1800 return -ENOMEM;
1801
1802#ifdef CONFIG_SCHED_DEBUG
1803 sgc->id = j;
1804#endif
1805
1806 *per_cpu_ptr(sdd->sgc, j) = sgc;
1807 }
1808 }
1809
1810 return 0;
1811}
1812
1813static void __sdt_free(const struct cpumask *cpu_map)
1814{
1815 struct sched_domain_topology_level *tl;
1816 int j;
1817
1818 for_each_sd_topology(tl) {
1819 struct sd_data *sdd = &tl->data;
1820
1821 for_each_cpu(j, cpu_map) {
1822 struct sched_domain *sd;
1823
1824 if (sdd->sd) {
1825 sd = *per_cpu_ptr(sdd->sd, j);
1826 if (sd && (sd->flags & SD_OVERLAP))
1827 free_sched_groups(sd->groups, 0);
1828 kfree(*per_cpu_ptr(sdd->sd, j));
1829 }
1830
1831 if (sdd->sds)
1832 kfree(*per_cpu_ptr(sdd->sds, j));
1833 if (sdd->sg)
1834 kfree(*per_cpu_ptr(sdd->sg, j));
1835 if (sdd->sgc)
1836 kfree(*per_cpu_ptr(sdd->sgc, j));
1837 }
1838 free_percpu(sdd->sd);
1839 sdd->sd = NULL;
1840 free_percpu(sdd->sds);
1841 sdd->sds = NULL;
1842 free_percpu(sdd->sg);
1843 sdd->sg = NULL;
1844 free_percpu(sdd->sgc);
1845 sdd->sgc = NULL;
1846 }
1847}
1848
1849static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1850 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
David Brazdil0f672f62019-12-10 10:32:29 +00001851 struct sched_domain *child, int dflags, int cpu)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001852{
David Brazdil0f672f62019-12-10 10:32:29 +00001853 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001854
1855 if (child) {
1856 sd->level = child->level + 1;
1857 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1858 child->parent = sd;
1859
1860 if (!cpumask_subset(sched_domain_span(child),
1861 sched_domain_span(sd))) {
1862 pr_err("BUG: arch topology borken\n");
1863#ifdef CONFIG_SCHED_DEBUG
1864 pr_err(" the %s domain not a subset of the %s domain\n",
1865 child->name, sd->name);
1866#endif
1867 /* Fixup, ensure @sd has at least @child CPUs. */
1868 cpumask_or(sched_domain_span(sd),
1869 sched_domain_span(sd),
1870 sched_domain_span(child));
1871 }
1872
1873 }
1874 set_domain_attribute(sd, attr);
1875
1876 return sd;
1877}
1878
1879/*
Olivier Deprez0e641232021-09-23 10:07:05 +02001880 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1881 * any two given CPUs at this (non-NUMA) topology level.
1882 */
1883static bool topology_span_sane(struct sched_domain_topology_level *tl,
1884 const struct cpumask *cpu_map, int cpu)
1885{
1886 int i;
1887
1888 /* NUMA levels are allowed to overlap */
1889 if (tl->flags & SDTL_OVERLAP)
1890 return true;
1891
1892 /*
1893 * Non-NUMA levels cannot partially overlap - they must be either
1894 * completely equal or completely disjoint. Otherwise we can end up
1895 * breaking the sched_group lists - i.e. a later get_group() pass
1896 * breaks the linking done for an earlier span.
1897 */
1898 for_each_cpu(i, cpu_map) {
1899 if (i == cpu)
1900 continue;
1901 /*
1902 * We should 'and' all those masks with 'cpu_map' to exactly
1903 * match the topology we're about to build, but that can only
1904 * remove CPUs, which only lessens our ability to detect
1905 * overlaps
1906 */
1907 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1908 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1909 return false;
1910 }
1911
1912 return true;
1913}
1914
1915/*
David Brazdil0f672f62019-12-10 10:32:29 +00001916 * Find the sched_domain_topology_level where all CPU capacities are visible
1917 * for all CPUs.
1918 */
1919static struct sched_domain_topology_level
1920*asym_cpu_capacity_level(const struct cpumask *cpu_map)
1921{
1922 int i, j, asym_level = 0;
1923 bool asym = false;
1924 struct sched_domain_topology_level *tl, *asym_tl = NULL;
1925 unsigned long cap;
1926
1927 /* Is there any asymmetry? */
1928 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1929
1930 for_each_cpu(i, cpu_map) {
1931 if (arch_scale_cpu_capacity(i) != cap) {
1932 asym = true;
1933 break;
1934 }
1935 }
1936
1937 if (!asym)
1938 return NULL;
1939
1940 /*
1941 * Examine topology from all CPU's point of views to detect the lowest
1942 * sched_domain_topology_level where a highest capacity CPU is visible
1943 * to everyone.
1944 */
1945 for_each_cpu(i, cpu_map) {
1946 unsigned long max_capacity = arch_scale_cpu_capacity(i);
1947 int tl_id = 0;
1948
1949 for_each_sd_topology(tl) {
1950 if (tl_id < asym_level)
1951 goto next_level;
1952
1953 for_each_cpu_and(j, tl->mask(i), cpu_map) {
1954 unsigned long capacity;
1955
1956 capacity = arch_scale_cpu_capacity(j);
1957
1958 if (capacity <= max_capacity)
1959 continue;
1960
1961 max_capacity = capacity;
1962 asym_level = tl_id;
1963 asym_tl = tl;
1964 }
1965next_level:
1966 tl_id++;
1967 }
1968 }
1969
1970 return asym_tl;
1971}
1972
1973
1974/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001975 * Build sched domains for a given set of CPUs and attach the sched domains
1976 * to the individual CPUs
1977 */
1978static int
1979build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1980{
David Brazdil0f672f62019-12-10 10:32:29 +00001981 enum s_alloc alloc_state = sa_none;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001982 struct sched_domain *sd;
1983 struct s_data d;
1984 struct rq *rq = NULL;
1985 int i, ret = -ENOMEM;
David Brazdil0f672f62019-12-10 10:32:29 +00001986 struct sched_domain_topology_level *tl_asym;
1987 bool has_asym = false;
1988
1989 if (WARN_ON(cpumask_empty(cpu_map)))
1990 goto error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001991
1992 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1993 if (alloc_state != sa_rootdomain)
1994 goto error;
1995
David Brazdil0f672f62019-12-10 10:32:29 +00001996 tl_asym = asym_cpu_capacity_level(cpu_map);
1997
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001998 /* Set up domains for CPUs specified by the cpu_map: */
1999 for_each_cpu(i, cpu_map) {
2000 struct sched_domain_topology_level *tl;
Olivier Deprez157378f2022-04-04 15:47:50 +02002001 int dflags = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002002
2003 sd = NULL;
2004 for_each_sd_topology(tl) {
David Brazdil0f672f62019-12-10 10:32:29 +00002005 if (tl == tl_asym) {
2006 dflags |= SD_ASYM_CPUCAPACITY;
2007 has_asym = true;
2008 }
2009
Olivier Deprez0e641232021-09-23 10:07:05 +02002010 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2011 goto error;
2012
David Brazdil0f672f62019-12-10 10:32:29 +00002013 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2014
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002015 if (tl == sched_domain_topology)
2016 *per_cpu_ptr(d.sd, i) = sd;
2017 if (tl->flags & SDTL_OVERLAP)
2018 sd->flags |= SD_OVERLAP;
2019 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2020 break;
2021 }
2022 }
2023
2024 /* Build the groups for the domains */
2025 for_each_cpu(i, cpu_map) {
2026 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2027 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2028 if (sd->flags & SD_OVERLAP) {
2029 if (build_overlap_sched_groups(sd, i))
2030 goto error;
2031 } else {
2032 if (build_sched_groups(sd, i))
2033 goto error;
2034 }
2035 }
2036 }
2037
2038 /* Calculate CPU capacity for physical packages and nodes */
2039 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2040 if (!cpumask_test_cpu(i, cpu_map))
2041 continue;
2042
2043 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2044 claim_allocations(i, sd);
2045 init_sched_groups_capacity(i, sd);
2046 }
2047 }
2048
2049 /* Attach the domains */
2050 rcu_read_lock();
2051 for_each_cpu(i, cpu_map) {
2052 rq = cpu_rq(i);
2053 sd = *per_cpu_ptr(d.sd, i);
2054
2055 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2056 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2057 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2058
2059 cpu_attach_domain(sd, d.rd, i);
2060 }
2061 rcu_read_unlock();
2062
David Brazdil0f672f62019-12-10 10:32:29 +00002063 if (has_asym)
2064 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2065
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002066 if (rq && sched_debug_enabled) {
2067 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2068 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2069 }
2070
2071 ret = 0;
2072error:
2073 __free_domain_allocs(&d, alloc_state, cpu_map);
2074
2075 return ret;
2076}
2077
2078/* Current sched domains: */
2079static cpumask_var_t *doms_cur;
2080
2081/* Number of sched domains in 'doms_cur': */
2082static int ndoms_cur;
2083
2084/* Attribues of custom domains in 'doms_cur' */
2085static struct sched_domain_attr *dattr_cur;
2086
2087/*
2088 * Special case: If a kmalloc() of a doms_cur partition (array of
2089 * cpumask) fails, then fallback to a single sched domain,
2090 * as determined by the single cpumask fallback_doms.
2091 */
2092static cpumask_var_t fallback_doms;
2093
2094/*
2095 * arch_update_cpu_topology lets virtualized architectures update the
2096 * CPU core maps. It is supposed to return 1 if the topology changed
2097 * or 0 if it stayed the same.
2098 */
2099int __weak arch_update_cpu_topology(void)
2100{
2101 return 0;
2102}
2103
2104cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2105{
2106 int i;
2107 cpumask_var_t *doms;
2108
2109 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2110 if (!doms)
2111 return NULL;
2112 for (i = 0; i < ndoms; i++) {
2113 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2114 free_sched_domains(doms, i);
2115 return NULL;
2116 }
2117 }
2118 return doms;
2119}
2120
2121void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2122{
2123 unsigned int i;
2124 for (i = 0; i < ndoms; i++)
2125 free_cpumask_var(doms[i]);
2126 kfree(doms);
2127}
2128
2129/*
David Brazdil0f672f62019-12-10 10:32:29 +00002130 * Set up scheduler domains and groups. For now this just excludes isolated
2131 * CPUs, but could be used to exclude other special cases in the future.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002132 */
2133int sched_init_domains(const struct cpumask *cpu_map)
2134{
2135 int err;
2136
2137 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2138 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2139 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2140
2141 arch_update_cpu_topology();
2142 ndoms_cur = 1;
2143 doms_cur = alloc_sched_domains(ndoms_cur);
2144 if (!doms_cur)
2145 doms_cur = &fallback_doms;
2146 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2147 err = build_sched_domains(doms_cur[0], NULL);
2148 register_sched_domain_sysctl();
2149
2150 return err;
2151}
2152
2153/*
2154 * Detach sched domains from a group of CPUs specified in cpu_map
2155 * These CPUs will now be attached to the NULL domain
2156 */
2157static void detach_destroy_domains(const struct cpumask *cpu_map)
2158{
David Brazdil0f672f62019-12-10 10:32:29 +00002159 unsigned int cpu = cpumask_any(cpu_map);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002160 int i;
2161
David Brazdil0f672f62019-12-10 10:32:29 +00002162 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2163 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2164
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002165 rcu_read_lock();
2166 for_each_cpu(i, cpu_map)
2167 cpu_attach_domain(NULL, &def_root_domain, i);
2168 rcu_read_unlock();
2169}
2170
2171/* handle null as "default" */
2172static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2173 struct sched_domain_attr *new, int idx_new)
2174{
2175 struct sched_domain_attr tmp;
2176
2177 /* Fast path: */
2178 if (!new && !cur)
2179 return 1;
2180
2181 tmp = SD_ATTR_INIT;
2182
2183 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2184 new ? (new + idx_new) : &tmp,
2185 sizeof(struct sched_domain_attr));
2186}
2187
2188/*
2189 * Partition sched domains as specified by the 'ndoms_new'
2190 * cpumasks in the array doms_new[] of cpumasks. This compares
2191 * doms_new[] to the current sched domain partitioning, doms_cur[].
2192 * It destroys each deleted domain and builds each new domain.
2193 *
2194 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2195 * The masks don't intersect (don't overlap.) We should setup one
2196 * sched domain for each mask. CPUs not in any of the cpumasks will
2197 * not be load balanced. If the same cpumask appears both in the
2198 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2199 * it as it is.
2200 *
2201 * The passed in 'doms_new' should be allocated using
2202 * alloc_sched_domains. This routine takes ownership of it and will
2203 * free_sched_domains it when done with it. If the caller failed the
2204 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2205 * and partition_sched_domains() will fallback to the single partition
2206 * 'fallback_doms', it also forces the domains to be rebuilt.
2207 *
2208 * If doms_new == NULL it will be replaced with cpu_online_mask.
2209 * ndoms_new == 0 is a special case for destroying existing domains,
2210 * and it will not create the default domain.
2211 *
David Brazdil0f672f62019-12-10 10:32:29 +00002212 * Call with hotplug lock and sched_domains_mutex held
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002213 */
David Brazdil0f672f62019-12-10 10:32:29 +00002214void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2215 struct sched_domain_attr *dattr_new)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002216{
David Brazdil0f672f62019-12-10 10:32:29 +00002217 bool __maybe_unused has_eas = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002218 int i, j, n;
2219 int new_topology;
2220
David Brazdil0f672f62019-12-10 10:32:29 +00002221 lockdep_assert_held(&sched_domains_mutex);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002222
2223 /* Always unregister in case we don't destroy any domains: */
2224 unregister_sched_domain_sysctl();
2225
2226 /* Let the architecture update CPU core mappings: */
2227 new_topology = arch_update_cpu_topology();
2228
2229 if (!doms_new) {
2230 WARN_ON_ONCE(dattr_new);
2231 n = 0;
2232 doms_new = alloc_sched_domains(1);
2233 if (doms_new) {
2234 n = 1;
2235 cpumask_and(doms_new[0], cpu_active_mask,
2236 housekeeping_cpumask(HK_FLAG_DOMAIN));
2237 }
2238 } else {
2239 n = ndoms_new;
2240 }
2241
2242 /* Destroy deleted domains: */
2243 for (i = 0; i < ndoms_cur; i++) {
2244 for (j = 0; j < n && !new_topology; j++) {
David Brazdil0f672f62019-12-10 10:32:29 +00002245 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2246 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2247 struct root_domain *rd;
2248
2249 /*
2250 * This domain won't be destroyed and as such
2251 * its dl_bw->total_bw needs to be cleared. It
2252 * will be recomputed in function
2253 * update_tasks_root_domain().
2254 */
2255 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2256 dl_clear_root_domain(rd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002257 goto match1;
David Brazdil0f672f62019-12-10 10:32:29 +00002258 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002259 }
2260 /* No match - a current sched domain not in new doms_new[] */
2261 detach_destroy_domains(doms_cur[i]);
2262match1:
2263 ;
2264 }
2265
2266 n = ndoms_cur;
2267 if (!doms_new) {
2268 n = 0;
2269 doms_new = &fallback_doms;
2270 cpumask_and(doms_new[0], cpu_active_mask,
2271 housekeeping_cpumask(HK_FLAG_DOMAIN));
2272 }
2273
2274 /* Build new domains: */
2275 for (i = 0; i < ndoms_new; i++) {
2276 for (j = 0; j < n && !new_topology; j++) {
David Brazdil0f672f62019-12-10 10:32:29 +00002277 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2278 dattrs_equal(dattr_new, i, dattr_cur, j))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002279 goto match2;
2280 }
2281 /* No match - add a new doms_new */
2282 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2283match2:
2284 ;
2285 }
2286
David Brazdil0f672f62019-12-10 10:32:29 +00002287#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2288 /* Build perf. domains: */
2289 for (i = 0; i < ndoms_new; i++) {
2290 for (j = 0; j < n && !sched_energy_update; j++) {
2291 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2292 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2293 has_eas = true;
2294 goto match3;
2295 }
2296 }
2297 /* No match - add perf. domains for a new rd */
2298 has_eas |= build_perf_domains(doms_new[i]);
2299match3:
2300 ;
2301 }
2302 sched_energy_set(has_eas);
2303#endif
2304
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002305 /* Remember the new sched domains: */
2306 if (doms_cur != &fallback_doms)
2307 free_sched_domains(doms_cur, ndoms_cur);
2308
2309 kfree(dattr_cur);
2310 doms_cur = doms_new;
2311 dattr_cur = dattr_new;
2312 ndoms_cur = ndoms_new;
2313
2314 register_sched_domain_sysctl();
David Brazdil0f672f62019-12-10 10:32:29 +00002315}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002316
David Brazdil0f672f62019-12-10 10:32:29 +00002317/*
2318 * Call with hotplug lock held
2319 */
2320void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2321 struct sched_domain_attr *dattr_new)
2322{
2323 mutex_lock(&sched_domains_mutex);
2324 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002325 mutex_unlock(&sched_domains_mutex);
2326}