blob: 05d2176cc4712658af9f81f280236a2262321018 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
6 *
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
10 *
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
12 *
13 * This file is released under the GPL.
14 */
15
16#include <linux/capability.h>
17#include <linux/init.h>
18#include <linux/pagemap.h>
19#include <linux/file.h>
20#include <linux/mount.h>
David Brazdil0f672f62019-12-10 10:32:29 +000021#include <linux/fs_context.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000022#include <linux/namei.h>
23#include <linux/sysctl.h>
24#include <linux/poll.h>
25#include <linux/mqueue.h>
26#include <linux/msg.h>
27#include <linux/skbuff.h>
28#include <linux/vmalloc.h>
29#include <linux/netlink.h>
30#include <linux/syscalls.h>
31#include <linux/audit.h>
32#include <linux/signal.h>
33#include <linux/mutex.h>
34#include <linux/nsproxy.h>
35#include <linux/pid.h>
36#include <linux/ipc_namespace.h>
37#include <linux/user_namespace.h>
38#include <linux/slab.h>
39#include <linux/sched/wake_q.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/user.h>
42
43#include <net/sock.h>
44#include "util.h"
45
David Brazdil0f672f62019-12-10 10:32:29 +000046struct mqueue_fs_context {
47 struct ipc_namespace *ipc_ns;
48};
49
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000050#define MQUEUE_MAGIC 0x19800202
51#define DIRENT_SIZE 20
52#define FILENT_SIZE 80
53
54#define SEND 0
55#define RECV 1
56
57#define STATE_NONE 0
58#define STATE_READY 1
59
60struct posix_msg_tree_node {
61 struct rb_node rb_node;
62 struct list_head msg_list;
63 int priority;
64};
65
Olivier Deprez157378f2022-04-04 15:47:50 +020066/*
67 * Locking:
68 *
69 * Accesses to a message queue are synchronized by acquiring info->lock.
70 *
71 * There are two notable exceptions:
72 * - The actual wakeup of a sleeping task is performed using the wake_q
73 * framework. info->lock is already released when wake_up_q is called.
74 * - The exit codepaths after sleeping check ext_wait_queue->state without
75 * any locks. If it is STATE_READY, then the syscall is completed without
76 * acquiring info->lock.
77 *
78 * MQ_BARRIER:
79 * To achieve proper release/acquire memory barrier pairing, the state is set to
80 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
81 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
82 *
83 * This prevents the following races:
84 *
85 * 1) With the simple wake_q_add(), the task could be gone already before
86 * the increase of the reference happens
87 * Thread A
88 * Thread B
89 * WRITE_ONCE(wait.state, STATE_NONE);
90 * schedule_hrtimeout()
91 * wake_q_add(A)
92 * if (cmpxchg()) // success
93 * ->state = STATE_READY (reordered)
94 * <timeout returns>
95 * if (wait.state == STATE_READY) return;
96 * sysret to user space
97 * sys_exit()
98 * get_task_struct() // UaF
99 *
100 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
101 * the smp_store_release() that does ->state = STATE_READY.
102 *
103 * 2) Without proper _release/_acquire barriers, the woken up task
104 * could read stale data
105 *
106 * Thread A
107 * Thread B
108 * do_mq_timedreceive
109 * WRITE_ONCE(wait.state, STATE_NONE);
110 * schedule_hrtimeout()
111 * state = STATE_READY;
112 * <timeout returns>
113 * if (wait.state == STATE_READY) return;
114 * msg_ptr = wait.msg; // Access to stale data!
115 * receiver->msg = message; (reordered)
116 *
117 * Solution: use _release and _acquire barriers.
118 *
119 * 3) There is intentionally no barrier when setting current->state
120 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
121 * release memory barrier, and the wakeup is triggered when holding
122 * info->lock, i.e. spin_lock(&info->lock) provided a pairing
123 * acquire memory barrier.
124 */
125
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000126struct ext_wait_queue { /* queue of sleeping tasks */
127 struct task_struct *task;
128 struct list_head list;
129 struct msg_msg *msg; /* ptr of loaded message */
130 int state; /* one of STATE_* values */
131};
132
133struct mqueue_inode_info {
134 spinlock_t lock;
135 struct inode vfs_inode;
136 wait_queue_head_t wait_q;
137
138 struct rb_root msg_tree;
David Brazdil0f672f62019-12-10 10:32:29 +0000139 struct rb_node *msg_tree_rightmost;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000140 struct posix_msg_tree_node *node_cache;
141 struct mq_attr attr;
142
143 struct sigevent notify;
144 struct pid *notify_owner;
Olivier Deprez0e641232021-09-23 10:07:05 +0200145 u32 notify_self_exec_id;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000146 struct user_namespace *notify_user_ns;
147 struct user_struct *user; /* user who created, for accounting */
148 struct sock *notify_sock;
149 struct sk_buff *notify_cookie;
150
151 /* for tasks waiting for free space and messages, respectively */
152 struct ext_wait_queue e_wait_q[2];
153
154 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
155};
156
David Brazdil0f672f62019-12-10 10:32:29 +0000157static struct file_system_type mqueue_fs_type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000158static const struct inode_operations mqueue_dir_inode_operations;
159static const struct file_operations mqueue_file_operations;
160static const struct super_operations mqueue_super_ops;
David Brazdil0f672f62019-12-10 10:32:29 +0000161static const struct fs_context_operations mqueue_fs_context_ops;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000162static void remove_notification(struct mqueue_inode_info *info);
163
164static struct kmem_cache *mqueue_inode_cachep;
165
166static struct ctl_table_header *mq_sysctl_table;
167
168static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
169{
170 return container_of(inode, struct mqueue_inode_info, vfs_inode);
171}
172
173/*
174 * This routine should be called with the mq_lock held.
175 */
176static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
177{
178 return get_ipc_ns(inode->i_sb->s_fs_info);
179}
180
181static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
182{
183 struct ipc_namespace *ns;
184
185 spin_lock(&mq_lock);
186 ns = __get_ns_from_inode(inode);
187 spin_unlock(&mq_lock);
188 return ns;
189}
190
191/* Auxiliary functions to manipulate messages' list */
192static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
193{
194 struct rb_node **p, *parent = NULL;
195 struct posix_msg_tree_node *leaf;
David Brazdil0f672f62019-12-10 10:32:29 +0000196 bool rightmost = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000197
198 p = &info->msg_tree.rb_node;
199 while (*p) {
200 parent = *p;
201 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
202
203 if (likely(leaf->priority == msg->m_type))
204 goto insert_msg;
David Brazdil0f672f62019-12-10 10:32:29 +0000205 else if (msg->m_type < leaf->priority) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000206 p = &(*p)->rb_left;
David Brazdil0f672f62019-12-10 10:32:29 +0000207 rightmost = false;
208 } else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000209 p = &(*p)->rb_right;
210 }
211 if (info->node_cache) {
212 leaf = info->node_cache;
213 info->node_cache = NULL;
214 } else {
215 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
216 if (!leaf)
217 return -ENOMEM;
218 INIT_LIST_HEAD(&leaf->msg_list);
219 }
220 leaf->priority = msg->m_type;
David Brazdil0f672f62019-12-10 10:32:29 +0000221
222 if (rightmost)
223 info->msg_tree_rightmost = &leaf->rb_node;
224
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000225 rb_link_node(&leaf->rb_node, parent, p);
226 rb_insert_color(&leaf->rb_node, &info->msg_tree);
227insert_msg:
228 info->attr.mq_curmsgs++;
229 info->qsize += msg->m_ts;
230 list_add_tail(&msg->m_list, &leaf->msg_list);
231 return 0;
232}
233
David Brazdil0f672f62019-12-10 10:32:29 +0000234static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
235 struct mqueue_inode_info *info)
236{
237 struct rb_node *node = &leaf->rb_node;
238
239 if (info->msg_tree_rightmost == node)
240 info->msg_tree_rightmost = rb_prev(node);
241
242 rb_erase(node, &info->msg_tree);
Olivier Deprez157378f2022-04-04 15:47:50 +0200243 if (info->node_cache)
David Brazdil0f672f62019-12-10 10:32:29 +0000244 kfree(leaf);
Olivier Deprez157378f2022-04-04 15:47:50 +0200245 else
David Brazdil0f672f62019-12-10 10:32:29 +0000246 info->node_cache = leaf;
David Brazdil0f672f62019-12-10 10:32:29 +0000247}
248
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000249static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
250{
David Brazdil0f672f62019-12-10 10:32:29 +0000251 struct rb_node *parent = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000252 struct posix_msg_tree_node *leaf;
253 struct msg_msg *msg;
254
255try_again:
David Brazdil0f672f62019-12-10 10:32:29 +0000256 /*
257 * During insert, low priorities go to the left and high to the
258 * right. On receive, we want the highest priorities first, so
259 * walk all the way to the right.
260 */
261 parent = info->msg_tree_rightmost;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000262 if (!parent) {
263 if (info->attr.mq_curmsgs) {
264 pr_warn_once("Inconsistency in POSIX message queue, "
265 "no tree element, but supposedly messages "
266 "should exist!\n");
267 info->attr.mq_curmsgs = 0;
268 }
269 return NULL;
270 }
271 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
272 if (unlikely(list_empty(&leaf->msg_list))) {
273 pr_warn_once("Inconsistency in POSIX message queue, "
274 "empty leaf node but we haven't implemented "
275 "lazy leaf delete!\n");
David Brazdil0f672f62019-12-10 10:32:29 +0000276 msg_tree_erase(leaf, info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000277 goto try_again;
278 } else {
279 msg = list_first_entry(&leaf->msg_list,
280 struct msg_msg, m_list);
281 list_del(&msg->m_list);
282 if (list_empty(&leaf->msg_list)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000283 msg_tree_erase(leaf, info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000284 }
285 }
286 info->attr.mq_curmsgs--;
287 info->qsize -= msg->m_ts;
288 return msg;
289}
290
291static struct inode *mqueue_get_inode(struct super_block *sb,
292 struct ipc_namespace *ipc_ns, umode_t mode,
293 struct mq_attr *attr)
294{
295 struct user_struct *u = current_user();
296 struct inode *inode;
297 int ret = -ENOMEM;
298
299 inode = new_inode(sb);
300 if (!inode)
301 goto err;
302
303 inode->i_ino = get_next_ino();
304 inode->i_mode = mode;
305 inode->i_uid = current_fsuid();
306 inode->i_gid = current_fsgid();
307 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
308
309 if (S_ISREG(mode)) {
310 struct mqueue_inode_info *info;
311 unsigned long mq_bytes, mq_treesize;
312
313 inode->i_fop = &mqueue_file_operations;
314 inode->i_size = FILENT_SIZE;
315 /* mqueue specific info */
316 info = MQUEUE_I(inode);
317 spin_lock_init(&info->lock);
318 init_waitqueue_head(&info->wait_q);
319 INIT_LIST_HEAD(&info->e_wait_q[0].list);
320 INIT_LIST_HEAD(&info->e_wait_q[1].list);
321 info->notify_owner = NULL;
322 info->notify_user_ns = NULL;
323 info->qsize = 0;
324 info->user = NULL; /* set when all is ok */
325 info->msg_tree = RB_ROOT;
David Brazdil0f672f62019-12-10 10:32:29 +0000326 info->msg_tree_rightmost = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000327 info->node_cache = NULL;
328 memset(&info->attr, 0, sizeof(info->attr));
329 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
330 ipc_ns->mq_msg_default);
331 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
332 ipc_ns->mq_msgsize_default);
333 if (attr) {
334 info->attr.mq_maxmsg = attr->mq_maxmsg;
335 info->attr.mq_msgsize = attr->mq_msgsize;
336 }
337 /*
338 * We used to allocate a static array of pointers and account
339 * the size of that array as well as one msg_msg struct per
340 * possible message into the queue size. That's no longer
341 * accurate as the queue is now an rbtree and will grow and
342 * shrink depending on usage patterns. We can, however, still
343 * account one msg_msg struct per message, but the nodes are
344 * allocated depending on priority usage, and most programs
345 * only use one, or a handful, of priorities. However, since
346 * this is pinned memory, we need to assume worst case, so
347 * that means the min(mq_maxmsg, max_priorities) * struct
348 * posix_msg_tree_node.
349 */
350
351 ret = -EINVAL;
352 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
353 goto out_inode;
354 if (capable(CAP_SYS_RESOURCE)) {
355 if (info->attr.mq_maxmsg > HARD_MSGMAX ||
356 info->attr.mq_msgsize > HARD_MSGSIZEMAX)
357 goto out_inode;
358 } else {
359 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
360 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
361 goto out_inode;
362 }
363 ret = -EOVERFLOW;
364 /* check for overflow */
365 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
366 goto out_inode;
367 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
368 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
369 sizeof(struct posix_msg_tree_node);
370 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
371 if (mq_bytes + mq_treesize < mq_bytes)
372 goto out_inode;
373 mq_bytes += mq_treesize;
374 spin_lock(&mq_lock);
375 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
376 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
377 spin_unlock(&mq_lock);
378 /* mqueue_evict_inode() releases info->messages */
379 ret = -EMFILE;
380 goto out_inode;
381 }
382 u->mq_bytes += mq_bytes;
383 spin_unlock(&mq_lock);
384
385 /* all is ok */
386 info->user = get_uid(u);
387 } else if (S_ISDIR(mode)) {
388 inc_nlink(inode);
389 /* Some things misbehave if size == 0 on a directory */
390 inode->i_size = 2 * DIRENT_SIZE;
391 inode->i_op = &mqueue_dir_inode_operations;
392 inode->i_fop = &simple_dir_operations;
393 }
394
395 return inode;
396out_inode:
397 iput(inode);
398err:
399 return ERR_PTR(ret);
400}
401
David Brazdil0f672f62019-12-10 10:32:29 +0000402static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000403{
404 struct inode *inode;
405 struct ipc_namespace *ns = sb->s_fs_info;
406
407 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
408 sb->s_blocksize = PAGE_SIZE;
409 sb->s_blocksize_bits = PAGE_SHIFT;
410 sb->s_magic = MQUEUE_MAGIC;
411 sb->s_op = &mqueue_super_ops;
412
413 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
414 if (IS_ERR(inode))
415 return PTR_ERR(inode);
416
417 sb->s_root = d_make_root(inode);
418 if (!sb->s_root)
419 return -ENOMEM;
420 return 0;
421}
422
David Brazdil0f672f62019-12-10 10:32:29 +0000423static int mqueue_get_tree(struct fs_context *fc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000424{
David Brazdil0f672f62019-12-10 10:32:29 +0000425 struct mqueue_fs_context *ctx = fc->fs_private;
426
427 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
428}
429
430static void mqueue_fs_context_free(struct fs_context *fc)
431{
432 struct mqueue_fs_context *ctx = fc->fs_private;
433
434 put_ipc_ns(ctx->ipc_ns);
435 kfree(ctx);
436}
437
438static int mqueue_init_fs_context(struct fs_context *fc)
439{
440 struct mqueue_fs_context *ctx;
441
442 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
443 if (!ctx)
444 return -ENOMEM;
445
446 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
447 put_user_ns(fc->user_ns);
448 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
449 fc->fs_private = ctx;
450 fc->ops = &mqueue_fs_context_ops;
451 return 0;
452}
453
454static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
455{
456 struct mqueue_fs_context *ctx;
457 struct fs_context *fc;
458 struct vfsmount *mnt;
459
460 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
461 if (IS_ERR(fc))
462 return ERR_CAST(fc);
463
464 ctx = fc->fs_private;
465 put_ipc_ns(ctx->ipc_ns);
466 ctx->ipc_ns = get_ipc_ns(ns);
467 put_user_ns(fc->user_ns);
468 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
469
470 mnt = fc_mount(fc);
471 put_fs_context(fc);
472 return mnt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000473}
474
475static void init_once(void *foo)
476{
477 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
478
479 inode_init_once(&p->vfs_inode);
480}
481
482static struct inode *mqueue_alloc_inode(struct super_block *sb)
483{
484 struct mqueue_inode_info *ei;
485
486 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
487 if (!ei)
488 return NULL;
489 return &ei->vfs_inode;
490}
491
David Brazdil0f672f62019-12-10 10:32:29 +0000492static void mqueue_free_inode(struct inode *inode)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000493{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000494 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
495}
496
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000497static void mqueue_evict_inode(struct inode *inode)
498{
499 struct mqueue_inode_info *info;
500 struct user_struct *user;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000501 struct ipc_namespace *ipc_ns;
David Brazdil0f672f62019-12-10 10:32:29 +0000502 struct msg_msg *msg, *nmsg;
503 LIST_HEAD(tmp_msg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000504
505 clear_inode(inode);
506
507 if (S_ISDIR(inode->i_mode))
508 return;
509
510 ipc_ns = get_ns_from_inode(inode);
511 info = MQUEUE_I(inode);
512 spin_lock(&info->lock);
513 while ((msg = msg_get(info)) != NULL)
David Brazdil0f672f62019-12-10 10:32:29 +0000514 list_add_tail(&msg->m_list, &tmp_msg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000515 kfree(info->node_cache);
516 spin_unlock(&info->lock);
517
David Brazdil0f672f62019-12-10 10:32:29 +0000518 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
519 list_del(&msg->m_list);
520 free_msg(msg);
521 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000522
523 user = info->user;
524 if (user) {
David Brazdil0f672f62019-12-10 10:32:29 +0000525 unsigned long mq_bytes, mq_treesize;
526
527 /* Total amount of bytes accounted for the mqueue */
528 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
529 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
530 sizeof(struct posix_msg_tree_node);
531
532 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
533 info->attr.mq_msgsize);
534
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000535 spin_lock(&mq_lock);
536 user->mq_bytes -= mq_bytes;
537 /*
538 * get_ns_from_inode() ensures that the
539 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
540 * to which we now hold a reference, or it is NULL.
541 * We can't put it here under mq_lock, though.
542 */
543 if (ipc_ns)
544 ipc_ns->mq_queues_count--;
545 spin_unlock(&mq_lock);
546 free_uid(user);
547 }
548 if (ipc_ns)
549 put_ipc_ns(ipc_ns);
550}
551
552static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
553{
554 struct inode *dir = dentry->d_parent->d_inode;
555 struct inode *inode;
556 struct mq_attr *attr = arg;
557 int error;
558 struct ipc_namespace *ipc_ns;
559
560 spin_lock(&mq_lock);
561 ipc_ns = __get_ns_from_inode(dir);
562 if (!ipc_ns) {
563 error = -EACCES;
564 goto out_unlock;
565 }
566
567 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
568 !capable(CAP_SYS_RESOURCE)) {
569 error = -ENOSPC;
570 goto out_unlock;
571 }
572 ipc_ns->mq_queues_count++;
573 spin_unlock(&mq_lock);
574
575 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
576 if (IS_ERR(inode)) {
577 error = PTR_ERR(inode);
578 spin_lock(&mq_lock);
579 ipc_ns->mq_queues_count--;
580 goto out_unlock;
581 }
582
583 put_ipc_ns(ipc_ns);
584 dir->i_size += DIRENT_SIZE;
585 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
586
587 d_instantiate(dentry, inode);
588 dget(dentry);
589 return 0;
590out_unlock:
591 spin_unlock(&mq_lock);
592 if (ipc_ns)
593 put_ipc_ns(ipc_ns);
594 return error;
595}
596
597static int mqueue_create(struct inode *dir, struct dentry *dentry,
598 umode_t mode, bool excl)
599{
600 return mqueue_create_attr(dentry, mode, NULL);
601}
602
603static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
604{
605 struct inode *inode = d_inode(dentry);
606
607 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
608 dir->i_size -= DIRENT_SIZE;
609 drop_nlink(inode);
610 dput(dentry);
611 return 0;
612}
613
614/*
615* This is routine for system read from queue file.
616* To avoid mess with doing here some sort of mq_receive we allow
617* to read only queue size & notification info (the only values
618* that are interesting from user point of view and aren't accessible
619* through std routines)
620*/
621static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
622 size_t count, loff_t *off)
623{
624 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
625 char buffer[FILENT_SIZE];
626 ssize_t ret;
627
628 spin_lock(&info->lock);
629 snprintf(buffer, sizeof(buffer),
630 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
631 info->qsize,
632 info->notify_owner ? info->notify.sigev_notify : 0,
633 (info->notify_owner &&
634 info->notify.sigev_notify == SIGEV_SIGNAL) ?
635 info->notify.sigev_signo : 0,
636 pid_vnr(info->notify_owner));
637 spin_unlock(&info->lock);
638 buffer[sizeof(buffer)-1] = '\0';
639
640 ret = simple_read_from_buffer(u_data, count, off, buffer,
641 strlen(buffer));
642 if (ret <= 0)
643 return ret;
644
645 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
646 return ret;
647}
648
649static int mqueue_flush_file(struct file *filp, fl_owner_t id)
650{
651 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
652
653 spin_lock(&info->lock);
654 if (task_tgid(current) == info->notify_owner)
655 remove_notification(info);
656
657 spin_unlock(&info->lock);
658 return 0;
659}
660
661static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
662{
663 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
664 __poll_t retval = 0;
665
666 poll_wait(filp, &info->wait_q, poll_tab);
667
668 spin_lock(&info->lock);
669 if (info->attr.mq_curmsgs)
670 retval = EPOLLIN | EPOLLRDNORM;
671
672 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
673 retval |= EPOLLOUT | EPOLLWRNORM;
674 spin_unlock(&info->lock);
675
676 return retval;
677}
678
679/* Adds current to info->e_wait_q[sr] before element with smaller prio */
680static void wq_add(struct mqueue_inode_info *info, int sr,
681 struct ext_wait_queue *ewp)
682{
683 struct ext_wait_queue *walk;
684
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000685 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
686 if (walk->task->prio <= current->prio) {
687 list_add_tail(&ewp->list, &walk->list);
688 return;
689 }
690 }
691 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
692}
693
694/*
695 * Puts current task to sleep. Caller must hold queue lock. After return
696 * lock isn't held.
697 * sr: SEND or RECV
698 */
699static int wq_sleep(struct mqueue_inode_info *info, int sr,
700 ktime_t *timeout, struct ext_wait_queue *ewp)
701 __releases(&info->lock)
702{
703 int retval;
704 signed long time;
705
706 wq_add(info, sr, ewp);
707
708 for (;;) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200709 /* memory barrier not required, we hold info->lock */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000710 __set_current_state(TASK_INTERRUPTIBLE);
711
712 spin_unlock(&info->lock);
713 time = schedule_hrtimeout_range_clock(timeout, 0,
714 HRTIMER_MODE_ABS, CLOCK_REALTIME);
715
Olivier Deprez157378f2022-04-04 15:47:50 +0200716 if (READ_ONCE(ewp->state) == STATE_READY) {
717 /* see MQ_BARRIER for purpose/pairing */
718 smp_acquire__after_ctrl_dep();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000719 retval = 0;
720 goto out;
721 }
722 spin_lock(&info->lock);
Olivier Deprez157378f2022-04-04 15:47:50 +0200723
724 /* we hold info->lock, so no memory barrier required */
725 if (READ_ONCE(ewp->state) == STATE_READY) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000726 retval = 0;
727 goto out_unlock;
728 }
729 if (signal_pending(current)) {
730 retval = -ERESTARTSYS;
731 break;
732 }
733 if (time == 0) {
734 retval = -ETIMEDOUT;
735 break;
736 }
737 }
738 list_del(&ewp->list);
739out_unlock:
740 spin_unlock(&info->lock);
741out:
742 return retval;
743}
744
745/*
746 * Returns waiting task that should be serviced first or NULL if none exists
747 */
748static struct ext_wait_queue *wq_get_first_waiter(
749 struct mqueue_inode_info *info, int sr)
750{
751 struct list_head *ptr;
752
753 ptr = info->e_wait_q[sr].list.prev;
754 if (ptr == &info->e_wait_q[sr].list)
755 return NULL;
756 return list_entry(ptr, struct ext_wait_queue, list);
757}
758
759
760static inline void set_cookie(struct sk_buff *skb, char code)
761{
762 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
763}
764
765/*
766 * The next function is only to split too long sys_mq_timedsend
767 */
768static void __do_notify(struct mqueue_inode_info *info)
769{
770 /* notification
771 * invoked when there is registered process and there isn't process
772 * waiting synchronously for message AND state of queue changed from
773 * empty to not empty. Here we are sure that no one is waiting
774 * synchronously. */
775 if (info->notify_owner &&
776 info->attr.mq_curmsgs == 1) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000777 switch (info->notify.sigev_notify) {
778 case SIGEV_NONE:
779 break;
Olivier Deprez0e641232021-09-23 10:07:05 +0200780 case SIGEV_SIGNAL: {
781 struct kernel_siginfo sig_i;
782 struct task_struct *task;
783
784 /* do_mq_notify() accepts sigev_signo == 0, why?? */
785 if (!info->notify.sigev_signo)
786 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000787
788 clear_siginfo(&sig_i);
789 sig_i.si_signo = info->notify.sigev_signo;
790 sig_i.si_errno = 0;
791 sig_i.si_code = SI_MESGQ;
792 sig_i.si_value = info->notify.sigev_value;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000793 rcu_read_lock();
Olivier Deprez0e641232021-09-23 10:07:05 +0200794 /* map current pid/uid into info->owner's namespaces */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000795 sig_i.si_pid = task_tgid_nr_ns(current,
796 ns_of_pid(info->notify_owner));
Olivier Deprez0e641232021-09-23 10:07:05 +0200797 sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
798 current_uid());
799 /*
800 * We can't use kill_pid_info(), this signal should
801 * bypass check_kill_permission(). It is from kernel
802 * but si_fromuser() can't know this.
803 * We do check the self_exec_id, to avoid sending
804 * signals to programs that don't expect them.
805 */
806 task = pid_task(info->notify_owner, PIDTYPE_TGID);
807 if (task && task->self_exec_id ==
808 info->notify_self_exec_id) {
809 do_send_sig_info(info->notify.sigev_signo,
810 &sig_i, task, PIDTYPE_TGID);
811 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000812 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000813 break;
Olivier Deprez0e641232021-09-23 10:07:05 +0200814 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000815 case SIGEV_THREAD:
816 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
817 netlink_sendskb(info->notify_sock, info->notify_cookie);
818 break;
819 }
820 /* after notification unregisters process */
821 put_pid(info->notify_owner);
822 put_user_ns(info->notify_user_ns);
823 info->notify_owner = NULL;
824 info->notify_user_ns = NULL;
825 }
826 wake_up(&info->wait_q);
827}
828
829static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
830 struct timespec64 *ts)
831{
832 if (get_timespec64(ts, u_abs_timeout))
833 return -EFAULT;
834 if (!timespec64_valid(ts))
835 return -EINVAL;
836 return 0;
837}
838
839static void remove_notification(struct mqueue_inode_info *info)
840{
841 if (info->notify_owner != NULL &&
842 info->notify.sigev_notify == SIGEV_THREAD) {
843 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
844 netlink_sendskb(info->notify_sock, info->notify_cookie);
845 }
846 put_pid(info->notify_owner);
847 put_user_ns(info->notify_user_ns);
848 info->notify_owner = NULL;
849 info->notify_user_ns = NULL;
850}
851
852static int prepare_open(struct dentry *dentry, int oflag, int ro,
853 umode_t mode, struct filename *name,
854 struct mq_attr *attr)
855{
856 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
857 MAY_READ | MAY_WRITE };
858 int acc;
859
860 if (d_really_is_negative(dentry)) {
861 if (!(oflag & O_CREAT))
862 return -ENOENT;
863 if (ro)
864 return ro;
865 audit_inode_parent_hidden(name, dentry->d_parent);
866 return vfs_mkobj(dentry, mode & ~current_umask(),
867 mqueue_create_attr, attr);
868 }
869 /* it already existed */
870 audit_inode(name, dentry, 0);
871 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
872 return -EEXIST;
873 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
874 return -EINVAL;
875 acc = oflag2acc[oflag & O_ACCMODE];
876 return inode_permission(d_inode(dentry), acc);
877}
878
879static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
880 struct mq_attr *attr)
881{
882 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
883 struct dentry *root = mnt->mnt_root;
884 struct filename *name;
885 struct path path;
886 int fd, error;
887 int ro;
888
889 audit_mq_open(oflag, mode, attr);
890
891 if (IS_ERR(name = getname(u_name)))
892 return PTR_ERR(name);
893
894 fd = get_unused_fd_flags(O_CLOEXEC);
895 if (fd < 0)
896 goto out_putname;
897
898 ro = mnt_want_write(mnt); /* we'll drop it in any case */
899 inode_lock(d_inode(root));
900 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
901 if (IS_ERR(path.dentry)) {
902 error = PTR_ERR(path.dentry);
903 goto out_putfd;
904 }
905 path.mnt = mntget(mnt);
906 error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
907 if (!error) {
908 struct file *file = dentry_open(&path, oflag, current_cred());
909 if (!IS_ERR(file))
910 fd_install(fd, file);
911 else
912 error = PTR_ERR(file);
913 }
914 path_put(&path);
915out_putfd:
916 if (error) {
917 put_unused_fd(fd);
918 fd = error;
919 }
920 inode_unlock(d_inode(root));
921 if (!ro)
922 mnt_drop_write(mnt);
923out_putname:
924 putname(name);
925 return fd;
926}
927
928SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
929 struct mq_attr __user *, u_attr)
930{
931 struct mq_attr attr;
932 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
933 return -EFAULT;
934
935 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
936}
937
938SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
939{
940 int err;
941 struct filename *name;
942 struct dentry *dentry;
943 struct inode *inode = NULL;
944 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
945 struct vfsmount *mnt = ipc_ns->mq_mnt;
946
947 name = getname(u_name);
948 if (IS_ERR(name))
949 return PTR_ERR(name);
950
951 audit_inode_parent_hidden(name, mnt->mnt_root);
952 err = mnt_want_write(mnt);
953 if (err)
954 goto out_name;
955 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
956 dentry = lookup_one_len(name->name, mnt->mnt_root,
957 strlen(name->name));
958 if (IS_ERR(dentry)) {
959 err = PTR_ERR(dentry);
960 goto out_unlock;
961 }
962
963 inode = d_inode(dentry);
964 if (!inode) {
965 err = -ENOENT;
966 } else {
967 ihold(inode);
968 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
969 }
970 dput(dentry);
971
972out_unlock:
973 inode_unlock(d_inode(mnt->mnt_root));
974 if (inode)
975 iput(inode);
976 mnt_drop_write(mnt);
977out_name:
978 putname(name);
979
980 return err;
981}
982
983/* Pipelined send and receive functions.
984 *
985 * If a receiver finds no waiting message, then it registers itself in the
986 * list of waiting receivers. A sender checks that list before adding the new
987 * message into the message array. If there is a waiting receiver, then it
988 * bypasses the message array and directly hands the message over to the
989 * receiver. The receiver accepts the message and returns without grabbing the
990 * queue spinlock:
991 *
992 * - Set pointer to message.
993 * - Queue the receiver task for later wakeup (without the info->lock).
994 * - Update its state to STATE_READY. Now the receiver can continue.
995 * - Wake up the process after the lock is dropped. Should the process wake up
996 * before this wakeup (due to a timeout or a signal) it will either see
997 * STATE_READY and continue or acquire the lock to check the state again.
998 *
999 * The same algorithm is used for senders.
1000 */
1001
Olivier Deprez157378f2022-04-04 15:47:50 +02001002static inline void __pipelined_op(struct wake_q_head *wake_q,
1003 struct mqueue_inode_info *info,
1004 struct ext_wait_queue *this)
1005{
1006 struct task_struct *task;
1007
1008 list_del(&this->list);
1009 task = get_task_struct(this->task);
1010
1011 /* see MQ_BARRIER for purpose/pairing */
1012 smp_store_release(&this->state, STATE_READY);
1013 wake_q_add_safe(wake_q, task);
1014}
1015
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001016/* pipelined_send() - send a message directly to the task waiting in
1017 * sys_mq_timedreceive() (without inserting message into a queue).
1018 */
1019static inline void pipelined_send(struct wake_q_head *wake_q,
1020 struct mqueue_inode_info *info,
1021 struct msg_msg *message,
1022 struct ext_wait_queue *receiver)
1023{
1024 receiver->msg = message;
Olivier Deprez157378f2022-04-04 15:47:50 +02001025 __pipelined_op(wake_q, info, receiver);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001026}
1027
1028/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1029 * gets its message and put to the queue (we have one free place for sure). */
1030static inline void pipelined_receive(struct wake_q_head *wake_q,
1031 struct mqueue_inode_info *info)
1032{
1033 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1034
1035 if (!sender) {
1036 /* for poll */
1037 wake_up_interruptible(&info->wait_q);
1038 return;
1039 }
1040 if (msg_insert(sender->msg, info))
1041 return;
1042
Olivier Deprez157378f2022-04-04 15:47:50 +02001043 __pipelined_op(wake_q, info, sender);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001044}
1045
1046static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1047 size_t msg_len, unsigned int msg_prio,
1048 struct timespec64 *ts)
1049{
1050 struct fd f;
1051 struct inode *inode;
1052 struct ext_wait_queue wait;
1053 struct ext_wait_queue *receiver;
1054 struct msg_msg *msg_ptr;
1055 struct mqueue_inode_info *info;
1056 ktime_t expires, *timeout = NULL;
1057 struct posix_msg_tree_node *new_leaf = NULL;
1058 int ret = 0;
1059 DEFINE_WAKE_Q(wake_q);
1060
1061 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1062 return -EINVAL;
1063
1064 if (ts) {
1065 expires = timespec64_to_ktime(*ts);
1066 timeout = &expires;
1067 }
1068
1069 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1070
1071 f = fdget(mqdes);
1072 if (unlikely(!f.file)) {
1073 ret = -EBADF;
1074 goto out;
1075 }
1076
1077 inode = file_inode(f.file);
1078 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1079 ret = -EBADF;
1080 goto out_fput;
1081 }
1082 info = MQUEUE_I(inode);
1083 audit_file(f.file);
1084
1085 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1086 ret = -EBADF;
1087 goto out_fput;
1088 }
1089
1090 if (unlikely(msg_len > info->attr.mq_msgsize)) {
1091 ret = -EMSGSIZE;
1092 goto out_fput;
1093 }
1094
1095 /* First try to allocate memory, before doing anything with
1096 * existing queues. */
1097 msg_ptr = load_msg(u_msg_ptr, msg_len);
1098 if (IS_ERR(msg_ptr)) {
1099 ret = PTR_ERR(msg_ptr);
1100 goto out_fput;
1101 }
1102 msg_ptr->m_ts = msg_len;
1103 msg_ptr->m_type = msg_prio;
1104
1105 /*
1106 * msg_insert really wants us to have a valid, spare node struct so
1107 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1108 * fall back to that if necessary.
1109 */
1110 if (!info->node_cache)
1111 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1112
1113 spin_lock(&info->lock);
1114
1115 if (!info->node_cache && new_leaf) {
1116 /* Save our speculative allocation into the cache */
1117 INIT_LIST_HEAD(&new_leaf->msg_list);
1118 info->node_cache = new_leaf;
1119 new_leaf = NULL;
1120 } else {
1121 kfree(new_leaf);
1122 }
1123
1124 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1125 if (f.file->f_flags & O_NONBLOCK) {
1126 ret = -EAGAIN;
1127 } else {
1128 wait.task = current;
1129 wait.msg = (void *) msg_ptr;
Olivier Deprez157378f2022-04-04 15:47:50 +02001130
1131 /* memory barrier not required, we hold info->lock */
1132 WRITE_ONCE(wait.state, STATE_NONE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001133 ret = wq_sleep(info, SEND, timeout, &wait);
1134 /*
1135 * wq_sleep must be called with info->lock held, and
1136 * returns with the lock released
1137 */
1138 goto out_free;
1139 }
1140 } else {
1141 receiver = wq_get_first_waiter(info, RECV);
1142 if (receiver) {
1143 pipelined_send(&wake_q, info, msg_ptr, receiver);
1144 } else {
1145 /* adds message to the queue */
1146 ret = msg_insert(msg_ptr, info);
1147 if (ret)
1148 goto out_unlock;
1149 __do_notify(info);
1150 }
1151 inode->i_atime = inode->i_mtime = inode->i_ctime =
1152 current_time(inode);
1153 }
1154out_unlock:
1155 spin_unlock(&info->lock);
1156 wake_up_q(&wake_q);
1157out_free:
1158 if (ret)
1159 free_msg(msg_ptr);
1160out_fput:
1161 fdput(f);
1162out:
1163 return ret;
1164}
1165
1166static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1167 size_t msg_len, unsigned int __user *u_msg_prio,
1168 struct timespec64 *ts)
1169{
1170 ssize_t ret;
1171 struct msg_msg *msg_ptr;
1172 struct fd f;
1173 struct inode *inode;
1174 struct mqueue_inode_info *info;
1175 struct ext_wait_queue wait;
1176 ktime_t expires, *timeout = NULL;
1177 struct posix_msg_tree_node *new_leaf = NULL;
1178
1179 if (ts) {
1180 expires = timespec64_to_ktime(*ts);
1181 timeout = &expires;
1182 }
1183
1184 audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1185
1186 f = fdget(mqdes);
1187 if (unlikely(!f.file)) {
1188 ret = -EBADF;
1189 goto out;
1190 }
1191
1192 inode = file_inode(f.file);
1193 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1194 ret = -EBADF;
1195 goto out_fput;
1196 }
1197 info = MQUEUE_I(inode);
1198 audit_file(f.file);
1199
1200 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1201 ret = -EBADF;
1202 goto out_fput;
1203 }
1204
1205 /* checks if buffer is big enough */
1206 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1207 ret = -EMSGSIZE;
1208 goto out_fput;
1209 }
1210
1211 /*
1212 * msg_insert really wants us to have a valid, spare node struct so
1213 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1214 * fall back to that if necessary.
1215 */
1216 if (!info->node_cache)
1217 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1218
1219 spin_lock(&info->lock);
1220
1221 if (!info->node_cache && new_leaf) {
1222 /* Save our speculative allocation into the cache */
1223 INIT_LIST_HEAD(&new_leaf->msg_list);
1224 info->node_cache = new_leaf;
1225 } else {
1226 kfree(new_leaf);
1227 }
1228
1229 if (info->attr.mq_curmsgs == 0) {
1230 if (f.file->f_flags & O_NONBLOCK) {
1231 spin_unlock(&info->lock);
1232 ret = -EAGAIN;
1233 } else {
1234 wait.task = current;
Olivier Deprez157378f2022-04-04 15:47:50 +02001235
1236 /* memory barrier not required, we hold info->lock */
1237 WRITE_ONCE(wait.state, STATE_NONE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001238 ret = wq_sleep(info, RECV, timeout, &wait);
1239 msg_ptr = wait.msg;
1240 }
1241 } else {
1242 DEFINE_WAKE_Q(wake_q);
1243
1244 msg_ptr = msg_get(info);
1245
1246 inode->i_atime = inode->i_mtime = inode->i_ctime =
1247 current_time(inode);
1248
1249 /* There is now free space in queue. */
1250 pipelined_receive(&wake_q, info);
1251 spin_unlock(&info->lock);
1252 wake_up_q(&wake_q);
1253 ret = 0;
1254 }
1255 if (ret == 0) {
1256 ret = msg_ptr->m_ts;
1257
1258 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1259 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1260 ret = -EFAULT;
1261 }
1262 free_msg(msg_ptr);
1263 }
1264out_fput:
1265 fdput(f);
1266out:
1267 return ret;
1268}
1269
1270SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1271 size_t, msg_len, unsigned int, msg_prio,
1272 const struct __kernel_timespec __user *, u_abs_timeout)
1273{
1274 struct timespec64 ts, *p = NULL;
1275 if (u_abs_timeout) {
1276 int res = prepare_timeout(u_abs_timeout, &ts);
1277 if (res)
1278 return res;
1279 p = &ts;
1280 }
1281 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1282}
1283
1284SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1285 size_t, msg_len, unsigned int __user *, u_msg_prio,
1286 const struct __kernel_timespec __user *, u_abs_timeout)
1287{
1288 struct timespec64 ts, *p = NULL;
1289 if (u_abs_timeout) {
1290 int res = prepare_timeout(u_abs_timeout, &ts);
1291 if (res)
1292 return res;
1293 p = &ts;
1294 }
1295 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1296}
1297
1298/*
1299 * Notes: the case when user wants us to deregister (with NULL as pointer)
1300 * and he isn't currently owner of notification, will be silently discarded.
1301 * It isn't explicitly defined in the POSIX.
1302 */
1303static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1304{
1305 int ret;
1306 struct fd f;
1307 struct sock *sock;
1308 struct inode *inode;
1309 struct mqueue_inode_info *info;
1310 struct sk_buff *nc;
1311
1312 audit_mq_notify(mqdes, notification);
1313
1314 nc = NULL;
1315 sock = NULL;
1316 if (notification != NULL) {
1317 if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1318 notification->sigev_notify != SIGEV_SIGNAL &&
1319 notification->sigev_notify != SIGEV_THREAD))
1320 return -EINVAL;
1321 if (notification->sigev_notify == SIGEV_SIGNAL &&
1322 !valid_signal(notification->sigev_signo)) {
1323 return -EINVAL;
1324 }
1325 if (notification->sigev_notify == SIGEV_THREAD) {
1326 long timeo;
1327
1328 /* create the notify skb */
1329 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
David Brazdil0f672f62019-12-10 10:32:29 +00001330 if (!nc)
1331 return -ENOMEM;
1332
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001333 if (copy_from_user(nc->data,
1334 notification->sigev_value.sival_ptr,
1335 NOTIFY_COOKIE_LEN)) {
1336 ret = -EFAULT;
David Brazdil0f672f62019-12-10 10:32:29 +00001337 goto free_skb;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001338 }
1339
1340 /* TODO: add a header? */
1341 skb_put(nc, NOTIFY_COOKIE_LEN);
1342 /* and attach it to the socket */
1343retry:
1344 f = fdget(notification->sigev_signo);
1345 if (!f.file) {
1346 ret = -EBADF;
1347 goto out;
1348 }
1349 sock = netlink_getsockbyfilp(f.file);
1350 fdput(f);
1351 if (IS_ERR(sock)) {
1352 ret = PTR_ERR(sock);
David Brazdil0f672f62019-12-10 10:32:29 +00001353 goto free_skb;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001354 }
1355
1356 timeo = MAX_SCHEDULE_TIMEOUT;
1357 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1358 if (ret == 1) {
1359 sock = NULL;
1360 goto retry;
1361 }
David Brazdil0f672f62019-12-10 10:32:29 +00001362 if (ret)
1363 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001364 }
1365 }
1366
1367 f = fdget(mqdes);
1368 if (!f.file) {
1369 ret = -EBADF;
1370 goto out;
1371 }
1372
1373 inode = file_inode(f.file);
1374 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1375 ret = -EBADF;
1376 goto out_fput;
1377 }
1378 info = MQUEUE_I(inode);
1379
1380 ret = 0;
1381 spin_lock(&info->lock);
1382 if (notification == NULL) {
1383 if (info->notify_owner == task_tgid(current)) {
1384 remove_notification(info);
1385 inode->i_atime = inode->i_ctime = current_time(inode);
1386 }
1387 } else if (info->notify_owner != NULL) {
1388 ret = -EBUSY;
1389 } else {
1390 switch (notification->sigev_notify) {
1391 case SIGEV_NONE:
1392 info->notify.sigev_notify = SIGEV_NONE;
1393 break;
1394 case SIGEV_THREAD:
1395 info->notify_sock = sock;
1396 info->notify_cookie = nc;
1397 sock = NULL;
1398 nc = NULL;
1399 info->notify.sigev_notify = SIGEV_THREAD;
1400 break;
1401 case SIGEV_SIGNAL:
1402 info->notify.sigev_signo = notification->sigev_signo;
1403 info->notify.sigev_value = notification->sigev_value;
1404 info->notify.sigev_notify = SIGEV_SIGNAL;
Olivier Deprez0e641232021-09-23 10:07:05 +02001405 info->notify_self_exec_id = current->self_exec_id;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001406 break;
1407 }
1408
1409 info->notify_owner = get_pid(task_tgid(current));
1410 info->notify_user_ns = get_user_ns(current_user_ns());
1411 inode->i_atime = inode->i_ctime = current_time(inode);
1412 }
1413 spin_unlock(&info->lock);
1414out_fput:
1415 fdput(f);
1416out:
1417 if (sock)
1418 netlink_detachskb(sock, nc);
David Brazdil0f672f62019-12-10 10:32:29 +00001419 else
1420free_skb:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001421 dev_kfree_skb(nc);
1422
1423 return ret;
1424}
1425
1426SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1427 const struct sigevent __user *, u_notification)
1428{
1429 struct sigevent n, *p = NULL;
1430 if (u_notification) {
1431 if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1432 return -EFAULT;
1433 p = &n;
1434 }
1435 return do_mq_notify(mqdes, p);
1436}
1437
1438static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1439{
1440 struct fd f;
1441 struct inode *inode;
1442 struct mqueue_inode_info *info;
1443
1444 if (new && (new->mq_flags & (~O_NONBLOCK)))
1445 return -EINVAL;
1446
1447 f = fdget(mqdes);
1448 if (!f.file)
1449 return -EBADF;
1450
1451 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1452 fdput(f);
1453 return -EBADF;
1454 }
1455
1456 inode = file_inode(f.file);
1457 info = MQUEUE_I(inode);
1458
1459 spin_lock(&info->lock);
1460
1461 if (old) {
1462 *old = info->attr;
1463 old->mq_flags = f.file->f_flags & O_NONBLOCK;
1464 }
1465 if (new) {
1466 audit_mq_getsetattr(mqdes, new);
1467 spin_lock(&f.file->f_lock);
1468 if (new->mq_flags & O_NONBLOCK)
1469 f.file->f_flags |= O_NONBLOCK;
1470 else
1471 f.file->f_flags &= ~O_NONBLOCK;
1472 spin_unlock(&f.file->f_lock);
1473
1474 inode->i_atime = inode->i_ctime = current_time(inode);
1475 }
1476
1477 spin_unlock(&info->lock);
1478 fdput(f);
1479 return 0;
1480}
1481
1482SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1483 const struct mq_attr __user *, u_mqstat,
1484 struct mq_attr __user *, u_omqstat)
1485{
1486 int ret;
1487 struct mq_attr mqstat, omqstat;
1488 struct mq_attr *new = NULL, *old = NULL;
1489
1490 if (u_mqstat) {
1491 new = &mqstat;
1492 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1493 return -EFAULT;
1494 }
1495 if (u_omqstat)
1496 old = &omqstat;
1497
1498 ret = do_mq_getsetattr(mqdes, new, old);
1499 if (ret || !old)
1500 return ret;
1501
1502 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1503 return -EFAULT;
1504 return 0;
1505}
1506
1507#ifdef CONFIG_COMPAT
1508
1509struct compat_mq_attr {
1510 compat_long_t mq_flags; /* message queue flags */
1511 compat_long_t mq_maxmsg; /* maximum number of messages */
1512 compat_long_t mq_msgsize; /* maximum message size */
1513 compat_long_t mq_curmsgs; /* number of messages currently queued */
1514 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1515};
1516
1517static inline int get_compat_mq_attr(struct mq_attr *attr,
1518 const struct compat_mq_attr __user *uattr)
1519{
1520 struct compat_mq_attr v;
1521
1522 if (copy_from_user(&v, uattr, sizeof(*uattr)))
1523 return -EFAULT;
1524
1525 memset(attr, 0, sizeof(*attr));
1526 attr->mq_flags = v.mq_flags;
1527 attr->mq_maxmsg = v.mq_maxmsg;
1528 attr->mq_msgsize = v.mq_msgsize;
1529 attr->mq_curmsgs = v.mq_curmsgs;
1530 return 0;
1531}
1532
1533static inline int put_compat_mq_attr(const struct mq_attr *attr,
1534 struct compat_mq_attr __user *uattr)
1535{
1536 struct compat_mq_attr v;
1537
1538 memset(&v, 0, sizeof(v));
1539 v.mq_flags = attr->mq_flags;
1540 v.mq_maxmsg = attr->mq_maxmsg;
1541 v.mq_msgsize = attr->mq_msgsize;
1542 v.mq_curmsgs = attr->mq_curmsgs;
1543 if (copy_to_user(uattr, &v, sizeof(*uattr)))
1544 return -EFAULT;
1545 return 0;
1546}
1547
1548COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1549 int, oflag, compat_mode_t, mode,
1550 struct compat_mq_attr __user *, u_attr)
1551{
1552 struct mq_attr attr, *p = NULL;
1553 if (u_attr && oflag & O_CREAT) {
1554 p = &attr;
1555 if (get_compat_mq_attr(&attr, u_attr))
1556 return -EFAULT;
1557 }
1558 return do_mq_open(u_name, oflag, mode, p);
1559}
1560
1561COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1562 const struct compat_sigevent __user *, u_notification)
1563{
1564 struct sigevent n, *p = NULL;
1565 if (u_notification) {
1566 if (get_compat_sigevent(&n, u_notification))
1567 return -EFAULT;
1568 if (n.sigev_notify == SIGEV_THREAD)
1569 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1570 p = &n;
1571 }
1572 return do_mq_notify(mqdes, p);
1573}
1574
1575COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1576 const struct compat_mq_attr __user *, u_mqstat,
1577 struct compat_mq_attr __user *, u_omqstat)
1578{
1579 int ret;
1580 struct mq_attr mqstat, omqstat;
1581 struct mq_attr *new = NULL, *old = NULL;
1582
1583 if (u_mqstat) {
1584 new = &mqstat;
1585 if (get_compat_mq_attr(new, u_mqstat))
1586 return -EFAULT;
1587 }
1588 if (u_omqstat)
1589 old = &omqstat;
1590
1591 ret = do_mq_getsetattr(mqdes, new, old);
1592 if (ret || !old)
1593 return ret;
1594
1595 if (put_compat_mq_attr(old, u_omqstat))
1596 return -EFAULT;
1597 return 0;
1598}
1599#endif
1600
1601#ifdef CONFIG_COMPAT_32BIT_TIME
David Brazdil0f672f62019-12-10 10:32:29 +00001602static int compat_prepare_timeout(const struct old_timespec32 __user *p,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001603 struct timespec64 *ts)
1604{
David Brazdil0f672f62019-12-10 10:32:29 +00001605 if (get_old_timespec32(ts, p))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001606 return -EFAULT;
1607 if (!timespec64_valid(ts))
1608 return -EINVAL;
1609 return 0;
1610}
1611
David Brazdil0f672f62019-12-10 10:32:29 +00001612SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1613 const char __user *, u_msg_ptr,
1614 unsigned int, msg_len, unsigned int, msg_prio,
1615 const struct old_timespec32 __user *, u_abs_timeout)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001616{
1617 struct timespec64 ts, *p = NULL;
1618 if (u_abs_timeout) {
1619 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1620 if (res)
1621 return res;
1622 p = &ts;
1623 }
1624 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1625}
1626
David Brazdil0f672f62019-12-10 10:32:29 +00001627SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1628 char __user *, u_msg_ptr,
1629 unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1630 const struct old_timespec32 __user *, u_abs_timeout)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001631{
1632 struct timespec64 ts, *p = NULL;
1633 if (u_abs_timeout) {
1634 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1635 if (res)
1636 return res;
1637 p = &ts;
1638 }
1639 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1640}
1641#endif
1642
1643static const struct inode_operations mqueue_dir_inode_operations = {
1644 .lookup = simple_lookup,
1645 .create = mqueue_create,
1646 .unlink = mqueue_unlink,
1647};
1648
1649static const struct file_operations mqueue_file_operations = {
1650 .flush = mqueue_flush_file,
1651 .poll = mqueue_poll_file,
1652 .read = mqueue_read_file,
1653 .llseek = default_llseek,
1654};
1655
1656static const struct super_operations mqueue_super_ops = {
1657 .alloc_inode = mqueue_alloc_inode,
David Brazdil0f672f62019-12-10 10:32:29 +00001658 .free_inode = mqueue_free_inode,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001659 .evict_inode = mqueue_evict_inode,
1660 .statfs = simple_statfs,
1661};
1662
David Brazdil0f672f62019-12-10 10:32:29 +00001663static const struct fs_context_operations mqueue_fs_context_ops = {
1664 .free = mqueue_fs_context_free,
1665 .get_tree = mqueue_get_tree,
1666};
1667
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001668static struct file_system_type mqueue_fs_type = {
David Brazdil0f672f62019-12-10 10:32:29 +00001669 .name = "mqueue",
1670 .init_fs_context = mqueue_init_fs_context,
1671 .kill_sb = kill_litter_super,
1672 .fs_flags = FS_USERNS_MOUNT,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001673};
1674
1675int mq_init_ns(struct ipc_namespace *ns)
1676{
David Brazdil0f672f62019-12-10 10:32:29 +00001677 struct vfsmount *m;
1678
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001679 ns->mq_queues_count = 0;
1680 ns->mq_queues_max = DFLT_QUEUESMAX;
1681 ns->mq_msg_max = DFLT_MSGMAX;
1682 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1683 ns->mq_msg_default = DFLT_MSG;
1684 ns->mq_msgsize_default = DFLT_MSGSIZE;
1685
David Brazdil0f672f62019-12-10 10:32:29 +00001686 m = mq_create_mount(ns);
1687 if (IS_ERR(m))
1688 return PTR_ERR(m);
1689 ns->mq_mnt = m;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001690 return 0;
1691}
1692
1693void mq_clear_sbinfo(struct ipc_namespace *ns)
1694{
1695 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1696}
1697
1698void mq_put_mnt(struct ipc_namespace *ns)
1699{
1700 kern_unmount(ns->mq_mnt);
1701}
1702
1703static int __init init_mqueue_fs(void)
1704{
1705 int error;
1706
1707 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1708 sizeof(struct mqueue_inode_info), 0,
1709 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1710 if (mqueue_inode_cachep == NULL)
1711 return -ENOMEM;
1712
1713 /* ignore failures - they are not fatal */
1714 mq_sysctl_table = mq_register_sysctl_table();
1715
1716 error = register_filesystem(&mqueue_fs_type);
1717 if (error)
1718 goto out_sysctl;
1719
1720 spin_lock_init(&mq_lock);
1721
1722 error = mq_init_ns(&init_ipc_ns);
1723 if (error)
1724 goto out_filesystem;
1725
1726 return 0;
1727
1728out_filesystem:
1729 unregister_filesystem(&mqueue_fs_type);
1730out_sysctl:
1731 if (mq_sysctl_table)
1732 unregister_sysctl_table(mq_sysctl_table);
1733 kmem_cache_destroy(mqueue_inode_cachep);
1734 return error;
1735}
1736
1737device_initcall(init_mqueue_fs);