Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | #include <linux/bpf.h> |
| 2 | #include <linux/btf.h> |
| 3 | #include <linux/err.h> |
| 4 | #include <linux/irq_work.h> |
| 5 | #include <linux/slab.h> |
| 6 | #include <linux/filter.h> |
| 7 | #include <linux/mm.h> |
| 8 | #include <linux/vmalloc.h> |
| 9 | #include <linux/wait.h> |
| 10 | #include <linux/poll.h> |
| 11 | #include <linux/kmemleak.h> |
| 12 | #include <uapi/linux/btf.h> |
| 13 | |
| 14 | #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) |
| 15 | |
| 16 | /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ |
| 17 | #define RINGBUF_PGOFF \ |
| 18 | (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) |
| 19 | /* consumer page and producer page */ |
| 20 | #define RINGBUF_POS_PAGES 2 |
| 21 | |
| 22 | #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) |
| 23 | |
| 24 | /* Maximum size of ring buffer area is limited by 32-bit page offset within |
| 25 | * record header, counted in pages. Reserve 8 bits for extensibility, and take |
| 26 | * into account few extra pages for consumer/producer pages and |
| 27 | * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single |
| 28 | * ring buffer. |
| 29 | */ |
| 30 | #define RINGBUF_MAX_DATA_SZ \ |
| 31 | (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) |
| 32 | |
| 33 | struct bpf_ringbuf { |
| 34 | wait_queue_head_t waitq; |
| 35 | struct irq_work work; |
| 36 | u64 mask; |
| 37 | struct page **pages; |
| 38 | int nr_pages; |
| 39 | spinlock_t spinlock ____cacheline_aligned_in_smp; |
| 40 | /* Consumer and producer counters are put into separate pages to allow |
| 41 | * mapping consumer page as r/w, but restrict producer page to r/o. |
| 42 | * This protects producer position from being modified by user-space |
| 43 | * application and ruining in-kernel position tracking. |
| 44 | */ |
| 45 | unsigned long consumer_pos __aligned(PAGE_SIZE); |
| 46 | unsigned long producer_pos __aligned(PAGE_SIZE); |
| 47 | char data[] __aligned(PAGE_SIZE); |
| 48 | }; |
| 49 | |
| 50 | struct bpf_ringbuf_map { |
| 51 | struct bpf_map map; |
| 52 | struct bpf_map_memory memory; |
| 53 | struct bpf_ringbuf *rb; |
| 54 | }; |
| 55 | |
| 56 | /* 8-byte ring buffer record header structure */ |
| 57 | struct bpf_ringbuf_hdr { |
| 58 | u32 len; |
| 59 | u32 pg_off; |
| 60 | }; |
| 61 | |
| 62 | static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) |
| 63 | { |
| 64 | const gfp_t flags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | |
| 65 | __GFP_ZERO; |
| 66 | int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES; |
| 67 | int nr_data_pages = data_sz >> PAGE_SHIFT; |
| 68 | int nr_pages = nr_meta_pages + nr_data_pages; |
| 69 | struct page **pages, *page; |
| 70 | struct bpf_ringbuf *rb; |
| 71 | size_t array_size; |
| 72 | int i; |
| 73 | |
| 74 | /* Each data page is mapped twice to allow "virtual" |
| 75 | * continuous read of samples wrapping around the end of ring |
| 76 | * buffer area: |
| 77 | * ------------------------------------------------------ |
| 78 | * | meta pages | real data pages | same data pages | |
| 79 | * ------------------------------------------------------ |
| 80 | * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | |
| 81 | * ------------------------------------------------------ |
| 82 | * | | TA DA | TA DA | |
| 83 | * ------------------------------------------------------ |
| 84 | * ^^^^^^^ |
| 85 | * | |
| 86 | * Here, no need to worry about special handling of wrapped-around |
| 87 | * data due to double-mapped data pages. This works both in kernel and |
| 88 | * when mmap()'ed in user-space, simplifying both kernel and |
| 89 | * user-space implementations significantly. |
| 90 | */ |
| 91 | array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); |
| 92 | if (array_size > PAGE_SIZE) |
| 93 | pages = vmalloc_node(array_size, numa_node); |
| 94 | else |
| 95 | pages = kmalloc_node(array_size, flags, numa_node); |
| 96 | if (!pages) |
| 97 | return NULL; |
| 98 | |
| 99 | for (i = 0; i < nr_pages; i++) { |
| 100 | page = alloc_pages_node(numa_node, flags, 0); |
| 101 | if (!page) { |
| 102 | nr_pages = i; |
| 103 | goto err_free_pages; |
| 104 | } |
| 105 | pages[i] = page; |
| 106 | if (i >= nr_meta_pages) |
| 107 | pages[nr_data_pages + i] = page; |
| 108 | } |
| 109 | |
| 110 | rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, |
| 111 | VM_MAP | VM_USERMAP, PAGE_KERNEL); |
| 112 | if (rb) { |
| 113 | kmemleak_not_leak(pages); |
| 114 | rb->pages = pages; |
| 115 | rb->nr_pages = nr_pages; |
| 116 | return rb; |
| 117 | } |
| 118 | |
| 119 | err_free_pages: |
| 120 | for (i = 0; i < nr_pages; i++) |
| 121 | __free_page(pages[i]); |
| 122 | kvfree(pages); |
| 123 | return NULL; |
| 124 | } |
| 125 | |
| 126 | static void bpf_ringbuf_notify(struct irq_work *work) |
| 127 | { |
| 128 | struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); |
| 129 | |
| 130 | wake_up_all(&rb->waitq); |
| 131 | } |
| 132 | |
| 133 | static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) |
| 134 | { |
| 135 | struct bpf_ringbuf *rb; |
| 136 | |
| 137 | rb = bpf_ringbuf_area_alloc(data_sz, numa_node); |
| 138 | if (!rb) |
| 139 | return ERR_PTR(-ENOMEM); |
| 140 | |
| 141 | spin_lock_init(&rb->spinlock); |
| 142 | init_waitqueue_head(&rb->waitq); |
| 143 | init_irq_work(&rb->work, bpf_ringbuf_notify); |
| 144 | |
| 145 | rb->mask = data_sz - 1; |
| 146 | rb->consumer_pos = 0; |
| 147 | rb->producer_pos = 0; |
| 148 | |
| 149 | return rb; |
| 150 | } |
| 151 | |
| 152 | static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) |
| 153 | { |
| 154 | struct bpf_ringbuf_map *rb_map; |
| 155 | u64 cost; |
| 156 | int err; |
| 157 | |
| 158 | if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) |
| 159 | return ERR_PTR(-EINVAL); |
| 160 | |
| 161 | if (attr->key_size || attr->value_size || |
| 162 | !is_power_of_2(attr->max_entries) || |
| 163 | !PAGE_ALIGNED(attr->max_entries)) |
| 164 | return ERR_PTR(-EINVAL); |
| 165 | |
| 166 | #ifdef CONFIG_64BIT |
| 167 | /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */ |
| 168 | if (attr->max_entries > RINGBUF_MAX_DATA_SZ) |
| 169 | return ERR_PTR(-E2BIG); |
| 170 | #endif |
| 171 | |
| 172 | rb_map = kzalloc(sizeof(*rb_map), GFP_USER); |
| 173 | if (!rb_map) |
| 174 | return ERR_PTR(-ENOMEM); |
| 175 | |
| 176 | bpf_map_init_from_attr(&rb_map->map, attr); |
| 177 | |
| 178 | cost = sizeof(struct bpf_ringbuf_map) + |
| 179 | sizeof(struct bpf_ringbuf) + |
| 180 | attr->max_entries; |
| 181 | err = bpf_map_charge_init(&rb_map->map.memory, cost); |
| 182 | if (err) |
| 183 | goto err_free_map; |
| 184 | |
| 185 | rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); |
| 186 | if (IS_ERR(rb_map->rb)) { |
| 187 | err = PTR_ERR(rb_map->rb); |
| 188 | goto err_uncharge; |
| 189 | } |
| 190 | |
| 191 | return &rb_map->map; |
| 192 | |
| 193 | err_uncharge: |
| 194 | bpf_map_charge_finish(&rb_map->map.memory); |
| 195 | err_free_map: |
| 196 | kfree(rb_map); |
| 197 | return ERR_PTR(err); |
| 198 | } |
| 199 | |
| 200 | static void bpf_ringbuf_free(struct bpf_ringbuf *rb) |
| 201 | { |
| 202 | /* copy pages pointer and nr_pages to local variable, as we are going |
| 203 | * to unmap rb itself with vunmap() below |
| 204 | */ |
| 205 | struct page **pages = rb->pages; |
| 206 | int i, nr_pages = rb->nr_pages; |
| 207 | |
| 208 | vunmap(rb); |
| 209 | for (i = 0; i < nr_pages; i++) |
| 210 | __free_page(pages[i]); |
| 211 | kvfree(pages); |
| 212 | } |
| 213 | |
| 214 | static void ringbuf_map_free(struct bpf_map *map) |
| 215 | { |
| 216 | struct bpf_ringbuf_map *rb_map; |
| 217 | |
| 218 | rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| 219 | bpf_ringbuf_free(rb_map->rb); |
| 220 | kfree(rb_map); |
| 221 | } |
| 222 | |
| 223 | static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) |
| 224 | { |
| 225 | return ERR_PTR(-ENOTSUPP); |
| 226 | } |
| 227 | |
| 228 | static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, |
| 229 | u64 flags) |
| 230 | { |
| 231 | return -ENOTSUPP; |
| 232 | } |
| 233 | |
| 234 | static int ringbuf_map_delete_elem(struct bpf_map *map, void *key) |
| 235 | { |
| 236 | return -ENOTSUPP; |
| 237 | } |
| 238 | |
| 239 | static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, |
| 240 | void *next_key) |
| 241 | { |
| 242 | return -ENOTSUPP; |
| 243 | } |
| 244 | |
| 245 | static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) |
| 246 | { |
| 247 | struct bpf_ringbuf_map *rb_map; |
| 248 | |
| 249 | rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| 250 | |
| 251 | if (vma->vm_flags & VM_WRITE) { |
| 252 | /* allow writable mapping for the consumer_pos only */ |
| 253 | if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) |
| 254 | return -EPERM; |
| 255 | } else { |
| 256 | vma->vm_flags &= ~VM_MAYWRITE; |
| 257 | } |
| 258 | /* remap_vmalloc_range() checks size and offset constraints */ |
| 259 | return remap_vmalloc_range(vma, rb_map->rb, |
| 260 | vma->vm_pgoff + RINGBUF_PGOFF); |
| 261 | } |
| 262 | |
| 263 | static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) |
| 264 | { |
| 265 | unsigned long cons_pos, prod_pos; |
| 266 | |
| 267 | cons_pos = smp_load_acquire(&rb->consumer_pos); |
| 268 | prod_pos = smp_load_acquire(&rb->producer_pos); |
| 269 | return prod_pos - cons_pos; |
| 270 | } |
| 271 | |
| 272 | static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp, |
| 273 | struct poll_table_struct *pts) |
| 274 | { |
| 275 | struct bpf_ringbuf_map *rb_map; |
| 276 | |
| 277 | rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| 278 | poll_wait(filp, &rb_map->rb->waitq, pts); |
| 279 | |
| 280 | if (ringbuf_avail_data_sz(rb_map->rb)) |
| 281 | return EPOLLIN | EPOLLRDNORM; |
| 282 | return 0; |
| 283 | } |
| 284 | |
| 285 | static int ringbuf_map_btf_id; |
| 286 | const struct bpf_map_ops ringbuf_map_ops = { |
| 287 | .map_meta_equal = bpf_map_meta_equal, |
| 288 | .map_alloc = ringbuf_map_alloc, |
| 289 | .map_free = ringbuf_map_free, |
| 290 | .map_mmap = ringbuf_map_mmap, |
| 291 | .map_poll = ringbuf_map_poll, |
| 292 | .map_lookup_elem = ringbuf_map_lookup_elem, |
| 293 | .map_update_elem = ringbuf_map_update_elem, |
| 294 | .map_delete_elem = ringbuf_map_delete_elem, |
| 295 | .map_get_next_key = ringbuf_map_get_next_key, |
| 296 | .map_btf_name = "bpf_ringbuf_map", |
| 297 | .map_btf_id = &ringbuf_map_btf_id, |
| 298 | }; |
| 299 | |
| 300 | /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, |
| 301 | * calculate offset from record metadata to ring buffer in pages, rounded |
| 302 | * down. This page offset is stored as part of record metadata and allows to |
| 303 | * restore struct bpf_ringbuf * from record pointer. This page offset is |
| 304 | * stored at offset 4 of record metadata header. |
| 305 | */ |
| 306 | static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, |
| 307 | struct bpf_ringbuf_hdr *hdr) |
| 308 | { |
| 309 | return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; |
| 310 | } |
| 311 | |
| 312 | /* Given pointer to ring buffer record header, restore pointer to struct |
| 313 | * bpf_ringbuf itself by using page offset stored at offset 4 |
| 314 | */ |
| 315 | static struct bpf_ringbuf * |
| 316 | bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) |
| 317 | { |
| 318 | unsigned long addr = (unsigned long)(void *)hdr; |
| 319 | unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; |
| 320 | |
| 321 | return (void*)((addr & PAGE_MASK) - off); |
| 322 | } |
| 323 | |
| 324 | static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) |
| 325 | { |
| 326 | unsigned long cons_pos, prod_pos, new_prod_pos, flags; |
| 327 | u32 len, pg_off; |
| 328 | struct bpf_ringbuf_hdr *hdr; |
| 329 | |
| 330 | if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) |
| 331 | return NULL; |
| 332 | |
| 333 | len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); |
| 334 | if (len > rb->mask + 1) |
| 335 | return NULL; |
| 336 | |
| 337 | cons_pos = smp_load_acquire(&rb->consumer_pos); |
| 338 | |
| 339 | if (in_nmi()) { |
| 340 | if (!spin_trylock_irqsave(&rb->spinlock, flags)) |
| 341 | return NULL; |
| 342 | } else { |
| 343 | spin_lock_irqsave(&rb->spinlock, flags); |
| 344 | } |
| 345 | |
| 346 | prod_pos = rb->producer_pos; |
| 347 | new_prod_pos = prod_pos + len; |
| 348 | |
| 349 | /* check for out of ringbuf space by ensuring producer position |
| 350 | * doesn't advance more than (ringbuf_size - 1) ahead |
| 351 | */ |
| 352 | if (new_prod_pos - cons_pos > rb->mask) { |
| 353 | spin_unlock_irqrestore(&rb->spinlock, flags); |
| 354 | return NULL; |
| 355 | } |
| 356 | |
| 357 | hdr = (void *)rb->data + (prod_pos & rb->mask); |
| 358 | pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); |
| 359 | hdr->len = size | BPF_RINGBUF_BUSY_BIT; |
| 360 | hdr->pg_off = pg_off; |
| 361 | |
| 362 | /* pairs with consumer's smp_load_acquire() */ |
| 363 | smp_store_release(&rb->producer_pos, new_prod_pos); |
| 364 | |
| 365 | spin_unlock_irqrestore(&rb->spinlock, flags); |
| 366 | |
| 367 | return (void *)hdr + BPF_RINGBUF_HDR_SZ; |
| 368 | } |
| 369 | |
| 370 | BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) |
| 371 | { |
| 372 | struct bpf_ringbuf_map *rb_map; |
| 373 | |
| 374 | if (unlikely(flags)) |
| 375 | return 0; |
| 376 | |
| 377 | rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| 378 | return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); |
| 379 | } |
| 380 | |
| 381 | const struct bpf_func_proto bpf_ringbuf_reserve_proto = { |
| 382 | .func = bpf_ringbuf_reserve, |
| 383 | .ret_type = RET_PTR_TO_ALLOC_MEM_OR_NULL, |
| 384 | .arg1_type = ARG_CONST_MAP_PTR, |
| 385 | .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, |
| 386 | .arg3_type = ARG_ANYTHING, |
| 387 | }; |
| 388 | |
| 389 | static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) |
| 390 | { |
| 391 | unsigned long rec_pos, cons_pos; |
| 392 | struct bpf_ringbuf_hdr *hdr; |
| 393 | struct bpf_ringbuf *rb; |
| 394 | u32 new_len; |
| 395 | |
| 396 | hdr = sample - BPF_RINGBUF_HDR_SZ; |
| 397 | rb = bpf_ringbuf_restore_from_rec(hdr); |
| 398 | new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; |
| 399 | if (discard) |
| 400 | new_len |= BPF_RINGBUF_DISCARD_BIT; |
| 401 | |
| 402 | /* update record header with correct final size prefix */ |
| 403 | xchg(&hdr->len, new_len); |
| 404 | |
| 405 | /* if consumer caught up and is waiting for our record, notify about |
| 406 | * new data availability |
| 407 | */ |
| 408 | rec_pos = (void *)hdr - (void *)rb->data; |
| 409 | cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; |
| 410 | |
| 411 | if (flags & BPF_RB_FORCE_WAKEUP) |
| 412 | irq_work_queue(&rb->work); |
| 413 | else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) |
| 414 | irq_work_queue(&rb->work); |
| 415 | } |
| 416 | |
| 417 | BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) |
| 418 | { |
| 419 | bpf_ringbuf_commit(sample, flags, false /* discard */); |
| 420 | return 0; |
| 421 | } |
| 422 | |
| 423 | const struct bpf_func_proto bpf_ringbuf_submit_proto = { |
| 424 | .func = bpf_ringbuf_submit, |
| 425 | .ret_type = RET_VOID, |
| 426 | .arg1_type = ARG_PTR_TO_ALLOC_MEM, |
| 427 | .arg2_type = ARG_ANYTHING, |
| 428 | }; |
| 429 | |
| 430 | BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) |
| 431 | { |
| 432 | bpf_ringbuf_commit(sample, flags, true /* discard */); |
| 433 | return 0; |
| 434 | } |
| 435 | |
| 436 | const struct bpf_func_proto bpf_ringbuf_discard_proto = { |
| 437 | .func = bpf_ringbuf_discard, |
| 438 | .ret_type = RET_VOID, |
| 439 | .arg1_type = ARG_PTR_TO_ALLOC_MEM, |
| 440 | .arg2_type = ARG_ANYTHING, |
| 441 | }; |
| 442 | |
| 443 | BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, |
| 444 | u64, flags) |
| 445 | { |
| 446 | struct bpf_ringbuf_map *rb_map; |
| 447 | void *rec; |
| 448 | |
| 449 | if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) |
| 450 | return -EINVAL; |
| 451 | |
| 452 | rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| 453 | rec = __bpf_ringbuf_reserve(rb_map->rb, size); |
| 454 | if (!rec) |
| 455 | return -EAGAIN; |
| 456 | |
| 457 | memcpy(rec, data, size); |
| 458 | bpf_ringbuf_commit(rec, flags, false /* discard */); |
| 459 | return 0; |
| 460 | } |
| 461 | |
| 462 | const struct bpf_func_proto bpf_ringbuf_output_proto = { |
| 463 | .func = bpf_ringbuf_output, |
| 464 | .ret_type = RET_INTEGER, |
| 465 | .arg1_type = ARG_CONST_MAP_PTR, |
| 466 | .arg2_type = ARG_PTR_TO_MEM, |
| 467 | .arg3_type = ARG_CONST_SIZE_OR_ZERO, |
| 468 | .arg4_type = ARG_ANYTHING, |
| 469 | }; |
| 470 | |
| 471 | BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) |
| 472 | { |
| 473 | struct bpf_ringbuf *rb; |
| 474 | |
| 475 | rb = container_of(map, struct bpf_ringbuf_map, map)->rb; |
| 476 | |
| 477 | switch (flags) { |
| 478 | case BPF_RB_AVAIL_DATA: |
| 479 | return ringbuf_avail_data_sz(rb); |
| 480 | case BPF_RB_RING_SIZE: |
| 481 | return rb->mask + 1; |
| 482 | case BPF_RB_CONS_POS: |
| 483 | return smp_load_acquire(&rb->consumer_pos); |
| 484 | case BPF_RB_PROD_POS: |
| 485 | return smp_load_acquire(&rb->producer_pos); |
| 486 | default: |
| 487 | return 0; |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | const struct bpf_func_proto bpf_ringbuf_query_proto = { |
| 492 | .func = bpf_ringbuf_query, |
| 493 | .ret_type = RET_INTEGER, |
| 494 | .arg1_type = ARG_CONST_MAP_PTR, |
| 495 | .arg2_type = ARG_ANYTHING, |
| 496 | }; |