blob: 334b8d1b54429225da51747143c7247328234708 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001/* SPDX-License-Identifier: GPL-2.0-or-later */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000013 */
14#ifndef _TCP_H
15#define _TCP_H
16
17#define FASTRETRANS_DEBUG 1
18
19#include <linux/list.h>
20#include <linux/tcp.h>
21#include <linux/bug.h>
22#include <linux/slab.h>
23#include <linux/cache.h>
24#include <linux/percpu.h>
25#include <linux/skbuff.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000026#include <linux/kref.h>
27#include <linux/ktime.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020028#include <linux/indirect_call_wrapper.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000029
30#include <net/inet_connection_sock.h>
31#include <net/inet_timewait_sock.h>
32#include <net/inet_hashtables.h>
33#include <net/checksum.h>
34#include <net/request_sock.h>
35#include <net/sock_reuseport.h>
36#include <net/sock.h>
37#include <net/snmp.h>
38#include <net/ip.h>
39#include <net/tcp_states.h>
40#include <net/inet_ecn.h>
41#include <net/dst.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020042#include <net/mptcp.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000043
44#include <linux/seq_file.h>
45#include <linux/memcontrol.h>
46#include <linux/bpf-cgroup.h>
David Brazdil0f672f62019-12-10 10:32:29 +000047#include <linux/siphash.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000048
49extern struct inet_hashinfo tcp_hashinfo;
50
Olivier Deprez157378f2022-04-04 15:47:50 +020051DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52int tcp_orphan_count_sum(void);
53
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000054void tcp_time_wait(struct sock *sk, int state, int timeo);
55
Olivier Deprez0e641232021-09-23 10:07:05 +020056#define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000057#define MAX_TCP_OPTION_SPACE 40
David Brazdil0f672f62019-12-10 10:32:29 +000058#define TCP_MIN_SND_MSS 48
59#define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000060
61/*
62 * Never offer a window over 32767 without using window scaling. Some
63 * poor stacks do signed 16bit maths!
64 */
65#define MAX_TCP_WINDOW 32767U
66
67/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68#define TCP_MIN_MSS 88U
69
David Brazdil0f672f62019-12-10 10:32:29 +000070/* The initial MTU to use for probing */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000071#define TCP_BASE_MSS 1024
72
73/* probing interval, default to 10 minutes as per RFC4821 */
74#define TCP_PROBE_INTERVAL 600
75
76/* Specify interval when tcp mtu probing will stop */
77#define TCP_PROBE_THRESHOLD 8
78
79/* After receiving this amount of duplicate ACKs fast retransmit starts. */
80#define TCP_FASTRETRANS_THRESH 3
81
82/* Maximal number of ACKs sent quickly to accelerate slow-start. */
83#define TCP_MAX_QUICKACKS 16U
84
85/* Maximal number of window scale according to RFC1323 */
86#define TCP_MAX_WSCALE 14U
87
88/* urg_data states */
89#define TCP_URG_VALID 0x0100
90#define TCP_URG_NOTYET 0x0200
91#define TCP_URG_READ 0x0400
92
93#define TCP_RETR1 3 /*
94 * This is how many retries it does before it
95 * tries to figure out if the gateway is
96 * down. Minimal RFC value is 3; it corresponds
97 * to ~3sec-8min depending on RTO.
98 */
99
100#define TCP_RETR2 15 /*
101 * This should take at least
102 * 90 minutes to time out.
103 * RFC1122 says that the limit is 100 sec.
104 * 15 is ~13-30min depending on RTO.
105 */
106
107#define TCP_SYN_RETRIES 6 /* This is how many retries are done
108 * when active opening a connection.
109 * RFC1122 says the minimum retry MUST
110 * be at least 180secs. Nevertheless
111 * this value is corresponding to
112 * 63secs of retransmission with the
113 * current initial RTO.
114 */
115
116#define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
117 * when passive opening a connection.
118 * This is corresponding to 31secs of
119 * retransmission with the current
120 * initial RTO.
121 */
122
123#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 * state, about 60 seconds */
125#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
126 /* BSD style FIN_WAIT2 deadlock breaker.
127 * It used to be 3min, new value is 60sec,
128 * to combine FIN-WAIT-2 timeout with
129 * TIME-WAIT timer.
130 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200131#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000132
133#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
134#if HZ >= 100
135#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
136#define TCP_ATO_MIN ((unsigned)(HZ/25))
137#else
138#define TCP_DELACK_MIN 4U
139#define TCP_ATO_MIN 4U
140#endif
141#define TCP_RTO_MAX ((unsigned)(120*HZ))
142#define TCP_RTO_MIN ((unsigned)(HZ/5))
143#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
144#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
145#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
146 * used as a fallback RTO for the
147 * initial data transmission if no
148 * valid RTT sample has been acquired,
149 * most likely due to retrans in 3WHS.
150 */
151
152#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 * for local resources.
154 */
155#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
156#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
157#define TCP_KEEPALIVE_INTVL (75*HZ)
158
159#define MAX_TCP_KEEPIDLE 32767
160#define MAX_TCP_KEEPINTVL 32767
161#define MAX_TCP_KEEPCNT 127
162#define MAX_TCP_SYNCNT 127
163
164#define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
165
166#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
167#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
168 * after this time. It should be equal
169 * (or greater than) TCP_TIMEWAIT_LEN
170 * to provide reliability equal to one
171 * provided by timewait state.
172 */
173#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
174 * timestamps. It must be less than
175 * minimal timewait lifetime.
176 */
177/*
178 * TCP option
179 */
180
181#define TCPOPT_NOP 1 /* Padding */
182#define TCPOPT_EOL 0 /* End of options */
183#define TCPOPT_MSS 2 /* Segment size negotiating */
184#define TCPOPT_WINDOW 3 /* Window scaling */
185#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
186#define TCPOPT_SACK 5 /* SACK Block */
187#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
188#define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
Olivier Deprez157378f2022-04-04 15:47:50 +0200189#define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000190#define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
191#define TCPOPT_EXP 254 /* Experimental */
192/* Magic number to be after the option value for sharing TCP
193 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194 */
195#define TCPOPT_FASTOPEN_MAGIC 0xF989
196#define TCPOPT_SMC_MAGIC 0xE2D4C3D9
197
198/*
199 * TCP option lengths
200 */
201
202#define TCPOLEN_MSS 4
203#define TCPOLEN_WINDOW 3
204#define TCPOLEN_SACK_PERM 2
205#define TCPOLEN_TIMESTAMP 10
206#define TCPOLEN_MD5SIG 18
207#define TCPOLEN_FASTOPEN_BASE 2
208#define TCPOLEN_EXP_FASTOPEN_BASE 4
209#define TCPOLEN_EXP_SMC_BASE 6
210
211/* But this is what stacks really send out. */
212#define TCPOLEN_TSTAMP_ALIGNED 12
213#define TCPOLEN_WSCALE_ALIGNED 4
214#define TCPOLEN_SACKPERM_ALIGNED 4
215#define TCPOLEN_SACK_BASE 2
216#define TCPOLEN_SACK_BASE_ALIGNED 4
217#define TCPOLEN_SACK_PERBLOCK 8
218#define TCPOLEN_MD5SIG_ALIGNED 20
219#define TCPOLEN_MSS_ALIGNED 4
220#define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
221
222/* Flags in tp->nonagle */
223#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
224#define TCP_NAGLE_CORK 2 /* Socket is corked */
225#define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
226
227/* TCP thin-stream limits */
228#define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
229
230/* TCP initial congestion window as per rfc6928 */
231#define TCP_INIT_CWND 10
232
233/* Bit Flags for sysctl_tcp_fastopen */
234#define TFO_CLIENT_ENABLE 1
235#define TFO_SERVER_ENABLE 2
236#define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
237
238/* Accept SYN data w/o any cookie option */
239#define TFO_SERVER_COOKIE_NOT_REQD 0x200
240
241/* Force enable TFO on all listeners, i.e., not requiring the
242 * TCP_FASTOPEN socket option.
243 */
244#define TFO_SERVER_WO_SOCKOPT1 0x400
245
246
247/* sysctl variables for tcp */
248extern int sysctl_tcp_max_orphans;
249extern long sysctl_tcp_mem[3];
250
251#define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
252#define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
253#define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
254
255extern atomic_long_t tcp_memory_allocated;
256extern struct percpu_counter tcp_sockets_allocated;
257extern unsigned long tcp_memory_pressure;
258
259/* optimized version of sk_under_memory_pressure() for TCP sockets */
260static inline bool tcp_under_memory_pressure(const struct sock *sk)
261{
262 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
263 mem_cgroup_under_socket_pressure(sk->sk_memcg))
264 return true;
265
David Brazdil0f672f62019-12-10 10:32:29 +0000266 return READ_ONCE(tcp_memory_pressure);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000267}
268/*
269 * The next routines deal with comparing 32 bit unsigned ints
270 * and worry about wraparound (automatic with unsigned arithmetic).
271 */
272
273static inline bool before(__u32 seq1, __u32 seq2)
274{
275 return (__s32)(seq1-seq2) < 0;
276}
277#define after(seq2, seq1) before(seq1, seq2)
278
279/* is s2<=s1<=s3 ? */
280static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
281{
282 return seq3 - seq2 >= seq1 - seq2;
283}
284
285static inline bool tcp_out_of_memory(struct sock *sk)
286{
287 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 return true;
290 return false;
291}
292
293void sk_forced_mem_schedule(struct sock *sk, int size);
294
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000295bool tcp_check_oom(struct sock *sk, int shift);
296
297
298extern struct proto tcp_prot;
299
300#define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
301#define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
302#define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
303#define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
304
305void tcp_tasklet_init(void);
306
David Brazdil0f672f62019-12-10 10:32:29 +0000307int tcp_v4_err(struct sk_buff *skb, u32);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000308
309void tcp_shutdown(struct sock *sk, int how);
310
311int tcp_v4_early_demux(struct sk_buff *skb);
312int tcp_v4_rcv(struct sk_buff *skb);
313
314int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
315int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
316int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
317int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
318 int flags);
319int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
320 size_t size, int flags);
321ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
322 size_t size, int flags);
Olivier Deprez157378f2022-04-04 15:47:50 +0200323int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
324void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
325 int size_goal);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000326void tcp_release_cb(struct sock *sk);
327void tcp_wfree(struct sk_buff *skb);
328void tcp_write_timer_handler(struct sock *sk);
329void tcp_delack_timer_handler(struct sock *sk);
330int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
331int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
332void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
333void tcp_rcv_space_adjust(struct sock *sk);
334int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
335void tcp_twsk_destructor(struct sock *sk);
336ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
337 struct pipe_inode_info *pipe, size_t len,
338 unsigned int flags);
339
340void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
341static inline void tcp_dec_quickack_mode(struct sock *sk,
342 const unsigned int pkts)
343{
344 struct inet_connection_sock *icsk = inet_csk(sk);
345
346 if (icsk->icsk_ack.quick) {
347 if (pkts >= icsk->icsk_ack.quick) {
348 icsk->icsk_ack.quick = 0;
349 /* Leaving quickack mode we deflate ATO. */
350 icsk->icsk_ack.ato = TCP_ATO_MIN;
351 } else
352 icsk->icsk_ack.quick -= pkts;
353 }
354}
355
356#define TCP_ECN_OK 1
357#define TCP_ECN_QUEUE_CWR 2
358#define TCP_ECN_DEMAND_CWR 4
359#define TCP_ECN_SEEN 8
360
361enum tcp_tw_status {
362 TCP_TW_SUCCESS = 0,
363 TCP_TW_RST = 1,
364 TCP_TW_ACK = 2,
365 TCP_TW_SYN = 3
366};
367
368
369enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
370 struct sk_buff *skb,
371 const struct tcphdr *th);
372struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
373 struct request_sock *req, bool fastopen,
374 bool *lost_race);
375int tcp_child_process(struct sock *parent, struct sock *child,
376 struct sk_buff *skb);
377void tcp_enter_loss(struct sock *sk);
378void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
379void tcp_clear_retrans(struct tcp_sock *tp);
380void tcp_update_metrics(struct sock *sk);
381void tcp_init_metrics(struct sock *sk);
382void tcp_metrics_init(void);
383bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
384void tcp_close(struct sock *sk, long timeout);
385void tcp_init_sock(struct sock *sk);
Olivier Deprez157378f2022-04-04 15:47:50 +0200386void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000387__poll_t tcp_poll(struct file *file, struct socket *sock,
388 struct poll_table_struct *wait);
389int tcp_getsockopt(struct sock *sk, int level, int optname,
390 char __user *optval, int __user *optlen);
Olivier Deprez157378f2022-04-04 15:47:50 +0200391int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
392 unsigned int optlen);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000393void tcp_set_keepalive(struct sock *sk, int val);
394void tcp_syn_ack_timeout(const struct request_sock *req);
395int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
396 int flags, int *addr_len);
397int tcp_set_rcvlowat(struct sock *sk, int val);
398void tcp_data_ready(struct sock *sk);
David Brazdil0f672f62019-12-10 10:32:29 +0000399#ifdef CONFIG_MMU
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000400int tcp_mmap(struct file *file, struct socket *sock,
401 struct vm_area_struct *vma);
David Brazdil0f672f62019-12-10 10:32:29 +0000402#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000403void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
404 struct tcp_options_received *opt_rx,
405 int estab, struct tcp_fastopen_cookie *foc);
406const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
407
408/*
David Brazdil0f672f62019-12-10 10:32:29 +0000409 * BPF SKB-less helpers
410 */
411u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
412 struct tcphdr *th, u32 *cookie);
413u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
414 struct tcphdr *th, u32 *cookie);
415u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
416 const struct tcp_request_sock_ops *af_ops,
417 struct sock *sk, struct tcphdr *th);
418/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000419 * TCP v4 functions exported for the inet6 API
420 */
421
422void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
423void tcp_v4_mtu_reduced(struct sock *sk);
424void tcp_req_err(struct sock *sk, u32 seq, bool abort);
Olivier Deprez157378f2022-04-04 15:47:50 +0200425void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000426int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
427struct sock *tcp_create_openreq_child(const struct sock *sk,
428 struct request_sock *req,
429 struct sk_buff *skb);
430void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
431struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
432 struct request_sock *req,
433 struct dst_entry *dst,
434 struct request_sock *req_unhash,
435 bool *own_req);
436int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
437int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
438int tcp_connect(struct sock *sk);
439enum tcp_synack_type {
440 TCP_SYNACK_NORMAL,
441 TCP_SYNACK_FASTOPEN,
442 TCP_SYNACK_COOKIE,
443};
444struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
445 struct request_sock *req,
446 struct tcp_fastopen_cookie *foc,
Olivier Deprez157378f2022-04-04 15:47:50 +0200447 enum tcp_synack_type synack_type,
448 struct sk_buff *syn_skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000449int tcp_disconnect(struct sock *sk, int flags);
450
451void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
452int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
453void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
454
455/* From syncookies.c */
456struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
457 struct request_sock *req,
458 struct dst_entry *dst, u32 tsoff);
459int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
460 u32 cookie);
461struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
Olivier Deprez157378f2022-04-04 15:47:50 +0200462struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
463 struct sock *sk, struct sk_buff *skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000464#ifdef CONFIG_SYN_COOKIES
465
466/* Syncookies use a monotonic timer which increments every 60 seconds.
467 * This counter is used both as a hash input and partially encoded into
468 * the cookie value. A cookie is only validated further if the delta
469 * between the current counter value and the encoded one is less than this,
470 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
471 * the counter advances immediately after a cookie is generated).
472 */
473#define MAX_SYNCOOKIE_AGE 2
474#define TCP_SYNCOOKIE_PERIOD (60 * HZ)
475#define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
476
477/* syncookies: remember time of last synqueue overflow
478 * But do not dirty this field too often (once per second is enough)
479 * It is racy as we do not hold a lock, but race is very minor.
480 */
481static inline void tcp_synq_overflow(const struct sock *sk)
482{
483 unsigned int last_overflow;
484 unsigned int now = jiffies;
485
486 if (sk->sk_reuseport) {
487 struct sock_reuseport *reuse;
488
489 reuse = rcu_dereference(sk->sk_reuseport_cb);
490 if (likely(reuse)) {
491 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
Olivier Deprez0e641232021-09-23 10:07:05 +0200492 if (!time_between32(now, last_overflow,
493 last_overflow + HZ))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000494 WRITE_ONCE(reuse->synq_overflow_ts, now);
495 return;
496 }
497 }
498
Olivier Deprez0e641232021-09-23 10:07:05 +0200499 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
500 if (!time_between32(now, last_overflow, last_overflow + HZ))
501 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000502}
503
504/* syncookies: no recent synqueue overflow on this listening socket? */
505static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
506{
507 unsigned int last_overflow;
508 unsigned int now = jiffies;
509
510 if (sk->sk_reuseport) {
511 struct sock_reuseport *reuse;
512
513 reuse = rcu_dereference(sk->sk_reuseport_cb);
514 if (likely(reuse)) {
515 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
Olivier Deprez0e641232021-09-23 10:07:05 +0200516 return !time_between32(now, last_overflow - HZ,
517 last_overflow +
518 TCP_SYNCOOKIE_VALID);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000519 }
520 }
521
Olivier Deprez0e641232021-09-23 10:07:05 +0200522 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
523
524 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
525 * then we're under synflood. However, we have to use
526 * 'last_overflow - HZ' as lower bound. That's because a concurrent
527 * tcp_synq_overflow() could update .ts_recent_stamp after we read
528 * jiffies but before we store .ts_recent_stamp into last_overflow,
529 * which could lead to rejecting a valid syncookie.
530 */
531 return !time_between32(now, last_overflow - HZ,
532 last_overflow + TCP_SYNCOOKIE_VALID);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000533}
534
535static inline u32 tcp_cookie_time(void)
536{
537 u64 val = get_jiffies_64();
538
539 do_div(val, TCP_SYNCOOKIE_PERIOD);
540 return val;
541}
542
543u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
544 u16 *mssp);
545__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
Olivier Deprez157378f2022-04-04 15:47:50 +0200546u64 cookie_init_timestamp(struct request_sock *req, u64 now);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000547bool cookie_timestamp_decode(const struct net *net,
548 struct tcp_options_received *opt);
549bool cookie_ecn_ok(const struct tcp_options_received *opt,
550 const struct net *net, const struct dst_entry *dst);
551
552/* From net/ipv6/syncookies.c */
553int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
554 u32 cookie);
555struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
556
557u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
558 const struct tcphdr *th, u16 *mssp);
559__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
560#endif
561/* tcp_output.c */
562
563void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
564 int nonagle);
565int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
566int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
567void tcp_retransmit_timer(struct sock *sk);
568void tcp_xmit_retransmit_queue(struct sock *);
569void tcp_simple_retransmit(struct sock *);
570void tcp_enter_recovery(struct sock *sk, bool ece_ack);
571int tcp_trim_head(struct sock *, struct sk_buff *, u32);
572enum tcp_queue {
573 TCP_FRAG_IN_WRITE_QUEUE,
574 TCP_FRAG_IN_RTX_QUEUE,
575};
576int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
577 struct sk_buff *skb, u32 len,
578 unsigned int mss_now, gfp_t gfp);
579
580void tcp_send_probe0(struct sock *);
581void tcp_send_partial(struct sock *);
582int tcp_write_wakeup(struct sock *, int mib);
583void tcp_send_fin(struct sock *sk);
584void tcp_send_active_reset(struct sock *sk, gfp_t priority);
585int tcp_send_synack(struct sock *);
586void tcp_push_one(struct sock *, unsigned int mss_now);
587void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
588void tcp_send_ack(struct sock *sk);
589void tcp_send_delayed_ack(struct sock *sk);
590void tcp_send_loss_probe(struct sock *sk);
591bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
592void tcp_skb_collapse_tstamp(struct sk_buff *skb,
593 const struct sk_buff *next_skb);
594
595/* tcp_input.c */
596void tcp_rearm_rto(struct sock *sk);
597void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
598void tcp_reset(struct sock *sk);
599void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
600void tcp_fin(struct sock *sk);
601
602/* tcp_timer.c */
603void tcp_init_xmit_timers(struct sock *);
604static inline void tcp_clear_xmit_timers(struct sock *sk)
605{
606 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
607 __sock_put(sk);
608
609 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
610 __sock_put(sk);
611
612 inet_csk_clear_xmit_timers(sk);
613}
614
615unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
616unsigned int tcp_current_mss(struct sock *sk);
Olivier Deprez0e641232021-09-23 10:07:05 +0200617u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000618
619/* Bound MSS / TSO packet size with the half of the window */
620static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
621{
622 int cutoff;
623
624 /* When peer uses tiny windows, there is no use in packetizing
625 * to sub-MSS pieces for the sake of SWS or making sure there
626 * are enough packets in the pipe for fast recovery.
627 *
628 * On the other hand, for extremely large MSS devices, handling
629 * smaller than MSS windows in this way does make sense.
630 */
631 if (tp->max_window > TCP_MSS_DEFAULT)
632 cutoff = (tp->max_window >> 1);
633 else
634 cutoff = tp->max_window;
635
636 if (cutoff && pktsize > cutoff)
637 return max_t(int, cutoff, 68U - tp->tcp_header_len);
638 else
639 return pktsize;
640}
641
642/* tcp.c */
643void tcp_get_info(struct sock *, struct tcp_info *);
644
645/* Read 'sendfile()'-style from a TCP socket */
646int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
647 sk_read_actor_t recv_actor);
648
649void tcp_initialize_rcv_mss(struct sock *sk);
650
651int tcp_mtu_to_mss(struct sock *sk, int pmtu);
652int tcp_mss_to_mtu(struct sock *sk, int mss);
653void tcp_mtup_init(struct sock *sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000654
655static inline void tcp_bound_rto(const struct sock *sk)
656{
657 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
658 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
659}
660
661static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
662{
663 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
664}
665
666static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
667{
Olivier Deprez157378f2022-04-04 15:47:50 +0200668 /* mptcp hooks are only on the slow path */
669 if (sk_is_mptcp((struct sock *)tp))
670 return;
671
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000672 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
673 ntohl(TCP_FLAG_ACK) |
674 snd_wnd);
675}
676
677static inline void tcp_fast_path_on(struct tcp_sock *tp)
678{
679 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
680}
681
682static inline void tcp_fast_path_check(struct sock *sk)
683{
684 struct tcp_sock *tp = tcp_sk(sk);
685
686 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
687 tp->rcv_wnd &&
688 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
689 !tp->urg_data)
690 tcp_fast_path_on(tp);
691}
692
693/* Compute the actual rto_min value */
694static inline u32 tcp_rto_min(struct sock *sk)
695{
696 const struct dst_entry *dst = __sk_dst_get(sk);
Olivier Deprez157378f2022-04-04 15:47:50 +0200697 u32 rto_min = inet_csk(sk)->icsk_rto_min;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000698
699 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
700 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
701 return rto_min;
702}
703
704static inline u32 tcp_rto_min_us(struct sock *sk)
705{
706 return jiffies_to_usecs(tcp_rto_min(sk));
707}
708
709static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
710{
711 return dst_metric_locked(dst, RTAX_CC_ALGO);
712}
713
714/* Minimum RTT in usec. ~0 means not available. */
715static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
716{
717 return minmax_get(&tp->rtt_min);
718}
719
720/* Compute the actual receive window we are currently advertising.
721 * Rcv_nxt can be after the window if our peer push more data
722 * than the offered window.
723 */
724static inline u32 tcp_receive_window(const struct tcp_sock *tp)
725{
726 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
727
728 if (win < 0)
729 win = 0;
730 return (u32) win;
731}
732
733/* Choose a new window, without checks for shrinking, and without
734 * scaling applied to the result. The caller does these things
735 * if necessary. This is a "raw" window selection.
736 */
737u32 __tcp_select_window(struct sock *sk);
738
739void tcp_send_window_probe(struct sock *sk);
740
741/* TCP uses 32bit jiffies to save some space.
742 * Note that this is different from tcp_time_stamp, which
743 * historically has been the same until linux-4.13.
744 */
745#define tcp_jiffies32 ((u32)jiffies)
746
747/*
748 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
749 * It is no longer tied to jiffies, but to 1 ms clock.
750 * Note: double check if you want to use tcp_jiffies32 instead of this.
751 */
752#define TCP_TS_HZ 1000
753
754static inline u64 tcp_clock_ns(void)
755{
David Brazdil0f672f62019-12-10 10:32:29 +0000756 return ktime_get_ns();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000757}
758
759static inline u64 tcp_clock_us(void)
760{
761 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
762}
763
764/* This should only be used in contexts where tp->tcp_mstamp is up to date */
765static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
766{
767 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
768}
769
Olivier Deprez157378f2022-04-04 15:47:50 +0200770/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
771static inline u32 tcp_ns_to_ts(u64 ns)
772{
773 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
774}
775
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000776/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
777static inline u32 tcp_time_stamp_raw(void)
778{
Olivier Deprez157378f2022-04-04 15:47:50 +0200779 return tcp_ns_to_ts(tcp_clock_ns());
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000780}
781
David Brazdil0f672f62019-12-10 10:32:29 +0000782void tcp_mstamp_refresh(struct tcp_sock *tp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000783
784static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
785{
786 return max_t(s64, t1 - t0, 0);
787}
788
789static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
790{
Olivier Deprez157378f2022-04-04 15:47:50 +0200791 return tcp_ns_to_ts(skb->skb_mstamp_ns);
David Brazdil0f672f62019-12-10 10:32:29 +0000792}
793
794/* provide the departure time in us unit */
795static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
796{
797 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000798}
799
800
801#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
802
803#define TCPHDR_FIN 0x01
804#define TCPHDR_SYN 0x02
805#define TCPHDR_RST 0x04
806#define TCPHDR_PSH 0x08
807#define TCPHDR_ACK 0x10
808#define TCPHDR_URG 0x20
809#define TCPHDR_ECE 0x40
810#define TCPHDR_CWR 0x80
811
812#define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
813
814/* This is what the send packet queuing engine uses to pass
815 * TCP per-packet control information to the transmission code.
816 * We also store the host-order sequence numbers in here too.
817 * This is 44 bytes if IPV6 is enabled.
818 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
819 */
820struct tcp_skb_cb {
821 __u32 seq; /* Starting sequence number */
822 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
823 union {
824 /* Note : tcp_tw_isn is used in input path only
825 * (isn chosen by tcp_timewait_state_process())
826 *
827 * tcp_gso_segs/size are used in write queue only,
828 * cf tcp_skb_pcount()/tcp_skb_mss()
829 */
830 __u32 tcp_tw_isn;
831 struct {
832 u16 tcp_gso_segs;
833 u16 tcp_gso_size;
834 };
835 };
836 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
837
838 __u8 sacked; /* State flags for SACK. */
839#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
840#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
841#define TCPCB_LOST 0x04 /* SKB is lost */
842#define TCPCB_TAGBITS 0x07 /* All tag bits */
David Brazdil0f672f62019-12-10 10:32:29 +0000843#define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000844#define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
845#define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
846 TCPCB_REPAIRED)
847
848 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
849 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
850 eor:1, /* Is skb MSG_EOR marked? */
851 has_rxtstamp:1, /* SKB has a RX timestamp */
852 unused:5;
853 __u32 ack_seq; /* Sequence number ACK'd */
854 union {
855 struct {
856 /* There is space for up to 24 bytes */
857 __u32 in_flight:30,/* Bytes in flight at transmit */
858 is_app_limited:1, /* cwnd not fully used? */
859 unused:1;
860 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
861 __u32 delivered;
862 /* start of send pipeline phase */
863 u64 first_tx_mstamp;
864 /* when we reached the "delivered" count */
865 u64 delivered_mstamp;
866 } tx; /* only used for outgoing skbs */
867 union {
868 struct inet_skb_parm h4;
869#if IS_ENABLED(CONFIG_IPV6)
870 struct inet6_skb_parm h6;
871#endif
872 } header; /* For incoming skbs */
873 struct {
874 __u32 flags;
875 struct sock *sk_redir;
876 void *data_end;
877 } bpf;
878 };
879};
880
881#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
882
883static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
884{
885 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
886}
887
David Brazdil0f672f62019-12-10 10:32:29 +0000888static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
889{
890 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
891}
892
893static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
894{
895 return TCP_SKB_CB(skb)->bpf.sk_redir;
896}
897
898static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
899{
900 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
901}
902
Olivier Deprez157378f2022-04-04 15:47:50 +0200903extern const struct inet_connection_sock_af_ops ipv4_specific;
904
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000905#if IS_ENABLED(CONFIG_IPV6)
906/* This is the variant of inet6_iif() that must be used by TCP,
907 * as TCP moves IP6CB into a different location in skb->cb[]
908 */
909static inline int tcp_v6_iif(const struct sk_buff *skb)
910{
911 return TCP_SKB_CB(skb)->header.h6.iif;
912}
913
914static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
915{
916 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
917
918 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
919}
920
921/* TCP_SKB_CB reference means this can not be used from early demux */
922static inline int tcp_v6_sdif(const struct sk_buff *skb)
923{
924#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
925 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
926 return TCP_SKB_CB(skb)->header.h6.iif;
927#endif
928 return 0;
929}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000930
Olivier Deprez157378f2022-04-04 15:47:50 +0200931extern const struct inet_connection_sock_af_ops ipv6_specific;
932
933INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
934INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
935INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
936
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000937#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000938
939/* TCP_SKB_CB reference means this can not be used from early demux */
940static inline int tcp_v4_sdif(struct sk_buff *skb)
941{
942#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
943 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
944 return TCP_SKB_CB(skb)->header.h4.iif;
945#endif
946 return 0;
947}
948
949/* Due to TSO, an SKB can be composed of multiple actual
950 * packets. To keep these tracked properly, we use this.
951 */
952static inline int tcp_skb_pcount(const struct sk_buff *skb)
953{
954 return TCP_SKB_CB(skb)->tcp_gso_segs;
955}
956
957static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
958{
959 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
960}
961
962static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
963{
964 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
965}
966
967/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
968static inline int tcp_skb_mss(const struct sk_buff *skb)
969{
970 return TCP_SKB_CB(skb)->tcp_gso_size;
971}
972
973static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
974{
975 return likely(!TCP_SKB_CB(skb)->eor);
976}
977
Olivier Deprez157378f2022-04-04 15:47:50 +0200978static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
979 const struct sk_buff *from)
980{
981 return likely(tcp_skb_can_collapse_to(to) &&
982 mptcp_skb_can_collapse(to, from));
983}
984
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000985/* Events passed to congestion control interface */
986enum tcp_ca_event {
987 CA_EVENT_TX_START, /* first transmit when no packets in flight */
988 CA_EVENT_CWND_RESTART, /* congestion window restart */
989 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
990 CA_EVENT_LOSS, /* loss timeout */
991 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
992 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
993};
994
995/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
996enum tcp_ca_ack_event_flags {
997 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
998 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
999 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1000};
1001
1002/*
1003 * Interface for adding new TCP congestion control handlers
1004 */
1005#define TCP_CA_NAME_MAX 16
1006#define TCP_CA_MAX 128
1007#define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1008
1009#define TCP_CA_UNSPEC 0
1010
1011/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1012#define TCP_CONG_NON_RESTRICTED 0x1
1013/* Requires ECN/ECT set on all packets */
1014#define TCP_CONG_NEEDS_ECN 0x2
Olivier Deprez157378f2022-04-04 15:47:50 +02001015#define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001016
1017union tcp_cc_info;
1018
1019struct ack_sample {
1020 u32 pkts_acked;
1021 s32 rtt_us;
1022 u32 in_flight;
1023};
1024
1025/* A rate sample measures the number of (original/retransmitted) data
1026 * packets delivered "delivered" over an interval of time "interval_us".
1027 * The tcp_rate.c code fills in the rate sample, and congestion
1028 * control modules that define a cong_control function to run at the end
1029 * of ACK processing can optionally chose to consult this sample when
1030 * setting cwnd and pacing rate.
1031 * A sample is invalid if "delivered" or "interval_us" is negative.
1032 */
1033struct rate_sample {
1034 u64 prior_mstamp; /* starting timestamp for interval */
1035 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1036 s32 delivered; /* number of packets delivered over interval */
1037 long interval_us; /* time for tp->delivered to incr "delivered" */
1038 u32 snd_interval_us; /* snd interval for delivered packets */
1039 u32 rcv_interval_us; /* rcv interval for delivered packets */
1040 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1041 int losses; /* number of packets marked lost upon ACK */
1042 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1043 u32 prior_in_flight; /* in flight before this ACK */
1044 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1045 bool is_retrans; /* is sample from retransmission? */
1046 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1047};
1048
1049struct tcp_congestion_ops {
1050 struct list_head list;
1051 u32 key;
1052 u32 flags;
1053
1054 /* initialize private data (optional) */
1055 void (*init)(struct sock *sk);
1056 /* cleanup private data (optional) */
1057 void (*release)(struct sock *sk);
1058
1059 /* return slow start threshold (required) */
1060 u32 (*ssthresh)(struct sock *sk);
1061 /* do new cwnd calculation (required) */
1062 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1063 /* call before changing ca_state (optional) */
1064 void (*set_state)(struct sock *sk, u8 new_state);
1065 /* call when cwnd event occurs (optional) */
1066 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1067 /* call when ack arrives (optional) */
1068 void (*in_ack_event)(struct sock *sk, u32 flags);
1069 /* new value of cwnd after loss (required) */
1070 u32 (*undo_cwnd)(struct sock *sk);
1071 /* hook for packet ack accounting (optional) */
1072 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1073 /* override sysctl_tcp_min_tso_segs */
1074 u32 (*min_tso_segs)(struct sock *sk);
1075 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1076 u32 (*sndbuf_expand)(struct sock *sk);
1077 /* call when packets are delivered to update cwnd and pacing rate,
1078 * after all the ca_state processing. (optional)
1079 */
1080 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1081 /* get info for inet_diag (optional) */
1082 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1083 union tcp_cc_info *info);
1084
1085 char name[TCP_CA_NAME_MAX];
1086 struct module *owner;
1087};
1088
1089int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1090void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1091
1092void tcp_assign_congestion_control(struct sock *sk);
1093void tcp_init_congestion_control(struct sock *sk);
1094void tcp_cleanup_congestion_control(struct sock *sk);
1095int tcp_set_default_congestion_control(struct net *net, const char *name);
1096void tcp_get_default_congestion_control(struct net *net, char *name);
1097void tcp_get_available_congestion_control(char *buf, size_t len);
1098void tcp_get_allowed_congestion_control(char *buf, size_t len);
1099int tcp_set_allowed_congestion_control(char *allowed);
David Brazdil0f672f62019-12-10 10:32:29 +00001100int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
Olivier Deprez157378f2022-04-04 15:47:50 +02001101 bool cap_net_admin);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001102u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1103void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1104
1105u32 tcp_reno_ssthresh(struct sock *sk);
1106u32 tcp_reno_undo_cwnd(struct sock *sk);
1107void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1108extern struct tcp_congestion_ops tcp_reno;
1109
Olivier Deprez157378f2022-04-04 15:47:50 +02001110struct tcp_congestion_ops *tcp_ca_find(const char *name);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001111struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1112u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1113#ifdef CONFIG_INET
1114char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1115#else
1116static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1117{
1118 return NULL;
1119}
1120#endif
1121
1122static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1123{
1124 const struct inet_connection_sock *icsk = inet_csk(sk);
1125
1126 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1127}
1128
1129static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1130{
1131 struct inet_connection_sock *icsk = inet_csk(sk);
1132
1133 if (icsk->icsk_ca_ops->set_state)
1134 icsk->icsk_ca_ops->set_state(sk, ca_state);
1135 icsk->icsk_ca_state = ca_state;
1136}
1137
1138static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1139{
1140 const struct inet_connection_sock *icsk = inet_csk(sk);
1141
1142 if (icsk->icsk_ca_ops->cwnd_event)
1143 icsk->icsk_ca_ops->cwnd_event(sk, event);
1144}
1145
1146/* From tcp_rate.c */
1147void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1148void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1149 struct rate_sample *rs);
1150void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1151 bool is_sack_reneg, struct rate_sample *rs);
1152void tcp_rate_check_app_limited(struct sock *sk);
1153
1154/* These functions determine how the current flow behaves in respect of SACK
1155 * handling. SACK is negotiated with the peer, and therefore it can vary
1156 * between different flows.
1157 *
1158 * tcp_is_sack - SACK enabled
1159 * tcp_is_reno - No SACK
1160 */
1161static inline int tcp_is_sack(const struct tcp_sock *tp)
1162{
David Brazdil0f672f62019-12-10 10:32:29 +00001163 return likely(tp->rx_opt.sack_ok);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001164}
1165
1166static inline bool tcp_is_reno(const struct tcp_sock *tp)
1167{
1168 return !tcp_is_sack(tp);
1169}
1170
1171static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1172{
1173 return tp->sacked_out + tp->lost_out;
1174}
1175
1176/* This determines how many packets are "in the network" to the best
1177 * of our knowledge. In many cases it is conservative, but where
1178 * detailed information is available from the receiver (via SACK
1179 * blocks etc.) we can make more aggressive calculations.
1180 *
1181 * Use this for decisions involving congestion control, use just
1182 * tp->packets_out to determine if the send queue is empty or not.
1183 *
1184 * Read this equation as:
1185 *
1186 * "Packets sent once on transmission queue" MINUS
1187 * "Packets left network, but not honestly ACKed yet" PLUS
1188 * "Packets fast retransmitted"
1189 */
1190static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1191{
1192 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1193}
1194
1195#define TCP_INFINITE_SSTHRESH 0x7fffffff
1196
1197static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1198{
1199 return tp->snd_cwnd < tp->snd_ssthresh;
1200}
1201
1202static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1203{
1204 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1205}
1206
1207static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1208{
1209 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1210 (1 << inet_csk(sk)->icsk_ca_state);
1211}
1212
1213/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1214 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1215 * ssthresh.
1216 */
1217static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1218{
1219 const struct tcp_sock *tp = tcp_sk(sk);
1220
1221 if (tcp_in_cwnd_reduction(sk))
1222 return tp->snd_ssthresh;
1223 else
1224 return max(tp->snd_ssthresh,
1225 ((tp->snd_cwnd >> 1) +
1226 (tp->snd_cwnd >> 2)));
1227}
1228
1229/* Use define here intentionally to get WARN_ON location shown at the caller */
1230#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1231
1232void tcp_enter_cwr(struct sock *sk);
1233__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1234
1235/* The maximum number of MSS of available cwnd for which TSO defers
1236 * sending if not using sysctl_tcp_tso_win_divisor.
1237 */
1238static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1239{
1240 return 3;
1241}
1242
1243/* Returns end sequence number of the receiver's advertised window */
1244static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1245{
1246 return tp->snd_una + tp->snd_wnd;
1247}
1248
1249/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1250 * flexible approach. The RFC suggests cwnd should not be raised unless
1251 * it was fully used previously. And that's exactly what we do in
1252 * congestion avoidance mode. But in slow start we allow cwnd to grow
1253 * as long as the application has used half the cwnd.
1254 * Example :
1255 * cwnd is 10 (IW10), but application sends 9 frames.
1256 * We allow cwnd to reach 18 when all frames are ACKed.
1257 * This check is safe because it's as aggressive as slow start which already
1258 * risks 100% overshoot. The advantage is that we discourage application to
1259 * either send more filler packets or data to artificially blow up the cwnd
1260 * usage, and allow application-limited process to probe bw more aggressively.
1261 */
1262static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1263{
1264 const struct tcp_sock *tp = tcp_sk(sk);
1265
1266 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1267 if (tcp_in_slow_start(tp))
1268 return tp->snd_cwnd < 2 * tp->max_packets_out;
1269
1270 return tp->is_cwnd_limited;
1271}
1272
1273/* BBR congestion control needs pacing.
1274 * Same remark for SO_MAX_PACING_RATE.
1275 * sch_fq packet scheduler is efficiently handling pacing,
1276 * but is not always installed/used.
1277 * Return true if TCP stack should pace packets itself.
1278 */
1279static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1280{
1281 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1282}
1283
Olivier Deprez157378f2022-04-04 15:47:50 +02001284/* Estimates in how many jiffies next packet for this flow can be sent.
1285 * Scheduling a retransmit timer too early would be silly.
David Brazdil0f672f62019-12-10 10:32:29 +00001286 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001287static inline unsigned long tcp_pacing_delay(const struct sock *sk)
David Brazdil0f672f62019-12-10 10:32:29 +00001288{
Olivier Deprez157378f2022-04-04 15:47:50 +02001289 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
David Brazdil0f672f62019-12-10 10:32:29 +00001290
Olivier Deprez157378f2022-04-04 15:47:50 +02001291 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001292}
1293
1294static inline void tcp_reset_xmit_timer(struct sock *sk,
1295 const int what,
1296 unsigned long when,
Olivier Deprez157378f2022-04-04 15:47:50 +02001297 const unsigned long max_when)
David Brazdil0f672f62019-12-10 10:32:29 +00001298{
Olivier Deprez157378f2022-04-04 15:47:50 +02001299 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
David Brazdil0f672f62019-12-10 10:32:29 +00001300 max_when);
1301}
1302
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001303/* Something is really bad, we could not queue an additional packet,
David Brazdil0f672f62019-12-10 10:32:29 +00001304 * because qdisc is full or receiver sent a 0 window, or we are paced.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001305 * We do not want to add fuel to the fire, or abort too early,
1306 * so make sure the timer we arm now is at least 200ms in the future,
1307 * regardless of current icsk_rto value (as it could be ~2ms)
1308 */
1309static inline unsigned long tcp_probe0_base(const struct sock *sk)
1310{
1311 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1312}
1313
1314/* Variant of inet_csk_rto_backoff() used for zero window probes */
1315static inline unsigned long tcp_probe0_when(const struct sock *sk,
1316 unsigned long max_when)
1317{
1318 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1319
1320 return (unsigned long)min_t(u64, when, max_when);
1321}
1322
1323static inline void tcp_check_probe_timer(struct sock *sk)
1324{
1325 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
David Brazdil0f672f62019-12-10 10:32:29 +00001326 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
Olivier Deprez157378f2022-04-04 15:47:50 +02001327 tcp_probe0_base(sk), TCP_RTO_MAX);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001328}
1329
1330static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1331{
1332 tp->snd_wl1 = seq;
1333}
1334
1335static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1336{
1337 tp->snd_wl1 = seq;
1338}
1339
1340/*
1341 * Calculate(/check) TCP checksum
1342 */
1343static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1344 __be32 daddr, __wsum base)
1345{
David Brazdil0f672f62019-12-10 10:32:29 +00001346 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001347}
1348
1349static inline bool tcp_checksum_complete(struct sk_buff *skb)
1350{
1351 return !skb_csum_unnecessary(skb) &&
David Brazdil0f672f62019-12-10 10:32:29 +00001352 __skb_checksum_complete(skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001353}
1354
1355bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1356int tcp_filter(struct sock *sk, struct sk_buff *skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001357void tcp_set_state(struct sock *sk, int state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001358void tcp_done(struct sock *sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001359int tcp_abort(struct sock *sk, int err);
1360
1361static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1362{
1363 rx_opt->dsack = 0;
1364 rx_opt->num_sacks = 0;
1365}
1366
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001367void tcp_cwnd_restart(struct sock *sk, s32 delta);
1368
1369static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1370{
1371 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1372 struct tcp_sock *tp = tcp_sk(sk);
1373 s32 delta;
1374
1375 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1376 ca_ops->cong_control)
1377 return;
1378 delta = tcp_jiffies32 - tp->lsndtime;
1379 if (delta > inet_csk(sk)->icsk_rto)
1380 tcp_cwnd_restart(sk, delta);
1381}
1382
1383/* Determine a window scaling and initial window to offer. */
1384void tcp_select_initial_window(const struct sock *sk, int __space,
1385 __u32 mss, __u32 *rcv_wnd,
1386 __u32 *window_clamp, int wscale_ok,
1387 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1388
1389static inline int tcp_win_from_space(const struct sock *sk, int space)
1390{
1391 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1392
1393 return tcp_adv_win_scale <= 0 ?
1394 (space>>(-tcp_adv_win_scale)) :
1395 space - (space>>tcp_adv_win_scale);
1396}
1397
1398/* Note: caller must be prepared to deal with negative returns */
1399static inline int tcp_space(const struct sock *sk)
1400{
David Brazdil0f672f62019-12-10 10:32:29 +00001401 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1402 READ_ONCE(sk->sk_backlog.len) -
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001403 atomic_read(&sk->sk_rmem_alloc));
1404}
1405
1406static inline int tcp_full_space(const struct sock *sk)
1407{
David Brazdil0f672f62019-12-10 10:32:29 +00001408 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001409}
1410
Olivier Deprez157378f2022-04-04 15:47:50 +02001411void tcp_cleanup_rbuf(struct sock *sk, int copied);
1412
Olivier Deprez0e641232021-09-23 10:07:05 +02001413/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1414 * If 87.5 % (7/8) of the space has been consumed, we want to override
1415 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1416 * len/truesize ratio.
1417 */
1418static inline bool tcp_rmem_pressure(const struct sock *sk)
1419{
1420 int rcvbuf, threshold;
1421
1422 if (tcp_under_memory_pressure(sk))
1423 return true;
1424
1425 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1426 threshold = rcvbuf - (rcvbuf >> 3);
1427
1428 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1429}
1430
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001431extern void tcp_openreq_init_rwin(struct request_sock *req,
1432 const struct sock *sk_listener,
1433 const struct dst_entry *dst);
1434
1435void tcp_enter_memory_pressure(struct sock *sk);
1436void tcp_leave_memory_pressure(struct sock *sk);
1437
1438static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1439{
1440 struct net *net = sock_net((struct sock *)tp);
1441
1442 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1443}
1444
1445static inline int keepalive_time_when(const struct tcp_sock *tp)
1446{
1447 struct net *net = sock_net((struct sock *)tp);
1448
1449 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1450}
1451
1452static inline int keepalive_probes(const struct tcp_sock *tp)
1453{
1454 struct net *net = sock_net((struct sock *)tp);
1455
1456 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1457}
1458
1459static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1460{
1461 const struct inet_connection_sock *icsk = &tp->inet_conn;
1462
1463 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1464 tcp_jiffies32 - tp->rcv_tstamp);
1465}
1466
1467static inline int tcp_fin_time(const struct sock *sk)
1468{
1469 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1470 const int rto = inet_csk(sk)->icsk_rto;
1471
1472 if (fin_timeout < (rto << 2) - (rto >> 1))
1473 fin_timeout = (rto << 2) - (rto >> 1);
1474
1475 return fin_timeout;
1476}
1477
1478static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1479 int paws_win)
1480{
1481 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1482 return true;
1483 if (unlikely(!time_before32(ktime_get_seconds(),
1484 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1485 return true;
1486 /*
1487 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1488 * then following tcp messages have valid values. Ignore 0 value,
1489 * or else 'negative' tsval might forbid us to accept their packets.
1490 */
1491 if (!rx_opt->ts_recent)
1492 return true;
1493 return false;
1494}
1495
1496static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1497 int rst)
1498{
1499 if (tcp_paws_check(rx_opt, 0))
1500 return false;
1501
1502 /* RST segments are not recommended to carry timestamp,
1503 and, if they do, it is recommended to ignore PAWS because
1504 "their cleanup function should take precedence over timestamps."
1505 Certainly, it is mistake. It is necessary to understand the reasons
1506 of this constraint to relax it: if peer reboots, clock may go
1507 out-of-sync and half-open connections will not be reset.
1508 Actually, the problem would be not existing if all
1509 the implementations followed draft about maintaining clock
1510 via reboots. Linux-2.2 DOES NOT!
1511
1512 However, we can relax time bounds for RST segments to MSL.
1513 */
1514 if (rst && !time_before32(ktime_get_seconds(),
1515 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1516 return false;
1517 return true;
1518}
1519
1520bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1521 int mib_idx, u32 *last_oow_ack_time);
1522
1523static inline void tcp_mib_init(struct net *net)
1524{
1525 /* See RFC 2012 */
1526 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1527 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1528 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1529 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1530}
1531
1532/* from STCP */
1533static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1534{
1535 tp->lost_skb_hint = NULL;
1536}
1537
1538static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1539{
1540 tcp_clear_retrans_hints_partial(tp);
1541 tp->retransmit_skb_hint = NULL;
1542}
1543
1544union tcp_md5_addr {
1545 struct in_addr a4;
1546#if IS_ENABLED(CONFIG_IPV6)
1547 struct in6_addr a6;
1548#endif
1549};
1550
1551/* - key database */
1552struct tcp_md5sig_key {
1553 struct hlist_node node;
1554 u8 keylen;
1555 u8 family; /* AF_INET or AF_INET6 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001556 u8 prefixlen;
Olivier Deprez157378f2022-04-04 15:47:50 +02001557 union tcp_md5_addr addr;
1558 int l3index; /* set if key added with L3 scope */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001559 u8 key[TCP_MD5SIG_MAXKEYLEN];
1560 struct rcu_head rcu;
1561};
1562
1563/* - sock block */
1564struct tcp_md5sig_info {
1565 struct hlist_head head;
1566 struct rcu_head rcu;
1567};
1568
1569/* - pseudo header */
1570struct tcp4_pseudohdr {
1571 __be32 saddr;
1572 __be32 daddr;
1573 __u8 pad;
1574 __u8 protocol;
1575 __be16 len;
1576};
1577
1578struct tcp6_pseudohdr {
1579 struct in6_addr saddr;
1580 struct in6_addr daddr;
1581 __be32 len;
1582 __be32 protocol; /* including padding */
1583};
1584
1585union tcp_md5sum_block {
1586 struct tcp4_pseudohdr ip4;
1587#if IS_ENABLED(CONFIG_IPV6)
1588 struct tcp6_pseudohdr ip6;
1589#endif
1590};
1591
1592/* - pool: digest algorithm, hash description and scratch buffer */
1593struct tcp_md5sig_pool {
1594 struct ahash_request *md5_req;
1595 void *scratch;
1596};
1597
1598/* - functions */
1599int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1600 const struct sock *sk, const struct sk_buff *skb);
1601int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
Olivier Deprez157378f2022-04-04 15:47:50 +02001602 int family, u8 prefixlen, int l3index,
1603 const u8 *newkey, u8 newkeylen, gfp_t gfp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001604int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
Olivier Deprez157378f2022-04-04 15:47:50 +02001605 int family, u8 prefixlen, int l3index);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001606struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1607 const struct sock *addr_sk);
1608
1609#ifdef CONFIG_TCP_MD5SIG
David Brazdil0f672f62019-12-10 10:32:29 +00001610#include <linux/jump_label.h>
1611extern struct static_key_false tcp_md5_needed;
Olivier Deprez157378f2022-04-04 15:47:50 +02001612struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
David Brazdil0f672f62019-12-10 10:32:29 +00001613 const union tcp_md5_addr *addr,
1614 int family);
1615static inline struct tcp_md5sig_key *
Olivier Deprez157378f2022-04-04 15:47:50 +02001616tcp_md5_do_lookup(const struct sock *sk, int l3index,
1617 const union tcp_md5_addr *addr, int family)
David Brazdil0f672f62019-12-10 10:32:29 +00001618{
1619 if (!static_branch_unlikely(&tcp_md5_needed))
1620 return NULL;
Olivier Deprez157378f2022-04-04 15:47:50 +02001621 return __tcp_md5_do_lookup(sk, l3index, addr, family);
David Brazdil0f672f62019-12-10 10:32:29 +00001622}
1623
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001624#define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1625#else
Olivier Deprez157378f2022-04-04 15:47:50 +02001626static inline struct tcp_md5sig_key *
1627tcp_md5_do_lookup(const struct sock *sk, int l3index,
1628 const union tcp_md5_addr *addr, int family)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001629{
1630 return NULL;
1631}
1632#define tcp_twsk_md5_key(twsk) NULL
1633#endif
1634
1635bool tcp_alloc_md5sig_pool(void);
1636
1637struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1638static inline void tcp_put_md5sig_pool(void)
1639{
1640 local_bh_enable();
1641}
1642
1643int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1644 unsigned int header_len);
1645int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1646 const struct tcp_md5sig_key *key);
1647
1648/* From tcp_fastopen.c */
1649void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1650 struct tcp_fastopen_cookie *cookie);
1651void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1652 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1653 u16 try_exp);
1654struct tcp_fastopen_request {
1655 /* Fast Open cookie. Size 0 means a cookie request */
1656 struct tcp_fastopen_cookie cookie;
1657 struct msghdr *data; /* data in MSG_FASTOPEN */
1658 size_t size;
1659 int copied; /* queued in tcp_connect() */
David Brazdil0f672f62019-12-10 10:32:29 +00001660 struct ubuf_info *uarg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001661};
1662void tcp_free_fastopen_req(struct tcp_sock *tp);
1663void tcp_fastopen_destroy_cipher(struct sock *sk);
1664void tcp_fastopen_ctx_destroy(struct net *net);
1665int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
David Brazdil0f672f62019-12-10 10:32:29 +00001666 void *primary_key, void *backup_key);
Olivier Deprez0e641232021-09-23 10:07:05 +02001667int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1668 u64 *key);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001669void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1670struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1671 struct request_sock *req,
1672 struct tcp_fastopen_cookie *foc,
1673 const struct dst_entry *dst);
1674void tcp_fastopen_init_key_once(struct net *net);
1675bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1676 struct tcp_fastopen_cookie *cookie);
1677bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
David Brazdil0f672f62019-12-10 10:32:29 +00001678#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1679#define TCP_FASTOPEN_KEY_MAX 2
1680#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1681 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001682
1683/* Fastopen key context */
1684struct tcp_fastopen_context {
David Brazdil0f672f62019-12-10 10:32:29 +00001685 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1686 int num;
1687 struct rcu_head rcu;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001688};
1689
1690extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1691void tcp_fastopen_active_disable(struct sock *sk);
1692bool tcp_fastopen_active_should_disable(struct sock *sk);
1693void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1694void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1695
David Brazdil0f672f62019-12-10 10:32:29 +00001696/* Caller needs to wrap with rcu_read_(un)lock() */
1697static inline
1698struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1699{
1700 struct tcp_fastopen_context *ctx;
1701
1702 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1703 if (!ctx)
1704 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1705 return ctx;
1706}
1707
1708static inline
1709bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1710 const struct tcp_fastopen_cookie *orig)
1711{
1712 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1713 orig->len == foc->len &&
1714 !memcmp(orig->val, foc->val, foc->len))
1715 return true;
1716 return false;
1717}
1718
1719static inline
1720int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1721{
1722 return ctx->num;
1723}
1724
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001725/* Latencies incurred by various limits for a sender. They are
1726 * chronograph-like stats that are mutually exclusive.
1727 */
1728enum tcp_chrono {
1729 TCP_CHRONO_UNSPEC,
1730 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1731 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1732 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1733 __TCP_CHRONO_MAX,
1734};
1735
1736void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1737void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1738
1739/* This helper is needed, because skb->tcp_tsorted_anchor uses
1740 * the same memory storage than skb->destructor/_skb_refdst
1741 */
1742static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1743{
1744 skb->destructor = NULL;
1745 skb->_skb_refdst = 0UL;
1746}
1747
1748#define tcp_skb_tsorted_save(skb) { \
1749 unsigned long _save = skb->_skb_refdst; \
1750 skb->_skb_refdst = 0UL;
1751
1752#define tcp_skb_tsorted_restore(skb) \
1753 skb->_skb_refdst = _save; \
1754}
1755
1756void tcp_write_queue_purge(struct sock *sk);
1757
1758static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1759{
1760 return skb_rb_first(&sk->tcp_rtx_queue);
1761}
1762
David Brazdil0f672f62019-12-10 10:32:29 +00001763static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1764{
1765 return skb_rb_last(&sk->tcp_rtx_queue);
1766}
1767
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001768static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1769{
1770 return skb_peek(&sk->sk_write_queue);
1771}
1772
1773static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1774{
1775 return skb_peek_tail(&sk->sk_write_queue);
1776}
1777
1778#define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1779 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1780
1781static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1782{
1783 return skb_peek(&sk->sk_write_queue);
1784}
1785
1786static inline bool tcp_skb_is_last(const struct sock *sk,
1787 const struct sk_buff *skb)
1788{
1789 return skb_queue_is_last(&sk->sk_write_queue, skb);
1790}
1791
Olivier Deprez157378f2022-04-04 15:47:50 +02001792/**
1793 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1794 * @sk: socket
1795 *
1796 * Since the write queue can have a temporary empty skb in it,
1797 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1798 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001799static inline bool tcp_write_queue_empty(const struct sock *sk)
1800{
Olivier Deprez157378f2022-04-04 15:47:50 +02001801 const struct tcp_sock *tp = tcp_sk(sk);
1802
1803 return tp->write_seq == tp->snd_nxt;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001804}
1805
1806static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1807{
1808 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1809}
1810
1811static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1812{
1813 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1814}
1815
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001816static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1817{
David Brazdil0f672f62019-12-10 10:32:29 +00001818 __skb_queue_tail(&sk->sk_write_queue, skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001819
1820 /* Queue it, remembering where we must start sending. */
1821 if (sk->sk_write_queue.next == skb)
1822 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1823}
1824
1825/* Insert new before skb on the write queue of sk. */
1826static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1827 struct sk_buff *skb,
1828 struct sock *sk)
1829{
1830 __skb_queue_before(&sk->sk_write_queue, skb, new);
1831}
1832
1833static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1834{
1835 tcp_skb_tsorted_anchor_cleanup(skb);
1836 __skb_unlink(skb, &sk->sk_write_queue);
1837}
1838
1839void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1840
1841static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1842{
1843 tcp_skb_tsorted_anchor_cleanup(skb);
1844 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1845}
1846
1847static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1848{
1849 list_del(&skb->tcp_tsorted_anchor);
1850 tcp_rtx_queue_unlink(skb, sk);
1851 sk_wmem_free_skb(sk, skb);
1852}
1853
1854static inline void tcp_push_pending_frames(struct sock *sk)
1855{
1856 if (tcp_send_head(sk)) {
1857 struct tcp_sock *tp = tcp_sk(sk);
1858
1859 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1860 }
1861}
1862
1863/* Start sequence of the skb just after the highest skb with SACKed
1864 * bit, valid only if sacked_out > 0 or when the caller has ensured
1865 * validity by itself.
1866 */
1867static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1868{
1869 if (!tp->sacked_out)
1870 return tp->snd_una;
1871
1872 if (tp->highest_sack == NULL)
1873 return tp->snd_nxt;
1874
1875 return TCP_SKB_CB(tp->highest_sack)->seq;
1876}
1877
1878static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1879{
1880 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1881}
1882
1883static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1884{
1885 return tcp_sk(sk)->highest_sack;
1886}
1887
1888static inline void tcp_highest_sack_reset(struct sock *sk)
1889{
1890 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1891}
1892
1893/* Called when old skb is about to be deleted and replaced by new skb */
1894static inline void tcp_highest_sack_replace(struct sock *sk,
1895 struct sk_buff *old,
1896 struct sk_buff *new)
1897{
1898 if (old == tcp_highest_sack(sk))
1899 tcp_sk(sk)->highest_sack = new;
1900}
1901
1902/* This helper checks if socket has IP_TRANSPARENT set */
1903static inline bool inet_sk_transparent(const struct sock *sk)
1904{
1905 switch (sk->sk_state) {
1906 case TCP_TIME_WAIT:
1907 return inet_twsk(sk)->tw_transparent;
1908 case TCP_NEW_SYN_RECV:
1909 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1910 }
1911 return inet_sk(sk)->transparent;
1912}
1913
1914/* Determines whether this is a thin stream (which may suffer from
1915 * increased latency). Used to trigger latency-reducing mechanisms.
1916 */
1917static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1918{
1919 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1920}
1921
1922/* /proc */
1923enum tcp_seq_states {
1924 TCP_SEQ_STATE_LISTENING,
1925 TCP_SEQ_STATE_ESTABLISHED,
1926};
1927
1928void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1929void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1930void tcp_seq_stop(struct seq_file *seq, void *v);
1931
1932struct tcp_seq_afinfo {
1933 sa_family_t family;
1934};
1935
1936struct tcp_iter_state {
1937 struct seq_net_private p;
1938 enum tcp_seq_states state;
1939 struct sock *syn_wait_sk;
Olivier Deprez157378f2022-04-04 15:47:50 +02001940 struct tcp_seq_afinfo *bpf_seq_afinfo;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001941 int bucket, offset, sbucket, num;
1942 loff_t last_pos;
1943};
1944
1945extern struct request_sock_ops tcp_request_sock_ops;
1946extern struct request_sock_ops tcp6_request_sock_ops;
1947
1948void tcp_v4_destroy_sock(struct sock *sk);
1949
1950struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1951 netdev_features_t features);
1952struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
Olivier Deprez157378f2022-04-04 15:47:50 +02001953INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1954INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1955INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1956INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001957int tcp_gro_complete(struct sk_buff *skb);
1958
1959void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1960
1961static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1962{
1963 struct net *net = sock_net((struct sock *)tp);
1964 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1965}
1966
David Brazdil0f672f62019-12-10 10:32:29 +00001967/* @wake is one when sk_stream_write_space() calls us.
1968 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1969 * This mimics the strategy used in sock_def_write_space().
1970 */
1971static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001972{
1973 const struct tcp_sock *tp = tcp_sk(sk);
David Brazdil0f672f62019-12-10 10:32:29 +00001974 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1975 READ_ONCE(tp->snd_nxt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001976
David Brazdil0f672f62019-12-10 10:32:29 +00001977 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001978}
1979
1980#ifdef CONFIG_PROC_FS
1981int tcp4_proc_init(void);
1982void tcp4_proc_exit(void);
1983#endif
1984
1985int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1986int tcp_conn_request(struct request_sock_ops *rsk_ops,
1987 const struct tcp_request_sock_ops *af_ops,
1988 struct sock *sk, struct sk_buff *skb);
1989
1990/* TCP af-specific functions */
1991struct tcp_sock_af_ops {
1992#ifdef CONFIG_TCP_MD5SIG
1993 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1994 const struct sock *addr_sk);
1995 int (*calc_md5_hash)(char *location,
1996 const struct tcp_md5sig_key *md5,
1997 const struct sock *sk,
1998 const struct sk_buff *skb);
1999 int (*md5_parse)(struct sock *sk,
2000 int optname,
Olivier Deprez157378f2022-04-04 15:47:50 +02002001 sockptr_t optval,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002002 int optlen);
2003#endif
2004};
2005
2006struct tcp_request_sock_ops {
2007 u16 mss_clamp;
2008#ifdef CONFIG_TCP_MD5SIG
2009 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2010 const struct sock *addr_sk);
2011 int (*calc_md5_hash) (char *location,
2012 const struct tcp_md5sig_key *md5,
2013 const struct sock *sk,
2014 const struct sk_buff *skb);
2015#endif
2016 void (*init_req)(struct request_sock *req,
2017 const struct sock *sk_listener,
2018 struct sk_buff *skb);
2019#ifdef CONFIG_SYN_COOKIES
2020 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2021 __u16 *mss);
2022#endif
2023 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2024 const struct request_sock *req);
2025 u32 (*init_seq)(const struct sk_buff *skb);
2026 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2027 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2028 struct flowi *fl, struct request_sock *req,
2029 struct tcp_fastopen_cookie *foc,
Olivier Deprez157378f2022-04-04 15:47:50 +02002030 enum tcp_synack_type synack_type,
2031 struct sk_buff *syn_skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002032};
2033
Olivier Deprez157378f2022-04-04 15:47:50 +02002034extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2035#if IS_ENABLED(CONFIG_IPV6)
2036extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2037#endif
2038
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002039#ifdef CONFIG_SYN_COOKIES
2040static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2041 const struct sock *sk, struct sk_buff *skb,
2042 __u16 *mss)
2043{
2044 tcp_synq_overflow(sk);
2045 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2046 return ops->cookie_init_seq(skb, mss);
2047}
2048#else
2049static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2050 const struct sock *sk, struct sk_buff *skb,
2051 __u16 *mss)
2052{
2053 return 0;
2054}
2055#endif
2056
2057int tcpv4_offload_init(void);
2058
2059void tcp_v4_init(void);
2060void tcp_init(void);
2061
2062/* tcp_recovery.c */
2063void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2064void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2065extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2066 u32 reo_wnd);
Olivier Deprez0e641232021-09-23 10:07:05 +02002067extern bool tcp_rack_mark_lost(struct sock *sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002068extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2069 u64 xmit_time);
2070extern void tcp_rack_reo_timeout(struct sock *sk);
2071extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2072
2073/* At how many usecs into the future should the RTO fire? */
2074static inline s64 tcp_rto_delta_us(const struct sock *sk)
2075{
2076 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2077 u32 rto = inet_csk(sk)->icsk_rto;
David Brazdil0f672f62019-12-10 10:32:29 +00002078 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002079
2080 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2081}
2082
2083/*
2084 * Save and compile IPv4 options, return a pointer to it
2085 */
2086static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2087 struct sk_buff *skb)
2088{
2089 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2090 struct ip_options_rcu *dopt = NULL;
2091
2092 if (opt->optlen) {
2093 int opt_size = sizeof(*dopt) + opt->optlen;
2094
2095 dopt = kmalloc(opt_size, GFP_ATOMIC);
2096 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2097 kfree(dopt);
2098 dopt = NULL;
2099 }
2100 }
2101 return dopt;
2102}
2103
2104/* locally generated TCP pure ACKs have skb->truesize == 2
2105 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2106 * This is much faster than dissecting the packet to find out.
2107 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2108 */
2109static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2110{
2111 return skb->truesize == 2;
2112}
2113
2114static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2115{
2116 skb->truesize = 2;
2117}
2118
2119static inline int tcp_inq(struct sock *sk)
2120{
2121 struct tcp_sock *tp = tcp_sk(sk);
2122 int answ;
2123
2124 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2125 answ = 0;
2126 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2127 !tp->urg_data ||
2128 before(tp->urg_seq, tp->copied_seq) ||
2129 !before(tp->urg_seq, tp->rcv_nxt)) {
2130
2131 answ = tp->rcv_nxt - tp->copied_seq;
2132
2133 /* Subtract 1, if FIN was received */
2134 if (answ && sock_flag(sk, SOCK_DONE))
2135 answ--;
2136 } else {
2137 answ = tp->urg_seq - tp->copied_seq;
2138 }
2139
2140 return answ;
2141}
2142
2143int tcp_peek_len(struct socket *sock);
2144
2145static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2146{
2147 u16 segs_in;
2148
2149 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2150 tp->segs_in += segs_in;
2151 if (skb->len > tcp_hdrlen(skb))
2152 tp->data_segs_in += segs_in;
2153}
2154
2155/*
2156 * TCP listen path runs lockless.
2157 * We forced "struct sock" to be const qualified to make sure
2158 * we don't modify one of its field by mistake.
2159 * Here, we increment sk_drops which is an atomic_t, so we can safely
2160 * make sock writable again.
2161 */
2162static inline void tcp_listendrop(const struct sock *sk)
2163{
2164 atomic_inc(&((struct sock *)sk)->sk_drops);
2165 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2166}
2167
2168enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2169
2170/*
2171 * Interface for adding Upper Level Protocols over TCP
2172 */
2173
2174#define TCP_ULP_NAME_MAX 16
2175#define TCP_ULP_MAX 128
2176#define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2177
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002178struct tcp_ulp_ops {
2179 struct list_head list;
2180
2181 /* initialize ulp */
2182 int (*init)(struct sock *sk);
David Brazdil0f672f62019-12-10 10:32:29 +00002183 /* update ulp */
Olivier Deprez0e641232021-09-23 10:07:05 +02002184 void (*update)(struct sock *sk, struct proto *p,
2185 void (*write_space)(struct sock *sk));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002186 /* cleanup ulp */
2187 void (*release)(struct sock *sk);
David Brazdil0f672f62019-12-10 10:32:29 +00002188 /* diagnostic */
2189 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2190 size_t (*get_info_size)(const struct sock *sk);
Olivier Deprez157378f2022-04-04 15:47:50 +02002191 /* clone ulp */
2192 void (*clone)(const struct request_sock *req, struct sock *newsk,
2193 const gfp_t priority);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002194
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002195 char name[TCP_ULP_NAME_MAX];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002196 struct module *owner;
2197};
2198int tcp_register_ulp(struct tcp_ulp_ops *type);
2199void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2200int tcp_set_ulp(struct sock *sk, const char *name);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002201void tcp_get_available_ulp(char *buf, size_t len);
2202void tcp_cleanup_ulp(struct sock *sk);
Olivier Deprez0e641232021-09-23 10:07:05 +02002203void tcp_update_ulp(struct sock *sk, struct proto *p,
2204 void (*write_space)(struct sock *sk));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002205
2206#define MODULE_ALIAS_TCP_ULP(name) \
2207 __MODULE_INFO(alias, alias_userspace, name); \
2208 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2209
David Brazdil0f672f62019-12-10 10:32:29 +00002210struct sk_msg;
2211struct sk_psock;
2212
Olivier Deprez157378f2022-04-04 15:47:50 +02002213#ifdef CONFIG_BPF_STREAM_PARSER
2214struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2215void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2216#else
2217static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2218{
2219}
2220#endif /* CONFIG_BPF_STREAM_PARSER */
2221
2222#ifdef CONFIG_NET_SOCK_MSG
David Brazdil0f672f62019-12-10 10:32:29 +00002223int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2224 int flags);
David Brazdil0f672f62019-12-10 10:32:29 +00002225int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2226 struct msghdr *msg, int len, int flags);
Olivier Deprez157378f2022-04-04 15:47:50 +02002227#endif /* CONFIG_NET_SOCK_MSG */
2228
2229#ifdef CONFIG_CGROUP_BPF
2230static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2231 struct sk_buff *skb,
2232 unsigned int end_offset)
2233{
2234 skops->skb = skb;
2235 skops->skb_data_end = skb->data + end_offset;
2236}
2237#else
2238static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2239 struct sk_buff *skb,
2240 unsigned int end_offset)
2241{
2242}
2243#endif
David Brazdil0f672f62019-12-10 10:32:29 +00002244
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002245/* Call BPF_SOCK_OPS program that returns an int. If the return value
2246 * is < 0, then the BPF op failed (for example if the loaded BPF
2247 * program does not support the chosen operation or there is no BPF
2248 * program loaded).
2249 */
2250#ifdef CONFIG_BPF
2251static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2252{
2253 struct bpf_sock_ops_kern sock_ops;
2254 int ret;
2255
2256 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2257 if (sk_fullsock(sk)) {
2258 sock_ops.is_fullsock = 1;
2259 sock_owned_by_me(sk);
2260 }
2261
2262 sock_ops.sk = sk;
2263 sock_ops.op = op;
2264 if (nargs > 0)
2265 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2266
2267 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2268 if (ret == 0)
2269 ret = sock_ops.reply;
2270 else
2271 ret = -1;
2272 return ret;
2273}
2274
2275static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2276{
2277 u32 args[2] = {arg1, arg2};
2278
2279 return tcp_call_bpf(sk, op, 2, args);
2280}
2281
2282static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2283 u32 arg3)
2284{
2285 u32 args[3] = {arg1, arg2, arg3};
2286
2287 return tcp_call_bpf(sk, op, 3, args);
2288}
2289
2290#else
2291static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2292{
2293 return -EPERM;
2294}
2295
2296static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2297{
2298 return -EPERM;
2299}
2300
2301static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2302 u32 arg3)
2303{
2304 return -EPERM;
2305}
2306
2307#endif
2308
2309static inline u32 tcp_timeout_init(struct sock *sk)
2310{
2311 int timeout;
2312
2313 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2314
2315 if (timeout <= 0)
2316 timeout = TCP_TIMEOUT_INIT;
2317 return timeout;
2318}
2319
2320static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2321{
2322 int rwnd;
2323
2324 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2325
2326 if (rwnd < 0)
2327 rwnd = 0;
2328 return rwnd;
2329}
2330
2331static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2332{
2333 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2334}
2335
David Brazdil0f672f62019-12-10 10:32:29 +00002336static inline void tcp_bpf_rtt(struct sock *sk)
2337{
2338 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2339 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2340}
2341
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002342#if IS_ENABLED(CONFIG_SMC)
2343extern struct static_key_false tcp_have_smc;
2344#endif
2345
2346#if IS_ENABLED(CONFIG_TLS_DEVICE)
2347void clean_acked_data_enable(struct inet_connection_sock *icsk,
2348 void (*cad)(struct sock *sk, u32 ack_seq));
2349void clean_acked_data_disable(struct inet_connection_sock *icsk);
David Brazdil0f672f62019-12-10 10:32:29 +00002350void clean_acked_data_flush(void);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002351#endif
2352
David Brazdil0f672f62019-12-10 10:32:29 +00002353DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2354static inline void tcp_add_tx_delay(struct sk_buff *skb,
2355 const struct tcp_sock *tp)
2356{
2357 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2358 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2359}
2360
2361/* Compute Earliest Departure Time for some control packets
2362 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2363 */
2364static inline u64 tcp_transmit_time(const struct sock *sk)
2365{
2366 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2367 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2368 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2369
2370 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2371 }
2372 return 0;
2373}
2374
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002375#endif /* _TCP_H */