blob: 2c11eb4abdd246ba7ae6759f79376444c6774a50 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001/* SPDX-License-Identifier: GPL-2.0-or-later */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000034 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h> /* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/filter.h>
60#include <linux/rculist_nulls.h>
61#include <linux/poll.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020062#include <linux/sockptr.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000063
64#include <linux/atomic.h>
65#include <linux/refcount.h>
66#include <net/dst.h>
67#include <net/checksum.h>
68#include <net/tcp_states.h>
69#include <linux/net_tstamp.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000070#include <net/l3mdev.h>
71
72/*
73 * This structure really needs to be cleaned up.
74 * Most of it is for TCP, and not used by any of
75 * the other protocols.
76 */
77
78/* Define this to get the SOCK_DBG debugging facility. */
79#define SOCK_DEBUGGING
80#ifdef SOCK_DEBUGGING
81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
82 printk(KERN_DEBUG msg); } while (0)
83#else
84/* Validate arguments and do nothing */
85static inline __printf(2, 3)
86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
87{
88}
89#endif
90
91/* This is the per-socket lock. The spinlock provides a synchronization
92 * between user contexts and software interrupt processing, whereas the
93 * mini-semaphore synchronizes multiple users amongst themselves.
94 */
95typedef struct {
96 spinlock_t slock;
97 int owned;
98 wait_queue_head_t wq;
99 /*
100 * We express the mutex-alike socket_lock semantics
101 * to the lock validator by explicitly managing
102 * the slock as a lock variant (in addition to
103 * the slock itself):
104 */
105#ifdef CONFIG_DEBUG_LOCK_ALLOC
106 struct lockdep_map dep_map;
107#endif
108} socket_lock_t;
109
110struct sock;
111struct proto;
112struct net;
113
114typedef __u32 __bitwise __portpair;
115typedef __u64 __bitwise __addrpair;
116
117/**
118 * struct sock_common - minimal network layer representation of sockets
119 * @skc_daddr: Foreign IPv4 addr
120 * @skc_rcv_saddr: Bound local IPv4 addr
Olivier Deprez157378f2022-04-04 15:47:50 +0200121 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000122 * @skc_hash: hash value used with various protocol lookup tables
123 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
124 * @skc_dport: placeholder for inet_dport/tw_dport
125 * @skc_num: placeholder for inet_num/tw_num
Olivier Deprez157378f2022-04-04 15:47:50 +0200126 * @skc_portpair: __u32 union of @skc_dport & @skc_num
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
Olivier Deprez157378f2022-04-04 15:47:50 +0200131 * @skc_ipv6only: socket is IPV6 only
132 * @skc_net_refcnt: socket is using net ref counting
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
Olivier Deprez157378f2022-04-04 15:47:50 +0200138 * @skc_v6_daddr: IPV6 destination address
139 * @skc_v6_rcv_saddr: IPV6 source address
140 * @skc_cookie: socket's cookie value
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000141 * @skc_node: main hash linkage for various protocol lookup tables
142 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
143 * @skc_tx_queue_mapping: tx queue number for this connection
144 * @skc_rx_queue_mapping: rx queue number for this connection
145 * @skc_flags: place holder for sk_flags
146 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
147 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
Olivier Deprez157378f2022-04-04 15:47:50 +0200148 * @skc_listener: connection request listener socket (aka rsk_listener)
149 * [union with @skc_flags]
150 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
151 * [union with @skc_flags]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000152 * @skc_incoming_cpu: record/match cpu processing incoming packets
Olivier Deprez157378f2022-04-04 15:47:50 +0200153 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
154 * [union with @skc_incoming_cpu]
155 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
156 * [union with @skc_incoming_cpu]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000157 * @skc_refcnt: reference count
158 *
159 * This is the minimal network layer representation of sockets, the header
160 * for struct sock and struct inet_timewait_sock.
161 */
162struct sock_common {
163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 * address on 64bit arches : cf INET_MATCH()
165 */
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
171 };
172 };
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
176 };
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
183 };
184 };
185
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_node skc_portaddr_node;
196 };
197 struct proto *skc_prot;
198 possible_net_t skc_net;
199
200#if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203#endif
204
205 atomic64_t skc_cookie;
206
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
211 */
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 };
217 /*
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
220 */
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
227 };
228 unsigned short skc_tx_queue_mapping;
229#ifdef CONFIG_XPS
230 unsigned short skc_rx_queue_mapping;
231#endif
232 union {
233 int skc_incoming_cpu;
234 u32 skc_rcv_wnd;
235 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
236 };
237
238 refcount_t skc_refcnt;
239 /* private: */
240 int skc_dontcopy_end[0];
241 union {
242 u32 skc_rxhash;
243 u32 skc_window_clamp;
244 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
245 };
246 /* public: */
247};
248
Olivier Deprez157378f2022-04-04 15:47:50 +0200249struct bpf_local_storage;
David Brazdil0f672f62019-12-10 10:32:29 +0000250
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000251/**
252 * struct sock - network layer representation of sockets
253 * @__sk_common: shared layout with inet_timewait_sock
254 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
255 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
256 * @sk_lock: synchronizer
257 * @sk_kern_sock: True if sock is using kernel lock classes
258 * @sk_rcvbuf: size of receive buffer in bytes
259 * @sk_wq: sock wait queue and async head
260 * @sk_rx_dst: receive input route used by early demux
261 * @sk_dst_cache: destination cache
262 * @sk_dst_pending_confirm: need to confirm neighbour
263 * @sk_policy: flow policy
Olivier Deprez157378f2022-04-04 15:47:50 +0200264 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_napi_id: id of the last napi context to receive data for sk
273 * @sk_ll_usec: usecs to busypoll when there is no data
274 * @sk_allocation: allocation mode
275 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
276 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
277 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
278 * @sk_sndbuf: size of send buffer in bytes
279 * @__sk_flags_offset: empty field used to determine location of bitfield
280 * @sk_padding: unused element for alignment
281 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
282 * @sk_no_check_rx: allow zero checksum in RX packets
283 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
284 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
Olivier Deprez157378f2022-04-04 15:47:50 +0200285 * @sk_route_forced_caps: static, forced route capabilities
286 * (set in tcp_init_sock())
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000287 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
288 * @sk_gso_max_size: Maximum GSO segment size to build
289 * @sk_gso_max_segs: Maximum number of GSO segments
290 * @sk_pacing_shift: scaling factor for TCP Small Queues
291 * @sk_lingertime: %SO_LINGER l_linger setting
292 * @sk_backlog: always used with the per-socket spinlock held
293 * @sk_callback_lock: used with the callbacks in the end of this struct
294 * @sk_error_queue: rarely used
295 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
296 * IPV6_ADDRFORM for instance)
297 * @sk_err: last error
298 * @sk_err_soft: errors that don't cause failure but are the cause of a
299 * persistent failure not just 'timed out'
300 * @sk_drops: raw/udp drops counter
301 * @sk_ack_backlog: current listen backlog
302 * @sk_max_ack_backlog: listen backlog set in listen()
303 * @sk_uid: user id of owner
304 * @sk_priority: %SO_PRIORITY setting
305 * @sk_type: socket type (%SOCK_STREAM, etc)
306 * @sk_protocol: which protocol this socket belongs in this network family
307 * @sk_peer_pid: &struct pid for this socket's peer
308 * @sk_peer_cred: %SO_PEERCRED setting
309 * @sk_rcvlowat: %SO_RCVLOWAT setting
310 * @sk_rcvtimeo: %SO_RCVTIMEO setting
311 * @sk_sndtimeo: %SO_SNDTIMEO setting
312 * @sk_txhash: computed flow hash for use on transmit
313 * @sk_filter: socket filtering instructions
314 * @sk_timer: sock cleanup timer
315 * @sk_stamp: time stamp of last packet received
David Brazdil0f672f62019-12-10 10:32:29 +0000316 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000317 * @sk_tsflags: SO_TIMESTAMPING socket options
318 * @sk_tskey: counter to disambiguate concurrent tstamp requests
319 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
320 * @sk_socket: Identd and reporting IO signals
321 * @sk_user_data: RPC layer private data
322 * @sk_frag: cached page frag
323 * @sk_peek_off: current peek_offset value
324 * @sk_send_head: front of stuff to transmit
Olivier Deprez157378f2022-04-04 15:47:50 +0200325 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
326 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000327 * @sk_security: used by security modules
328 * @sk_mark: generic packet mark
329 * @sk_cgrp_data: cgroup data for this cgroup
330 * @sk_memcg: this socket's memory cgroup association
331 * @sk_write_pending: a write to stream socket waits to start
332 * @sk_state_change: callback to indicate change in the state of the sock
333 * @sk_data_ready: callback to indicate there is data to be processed
334 * @sk_write_space: callback to indicate there is bf sending space available
335 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
336 * @sk_backlog_rcv: callback to process the backlog
Olivier Deprez157378f2022-04-04 15:47:50 +0200337 * @sk_validate_xmit_skb: ptr to an optional validate function
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000338 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
339 * @sk_reuseport_cb: reuseport group container
Olivier Deprez157378f2022-04-04 15:47:50 +0200340 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000341 * @sk_rcu: used during RCU grace period
342 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
343 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
Olivier Deprez157378f2022-04-04 15:47:50 +0200344 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000345 * @sk_txtime_unused: unused txtime flags
346 */
347struct sock {
348 /*
349 * Now struct inet_timewait_sock also uses sock_common, so please just
350 * don't add nothing before this first member (__sk_common) --acme
351 */
352 struct sock_common __sk_common;
353#define sk_node __sk_common.skc_node
354#define sk_nulls_node __sk_common.skc_nulls_node
355#define sk_refcnt __sk_common.skc_refcnt
356#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
357#ifdef CONFIG_XPS
358#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
359#endif
360
361#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
362#define sk_dontcopy_end __sk_common.skc_dontcopy_end
363#define sk_hash __sk_common.skc_hash
364#define sk_portpair __sk_common.skc_portpair
365#define sk_num __sk_common.skc_num
366#define sk_dport __sk_common.skc_dport
367#define sk_addrpair __sk_common.skc_addrpair
368#define sk_daddr __sk_common.skc_daddr
369#define sk_rcv_saddr __sk_common.skc_rcv_saddr
370#define sk_family __sk_common.skc_family
371#define sk_state __sk_common.skc_state
372#define sk_reuse __sk_common.skc_reuse
373#define sk_reuseport __sk_common.skc_reuseport
374#define sk_ipv6only __sk_common.skc_ipv6only
375#define sk_net_refcnt __sk_common.skc_net_refcnt
376#define sk_bound_dev_if __sk_common.skc_bound_dev_if
377#define sk_bind_node __sk_common.skc_bind_node
378#define sk_prot __sk_common.skc_prot
379#define sk_net __sk_common.skc_net
380#define sk_v6_daddr __sk_common.skc_v6_daddr
381#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
382#define sk_cookie __sk_common.skc_cookie
383#define sk_incoming_cpu __sk_common.skc_incoming_cpu
384#define sk_flags __sk_common.skc_flags
385#define sk_rxhash __sk_common.skc_rxhash
386
387 socket_lock_t sk_lock;
388 atomic_t sk_drops;
389 int sk_rcvlowat;
390 struct sk_buff_head sk_error_queue;
David Brazdil0f672f62019-12-10 10:32:29 +0000391 struct sk_buff *sk_rx_skb_cache;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000392 struct sk_buff_head sk_receive_queue;
393 /*
394 * The backlog queue is special, it is always used with
395 * the per-socket spinlock held and requires low latency
396 * access. Therefore we special case it's implementation.
397 * Note : rmem_alloc is in this structure to fill a hole
398 * on 64bit arches, not because its logically part of
399 * backlog.
400 */
401 struct {
402 atomic_t rmem_alloc;
403 int len;
404 struct sk_buff *head;
405 struct sk_buff *tail;
406 } sk_backlog;
407#define sk_rmem_alloc sk_backlog.rmem_alloc
408
409 int sk_forward_alloc;
410#ifdef CONFIG_NET_RX_BUSY_POLL
411 unsigned int sk_ll_usec;
412 /* ===== mostly read cache line ===== */
413 unsigned int sk_napi_id;
414#endif
415 int sk_rcvbuf;
416
417 struct sk_filter __rcu *sk_filter;
418 union {
419 struct socket_wq __rcu *sk_wq;
Olivier Deprez157378f2022-04-04 15:47:50 +0200420 /* private: */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000421 struct socket_wq *sk_wq_raw;
Olivier Deprez157378f2022-04-04 15:47:50 +0200422 /* public: */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000423 };
424#ifdef CONFIG_XFRM
425 struct xfrm_policy __rcu *sk_policy[2];
426#endif
427 struct dst_entry *sk_rx_dst;
428 struct dst_entry __rcu *sk_dst_cache;
429 atomic_t sk_omem_alloc;
430 int sk_sndbuf;
431
432 /* ===== cache line for TX ===== */
433 int sk_wmem_queued;
434 refcount_t sk_wmem_alloc;
435 unsigned long sk_tsq_flags;
436 union {
437 struct sk_buff *sk_send_head;
438 struct rb_root tcp_rtx_queue;
439 };
David Brazdil0f672f62019-12-10 10:32:29 +0000440 struct sk_buff *sk_tx_skb_cache;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000441 struct sk_buff_head sk_write_queue;
442 __s32 sk_peek_off;
443 int sk_write_pending;
444 __u32 sk_dst_pending_confirm;
445 u32 sk_pacing_status; /* see enum sk_pacing */
446 long sk_sndtimeo;
447 struct timer_list sk_timer;
448 __u32 sk_priority;
449 __u32 sk_mark;
David Brazdil0f672f62019-12-10 10:32:29 +0000450 unsigned long sk_pacing_rate; /* bytes per second */
451 unsigned long sk_max_pacing_rate;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000452 struct page_frag sk_frag;
453 netdev_features_t sk_route_caps;
454 netdev_features_t sk_route_nocaps;
455 netdev_features_t sk_route_forced_caps;
456 int sk_gso_type;
457 unsigned int sk_gso_max_size;
458 gfp_t sk_allocation;
459 __u32 sk_txhash;
460
461 /*
462 * Because of non atomicity rules, all
463 * changes are protected by socket lock.
464 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200465 u8 sk_padding : 1,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000466 sk_kern_sock : 1,
467 sk_no_check_tx : 1,
468 sk_no_check_rx : 1,
Olivier Deprez157378f2022-04-04 15:47:50 +0200469 sk_userlocks : 4;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000470 u8 sk_pacing_shift;
Olivier Deprez157378f2022-04-04 15:47:50 +0200471 u16 sk_type;
472 u16 sk_protocol;
473 u16 sk_gso_max_segs;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000474 unsigned long sk_lingertime;
475 struct proto *sk_prot_creator;
476 rwlock_t sk_callback_lock;
477 int sk_err,
478 sk_err_soft;
479 u32 sk_ack_backlog;
480 u32 sk_max_ack_backlog;
481 kuid_t sk_uid;
Olivier Deprez157378f2022-04-04 15:47:50 +0200482 spinlock_t sk_peer_lock;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000483 struct pid *sk_peer_pid;
484 const struct cred *sk_peer_cred;
Olivier Deprez157378f2022-04-04 15:47:50 +0200485
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000486 long sk_rcvtimeo;
487 ktime_t sk_stamp;
David Brazdil0f672f62019-12-10 10:32:29 +0000488#if BITS_PER_LONG==32
489 seqlock_t sk_stamp_seq;
490#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000491 u16 sk_tsflags;
492 u8 sk_shutdown;
493 u32 sk_tskey;
494 atomic_t sk_zckey;
495
496 u8 sk_clockid;
497 u8 sk_txtime_deadline_mode : 1,
498 sk_txtime_report_errors : 1,
499 sk_txtime_unused : 6;
500
501 struct socket *sk_socket;
502 void *sk_user_data;
503#ifdef CONFIG_SECURITY
504 void *sk_security;
505#endif
506 struct sock_cgroup_data sk_cgrp_data;
507 struct mem_cgroup *sk_memcg;
508 void (*sk_state_change)(struct sock *sk);
509 void (*sk_data_ready)(struct sock *sk);
510 void (*sk_write_space)(struct sock *sk);
511 void (*sk_error_report)(struct sock *sk);
512 int (*sk_backlog_rcv)(struct sock *sk,
513 struct sk_buff *skb);
514#ifdef CONFIG_SOCK_VALIDATE_XMIT
515 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
516 struct net_device *dev,
517 struct sk_buff *skb);
518#endif
519 void (*sk_destruct)(struct sock *sk);
520 struct sock_reuseport __rcu *sk_reuseport_cb;
David Brazdil0f672f62019-12-10 10:32:29 +0000521#ifdef CONFIG_BPF_SYSCALL
Olivier Deprez157378f2022-04-04 15:47:50 +0200522 struct bpf_local_storage __rcu *sk_bpf_storage;
David Brazdil0f672f62019-12-10 10:32:29 +0000523#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000524 struct rcu_head sk_rcu;
525};
526
527enum sk_pacing {
528 SK_PACING_NONE = 0,
529 SK_PACING_NEEDED = 1,
530 SK_PACING_FQ = 2,
531};
532
Olivier Deprez157378f2022-04-04 15:47:50 +0200533/* Pointer stored in sk_user_data might not be suitable for copying
534 * when cloning the socket. For instance, it can point to a reference
535 * counted object. sk_user_data bottom bit is set if pointer must not
536 * be copied.
537 */
538#define SK_USER_DATA_NOCOPY 1UL
539#define SK_USER_DATA_BPF 2UL /* Managed by BPF */
540#define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
541
542/**
543 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
544 * @sk: socket
545 */
546static inline bool sk_user_data_is_nocopy(const struct sock *sk)
547{
548 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
549}
550
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000551#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
552
Olivier Deprez157378f2022-04-04 15:47:50 +0200553#define rcu_dereference_sk_user_data(sk) \
554({ \
555 void *__tmp = rcu_dereference(__sk_user_data((sk))); \
556 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
557})
558#define rcu_assign_sk_user_data(sk, ptr) \
559({ \
560 uintptr_t __tmp = (uintptr_t)(ptr); \
561 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
562 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
563})
564#define rcu_assign_sk_user_data_nocopy(sk, ptr) \
565({ \
566 uintptr_t __tmp = (uintptr_t)(ptr); \
567 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
568 rcu_assign_pointer(__sk_user_data((sk)), \
569 __tmp | SK_USER_DATA_NOCOPY); \
570})
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000571
572/*
573 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
574 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
575 * on a socket means that the socket will reuse everybody else's port
576 * without looking at the other's sk_reuse value.
577 */
578
579#define SK_NO_REUSE 0
580#define SK_CAN_REUSE 1
581#define SK_FORCE_REUSE 2
582
583int sk_set_peek_off(struct sock *sk, int val);
584
585static inline int sk_peek_offset(struct sock *sk, int flags)
586{
587 if (unlikely(flags & MSG_PEEK)) {
588 return READ_ONCE(sk->sk_peek_off);
589 }
590
591 return 0;
592}
593
594static inline void sk_peek_offset_bwd(struct sock *sk, int val)
595{
596 s32 off = READ_ONCE(sk->sk_peek_off);
597
598 if (unlikely(off >= 0)) {
599 off = max_t(s32, off - val, 0);
600 WRITE_ONCE(sk->sk_peek_off, off);
601 }
602}
603
604static inline void sk_peek_offset_fwd(struct sock *sk, int val)
605{
606 sk_peek_offset_bwd(sk, -val);
607}
608
609/*
610 * Hashed lists helper routines
611 */
612static inline struct sock *sk_entry(const struct hlist_node *node)
613{
614 return hlist_entry(node, struct sock, sk_node);
615}
616
617static inline struct sock *__sk_head(const struct hlist_head *head)
618{
619 return hlist_entry(head->first, struct sock, sk_node);
620}
621
622static inline struct sock *sk_head(const struct hlist_head *head)
623{
624 return hlist_empty(head) ? NULL : __sk_head(head);
625}
626
627static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
628{
629 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
630}
631
632static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
633{
634 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
635}
636
637static inline struct sock *sk_next(const struct sock *sk)
638{
639 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
640}
641
642static inline struct sock *sk_nulls_next(const struct sock *sk)
643{
644 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
645 hlist_nulls_entry(sk->sk_nulls_node.next,
646 struct sock, sk_nulls_node) :
647 NULL;
648}
649
650static inline bool sk_unhashed(const struct sock *sk)
651{
652 return hlist_unhashed(&sk->sk_node);
653}
654
655static inline bool sk_hashed(const struct sock *sk)
656{
657 return !sk_unhashed(sk);
658}
659
660static inline void sk_node_init(struct hlist_node *node)
661{
662 node->pprev = NULL;
663}
664
665static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
666{
667 node->pprev = NULL;
668}
669
670static inline void __sk_del_node(struct sock *sk)
671{
672 __hlist_del(&sk->sk_node);
673}
674
675/* NB: equivalent to hlist_del_init_rcu */
676static inline bool __sk_del_node_init(struct sock *sk)
677{
678 if (sk_hashed(sk)) {
679 __sk_del_node(sk);
680 sk_node_init(&sk->sk_node);
681 return true;
682 }
683 return false;
684}
685
686/* Grab socket reference count. This operation is valid only
687 when sk is ALREADY grabbed f.e. it is found in hash table
688 or a list and the lookup is made under lock preventing hash table
689 modifications.
690 */
691
692static __always_inline void sock_hold(struct sock *sk)
693{
694 refcount_inc(&sk->sk_refcnt);
695}
696
697/* Ungrab socket in the context, which assumes that socket refcnt
698 cannot hit zero, f.e. it is true in context of any socketcall.
699 */
700static __always_inline void __sock_put(struct sock *sk)
701{
702 refcount_dec(&sk->sk_refcnt);
703}
704
705static inline bool sk_del_node_init(struct sock *sk)
706{
707 bool rc = __sk_del_node_init(sk);
708
709 if (rc) {
710 /* paranoid for a while -acme */
711 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
712 __sock_put(sk);
713 }
714 return rc;
715}
716#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
717
718static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
719{
720 if (sk_hashed(sk)) {
721 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
722 return true;
723 }
724 return false;
725}
726
727static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
728{
729 bool rc = __sk_nulls_del_node_init_rcu(sk);
730
731 if (rc) {
732 /* paranoid for a while -acme */
733 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
734 __sock_put(sk);
735 }
736 return rc;
737}
738
739static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
740{
741 hlist_add_head(&sk->sk_node, list);
742}
743
744static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
745{
746 sock_hold(sk);
747 __sk_add_node(sk, list);
748}
749
750static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
751{
752 sock_hold(sk);
753 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
754 sk->sk_family == AF_INET6)
755 hlist_add_tail_rcu(&sk->sk_node, list);
756 else
757 hlist_add_head_rcu(&sk->sk_node, list);
758}
759
David Brazdil0f672f62019-12-10 10:32:29 +0000760static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
761{
762 sock_hold(sk);
763 hlist_add_tail_rcu(&sk->sk_node, list);
764}
765
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000766static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
767{
768 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
769}
770
Olivier Deprez0e641232021-09-23 10:07:05 +0200771static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
772{
773 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
774}
775
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000776static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
777{
778 sock_hold(sk);
779 __sk_nulls_add_node_rcu(sk, list);
780}
781
782static inline void __sk_del_bind_node(struct sock *sk)
783{
784 __hlist_del(&sk->sk_bind_node);
785}
786
787static inline void sk_add_bind_node(struct sock *sk,
788 struct hlist_head *list)
789{
790 hlist_add_head(&sk->sk_bind_node, list);
791}
792
793#define sk_for_each(__sk, list) \
794 hlist_for_each_entry(__sk, list, sk_node)
795#define sk_for_each_rcu(__sk, list) \
796 hlist_for_each_entry_rcu(__sk, list, sk_node)
797#define sk_nulls_for_each(__sk, node, list) \
798 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
799#define sk_nulls_for_each_rcu(__sk, node, list) \
800 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
801#define sk_for_each_from(__sk) \
802 hlist_for_each_entry_from(__sk, sk_node)
803#define sk_nulls_for_each_from(__sk, node) \
804 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
805 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
806#define sk_for_each_safe(__sk, tmp, list) \
807 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
808#define sk_for_each_bound(__sk, list) \
809 hlist_for_each_entry(__sk, list, sk_bind_node)
810
811/**
812 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
813 * @tpos: the type * to use as a loop cursor.
814 * @pos: the &struct hlist_node to use as a loop cursor.
815 * @head: the head for your list.
816 * @offset: offset of hlist_node within the struct.
817 *
818 */
819#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
820 for (pos = rcu_dereference(hlist_first_rcu(head)); \
821 pos != NULL && \
822 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
823 pos = rcu_dereference(hlist_next_rcu(pos)))
824
825static inline struct user_namespace *sk_user_ns(struct sock *sk)
826{
827 /* Careful only use this in a context where these parameters
828 * can not change and must all be valid, such as recvmsg from
829 * userspace.
830 */
831 return sk->sk_socket->file->f_cred->user_ns;
832}
833
834/* Sock flags */
835enum sock_flags {
836 SOCK_DEAD,
837 SOCK_DONE,
838 SOCK_URGINLINE,
839 SOCK_KEEPOPEN,
840 SOCK_LINGER,
841 SOCK_DESTROY,
842 SOCK_BROADCAST,
843 SOCK_TIMESTAMP,
844 SOCK_ZAPPED,
845 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
846 SOCK_DBG, /* %SO_DEBUG setting */
847 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
848 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
849 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000850 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
851 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
852 SOCK_FASYNC, /* fasync() active */
853 SOCK_RXQ_OVFL,
854 SOCK_ZEROCOPY, /* buffers from userspace */
855 SOCK_WIFI_STATUS, /* push wifi status to userspace */
856 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
857 * Will use last 4 bytes of packet sent from
858 * user-space instead.
859 */
860 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
861 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
862 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
863 SOCK_TXTIME,
David Brazdil0f672f62019-12-10 10:32:29 +0000864 SOCK_XDP, /* XDP is attached */
865 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000866};
867
868#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
869
870static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
871{
872 nsk->sk_flags = osk->sk_flags;
873}
874
875static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
876{
877 __set_bit(flag, &sk->sk_flags);
878}
879
880static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
881{
882 __clear_bit(flag, &sk->sk_flags);
883}
884
Olivier Deprez157378f2022-04-04 15:47:50 +0200885static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
886 int valbool)
887{
888 if (valbool)
889 sock_set_flag(sk, bit);
890 else
891 sock_reset_flag(sk, bit);
892}
893
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000894static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
895{
896 return test_bit(flag, &sk->sk_flags);
897}
898
899#ifdef CONFIG_NET
900DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
901static inline int sk_memalloc_socks(void)
902{
903 return static_branch_unlikely(&memalloc_socks_key);
904}
Olivier Deprez0e641232021-09-23 10:07:05 +0200905
906void __receive_sock(struct file *file);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000907#else
908
909static inline int sk_memalloc_socks(void)
910{
911 return 0;
912}
913
Olivier Deprez0e641232021-09-23 10:07:05 +0200914static inline void __receive_sock(struct file *file)
915{ }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000916#endif
917
918static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
919{
920 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
921}
922
923static inline void sk_acceptq_removed(struct sock *sk)
924{
Olivier Deprez157378f2022-04-04 15:47:50 +0200925 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000926}
927
928static inline void sk_acceptq_added(struct sock *sk)
929{
Olivier Deprez157378f2022-04-04 15:47:50 +0200930 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000931}
932
933static inline bool sk_acceptq_is_full(const struct sock *sk)
934{
Olivier Deprez157378f2022-04-04 15:47:50 +0200935 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000936}
937
938/*
939 * Compute minimal free write space needed to queue new packets.
940 */
941static inline int sk_stream_min_wspace(const struct sock *sk)
942{
David Brazdil0f672f62019-12-10 10:32:29 +0000943 return READ_ONCE(sk->sk_wmem_queued) >> 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000944}
945
946static inline int sk_stream_wspace(const struct sock *sk)
947{
David Brazdil0f672f62019-12-10 10:32:29 +0000948 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
949}
950
951static inline void sk_wmem_queued_add(struct sock *sk, int val)
952{
953 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000954}
955
956void sk_stream_write_space(struct sock *sk);
957
958/* OOB backlog add */
959static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
960{
961 /* dont let skb dst not refcounted, we are going to leave rcu lock */
962 skb_dst_force(skb);
963
964 if (!sk->sk_backlog.tail)
Olivier Deprez0e641232021-09-23 10:07:05 +0200965 WRITE_ONCE(sk->sk_backlog.head, skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000966 else
967 sk->sk_backlog.tail->next = skb;
968
Olivier Deprez0e641232021-09-23 10:07:05 +0200969 WRITE_ONCE(sk->sk_backlog.tail, skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000970 skb->next = NULL;
971}
972
973/*
974 * Take into account size of receive queue and backlog queue
975 * Do not take into account this skb truesize,
976 * to allow even a single big packet to come.
977 */
978static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
979{
980 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
981
982 return qsize > limit;
983}
984
985/* The per-socket spinlock must be held here. */
986static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
987 unsigned int limit)
988{
989 if (sk_rcvqueues_full(sk, limit))
990 return -ENOBUFS;
991
992 /*
993 * If the skb was allocated from pfmemalloc reserves, only
994 * allow SOCK_MEMALLOC sockets to use it as this socket is
995 * helping free memory
996 */
997 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
998 return -ENOMEM;
999
1000 __sk_add_backlog(sk, skb);
1001 sk->sk_backlog.len += skb->truesize;
1002 return 0;
1003}
1004
1005int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1006
1007static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1008{
1009 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1010 return __sk_backlog_rcv(sk, skb);
1011
1012 return sk->sk_backlog_rcv(sk, skb);
1013}
1014
1015static inline void sk_incoming_cpu_update(struct sock *sk)
1016{
1017 int cpu = raw_smp_processor_id();
1018
David Brazdil0f672f62019-12-10 10:32:29 +00001019 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1020 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001021}
1022
1023static inline void sock_rps_record_flow_hash(__u32 hash)
1024{
1025#ifdef CONFIG_RPS
1026 struct rps_sock_flow_table *sock_flow_table;
1027
1028 rcu_read_lock();
1029 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1030 rps_record_sock_flow(sock_flow_table, hash);
1031 rcu_read_unlock();
1032#endif
1033}
1034
1035static inline void sock_rps_record_flow(const struct sock *sk)
1036{
1037#ifdef CONFIG_RPS
David Brazdil0f672f62019-12-10 10:32:29 +00001038 if (static_branch_unlikely(&rfs_needed)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001039 /* Reading sk->sk_rxhash might incur an expensive cache line
1040 * miss.
1041 *
1042 * TCP_ESTABLISHED does cover almost all states where RFS
1043 * might be useful, and is cheaper [1] than testing :
1044 * IPv4: inet_sk(sk)->inet_daddr
1045 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1046 * OR an additional socket flag
1047 * [1] : sk_state and sk_prot are in the same cache line.
1048 */
1049 if (sk->sk_state == TCP_ESTABLISHED)
1050 sock_rps_record_flow_hash(sk->sk_rxhash);
1051 }
1052#endif
1053}
1054
1055static inline void sock_rps_save_rxhash(struct sock *sk,
1056 const struct sk_buff *skb)
1057{
1058#ifdef CONFIG_RPS
1059 if (unlikely(sk->sk_rxhash != skb->hash))
1060 sk->sk_rxhash = skb->hash;
1061#endif
1062}
1063
1064static inline void sock_rps_reset_rxhash(struct sock *sk)
1065{
1066#ifdef CONFIG_RPS
1067 sk->sk_rxhash = 0;
1068#endif
1069}
1070
1071#define sk_wait_event(__sk, __timeo, __condition, __wait) \
1072 ({ int __rc; \
1073 release_sock(__sk); \
1074 __rc = __condition; \
1075 if (!__rc) { \
1076 *(__timeo) = wait_woken(__wait, \
1077 TASK_INTERRUPTIBLE, \
1078 *(__timeo)); \
1079 } \
1080 sched_annotate_sleep(); \
1081 lock_sock(__sk); \
1082 __rc = __condition; \
1083 __rc; \
1084 })
1085
1086int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1087int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1088void sk_stream_wait_close(struct sock *sk, long timeo_p);
1089int sk_stream_error(struct sock *sk, int flags, int err);
1090void sk_stream_kill_queues(struct sock *sk);
1091void sk_set_memalloc(struct sock *sk);
1092void sk_clear_memalloc(struct sock *sk);
1093
1094void __sk_flush_backlog(struct sock *sk);
1095
1096static inline bool sk_flush_backlog(struct sock *sk)
1097{
1098 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1099 __sk_flush_backlog(sk);
1100 return true;
1101 }
1102 return false;
1103}
1104
1105int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1106
1107struct request_sock_ops;
1108struct timewait_sock_ops;
1109struct inet_hashinfo;
1110struct raw_hashinfo;
1111struct smc_hashinfo;
1112struct module;
1113
1114/*
1115 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1116 * un-modified. Special care is taken when initializing object to zero.
1117 */
1118static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1119{
1120 if (offsetof(struct sock, sk_node.next) != 0)
1121 memset(sk, 0, offsetof(struct sock, sk_node.next));
1122 memset(&sk->sk_node.pprev, 0,
1123 size - offsetof(struct sock, sk_node.pprev));
1124}
1125
1126/* Networking protocol blocks we attach to sockets.
1127 * socket layer -> transport layer interface
1128 */
1129struct proto {
1130 void (*close)(struct sock *sk,
1131 long timeout);
1132 int (*pre_connect)(struct sock *sk,
1133 struct sockaddr *uaddr,
1134 int addr_len);
1135 int (*connect)(struct sock *sk,
1136 struct sockaddr *uaddr,
1137 int addr_len);
1138 int (*disconnect)(struct sock *sk, int flags);
1139
1140 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1141 bool kern);
1142
1143 int (*ioctl)(struct sock *sk, int cmd,
1144 unsigned long arg);
1145 int (*init)(struct sock *sk);
1146 void (*destroy)(struct sock *sk);
1147 void (*shutdown)(struct sock *sk, int how);
1148 int (*setsockopt)(struct sock *sk, int level,
Olivier Deprez157378f2022-04-04 15:47:50 +02001149 int optname, sockptr_t optval,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001150 unsigned int optlen);
1151 int (*getsockopt)(struct sock *sk, int level,
1152 int optname, char __user *optval,
1153 int __user *option);
1154 void (*keepalive)(struct sock *sk, int valbool);
1155#ifdef CONFIG_COMPAT
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001156 int (*compat_ioctl)(struct sock *sk,
1157 unsigned int cmd, unsigned long arg);
1158#endif
1159 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1160 size_t len);
1161 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1162 size_t len, int noblock, int flags,
1163 int *addr_len);
1164 int (*sendpage)(struct sock *sk, struct page *page,
1165 int offset, size_t size, int flags);
1166 int (*bind)(struct sock *sk,
Olivier Deprez157378f2022-04-04 15:47:50 +02001167 struct sockaddr *addr, int addr_len);
1168 int (*bind_add)(struct sock *sk,
1169 struct sockaddr *addr, int addr_len);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001170
1171 int (*backlog_rcv) (struct sock *sk,
1172 struct sk_buff *skb);
1173
1174 void (*release_cb)(struct sock *sk);
1175
1176 /* Keeping track of sk's, looking them up, and port selection methods. */
1177 int (*hash)(struct sock *sk);
1178 void (*unhash)(struct sock *sk);
1179 void (*rehash)(struct sock *sk);
1180 int (*get_port)(struct sock *sk, unsigned short snum);
1181
1182 /* Keeping track of sockets in use */
1183#ifdef CONFIG_PROC_FS
1184 unsigned int inuse_idx;
1185#endif
1186
David Brazdil0f672f62019-12-10 10:32:29 +00001187 bool (*stream_memory_free)(const struct sock *sk, int wake);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001188 bool (*stream_memory_read)(const struct sock *sk);
1189 /* Memory pressure */
1190 void (*enter_memory_pressure)(struct sock *sk);
1191 void (*leave_memory_pressure)(struct sock *sk);
1192 atomic_long_t *memory_allocated; /* Current allocated memory. */
1193 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1194 /*
1195 * Pressure flag: try to collapse.
1196 * Technical note: it is used by multiple contexts non atomically.
1197 * All the __sk_mem_schedule() is of this nature: accounting
1198 * is strict, actions are advisory and have some latency.
1199 */
1200 unsigned long *memory_pressure;
1201 long *sysctl_mem;
1202
1203 int *sysctl_wmem;
1204 int *sysctl_rmem;
1205 u32 sysctl_wmem_offset;
1206 u32 sysctl_rmem_offset;
1207
1208 int max_header;
1209 bool no_autobind;
1210
1211 struct kmem_cache *slab;
1212 unsigned int obj_size;
1213 slab_flags_t slab_flags;
1214 unsigned int useroffset; /* Usercopy region offset */
1215 unsigned int usersize; /* Usercopy region size */
1216
Olivier Deprez157378f2022-04-04 15:47:50 +02001217 unsigned int __percpu *orphan_count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001218
1219 struct request_sock_ops *rsk_prot;
1220 struct timewait_sock_ops *twsk_prot;
1221
1222 union {
1223 struct inet_hashinfo *hashinfo;
1224 struct udp_table *udp_table;
1225 struct raw_hashinfo *raw_hash;
1226 struct smc_hashinfo *smc_hash;
1227 } h;
1228
1229 struct module *owner;
1230
1231 char name[32];
1232
1233 struct list_head node;
1234#ifdef SOCK_REFCNT_DEBUG
1235 atomic_t socks;
1236#endif
1237 int (*diag_destroy)(struct sock *sk, int err);
1238} __randomize_layout;
1239
1240int proto_register(struct proto *prot, int alloc_slab);
1241void proto_unregister(struct proto *prot);
1242int sock_load_diag_module(int family, int protocol);
1243
1244#ifdef SOCK_REFCNT_DEBUG
1245static inline void sk_refcnt_debug_inc(struct sock *sk)
1246{
1247 atomic_inc(&sk->sk_prot->socks);
1248}
1249
1250static inline void sk_refcnt_debug_dec(struct sock *sk)
1251{
1252 atomic_dec(&sk->sk_prot->socks);
1253 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1254 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1255}
1256
1257static inline void sk_refcnt_debug_release(const struct sock *sk)
1258{
1259 if (refcount_read(&sk->sk_refcnt) != 1)
1260 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1261 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1262}
1263#else /* SOCK_REFCNT_DEBUG */
1264#define sk_refcnt_debug_inc(sk) do { } while (0)
1265#define sk_refcnt_debug_dec(sk) do { } while (0)
1266#define sk_refcnt_debug_release(sk) do { } while (0)
1267#endif /* SOCK_REFCNT_DEBUG */
1268
David Brazdil0f672f62019-12-10 10:32:29 +00001269static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001270{
David Brazdil0f672f62019-12-10 10:32:29 +00001271 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001272 return false;
1273
1274 return sk->sk_prot->stream_memory_free ?
David Brazdil0f672f62019-12-10 10:32:29 +00001275 sk->sk_prot->stream_memory_free(sk, wake) : true;
1276}
1277
1278static inline bool sk_stream_memory_free(const struct sock *sk)
1279{
1280 return __sk_stream_memory_free(sk, 0);
1281}
1282
1283static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1284{
1285 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1286 __sk_stream_memory_free(sk, wake);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001287}
1288
1289static inline bool sk_stream_is_writeable(const struct sock *sk)
1290{
David Brazdil0f672f62019-12-10 10:32:29 +00001291 return __sk_stream_is_writeable(sk, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001292}
1293
1294static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1295 struct cgroup *ancestor)
1296{
1297#ifdef CONFIG_SOCK_CGROUP_DATA
1298 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1299 ancestor);
1300#else
1301 return -ENOTSUPP;
1302#endif
1303}
1304
1305static inline bool sk_has_memory_pressure(const struct sock *sk)
1306{
1307 return sk->sk_prot->memory_pressure != NULL;
1308}
1309
1310static inline bool sk_under_memory_pressure(const struct sock *sk)
1311{
1312 if (!sk->sk_prot->memory_pressure)
1313 return false;
1314
1315 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1316 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1317 return true;
1318
1319 return !!*sk->sk_prot->memory_pressure;
1320}
1321
1322static inline long
1323sk_memory_allocated(const struct sock *sk)
1324{
1325 return atomic_long_read(sk->sk_prot->memory_allocated);
1326}
1327
1328static inline long
1329sk_memory_allocated_add(struct sock *sk, int amt)
1330{
1331 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1332}
1333
1334static inline void
1335sk_memory_allocated_sub(struct sock *sk, int amt)
1336{
1337 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1338}
1339
1340static inline void sk_sockets_allocated_dec(struct sock *sk)
1341{
1342 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1343}
1344
1345static inline void sk_sockets_allocated_inc(struct sock *sk)
1346{
1347 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1348}
1349
David Brazdil0f672f62019-12-10 10:32:29 +00001350static inline u64
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001351sk_sockets_allocated_read_positive(struct sock *sk)
1352{
1353 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1354}
1355
1356static inline int
1357proto_sockets_allocated_sum_positive(struct proto *prot)
1358{
1359 return percpu_counter_sum_positive(prot->sockets_allocated);
1360}
1361
1362static inline long
1363proto_memory_allocated(struct proto *prot)
1364{
1365 return atomic_long_read(prot->memory_allocated);
1366}
1367
1368static inline bool
1369proto_memory_pressure(struct proto *prot)
1370{
1371 if (!prot->memory_pressure)
1372 return false;
1373 return !!*prot->memory_pressure;
1374}
1375
1376
1377#ifdef CONFIG_PROC_FS
1378/* Called with local bh disabled */
1379void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1380int sock_prot_inuse_get(struct net *net, struct proto *proto);
1381int sock_inuse_get(struct net *net);
1382#else
1383static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1384 int inc)
1385{
1386}
1387#endif
1388
1389
1390/* With per-bucket locks this operation is not-atomic, so that
1391 * this version is not worse.
1392 */
1393static inline int __sk_prot_rehash(struct sock *sk)
1394{
1395 sk->sk_prot->unhash(sk);
1396 return sk->sk_prot->hash(sk);
1397}
1398
1399/* About 10 seconds */
1400#define SOCK_DESTROY_TIME (10*HZ)
1401
1402/* Sockets 0-1023 can't be bound to unless you are superuser */
1403#define PROT_SOCK 1024
1404
1405#define SHUTDOWN_MASK 3
1406#define RCV_SHUTDOWN 1
1407#define SEND_SHUTDOWN 2
1408
1409#define SOCK_SNDBUF_LOCK 1
1410#define SOCK_RCVBUF_LOCK 2
1411#define SOCK_BINDADDR_LOCK 4
1412#define SOCK_BINDPORT_LOCK 8
1413
1414struct socket_alloc {
1415 struct socket socket;
1416 struct inode vfs_inode;
1417};
1418
1419static inline struct socket *SOCKET_I(struct inode *inode)
1420{
1421 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1422}
1423
1424static inline struct inode *SOCK_INODE(struct socket *socket)
1425{
1426 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1427}
1428
1429/*
1430 * Functions for memory accounting
1431 */
1432int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1433int __sk_mem_schedule(struct sock *sk, int size, int kind);
1434void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1435void __sk_mem_reclaim(struct sock *sk, int amount);
1436
1437/* We used to have PAGE_SIZE here, but systems with 64KB pages
1438 * do not necessarily have 16x time more memory than 4KB ones.
1439 */
1440#define SK_MEM_QUANTUM 4096
1441#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1442#define SK_MEM_SEND 0
1443#define SK_MEM_RECV 1
1444
1445/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1446static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1447{
1448 long val = sk->sk_prot->sysctl_mem[index];
1449
1450#if PAGE_SIZE > SK_MEM_QUANTUM
1451 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1452#elif PAGE_SIZE < SK_MEM_QUANTUM
1453 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1454#endif
1455 return val;
1456}
1457
1458static inline int sk_mem_pages(int amt)
1459{
1460 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1461}
1462
1463static inline bool sk_has_account(struct sock *sk)
1464{
1465 /* return true if protocol supports memory accounting */
1466 return !!sk->sk_prot->memory_allocated;
1467}
1468
1469static inline bool sk_wmem_schedule(struct sock *sk, int size)
1470{
1471 if (!sk_has_account(sk))
1472 return true;
1473 return size <= sk->sk_forward_alloc ||
1474 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1475}
1476
1477static inline bool
1478sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1479{
1480 if (!sk_has_account(sk))
1481 return true;
Olivier Deprez157378f2022-04-04 15:47:50 +02001482 return size <= sk->sk_forward_alloc ||
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001483 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1484 skb_pfmemalloc(skb);
1485}
1486
1487static inline void sk_mem_reclaim(struct sock *sk)
1488{
1489 if (!sk_has_account(sk))
1490 return;
1491 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1492 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1493}
1494
1495static inline void sk_mem_reclaim_partial(struct sock *sk)
1496{
1497 if (!sk_has_account(sk))
1498 return;
1499 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1500 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1501}
1502
1503static inline void sk_mem_charge(struct sock *sk, int size)
1504{
1505 if (!sk_has_account(sk))
1506 return;
1507 sk->sk_forward_alloc -= size;
1508}
1509
1510static inline void sk_mem_uncharge(struct sock *sk, int size)
1511{
1512 if (!sk_has_account(sk))
1513 return;
1514 sk->sk_forward_alloc += size;
1515
1516 /* Avoid a possible overflow.
1517 * TCP send queues can make this happen, if sk_mem_reclaim()
1518 * is not called and more than 2 GBytes are released at once.
1519 *
1520 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1521 * no need to hold that much forward allocation anyway.
1522 */
1523 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1524 __sk_mem_reclaim(sk, 1 << 20);
1525}
1526
David Brazdil0f672f62019-12-10 10:32:29 +00001527DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001528static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1529{
David Brazdil0f672f62019-12-10 10:32:29 +00001530 sk_wmem_queued_add(sk, -skb->truesize);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001531 sk_mem_uncharge(sk, skb->truesize);
David Brazdil0f672f62019-12-10 10:32:29 +00001532 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1533 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001534 skb_ext_reset(skb);
David Brazdil0f672f62019-12-10 10:32:29 +00001535 skb_zcopy_clear(skb, true);
1536 sk->sk_tx_skb_cache = skb;
1537 return;
1538 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001539 __kfree_skb(skb);
1540}
1541
1542static inline void sock_release_ownership(struct sock *sk)
1543{
1544 if (sk->sk_lock.owned) {
1545 sk->sk_lock.owned = 0;
1546
1547 /* The sk_lock has mutex_unlock() semantics: */
Olivier Deprez157378f2022-04-04 15:47:50 +02001548 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001549 }
1550}
1551
1552/*
1553 * Macro so as to not evaluate some arguments when
1554 * lockdep is not enabled.
1555 *
1556 * Mark both the sk_lock and the sk_lock.slock as a
1557 * per-address-family lock class.
1558 */
1559#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1560do { \
1561 sk->sk_lock.owned = 0; \
1562 init_waitqueue_head(&sk->sk_lock.wq); \
1563 spin_lock_init(&(sk)->sk_lock.slock); \
1564 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1565 sizeof((sk)->sk_lock)); \
1566 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1567 (skey), (sname)); \
1568 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1569} while (0)
1570
1571#ifdef CONFIG_LOCKDEP
1572static inline bool lockdep_sock_is_held(const struct sock *sk)
1573{
1574 return lockdep_is_held(&sk->sk_lock) ||
1575 lockdep_is_held(&sk->sk_lock.slock);
1576}
1577#endif
1578
1579void lock_sock_nested(struct sock *sk, int subclass);
1580
1581static inline void lock_sock(struct sock *sk)
1582{
1583 lock_sock_nested(sk, 0);
1584}
1585
1586void __release_sock(struct sock *sk);
1587void release_sock(struct sock *sk);
1588
1589/* BH context may only use the following locking interface. */
1590#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1591#define bh_lock_sock_nested(__sk) \
1592 spin_lock_nested(&((__sk)->sk_lock.slock), \
1593 SINGLE_DEPTH_NESTING)
1594#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1595
1596bool lock_sock_fast(struct sock *sk);
1597/**
1598 * unlock_sock_fast - complement of lock_sock_fast
1599 * @sk: socket
1600 * @slow: slow mode
1601 *
1602 * fast unlock socket for user context.
1603 * If slow mode is on, we call regular release_sock()
1604 */
1605static inline void unlock_sock_fast(struct sock *sk, bool slow)
1606{
1607 if (slow)
1608 release_sock(sk);
1609 else
1610 spin_unlock_bh(&sk->sk_lock.slock);
1611}
1612
1613/* Used by processes to "lock" a socket state, so that
1614 * interrupts and bottom half handlers won't change it
1615 * from under us. It essentially blocks any incoming
1616 * packets, so that we won't get any new data or any
1617 * packets that change the state of the socket.
1618 *
1619 * While locked, BH processing will add new packets to
1620 * the backlog queue. This queue is processed by the
1621 * owner of the socket lock right before it is released.
1622 *
1623 * Since ~2.3.5 it is also exclusive sleep lock serializing
1624 * accesses from user process context.
1625 */
1626
1627static inline void sock_owned_by_me(const struct sock *sk)
1628{
1629#ifdef CONFIG_LOCKDEP
1630 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1631#endif
1632}
1633
1634static inline bool sock_owned_by_user(const struct sock *sk)
1635{
1636 sock_owned_by_me(sk);
1637 return sk->sk_lock.owned;
1638}
1639
1640static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1641{
1642 return sk->sk_lock.owned;
1643}
1644
1645/* no reclassification while locks are held */
1646static inline bool sock_allow_reclassification(const struct sock *csk)
1647{
1648 struct sock *sk = (struct sock *)csk;
1649
1650 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1651}
1652
1653struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1654 struct proto *prot, int kern);
1655void sk_free(struct sock *sk);
1656void sk_destruct(struct sock *sk);
1657struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1658void sk_free_unlock_clone(struct sock *sk);
1659
1660struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1661 gfp_t priority);
1662void __sock_wfree(struct sk_buff *skb);
1663void sock_wfree(struct sk_buff *skb);
1664struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1665 gfp_t priority);
1666void skb_orphan_partial(struct sk_buff *skb);
1667void sock_rfree(struct sk_buff *skb);
1668void sock_efree(struct sk_buff *skb);
1669#ifdef CONFIG_INET
1670void sock_edemux(struct sk_buff *skb);
Olivier Deprez157378f2022-04-04 15:47:50 +02001671void sock_pfree(struct sk_buff *skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001672#else
1673#define sock_edemux sock_efree
1674#endif
1675
1676int sock_setsockopt(struct socket *sock, int level, int op,
Olivier Deprez157378f2022-04-04 15:47:50 +02001677 sockptr_t optval, unsigned int optlen);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001678
1679int sock_getsockopt(struct socket *sock, int level, int op,
1680 char __user *optval, int __user *optlen);
David Brazdil0f672f62019-12-10 10:32:29 +00001681int sock_gettstamp(struct socket *sock, void __user *userstamp,
1682 bool timeval, bool time32);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001683struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1684 int noblock, int *errcode);
1685struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1686 unsigned long data_len, int noblock,
1687 int *errcode, int max_page_order);
1688void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1689void sock_kfree_s(struct sock *sk, void *mem, int size);
1690void sock_kzfree_s(struct sock *sk, void *mem, int size);
1691void sk_send_sigurg(struct sock *sk);
1692
1693struct sockcm_cookie {
1694 u64 transmit_time;
1695 u32 mark;
1696 u16 tsflags;
1697};
1698
1699static inline void sockcm_init(struct sockcm_cookie *sockc,
1700 const struct sock *sk)
1701{
1702 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1703}
1704
1705int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1706 struct sockcm_cookie *sockc);
1707int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1708 struct sockcm_cookie *sockc);
1709
1710/*
1711 * Functions to fill in entries in struct proto_ops when a protocol
1712 * does not implement a particular function.
1713 */
1714int sock_no_bind(struct socket *, struct sockaddr *, int);
1715int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1716int sock_no_socketpair(struct socket *, struct socket *);
1717int sock_no_accept(struct socket *, struct socket *, int, bool);
1718int sock_no_getname(struct socket *, struct sockaddr *, int);
1719int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1720int sock_no_listen(struct socket *, int);
1721int sock_no_shutdown(struct socket *, int);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001722int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1723int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1724int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1725int sock_no_mmap(struct file *file, struct socket *sock,
1726 struct vm_area_struct *vma);
1727ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1728 size_t size, int flags);
1729ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1730 int offset, size_t size, int flags);
1731
1732/*
1733 * Functions to fill in entries in struct proto_ops when a protocol
1734 * uses the inet style.
1735 */
1736int sock_common_getsockopt(struct socket *sock, int level, int optname,
1737 char __user *optval, int __user *optlen);
1738int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1739 int flags);
1740int sock_common_setsockopt(struct socket *sock, int level, int optname,
Olivier Deprez157378f2022-04-04 15:47:50 +02001741 sockptr_t optval, unsigned int optlen);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001742
1743void sk_common_release(struct sock *sk);
1744
1745/*
1746 * Default socket callbacks and setup code
1747 */
1748
1749/* Initialise core socket variables */
1750void sock_init_data(struct socket *sock, struct sock *sk);
1751
1752/*
1753 * Socket reference counting postulates.
1754 *
1755 * * Each user of socket SHOULD hold a reference count.
1756 * * Each access point to socket (an hash table bucket, reference from a list,
1757 * running timer, skb in flight MUST hold a reference count.
1758 * * When reference count hits 0, it means it will never increase back.
1759 * * When reference count hits 0, it means that no references from
1760 * outside exist to this socket and current process on current CPU
1761 * is last user and may/should destroy this socket.
1762 * * sk_free is called from any context: process, BH, IRQ. When
1763 * it is called, socket has no references from outside -> sk_free
1764 * may release descendant resources allocated by the socket, but
1765 * to the time when it is called, socket is NOT referenced by any
1766 * hash tables, lists etc.
1767 * * Packets, delivered from outside (from network or from another process)
1768 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1769 * when they sit in queue. Otherwise, packets will leak to hole, when
1770 * socket is looked up by one cpu and unhasing is made by another CPU.
1771 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1772 * (leak to backlog). Packet socket does all the processing inside
1773 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1774 * use separate SMP lock, so that they are prone too.
1775 */
1776
1777/* Ungrab socket and destroy it, if it was the last reference. */
1778static inline void sock_put(struct sock *sk)
1779{
1780 if (refcount_dec_and_test(&sk->sk_refcnt))
1781 sk_free(sk);
1782}
1783/* Generic version of sock_put(), dealing with all sockets
1784 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1785 */
1786void sock_gen_put(struct sock *sk);
1787
1788int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1789 unsigned int trim_cap, bool refcounted);
1790static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1791 const int nested)
1792{
1793 return __sk_receive_skb(sk, skb, nested, 1, true);
1794}
1795
1796static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1797{
1798 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1799 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1800 return;
1801 sk->sk_tx_queue_mapping = tx_queue;
1802}
1803
1804#define NO_QUEUE_MAPPING USHRT_MAX
1805
1806static inline void sk_tx_queue_clear(struct sock *sk)
1807{
1808 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1809}
1810
1811static inline int sk_tx_queue_get(const struct sock *sk)
1812{
1813 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1814 return sk->sk_tx_queue_mapping;
1815
1816 return -1;
1817}
1818
1819static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1820{
1821#ifdef CONFIG_XPS
1822 if (skb_rx_queue_recorded(skb)) {
1823 u16 rx_queue = skb_get_rx_queue(skb);
1824
1825 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1826 return;
1827
1828 sk->sk_rx_queue_mapping = rx_queue;
1829 }
1830#endif
1831}
1832
1833static inline void sk_rx_queue_clear(struct sock *sk)
1834{
1835#ifdef CONFIG_XPS
1836 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1837#endif
1838}
1839
1840#ifdef CONFIG_XPS
1841static inline int sk_rx_queue_get(const struct sock *sk)
1842{
1843 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1844 return sk->sk_rx_queue_mapping;
1845
1846 return -1;
1847}
1848#endif
1849
1850static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1851{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001852 sk->sk_socket = sock;
1853}
1854
1855static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1856{
1857 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1858 return &rcu_dereference_raw(sk->sk_wq)->wait;
1859}
1860/* Detach socket from process context.
1861 * Announce socket dead, detach it from wait queue and inode.
1862 * Note that parent inode held reference count on this struct sock,
1863 * we do not release it in this function, because protocol
1864 * probably wants some additional cleanups or even continuing
1865 * to work with this socket (TCP).
1866 */
1867static inline void sock_orphan(struct sock *sk)
1868{
1869 write_lock_bh(&sk->sk_callback_lock);
1870 sock_set_flag(sk, SOCK_DEAD);
1871 sk_set_socket(sk, NULL);
1872 sk->sk_wq = NULL;
1873 write_unlock_bh(&sk->sk_callback_lock);
1874}
1875
1876static inline void sock_graft(struct sock *sk, struct socket *parent)
1877{
1878 WARN_ON(parent->sk);
1879 write_lock_bh(&sk->sk_callback_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001880 rcu_assign_pointer(sk->sk_wq, &parent->wq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001881 parent->sk = sk;
1882 sk_set_socket(sk, parent);
1883 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1884 security_sock_graft(sk, parent);
1885 write_unlock_bh(&sk->sk_callback_lock);
1886}
1887
1888kuid_t sock_i_uid(struct sock *sk);
1889unsigned long sock_i_ino(struct sock *sk);
1890
1891static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1892{
1893 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1894}
1895
1896static inline u32 net_tx_rndhash(void)
1897{
1898 u32 v = prandom_u32();
1899
1900 return v ?: 1;
1901}
1902
1903static inline void sk_set_txhash(struct sock *sk)
1904{
Olivier Deprez0e641232021-09-23 10:07:05 +02001905 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1906 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001907}
1908
Olivier Deprez157378f2022-04-04 15:47:50 +02001909static inline bool sk_rethink_txhash(struct sock *sk)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001910{
Olivier Deprez157378f2022-04-04 15:47:50 +02001911 if (sk->sk_txhash) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001912 sk_set_txhash(sk);
Olivier Deprez157378f2022-04-04 15:47:50 +02001913 return true;
1914 }
1915 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001916}
1917
1918static inline struct dst_entry *
1919__sk_dst_get(struct sock *sk)
1920{
1921 return rcu_dereference_check(sk->sk_dst_cache,
1922 lockdep_sock_is_held(sk));
1923}
1924
1925static inline struct dst_entry *
1926sk_dst_get(struct sock *sk)
1927{
1928 struct dst_entry *dst;
1929
1930 rcu_read_lock();
1931 dst = rcu_dereference(sk->sk_dst_cache);
1932 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1933 dst = NULL;
1934 rcu_read_unlock();
1935 return dst;
1936}
1937
Olivier Deprez157378f2022-04-04 15:47:50 +02001938static inline void __dst_negative_advice(struct sock *sk)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001939{
1940 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1941
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001942 if (dst && dst->ops->negative_advice) {
1943 ndst = dst->ops->negative_advice(dst);
1944
1945 if (ndst != dst) {
1946 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1947 sk_tx_queue_clear(sk);
1948 sk->sk_dst_pending_confirm = 0;
1949 }
1950 }
1951}
1952
Olivier Deprez157378f2022-04-04 15:47:50 +02001953static inline void dst_negative_advice(struct sock *sk)
1954{
1955 sk_rethink_txhash(sk);
1956 __dst_negative_advice(sk);
1957}
1958
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001959static inline void
1960__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1961{
1962 struct dst_entry *old_dst;
1963
1964 sk_tx_queue_clear(sk);
1965 sk->sk_dst_pending_confirm = 0;
1966 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1967 lockdep_sock_is_held(sk));
1968 rcu_assign_pointer(sk->sk_dst_cache, dst);
1969 dst_release(old_dst);
1970}
1971
1972static inline void
1973sk_dst_set(struct sock *sk, struct dst_entry *dst)
1974{
1975 struct dst_entry *old_dst;
1976
1977 sk_tx_queue_clear(sk);
1978 sk->sk_dst_pending_confirm = 0;
1979 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1980 dst_release(old_dst);
1981}
1982
1983static inline void
1984__sk_dst_reset(struct sock *sk)
1985{
1986 __sk_dst_set(sk, NULL);
1987}
1988
1989static inline void
1990sk_dst_reset(struct sock *sk)
1991{
1992 sk_dst_set(sk, NULL);
1993}
1994
1995struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1996
1997struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1998
1999static inline void sk_dst_confirm(struct sock *sk)
2000{
Olivier Deprez0e641232021-09-23 10:07:05 +02002001 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2002 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002003}
2004
2005static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2006{
2007 if (skb_get_dst_pending_confirm(skb)) {
2008 struct sock *sk = skb->sk;
2009 unsigned long now = jiffies;
2010
2011 /* avoid dirtying neighbour */
Olivier Deprez0e641232021-09-23 10:07:05 +02002012 if (READ_ONCE(n->confirmed) != now)
2013 WRITE_ONCE(n->confirmed, now);
2014 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2015 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002016 }
2017}
2018
2019bool sk_mc_loop(struct sock *sk);
2020
2021static inline bool sk_can_gso(const struct sock *sk)
2022{
2023 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2024}
2025
2026void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2027
2028static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2029{
2030 sk->sk_route_nocaps |= flags;
2031 sk->sk_route_caps &= ~flags;
2032}
2033
2034static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2035 struct iov_iter *from, char *to,
2036 int copy, int offset)
2037{
2038 if (skb->ip_summed == CHECKSUM_NONE) {
2039 __wsum csum = 0;
2040 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2041 return -EFAULT;
2042 skb->csum = csum_block_add(skb->csum, csum, offset);
2043 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2044 if (!copy_from_iter_full_nocache(to, copy, from))
2045 return -EFAULT;
2046 } else if (!copy_from_iter_full(to, copy, from))
2047 return -EFAULT;
2048
2049 return 0;
2050}
2051
2052static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2053 struct iov_iter *from, int copy)
2054{
2055 int err, offset = skb->len;
2056
2057 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2058 copy, offset);
2059 if (err)
2060 __skb_trim(skb, offset);
2061
2062 return err;
2063}
2064
2065static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2066 struct sk_buff *skb,
2067 struct page *page,
2068 int off, int copy)
2069{
2070 int err;
2071
2072 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2073 copy, skb->len);
2074 if (err)
2075 return err;
2076
2077 skb->len += copy;
2078 skb->data_len += copy;
2079 skb->truesize += copy;
David Brazdil0f672f62019-12-10 10:32:29 +00002080 sk_wmem_queued_add(sk, copy);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002081 sk_mem_charge(sk, copy);
2082 return 0;
2083}
2084
2085/**
2086 * sk_wmem_alloc_get - returns write allocations
2087 * @sk: socket
2088 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002089 * Return: sk_wmem_alloc minus initial offset of one
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002090 */
2091static inline int sk_wmem_alloc_get(const struct sock *sk)
2092{
2093 return refcount_read(&sk->sk_wmem_alloc) - 1;
2094}
2095
2096/**
2097 * sk_rmem_alloc_get - returns read allocations
2098 * @sk: socket
2099 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002100 * Return: sk_rmem_alloc
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002101 */
2102static inline int sk_rmem_alloc_get(const struct sock *sk)
2103{
2104 return atomic_read(&sk->sk_rmem_alloc);
2105}
2106
2107/**
2108 * sk_has_allocations - check if allocations are outstanding
2109 * @sk: socket
2110 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002111 * Return: true if socket has write or read allocations
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002112 */
2113static inline bool sk_has_allocations(const struct sock *sk)
2114{
2115 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2116}
2117
2118/**
2119 * skwq_has_sleeper - check if there are any waiting processes
2120 * @wq: struct socket_wq
2121 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002122 * Return: true if socket_wq has waiting processes
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002123 *
2124 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2125 * barrier call. They were added due to the race found within the tcp code.
2126 *
2127 * Consider following tcp code paths::
2128 *
2129 * CPU1 CPU2
2130 * sys_select receive packet
2131 * ... ...
2132 * __add_wait_queue update tp->rcv_nxt
2133 * ... ...
2134 * tp->rcv_nxt check sock_def_readable
2135 * ... {
2136 * schedule rcu_read_lock();
2137 * wq = rcu_dereference(sk->sk_wq);
2138 * if (wq && waitqueue_active(&wq->wait))
2139 * wake_up_interruptible(&wq->wait)
2140 * ...
2141 * }
2142 *
2143 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2144 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2145 * could then endup calling schedule and sleep forever if there are no more
2146 * data on the socket.
2147 *
2148 */
2149static inline bool skwq_has_sleeper(struct socket_wq *wq)
2150{
2151 return wq && wq_has_sleeper(&wq->wait);
2152}
2153
2154/**
2155 * sock_poll_wait - place memory barrier behind the poll_wait call.
2156 * @filp: file
2157 * @sock: socket to wait on
2158 * @p: poll_table
2159 *
2160 * See the comments in the wq_has_sleeper function.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002161 */
2162static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2163 poll_table *p)
2164{
2165 if (!poll_does_not_wait(p)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002166 poll_wait(filp, &sock->wq.wait, p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002167 /* We need to be sure we are in sync with the
2168 * socket flags modification.
2169 *
2170 * This memory barrier is paired in the wq_has_sleeper.
2171 */
2172 smp_mb();
2173 }
2174}
2175
2176static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2177{
Olivier Deprez0e641232021-09-23 10:07:05 +02002178 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2179 u32 txhash = READ_ONCE(sk->sk_txhash);
2180
2181 if (txhash) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002182 skb->l4_hash = 1;
Olivier Deprez0e641232021-09-23 10:07:05 +02002183 skb->hash = txhash;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002184 }
2185}
2186
2187void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2188
2189/*
2190 * Queue a received datagram if it will fit. Stream and sequenced
2191 * protocols can't normally use this as they need to fit buffers in
2192 * and play with them.
2193 *
2194 * Inlined as it's very short and called for pretty much every
2195 * packet ever received.
2196 */
2197static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2198{
2199 skb_orphan(skb);
2200 skb->sk = sk;
2201 skb->destructor = sock_rfree;
2202 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2203 sk_mem_charge(sk, skb->truesize);
2204}
2205
Olivier Deprez0e641232021-09-23 10:07:05 +02002206static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2207{
2208 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2209 skb_orphan(skb);
2210 skb->destructor = sock_efree;
2211 skb->sk = sk;
2212 return true;
2213 }
2214 return false;
2215}
2216
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002217void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2218 unsigned long expires);
2219
2220void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2221
Olivier Deprez157378f2022-04-04 15:47:50 +02002222void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2223
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002224int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2225 struct sk_buff *skb, unsigned int flags,
2226 void (*destructor)(struct sock *sk,
2227 struct sk_buff *skb));
2228int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2229int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2230
2231int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2232struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2233
2234/*
2235 * Recover an error report and clear atomically
2236 */
2237
2238static inline int sock_error(struct sock *sk)
2239{
2240 int err;
Olivier Deprez157378f2022-04-04 15:47:50 +02002241
2242 /* Avoid an atomic operation for the common case.
2243 * This is racy since another cpu/thread can change sk_err under us.
2244 */
2245 if (likely(data_race(!sk->sk_err)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002246 return 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02002247
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002248 err = xchg(&sk->sk_err, 0);
2249 return -err;
2250}
2251
2252static inline unsigned long sock_wspace(struct sock *sk)
2253{
2254 int amt = 0;
2255
2256 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2257 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2258 if (amt < 0)
2259 amt = 0;
2260 }
2261 return amt;
2262}
2263
2264/* Note:
2265 * We use sk->sk_wq_raw, from contexts knowing this
2266 * pointer is not NULL and cannot disappear/change.
2267 */
2268static inline void sk_set_bit(int nr, struct sock *sk)
2269{
2270 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2271 !sock_flag(sk, SOCK_FASYNC))
2272 return;
2273
2274 set_bit(nr, &sk->sk_wq_raw->flags);
2275}
2276
2277static inline void sk_clear_bit(int nr, struct sock *sk)
2278{
2279 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2280 !sock_flag(sk, SOCK_FASYNC))
2281 return;
2282
2283 clear_bit(nr, &sk->sk_wq_raw->flags);
2284}
2285
2286static inline void sk_wake_async(const struct sock *sk, int how, int band)
2287{
2288 if (sock_flag(sk, SOCK_FASYNC)) {
2289 rcu_read_lock();
2290 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2291 rcu_read_unlock();
2292 }
2293}
2294
2295/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2296 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2297 * Note: for send buffers, TCP works better if we can build two skbs at
2298 * minimum.
2299 */
2300#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2301
2302#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2303#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2304
2305static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2306{
David Brazdil0f672f62019-12-10 10:32:29 +00002307 u32 val;
2308
2309 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2310 return;
2311
2312 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2313
2314 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002315}
2316
2317struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2318 bool force_schedule);
2319
2320/**
2321 * sk_page_frag - return an appropriate page_frag
2322 * @sk: socket
2323 *
David Brazdil0f672f62019-12-10 10:32:29 +00002324 * Use the per task page_frag instead of the per socket one for
Olivier Deprez157378f2022-04-04 15:47:50 +02002325 * optimization when we know that we're in process context and own
David Brazdil0f672f62019-12-10 10:32:29 +00002326 * everything that's associated with %current.
2327 *
Olivier Deprez157378f2022-04-04 15:47:50 +02002328 * Both direct reclaim and page faults can nest inside other
2329 * socket operations and end up recursing into sk_page_frag()
2330 * while it's already in use: explicitly avoid task page_frag
2331 * usage if the caller is potentially doing any of them.
2332 * This assumes that page fault handlers use the GFP_NOFS flags.
2333 *
2334 * Return: a per task page_frag if context allows that,
2335 * otherwise a per socket one.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002336 */
2337static inline struct page_frag *sk_page_frag(struct sock *sk)
2338{
Olivier Deprez157378f2022-04-04 15:47:50 +02002339 if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2340 (__GFP_DIRECT_RECLAIM | __GFP_FS))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002341 return &current->task_frag;
2342
2343 return &sk->sk_frag;
2344}
2345
2346bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2347
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002348/*
2349 * Default write policy as shown to user space via poll/select/SIGIO
2350 */
2351static inline bool sock_writeable(const struct sock *sk)
2352{
David Brazdil0f672f62019-12-10 10:32:29 +00002353 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002354}
2355
2356static inline gfp_t gfp_any(void)
2357{
2358 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2359}
2360
2361static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2362{
2363 return noblock ? 0 : sk->sk_rcvtimeo;
2364}
2365
2366static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2367{
2368 return noblock ? 0 : sk->sk_sndtimeo;
2369}
2370
2371static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2372{
David Brazdil0f672f62019-12-10 10:32:29 +00002373 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2374
2375 return v ?: 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002376}
2377
2378/* Alas, with timeout socket operations are not restartable.
2379 * Compare this to poll().
2380 */
2381static inline int sock_intr_errno(long timeo)
2382{
2383 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2384}
2385
2386struct sock_skb_cb {
2387 u32 dropcount;
2388};
2389
2390/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2391 * using skb->cb[] would keep using it directly and utilize its
2392 * alignement guarantee.
2393 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002394#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002395 sizeof(struct sock_skb_cb)))
2396
2397#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2398 SOCK_SKB_CB_OFFSET))
2399
2400#define sock_skb_cb_check_size(size) \
2401 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2402
2403static inline void
2404sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2405{
2406 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2407 atomic_read(&sk->sk_drops) : 0;
2408}
2409
2410static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2411{
2412 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2413
2414 atomic_add(segs, &sk->sk_drops);
2415}
2416
David Brazdil0f672f62019-12-10 10:32:29 +00002417static inline ktime_t sock_read_timestamp(struct sock *sk)
2418{
2419#if BITS_PER_LONG==32
2420 unsigned int seq;
2421 ktime_t kt;
2422
2423 do {
2424 seq = read_seqbegin(&sk->sk_stamp_seq);
2425 kt = sk->sk_stamp;
2426 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2427
2428 return kt;
2429#else
2430 return READ_ONCE(sk->sk_stamp);
2431#endif
2432}
2433
2434static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2435{
2436#if BITS_PER_LONG==32
2437 write_seqlock(&sk->sk_stamp_seq);
2438 sk->sk_stamp = kt;
2439 write_sequnlock(&sk->sk_stamp_seq);
2440#else
2441 WRITE_ONCE(sk->sk_stamp, kt);
2442#endif
2443}
2444
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002445void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2446 struct sk_buff *skb);
2447void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2448 struct sk_buff *skb);
2449
2450static inline void
2451sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2452{
2453 ktime_t kt = skb->tstamp;
2454 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2455
2456 /*
2457 * generate control messages if
2458 * - receive time stamping in software requested
2459 * - software time stamp available and wanted
2460 * - hardware time stamps available and wanted
2461 */
2462 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2463 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2464 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2465 (hwtstamps->hwtstamp &&
2466 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2467 __sock_recv_timestamp(msg, sk, skb);
2468 else
David Brazdil0f672f62019-12-10 10:32:29 +00002469 sock_write_timestamp(sk, kt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002470
2471 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2472 __sock_recv_wifi_status(msg, sk, skb);
2473}
2474
2475void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2476 struct sk_buff *skb);
2477
2478#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2479static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2480 struct sk_buff *skb)
2481{
2482#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2483 (1UL << SOCK_RCVTSTAMP))
2484#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2485 SOF_TIMESTAMPING_RAW_HARDWARE)
2486
2487 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2488 __sock_recv_ts_and_drops(msg, sk, skb);
2489 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
David Brazdil0f672f62019-12-10 10:32:29 +00002490 sock_write_timestamp(sk, skb->tstamp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002491 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
David Brazdil0f672f62019-12-10 10:32:29 +00002492 sock_write_timestamp(sk, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002493}
2494
2495void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2496
2497/**
David Brazdil0f672f62019-12-10 10:32:29 +00002498 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002499 * @sk: socket sending this packet
2500 * @tsflags: timestamping flags to use
2501 * @tx_flags: completed with instructions for time stamping
David Brazdil0f672f62019-12-10 10:32:29 +00002502 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002503 *
2504 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2505 */
David Brazdil0f672f62019-12-10 10:32:29 +00002506static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2507 __u8 *tx_flags, __u32 *tskey)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002508{
David Brazdil0f672f62019-12-10 10:32:29 +00002509 if (unlikely(tsflags)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002510 __sock_tx_timestamp(tsflags, tx_flags);
David Brazdil0f672f62019-12-10 10:32:29 +00002511 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2512 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2513 *tskey = sk->sk_tskey++;
2514 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002515 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2516 *tx_flags |= SKBTX_WIFI_STATUS;
2517}
2518
David Brazdil0f672f62019-12-10 10:32:29 +00002519static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2520 __u8 *tx_flags)
2521{
2522 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2523}
2524
2525static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2526{
2527 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2528 &skb_shinfo(skb)->tskey);
2529}
2530
Olivier Deprez157378f2022-04-04 15:47:50 +02002531DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002532/**
2533 * sk_eat_skb - Release a skb if it is no longer needed
2534 * @sk: socket to eat this skb from
2535 * @skb: socket buffer to eat
2536 *
2537 * This routine must be called with interrupts disabled or with the socket
2538 * locked so that the sk_buff queue operation is ok.
2539*/
2540static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2541{
2542 __skb_unlink(skb, &sk->sk_receive_queue);
David Brazdil0f672f62019-12-10 10:32:29 +00002543 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2544 !sk->sk_rx_skb_cache) {
2545 sk->sk_rx_skb_cache = skb;
2546 skb_orphan(skb);
2547 return;
2548 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002549 __kfree_skb(skb);
2550}
2551
2552static inline
2553struct net *sock_net(const struct sock *sk)
2554{
2555 return read_pnet(&sk->sk_net);
2556}
2557
2558static inline
2559void sock_net_set(struct sock *sk, struct net *net)
2560{
2561 write_pnet(&sk->sk_net, net);
2562}
2563
Olivier Deprez157378f2022-04-04 15:47:50 +02002564static inline bool
2565skb_sk_is_prefetched(struct sk_buff *skb)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002566{
Olivier Deprez157378f2022-04-04 15:47:50 +02002567#ifdef CONFIG_INET
2568 return skb->destructor == sock_pfree;
2569#else
2570 return false;
2571#endif /* CONFIG_INET */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002572}
2573
2574/* This helper checks if a socket is a full socket,
2575 * ie _not_ a timewait or request socket.
2576 */
2577static inline bool sk_fullsock(const struct sock *sk)
2578{
2579 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2580}
2581
Olivier Deprez157378f2022-04-04 15:47:50 +02002582static inline bool
2583sk_is_refcounted(struct sock *sk)
2584{
2585 /* Only full sockets have sk->sk_flags. */
2586 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2587}
2588
2589/**
2590 * skb_steal_sock - steal a socket from an sk_buff
2591 * @skb: sk_buff to steal the socket from
2592 * @refcounted: is set to true if the socket is reference-counted
2593 */
2594static inline struct sock *
2595skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2596{
2597 if (skb->sk) {
2598 struct sock *sk = skb->sk;
2599
2600 *refcounted = true;
2601 if (skb_sk_is_prefetched(skb))
2602 *refcounted = sk_is_refcounted(sk);
2603 skb->destructor = NULL;
2604 skb->sk = NULL;
2605 return sk;
2606 }
2607 *refcounted = false;
2608 return NULL;
2609}
2610
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002611/* Checks if this SKB belongs to an HW offloaded socket
2612 * and whether any SW fallbacks are required based on dev.
David Brazdil0f672f62019-12-10 10:32:29 +00002613 * Check decrypted mark in case skb_orphan() cleared socket.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002614 */
2615static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2616 struct net_device *dev)
2617{
2618#ifdef CONFIG_SOCK_VALIDATE_XMIT
2619 struct sock *sk = skb->sk;
2620
David Brazdil0f672f62019-12-10 10:32:29 +00002621 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002622 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
David Brazdil0f672f62019-12-10 10:32:29 +00002623#ifdef CONFIG_TLS_DEVICE
2624 } else if (unlikely(skb->decrypted)) {
2625 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2626 kfree_skb(skb);
2627 skb = NULL;
2628#endif
2629 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002630#endif
2631
2632 return skb;
2633}
2634
2635/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2636 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2637 */
2638static inline bool sk_listener(const struct sock *sk)
2639{
2640 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2641}
2642
Olivier Deprez157378f2022-04-04 15:47:50 +02002643void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002644int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2645 int type);
2646
2647bool sk_ns_capable(const struct sock *sk,
2648 struct user_namespace *user_ns, int cap);
2649bool sk_capable(const struct sock *sk, int cap);
2650bool sk_net_capable(const struct sock *sk, int cap);
2651
2652void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2653
2654/* Take into consideration the size of the struct sk_buff overhead in the
2655 * determination of these values, since that is non-constant across
2656 * platforms. This makes socket queueing behavior and performance
2657 * not depend upon such differences.
2658 */
2659#define _SK_MEM_PACKETS 256
2660#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2661#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2662#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2663
2664extern __u32 sysctl_wmem_max;
2665extern __u32 sysctl_rmem_max;
2666
2667extern int sysctl_tstamp_allow_data;
2668extern int sysctl_optmem_max;
2669
2670extern __u32 sysctl_wmem_default;
2671extern __u32 sysctl_rmem_default;
2672
Olivier Deprez157378f2022-04-04 15:47:50 +02002673#define SKB_FRAG_PAGE_ORDER get_order(32768)
David Brazdil0f672f62019-12-10 10:32:29 +00002674DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2675
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002676static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2677{
2678 /* Does this proto have per netns sysctl_wmem ? */
2679 if (proto->sysctl_wmem_offset)
2680 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2681
2682 return *proto->sysctl_wmem;
2683}
2684
2685static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2686{
2687 /* Does this proto have per netns sysctl_rmem ? */
2688 if (proto->sysctl_rmem_offset)
2689 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2690
2691 return *proto->sysctl_rmem;
2692}
2693
2694/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2695 * Some wifi drivers need to tweak it to get more chunks.
2696 * They can use this helper from their ndo_start_xmit()
2697 */
2698static inline void sk_pacing_shift_update(struct sock *sk, int val)
2699{
Olivier Deprez0e641232021-09-23 10:07:05 +02002700 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002701 return;
Olivier Deprez0e641232021-09-23 10:07:05 +02002702 WRITE_ONCE(sk->sk_pacing_shift, val);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002703}
2704
2705/* if a socket is bound to a device, check that the given device
2706 * index is either the same or that the socket is bound to an L3
2707 * master device and the given device index is also enslaved to
2708 * that L3 master
2709 */
2710static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2711{
2712 int mdif;
2713
2714 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2715 return true;
2716
2717 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2718 if (mdif && mdif == sk->sk_bound_dev_if)
2719 return true;
2720
2721 return false;
2722}
2723
Olivier Deprez157378f2022-04-04 15:47:50 +02002724void sock_def_readable(struct sock *sk);
2725
2726int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2727void sock_enable_timestamps(struct sock *sk);
2728void sock_no_linger(struct sock *sk);
2729void sock_set_keepalive(struct sock *sk);
2730void sock_set_priority(struct sock *sk, u32 priority);
2731void sock_set_rcvbuf(struct sock *sk, int val);
2732void sock_set_mark(struct sock *sk, u32 val);
2733void sock_set_reuseaddr(struct sock *sk);
2734void sock_set_reuseport(struct sock *sk);
2735void sock_set_sndtimeo(struct sock *sk, s64 secs);
2736
2737int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2738
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002739#endif /* _SOCK_H */