blob: 638d5d5bf42df341b0b021ea6abfb47f45992a84 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6#include <linux/export.h>
7#include <linux/fs.h>
8#include <linux/mm.h>
9#include <linux/backing-dev.h>
10#include <linux/hash.h>
11#include <linux/swap.h>
12#include <linux/security.h>
13#include <linux/cdev.h>
David Brazdil0f672f62019-12-10 10:32:29 +000014#include <linux/memblock.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020015#include <linux/fscrypt.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000016#include <linux/fsnotify.h>
17#include <linux/mount.h>
18#include <linux/posix_acl.h>
19#include <linux/prefetch.h>
20#include <linux/buffer_head.h> /* for inode_has_buffers */
21#include <linux/ratelimit.h>
22#include <linux/list_lru.h>
23#include <linux/iversion.h>
24#include <trace/events/writeback.h>
25#include "internal.h"
26
27/*
28 * Inode locking rules:
29 *
30 * inode->i_lock protects:
31 * inode->i_state, inode->i_hash, __iget()
32 * Inode LRU list locks protect:
33 * inode->i_sb->s_inode_lru, inode->i_lru
34 * inode->i_sb->s_inode_list_lock protects:
35 * inode->i_sb->s_inodes, inode->i_sb_list
36 * bdi->wb.list_lock protects:
37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38 * inode_hash_lock protects:
39 * inode_hashtable, inode->i_hash
40 *
41 * Lock ordering:
42 *
43 * inode->i_sb->s_inode_list_lock
44 * inode->i_lock
45 * Inode LRU list locks
46 *
47 * bdi->wb.list_lock
48 * inode->i_lock
49 *
50 * inode_hash_lock
51 * inode->i_sb->s_inode_list_lock
52 * inode->i_lock
53 *
54 * iunique_lock
55 * inode_hash_lock
56 */
57
58static unsigned int i_hash_mask __read_mostly;
59static unsigned int i_hash_shift __read_mostly;
60static struct hlist_head *inode_hashtable __read_mostly;
61static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62
63/*
64 * Empty aops. Can be used for the cases where the user does not
65 * define any of the address_space operations.
66 */
67const struct address_space_operations empty_aops = {
68};
69EXPORT_SYMBOL(empty_aops);
70
71/*
72 * Statistics gathering..
73 */
74struct inodes_stat_t inodes_stat;
75
76static DEFINE_PER_CPU(unsigned long, nr_inodes);
77static DEFINE_PER_CPU(unsigned long, nr_unused);
78
79static struct kmem_cache *inode_cachep __read_mostly;
80
81static long get_nr_inodes(void)
82{
83 int i;
84 long sum = 0;
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
88}
89
90static inline long get_nr_inodes_unused(void)
91{
92 int i;
93 long sum = 0;
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
97}
98
99long get_nr_dirty_inodes(void)
100{
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
104}
105
106/*
107 * Handle nr_inode sysctl
108 */
109#ifdef CONFIG_SYSCTL
110int proc_nr_inodes(struct ctl_table *table, int write,
Olivier Deprez157378f2022-04-04 15:47:50 +0200111 void *buffer, size_t *lenp, loff_t *ppos)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000112{
113 inodes_stat.nr_inodes = get_nr_inodes();
114 inodes_stat.nr_unused = get_nr_inodes_unused();
115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116}
117#endif
118
119static int no_open(struct inode *inode, struct file *file)
120{
121 return -ENXIO;
122}
123
124/**
125 * inode_init_always - perform inode structure initialisation
126 * @sb: superblock inode belongs to
127 * @inode: inode to initialise
128 *
129 * These are initializations that need to be done on every inode
130 * allocation as the fields are not initialised by slab allocation.
131 */
132int inode_init_always(struct super_block *sb, struct inode *inode)
133{
134 static const struct inode_operations empty_iops;
135 static const struct file_operations no_open_fops = {.open = no_open};
136 struct address_space *const mapping = &inode->i_data;
137
138 inode->i_sb = sb;
139 inode->i_blkbits = sb->s_blocksize_bits;
140 inode->i_flags = 0;
Olivier Deprez0e641232021-09-23 10:07:05 +0200141 atomic64_set(&inode->i_sequence, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000142 atomic_set(&inode->i_count, 1);
143 inode->i_op = &empty_iops;
144 inode->i_fop = &no_open_fops;
145 inode->__i_nlink = 1;
146 inode->i_opflags = 0;
147 if (sb->s_xattr)
148 inode->i_opflags |= IOP_XATTR;
149 i_uid_write(inode, 0);
150 i_gid_write(inode, 0);
151 atomic_set(&inode->i_writecount, 0);
152 inode->i_size = 0;
153 inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 inode->i_blocks = 0;
155 inode->i_bytes = 0;
156 inode->i_generation = 0;
157 inode->i_pipe = NULL;
158 inode->i_bdev = NULL;
159 inode->i_cdev = NULL;
160 inode->i_link = NULL;
161 inode->i_dir_seq = 0;
162 inode->i_rdev = 0;
163 inode->dirtied_when = 0;
164
165#ifdef CONFIG_CGROUP_WRITEBACK
166 inode->i_wb_frn_winner = 0;
167 inode->i_wb_frn_avg_time = 0;
168 inode->i_wb_frn_history = 0;
169#endif
170
171 if (security_inode_alloc(inode))
172 goto out;
173 spin_lock_init(&inode->i_lock);
174 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
175
176 init_rwsem(&inode->i_rwsem);
177 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
178
179 atomic_set(&inode->i_dio_count, 0);
180
181 mapping->a_ops = &empty_aops;
182 mapping->host = inode;
183 mapping->flags = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +0200184 if (sb->s_type->fs_flags & FS_THP_SUPPORT)
185 __set_bit(AS_THP_SUPPORT, &mapping->flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000186 mapping->wb_err = 0;
187 atomic_set(&mapping->i_mmap_writable, 0);
David Brazdil0f672f62019-12-10 10:32:29 +0000188#ifdef CONFIG_READ_ONLY_THP_FOR_FS
189 atomic_set(&mapping->nr_thps, 0);
190#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000191 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
192 mapping->private_data = NULL;
193 mapping->writeback_index = 0;
194 inode->i_private = NULL;
195 inode->i_mapping = mapping;
196 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
197#ifdef CONFIG_FS_POSIX_ACL
198 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
199#endif
200
201#ifdef CONFIG_FSNOTIFY
202 inode->i_fsnotify_mask = 0;
203#endif
204 inode->i_flctx = NULL;
205 this_cpu_inc(nr_inodes);
206
207 return 0;
208out:
209 return -ENOMEM;
210}
211EXPORT_SYMBOL(inode_init_always);
212
David Brazdil0f672f62019-12-10 10:32:29 +0000213void free_inode_nonrcu(struct inode *inode)
214{
215 kmem_cache_free(inode_cachep, inode);
216}
217EXPORT_SYMBOL(free_inode_nonrcu);
218
219static void i_callback(struct rcu_head *head)
220{
221 struct inode *inode = container_of(head, struct inode, i_rcu);
222 if (inode->free_inode)
223 inode->free_inode(inode);
224 else
225 free_inode_nonrcu(inode);
226}
227
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000228static struct inode *alloc_inode(struct super_block *sb)
229{
David Brazdil0f672f62019-12-10 10:32:29 +0000230 const struct super_operations *ops = sb->s_op;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000231 struct inode *inode;
232
David Brazdil0f672f62019-12-10 10:32:29 +0000233 if (ops->alloc_inode)
234 inode = ops->alloc_inode(sb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000235 else
236 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
237
238 if (!inode)
239 return NULL;
240
241 if (unlikely(inode_init_always(sb, inode))) {
David Brazdil0f672f62019-12-10 10:32:29 +0000242 if (ops->destroy_inode) {
243 ops->destroy_inode(inode);
244 if (!ops->free_inode)
245 return NULL;
246 }
247 inode->free_inode = ops->free_inode;
248 i_callback(&inode->i_rcu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000249 return NULL;
250 }
251
252 return inode;
253}
254
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000255void __destroy_inode(struct inode *inode)
256{
257 BUG_ON(inode_has_buffers(inode));
258 inode_detach_wb(inode);
259 security_inode_free(inode);
260 fsnotify_inode_delete(inode);
261 locks_free_lock_context(inode);
262 if (!inode->i_nlink) {
263 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
264 atomic_long_dec(&inode->i_sb->s_remove_count);
265 }
266
267#ifdef CONFIG_FS_POSIX_ACL
268 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
269 posix_acl_release(inode->i_acl);
270 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
271 posix_acl_release(inode->i_default_acl);
272#endif
273 this_cpu_dec(nr_inodes);
274}
275EXPORT_SYMBOL(__destroy_inode);
276
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000277static void destroy_inode(struct inode *inode)
278{
David Brazdil0f672f62019-12-10 10:32:29 +0000279 const struct super_operations *ops = inode->i_sb->s_op;
280
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000281 BUG_ON(!list_empty(&inode->i_lru));
282 __destroy_inode(inode);
David Brazdil0f672f62019-12-10 10:32:29 +0000283 if (ops->destroy_inode) {
284 ops->destroy_inode(inode);
285 if (!ops->free_inode)
286 return;
287 }
288 inode->free_inode = ops->free_inode;
289 call_rcu(&inode->i_rcu, i_callback);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000290}
291
292/**
293 * drop_nlink - directly drop an inode's link count
294 * @inode: inode
295 *
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. In cases
298 * where we are attempting to track writes to the
299 * filesystem, a decrement to zero means an imminent
300 * write when the file is truncated and actually unlinked
301 * on the filesystem.
302 */
303void drop_nlink(struct inode *inode)
304{
305 WARN_ON(inode->i_nlink == 0);
306 inode->__i_nlink--;
307 if (!inode->i_nlink)
308 atomic_long_inc(&inode->i_sb->s_remove_count);
309}
310EXPORT_SYMBOL(drop_nlink);
311
312/**
313 * clear_nlink - directly zero an inode's link count
314 * @inode: inode
315 *
316 * This is a low-level filesystem helper to replace any
317 * direct filesystem manipulation of i_nlink. See
318 * drop_nlink() for why we care about i_nlink hitting zero.
319 */
320void clear_nlink(struct inode *inode)
321{
322 if (inode->i_nlink) {
323 inode->__i_nlink = 0;
324 atomic_long_inc(&inode->i_sb->s_remove_count);
325 }
326}
327EXPORT_SYMBOL(clear_nlink);
328
329/**
330 * set_nlink - directly set an inode's link count
331 * @inode: inode
332 * @nlink: new nlink (should be non-zero)
333 *
334 * This is a low-level filesystem helper to replace any
335 * direct filesystem manipulation of i_nlink.
336 */
337void set_nlink(struct inode *inode, unsigned int nlink)
338{
339 if (!nlink) {
340 clear_nlink(inode);
341 } else {
342 /* Yes, some filesystems do change nlink from zero to one */
343 if (inode->i_nlink == 0)
344 atomic_long_dec(&inode->i_sb->s_remove_count);
345
346 inode->__i_nlink = nlink;
347 }
348}
349EXPORT_SYMBOL(set_nlink);
350
351/**
352 * inc_nlink - directly increment an inode's link count
353 * @inode: inode
354 *
355 * This is a low-level filesystem helper to replace any
356 * direct filesystem manipulation of i_nlink. Currently,
357 * it is only here for parity with dec_nlink().
358 */
359void inc_nlink(struct inode *inode)
360{
361 if (unlikely(inode->i_nlink == 0)) {
362 WARN_ON(!(inode->i_state & I_LINKABLE));
363 atomic_long_dec(&inode->i_sb->s_remove_count);
364 }
365
366 inode->__i_nlink++;
367}
368EXPORT_SYMBOL(inc_nlink);
369
370static void __address_space_init_once(struct address_space *mapping)
371{
David Brazdil0f672f62019-12-10 10:32:29 +0000372 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000373 init_rwsem(&mapping->i_mmap_rwsem);
374 INIT_LIST_HEAD(&mapping->private_list);
375 spin_lock_init(&mapping->private_lock);
376 mapping->i_mmap = RB_ROOT_CACHED;
377}
378
379void address_space_init_once(struct address_space *mapping)
380{
381 memset(mapping, 0, sizeof(*mapping));
382 __address_space_init_once(mapping);
383}
384EXPORT_SYMBOL(address_space_init_once);
385
386/*
387 * These are initializations that only need to be done
388 * once, because the fields are idempotent across use
389 * of the inode, so let the slab aware of that.
390 */
391void inode_init_once(struct inode *inode)
392{
393 memset(inode, 0, sizeof(*inode));
394 INIT_HLIST_NODE(&inode->i_hash);
395 INIT_LIST_HEAD(&inode->i_devices);
396 INIT_LIST_HEAD(&inode->i_io_list);
397 INIT_LIST_HEAD(&inode->i_wb_list);
398 INIT_LIST_HEAD(&inode->i_lru);
399 __address_space_init_once(&inode->i_data);
400 i_size_ordered_init(inode);
401}
402EXPORT_SYMBOL(inode_init_once);
403
404static void init_once(void *foo)
405{
406 struct inode *inode = (struct inode *) foo;
407
408 inode_init_once(inode);
409}
410
411/*
412 * inode->i_lock must be held
413 */
414void __iget(struct inode *inode)
415{
416 atomic_inc(&inode->i_count);
417}
418
419/*
420 * get additional reference to inode; caller must already hold one.
421 */
422void ihold(struct inode *inode)
423{
424 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
425}
426EXPORT_SYMBOL(ihold);
427
428static void inode_lru_list_add(struct inode *inode)
429{
430 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
431 this_cpu_inc(nr_unused);
432 else
433 inode->i_state |= I_REFERENCED;
434}
435
436/*
437 * Add inode to LRU if needed (inode is unused and clean).
438 *
439 * Needs inode->i_lock held.
440 */
441void inode_add_lru(struct inode *inode)
442{
443 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
444 I_FREEING | I_WILL_FREE)) &&
445 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
446 inode_lru_list_add(inode);
447}
448
449
450static void inode_lru_list_del(struct inode *inode)
451{
452
453 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
454 this_cpu_dec(nr_unused);
455}
456
457/**
458 * inode_sb_list_add - add inode to the superblock list of inodes
459 * @inode: inode to add
460 */
461void inode_sb_list_add(struct inode *inode)
462{
463 spin_lock(&inode->i_sb->s_inode_list_lock);
464 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
465 spin_unlock(&inode->i_sb->s_inode_list_lock);
466}
467EXPORT_SYMBOL_GPL(inode_sb_list_add);
468
469static inline void inode_sb_list_del(struct inode *inode)
470{
471 if (!list_empty(&inode->i_sb_list)) {
472 spin_lock(&inode->i_sb->s_inode_list_lock);
473 list_del_init(&inode->i_sb_list);
474 spin_unlock(&inode->i_sb->s_inode_list_lock);
475 }
476}
477
478static unsigned long hash(struct super_block *sb, unsigned long hashval)
479{
480 unsigned long tmp;
481
482 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
483 L1_CACHE_BYTES;
484 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
485 return tmp & i_hash_mask;
486}
487
488/**
489 * __insert_inode_hash - hash an inode
490 * @inode: unhashed inode
491 * @hashval: unsigned long value used to locate this object in the
492 * inode_hashtable.
493 *
494 * Add an inode to the inode hash for this superblock.
495 */
496void __insert_inode_hash(struct inode *inode, unsigned long hashval)
497{
498 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
499
500 spin_lock(&inode_hash_lock);
501 spin_lock(&inode->i_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +0200502 hlist_add_head_rcu(&inode->i_hash, b);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000503 spin_unlock(&inode->i_lock);
504 spin_unlock(&inode_hash_lock);
505}
506EXPORT_SYMBOL(__insert_inode_hash);
507
508/**
509 * __remove_inode_hash - remove an inode from the hash
510 * @inode: inode to unhash
511 *
512 * Remove an inode from the superblock.
513 */
514void __remove_inode_hash(struct inode *inode)
515{
516 spin_lock(&inode_hash_lock);
517 spin_lock(&inode->i_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +0200518 hlist_del_init_rcu(&inode->i_hash);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000519 spin_unlock(&inode->i_lock);
520 spin_unlock(&inode_hash_lock);
521}
522EXPORT_SYMBOL(__remove_inode_hash);
523
524void clear_inode(struct inode *inode)
525{
526 /*
527 * We have to cycle the i_pages lock here because reclaim can be in the
528 * process of removing the last page (in __delete_from_page_cache())
529 * and we must not free the mapping under it.
530 */
531 xa_lock_irq(&inode->i_data.i_pages);
532 BUG_ON(inode->i_data.nrpages);
533 BUG_ON(inode->i_data.nrexceptional);
534 xa_unlock_irq(&inode->i_data.i_pages);
535 BUG_ON(!list_empty(&inode->i_data.private_list));
536 BUG_ON(!(inode->i_state & I_FREEING));
537 BUG_ON(inode->i_state & I_CLEAR);
538 BUG_ON(!list_empty(&inode->i_wb_list));
539 /* don't need i_lock here, no concurrent mods to i_state */
540 inode->i_state = I_FREEING | I_CLEAR;
541}
542EXPORT_SYMBOL(clear_inode);
543
544/*
545 * Free the inode passed in, removing it from the lists it is still connected
546 * to. We remove any pages still attached to the inode and wait for any IO that
547 * is still in progress before finally destroying the inode.
548 *
549 * An inode must already be marked I_FREEING so that we avoid the inode being
550 * moved back onto lists if we race with other code that manipulates the lists
551 * (e.g. writeback_single_inode). The caller is responsible for setting this.
552 *
553 * An inode must already be removed from the LRU list before being evicted from
554 * the cache. This should occur atomically with setting the I_FREEING state
555 * flag, so no inodes here should ever be on the LRU when being evicted.
556 */
557static void evict(struct inode *inode)
558{
559 const struct super_operations *op = inode->i_sb->s_op;
560
561 BUG_ON(!(inode->i_state & I_FREEING));
562 BUG_ON(!list_empty(&inode->i_lru));
563
564 if (!list_empty(&inode->i_io_list))
565 inode_io_list_del(inode);
566
567 inode_sb_list_del(inode);
568
569 /*
570 * Wait for flusher thread to be done with the inode so that filesystem
571 * does not start destroying it while writeback is still running. Since
572 * the inode has I_FREEING set, flusher thread won't start new work on
573 * the inode. We just have to wait for running writeback to finish.
574 */
575 inode_wait_for_writeback(inode);
576
577 if (op->evict_inode) {
578 op->evict_inode(inode);
579 } else {
580 truncate_inode_pages_final(&inode->i_data);
581 clear_inode(inode);
582 }
583 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
584 bd_forget(inode);
585 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
586 cd_forget(inode);
587
588 remove_inode_hash(inode);
589
590 spin_lock(&inode->i_lock);
591 wake_up_bit(&inode->i_state, __I_NEW);
592 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
593 spin_unlock(&inode->i_lock);
594
595 destroy_inode(inode);
596}
597
598/*
599 * dispose_list - dispose of the contents of a local list
600 * @head: the head of the list to free
601 *
602 * Dispose-list gets a local list with local inodes in it, so it doesn't
603 * need to worry about list corruption and SMP locks.
604 */
605static void dispose_list(struct list_head *head)
606{
607 while (!list_empty(head)) {
608 struct inode *inode;
609
610 inode = list_first_entry(head, struct inode, i_lru);
611 list_del_init(&inode->i_lru);
612
613 evict(inode);
614 cond_resched();
615 }
616}
617
618/**
619 * evict_inodes - evict all evictable inodes for a superblock
620 * @sb: superblock to operate on
621 *
622 * Make sure that no inodes with zero refcount are retained. This is
623 * called by superblock shutdown after having SB_ACTIVE flag removed,
624 * so any inode reaching zero refcount during or after that call will
625 * be immediately evicted.
626 */
627void evict_inodes(struct super_block *sb)
628{
629 struct inode *inode, *next;
630 LIST_HEAD(dispose);
631
632again:
633 spin_lock(&sb->s_inode_list_lock);
634 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
635 if (atomic_read(&inode->i_count))
636 continue;
637
638 spin_lock(&inode->i_lock);
639 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
640 spin_unlock(&inode->i_lock);
641 continue;
642 }
643
644 inode->i_state |= I_FREEING;
645 inode_lru_list_del(inode);
646 spin_unlock(&inode->i_lock);
647 list_add(&inode->i_lru, &dispose);
648
649 /*
650 * We can have a ton of inodes to evict at unmount time given
651 * enough memory, check to see if we need to go to sleep for a
652 * bit so we don't livelock.
653 */
654 if (need_resched()) {
655 spin_unlock(&sb->s_inode_list_lock);
656 cond_resched();
657 dispose_list(&dispose);
658 goto again;
659 }
660 }
661 spin_unlock(&sb->s_inode_list_lock);
662
663 dispose_list(&dispose);
664}
665EXPORT_SYMBOL_GPL(evict_inodes);
666
667/**
668 * invalidate_inodes - attempt to free all inodes on a superblock
669 * @sb: superblock to operate on
670 * @kill_dirty: flag to guide handling of dirty inodes
671 *
672 * Attempts to free all inodes for a given superblock. If there were any
673 * busy inodes return a non-zero value, else zero.
674 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
675 * them as busy.
676 */
677int invalidate_inodes(struct super_block *sb, bool kill_dirty)
678{
679 int busy = 0;
680 struct inode *inode, *next;
681 LIST_HEAD(dispose);
682
Olivier Deprez0e641232021-09-23 10:07:05 +0200683again:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000684 spin_lock(&sb->s_inode_list_lock);
685 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
686 spin_lock(&inode->i_lock);
687 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
688 spin_unlock(&inode->i_lock);
689 continue;
690 }
691 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
692 spin_unlock(&inode->i_lock);
693 busy = 1;
694 continue;
695 }
696 if (atomic_read(&inode->i_count)) {
697 spin_unlock(&inode->i_lock);
698 busy = 1;
699 continue;
700 }
701
702 inode->i_state |= I_FREEING;
703 inode_lru_list_del(inode);
704 spin_unlock(&inode->i_lock);
705 list_add(&inode->i_lru, &dispose);
Olivier Deprez0e641232021-09-23 10:07:05 +0200706 if (need_resched()) {
707 spin_unlock(&sb->s_inode_list_lock);
708 cond_resched();
709 dispose_list(&dispose);
710 goto again;
711 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000712 }
713 spin_unlock(&sb->s_inode_list_lock);
714
715 dispose_list(&dispose);
716
717 return busy;
718}
719
720/*
721 * Isolate the inode from the LRU in preparation for freeing it.
722 *
723 * Any inodes which are pinned purely because of attached pagecache have their
724 * pagecache removed. If the inode has metadata buffers attached to
725 * mapping->private_list then try to remove them.
726 *
727 * If the inode has the I_REFERENCED flag set, then it means that it has been
728 * used recently - the flag is set in iput_final(). When we encounter such an
729 * inode, clear the flag and move it to the back of the LRU so it gets another
730 * pass through the LRU before it gets reclaimed. This is necessary because of
731 * the fact we are doing lazy LRU updates to minimise lock contention so the
732 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
733 * with this flag set because they are the inodes that are out of order.
734 */
735static enum lru_status inode_lru_isolate(struct list_head *item,
736 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
737{
738 struct list_head *freeable = arg;
739 struct inode *inode = container_of(item, struct inode, i_lru);
740
741 /*
742 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
743 * If we fail to get the lock, just skip it.
744 */
745 if (!spin_trylock(&inode->i_lock))
746 return LRU_SKIP;
747
748 /*
749 * Referenced or dirty inodes are still in use. Give them another pass
750 * through the LRU as we canot reclaim them now.
751 */
752 if (atomic_read(&inode->i_count) ||
753 (inode->i_state & ~I_REFERENCED)) {
754 list_lru_isolate(lru, &inode->i_lru);
755 spin_unlock(&inode->i_lock);
756 this_cpu_dec(nr_unused);
757 return LRU_REMOVED;
758 }
759
David Brazdil0f672f62019-12-10 10:32:29 +0000760 /* recently referenced inodes get one more pass */
761 if (inode->i_state & I_REFERENCED) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000762 inode->i_state &= ~I_REFERENCED;
763 spin_unlock(&inode->i_lock);
764 return LRU_ROTATE;
765 }
766
767 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
768 __iget(inode);
769 spin_unlock(&inode->i_lock);
770 spin_unlock(lru_lock);
771 if (remove_inode_buffers(inode)) {
772 unsigned long reap;
773 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
774 if (current_is_kswapd())
775 __count_vm_events(KSWAPD_INODESTEAL, reap);
776 else
777 __count_vm_events(PGINODESTEAL, reap);
778 if (current->reclaim_state)
779 current->reclaim_state->reclaimed_slab += reap;
780 }
781 iput(inode);
782 spin_lock(lru_lock);
783 return LRU_RETRY;
784 }
785
786 WARN_ON(inode->i_state & I_NEW);
787 inode->i_state |= I_FREEING;
788 list_lru_isolate_move(lru, &inode->i_lru, freeable);
789 spin_unlock(&inode->i_lock);
790
791 this_cpu_dec(nr_unused);
792 return LRU_REMOVED;
793}
794
795/*
796 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
797 * This is called from the superblock shrinker function with a number of inodes
798 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
799 * then are freed outside inode_lock by dispose_list().
800 */
801long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
802{
803 LIST_HEAD(freeable);
804 long freed;
805
806 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
807 inode_lru_isolate, &freeable);
808 dispose_list(&freeable);
809 return freed;
810}
811
812static void __wait_on_freeing_inode(struct inode *inode);
813/*
814 * Called with the inode lock held.
815 */
816static struct inode *find_inode(struct super_block *sb,
817 struct hlist_head *head,
818 int (*test)(struct inode *, void *),
819 void *data)
820{
821 struct inode *inode = NULL;
822
823repeat:
824 hlist_for_each_entry(inode, head, i_hash) {
825 if (inode->i_sb != sb)
826 continue;
827 if (!test(inode, data))
828 continue;
829 spin_lock(&inode->i_lock);
830 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
831 __wait_on_freeing_inode(inode);
832 goto repeat;
833 }
834 if (unlikely(inode->i_state & I_CREATING)) {
835 spin_unlock(&inode->i_lock);
836 return ERR_PTR(-ESTALE);
837 }
838 __iget(inode);
839 spin_unlock(&inode->i_lock);
840 return inode;
841 }
842 return NULL;
843}
844
845/*
846 * find_inode_fast is the fast path version of find_inode, see the comment at
847 * iget_locked for details.
848 */
849static struct inode *find_inode_fast(struct super_block *sb,
850 struct hlist_head *head, unsigned long ino)
851{
852 struct inode *inode = NULL;
853
854repeat:
855 hlist_for_each_entry(inode, head, i_hash) {
856 if (inode->i_ino != ino)
857 continue;
858 if (inode->i_sb != sb)
859 continue;
860 spin_lock(&inode->i_lock);
861 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
862 __wait_on_freeing_inode(inode);
863 goto repeat;
864 }
865 if (unlikely(inode->i_state & I_CREATING)) {
866 spin_unlock(&inode->i_lock);
867 return ERR_PTR(-ESTALE);
868 }
869 __iget(inode);
870 spin_unlock(&inode->i_lock);
871 return inode;
872 }
873 return NULL;
874}
875
876/*
877 * Each cpu owns a range of LAST_INO_BATCH numbers.
878 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
879 * to renew the exhausted range.
880 *
881 * This does not significantly increase overflow rate because every CPU can
882 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
883 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
884 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
885 * overflow rate by 2x, which does not seem too significant.
886 *
887 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
888 * error if st_ino won't fit in target struct field. Use 32bit counter
889 * here to attempt to avoid that.
890 */
891#define LAST_INO_BATCH 1024
892static DEFINE_PER_CPU(unsigned int, last_ino);
893
894unsigned int get_next_ino(void)
895{
896 unsigned int *p = &get_cpu_var(last_ino);
897 unsigned int res = *p;
898
899#ifdef CONFIG_SMP
900 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
901 static atomic_t shared_last_ino;
902 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
903
904 res = next - LAST_INO_BATCH;
905 }
906#endif
907
908 res++;
909 /* get_next_ino should not provide a 0 inode number */
910 if (unlikely(!res))
911 res++;
912 *p = res;
913 put_cpu_var(last_ino);
914 return res;
915}
916EXPORT_SYMBOL(get_next_ino);
917
918/**
919 * new_inode_pseudo - obtain an inode
920 * @sb: superblock
921 *
922 * Allocates a new inode for given superblock.
923 * Inode wont be chained in superblock s_inodes list
924 * This means :
925 * - fs can't be unmount
926 * - quotas, fsnotify, writeback can't work
927 */
928struct inode *new_inode_pseudo(struct super_block *sb)
929{
930 struct inode *inode = alloc_inode(sb);
931
932 if (inode) {
933 spin_lock(&inode->i_lock);
934 inode->i_state = 0;
935 spin_unlock(&inode->i_lock);
936 INIT_LIST_HEAD(&inode->i_sb_list);
937 }
938 return inode;
939}
940
941/**
942 * new_inode - obtain an inode
943 * @sb: superblock
944 *
945 * Allocates a new inode for given superblock. The default gfp_mask
946 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
947 * If HIGHMEM pages are unsuitable or it is known that pages allocated
948 * for the page cache are not reclaimable or migratable,
949 * mapping_set_gfp_mask() must be called with suitable flags on the
950 * newly created inode's mapping
951 *
952 */
953struct inode *new_inode(struct super_block *sb)
954{
955 struct inode *inode;
956
957 spin_lock_prefetch(&sb->s_inode_list_lock);
958
959 inode = new_inode_pseudo(sb);
960 if (inode)
961 inode_sb_list_add(inode);
962 return inode;
963}
964EXPORT_SYMBOL(new_inode);
965
966#ifdef CONFIG_DEBUG_LOCK_ALLOC
967void lockdep_annotate_inode_mutex_key(struct inode *inode)
968{
969 if (S_ISDIR(inode->i_mode)) {
970 struct file_system_type *type = inode->i_sb->s_type;
971
972 /* Set new key only if filesystem hasn't already changed it */
973 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
974 /*
975 * ensure nobody is actually holding i_mutex
976 */
977 // mutex_destroy(&inode->i_mutex);
978 init_rwsem(&inode->i_rwsem);
979 lockdep_set_class(&inode->i_rwsem,
980 &type->i_mutex_dir_key);
981 }
982 }
983}
984EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
985#endif
986
987/**
988 * unlock_new_inode - clear the I_NEW state and wake up any waiters
989 * @inode: new inode to unlock
990 *
991 * Called when the inode is fully initialised to clear the new state of the
992 * inode and wake up anyone waiting for the inode to finish initialisation.
993 */
994void unlock_new_inode(struct inode *inode)
995{
996 lockdep_annotate_inode_mutex_key(inode);
997 spin_lock(&inode->i_lock);
998 WARN_ON(!(inode->i_state & I_NEW));
999 inode->i_state &= ~I_NEW & ~I_CREATING;
1000 smp_mb();
1001 wake_up_bit(&inode->i_state, __I_NEW);
1002 spin_unlock(&inode->i_lock);
1003}
1004EXPORT_SYMBOL(unlock_new_inode);
1005
1006void discard_new_inode(struct inode *inode)
1007{
1008 lockdep_annotate_inode_mutex_key(inode);
1009 spin_lock(&inode->i_lock);
1010 WARN_ON(!(inode->i_state & I_NEW));
1011 inode->i_state &= ~I_NEW;
1012 smp_mb();
1013 wake_up_bit(&inode->i_state, __I_NEW);
1014 spin_unlock(&inode->i_lock);
1015 iput(inode);
1016}
1017EXPORT_SYMBOL(discard_new_inode);
1018
1019/**
1020 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1021 *
1022 * Lock any non-NULL argument that is not a directory.
1023 * Zero, one or two objects may be locked by this function.
1024 *
1025 * @inode1: first inode to lock
1026 * @inode2: second inode to lock
1027 */
1028void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1029{
1030 if (inode1 > inode2)
1031 swap(inode1, inode2);
1032
1033 if (inode1 && !S_ISDIR(inode1->i_mode))
1034 inode_lock(inode1);
1035 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1036 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1037}
1038EXPORT_SYMBOL(lock_two_nondirectories);
1039
1040/**
1041 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1042 * @inode1: first inode to unlock
1043 * @inode2: second inode to unlock
1044 */
1045void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1046{
1047 if (inode1 && !S_ISDIR(inode1->i_mode))
1048 inode_unlock(inode1);
1049 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1050 inode_unlock(inode2);
1051}
1052EXPORT_SYMBOL(unlock_two_nondirectories);
1053
1054/**
1055 * inode_insert5 - obtain an inode from a mounted file system
1056 * @inode: pre-allocated inode to use for insert to cache
1057 * @hashval: hash value (usually inode number) to get
1058 * @test: callback used for comparisons between inodes
1059 * @set: callback used to initialize a new struct inode
1060 * @data: opaque data pointer to pass to @test and @set
1061 *
1062 * Search for the inode specified by @hashval and @data in the inode cache,
1063 * and if present it is return it with an increased reference count. This is
1064 * a variant of iget5_locked() for callers that don't want to fail on memory
1065 * allocation of inode.
1066 *
1067 * If the inode is not in cache, insert the pre-allocated inode to cache and
1068 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1069 * to fill it in before unlocking it via unlock_new_inode().
1070 *
1071 * Note both @test and @set are called with the inode_hash_lock held, so can't
1072 * sleep.
1073 */
1074struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1075 int (*test)(struct inode *, void *),
1076 int (*set)(struct inode *, void *), void *data)
1077{
1078 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1079 struct inode *old;
1080 bool creating = inode->i_state & I_CREATING;
1081
1082again:
1083 spin_lock(&inode_hash_lock);
1084 old = find_inode(inode->i_sb, head, test, data);
1085 if (unlikely(old)) {
1086 /*
1087 * Uhhuh, somebody else created the same inode under us.
1088 * Use the old inode instead of the preallocated one.
1089 */
1090 spin_unlock(&inode_hash_lock);
1091 if (IS_ERR(old))
1092 return NULL;
1093 wait_on_inode(old);
1094 if (unlikely(inode_unhashed(old))) {
1095 iput(old);
1096 goto again;
1097 }
1098 return old;
1099 }
1100
1101 if (set && unlikely(set(inode, data))) {
1102 inode = NULL;
1103 goto unlock;
1104 }
1105
1106 /*
1107 * Return the locked inode with I_NEW set, the
1108 * caller is responsible for filling in the contents
1109 */
1110 spin_lock(&inode->i_lock);
1111 inode->i_state |= I_NEW;
Olivier Deprez157378f2022-04-04 15:47:50 +02001112 hlist_add_head_rcu(&inode->i_hash, head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001113 spin_unlock(&inode->i_lock);
1114 if (!creating)
1115 inode_sb_list_add(inode);
1116unlock:
1117 spin_unlock(&inode_hash_lock);
1118
1119 return inode;
1120}
1121EXPORT_SYMBOL(inode_insert5);
1122
1123/**
1124 * iget5_locked - obtain an inode from a mounted file system
1125 * @sb: super block of file system
1126 * @hashval: hash value (usually inode number) to get
1127 * @test: callback used for comparisons between inodes
1128 * @set: callback used to initialize a new struct inode
1129 * @data: opaque data pointer to pass to @test and @set
1130 *
1131 * Search for the inode specified by @hashval and @data in the inode cache,
1132 * and if present it is return it with an increased reference count. This is
1133 * a generalized version of iget_locked() for file systems where the inode
1134 * number is not sufficient for unique identification of an inode.
1135 *
1136 * If the inode is not in cache, allocate a new inode and return it locked,
1137 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1138 * before unlocking it via unlock_new_inode().
1139 *
1140 * Note both @test and @set are called with the inode_hash_lock held, so can't
1141 * sleep.
1142 */
1143struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1144 int (*test)(struct inode *, void *),
1145 int (*set)(struct inode *, void *), void *data)
1146{
1147 struct inode *inode = ilookup5(sb, hashval, test, data);
1148
1149 if (!inode) {
1150 struct inode *new = alloc_inode(sb);
1151
1152 if (new) {
1153 new->i_state = 0;
1154 inode = inode_insert5(new, hashval, test, set, data);
1155 if (unlikely(inode != new))
1156 destroy_inode(new);
1157 }
1158 }
1159 return inode;
1160}
1161EXPORT_SYMBOL(iget5_locked);
1162
1163/**
1164 * iget_locked - obtain an inode from a mounted file system
1165 * @sb: super block of file system
1166 * @ino: inode number to get
1167 *
1168 * Search for the inode specified by @ino in the inode cache and if present
1169 * return it with an increased reference count. This is for file systems
1170 * where the inode number is sufficient for unique identification of an inode.
1171 *
1172 * If the inode is not in cache, allocate a new inode and return it locked,
1173 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1174 * before unlocking it via unlock_new_inode().
1175 */
1176struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1177{
1178 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1179 struct inode *inode;
1180again:
1181 spin_lock(&inode_hash_lock);
1182 inode = find_inode_fast(sb, head, ino);
1183 spin_unlock(&inode_hash_lock);
1184 if (inode) {
1185 if (IS_ERR(inode))
1186 return NULL;
1187 wait_on_inode(inode);
1188 if (unlikely(inode_unhashed(inode))) {
1189 iput(inode);
1190 goto again;
1191 }
1192 return inode;
1193 }
1194
1195 inode = alloc_inode(sb);
1196 if (inode) {
1197 struct inode *old;
1198
1199 spin_lock(&inode_hash_lock);
1200 /* We released the lock, so.. */
1201 old = find_inode_fast(sb, head, ino);
1202 if (!old) {
1203 inode->i_ino = ino;
1204 spin_lock(&inode->i_lock);
1205 inode->i_state = I_NEW;
Olivier Deprez157378f2022-04-04 15:47:50 +02001206 hlist_add_head_rcu(&inode->i_hash, head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001207 spin_unlock(&inode->i_lock);
1208 inode_sb_list_add(inode);
1209 spin_unlock(&inode_hash_lock);
1210
1211 /* Return the locked inode with I_NEW set, the
1212 * caller is responsible for filling in the contents
1213 */
1214 return inode;
1215 }
1216
1217 /*
1218 * Uhhuh, somebody else created the same inode under
1219 * us. Use the old inode instead of the one we just
1220 * allocated.
1221 */
1222 spin_unlock(&inode_hash_lock);
1223 destroy_inode(inode);
1224 if (IS_ERR(old))
1225 return NULL;
1226 inode = old;
1227 wait_on_inode(inode);
1228 if (unlikely(inode_unhashed(inode))) {
1229 iput(inode);
1230 goto again;
1231 }
1232 }
1233 return inode;
1234}
1235EXPORT_SYMBOL(iget_locked);
1236
1237/*
1238 * search the inode cache for a matching inode number.
1239 * If we find one, then the inode number we are trying to
1240 * allocate is not unique and so we should not use it.
1241 *
1242 * Returns 1 if the inode number is unique, 0 if it is not.
1243 */
1244static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1245{
1246 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1247 struct inode *inode;
1248
Olivier Deprez157378f2022-04-04 15:47:50 +02001249 hlist_for_each_entry_rcu(inode, b, i_hash) {
1250 if (inode->i_ino == ino && inode->i_sb == sb)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001251 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001252 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001253 return 1;
1254}
1255
1256/**
1257 * iunique - get a unique inode number
1258 * @sb: superblock
1259 * @max_reserved: highest reserved inode number
1260 *
1261 * Obtain an inode number that is unique on the system for a given
1262 * superblock. This is used by file systems that have no natural
1263 * permanent inode numbering system. An inode number is returned that
1264 * is higher than the reserved limit but unique.
1265 *
1266 * BUGS:
1267 * With a large number of inodes live on the file system this function
1268 * currently becomes quite slow.
1269 */
1270ino_t iunique(struct super_block *sb, ino_t max_reserved)
1271{
1272 /*
1273 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1274 * error if st_ino won't fit in target struct field. Use 32bit counter
1275 * here to attempt to avoid that.
1276 */
1277 static DEFINE_SPINLOCK(iunique_lock);
1278 static unsigned int counter;
1279 ino_t res;
1280
Olivier Deprez157378f2022-04-04 15:47:50 +02001281 rcu_read_lock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001282 spin_lock(&iunique_lock);
1283 do {
1284 if (counter <= max_reserved)
1285 counter = max_reserved + 1;
1286 res = counter++;
1287 } while (!test_inode_iunique(sb, res));
1288 spin_unlock(&iunique_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02001289 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001290
1291 return res;
1292}
1293EXPORT_SYMBOL(iunique);
1294
1295struct inode *igrab(struct inode *inode)
1296{
1297 spin_lock(&inode->i_lock);
1298 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1299 __iget(inode);
1300 spin_unlock(&inode->i_lock);
1301 } else {
1302 spin_unlock(&inode->i_lock);
1303 /*
1304 * Handle the case where s_op->clear_inode is not been
1305 * called yet, and somebody is calling igrab
1306 * while the inode is getting freed.
1307 */
1308 inode = NULL;
1309 }
1310 return inode;
1311}
1312EXPORT_SYMBOL(igrab);
1313
1314/**
1315 * ilookup5_nowait - search for an inode in the inode cache
1316 * @sb: super block of file system to search
1317 * @hashval: hash value (usually inode number) to search for
1318 * @test: callback used for comparisons between inodes
1319 * @data: opaque data pointer to pass to @test
1320 *
1321 * Search for the inode specified by @hashval and @data in the inode cache.
1322 * If the inode is in the cache, the inode is returned with an incremented
1323 * reference count.
1324 *
1325 * Note: I_NEW is not waited upon so you have to be very careful what you do
1326 * with the returned inode. You probably should be using ilookup5() instead.
1327 *
1328 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1329 */
1330struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1331 int (*test)(struct inode *, void *), void *data)
1332{
1333 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1334 struct inode *inode;
1335
1336 spin_lock(&inode_hash_lock);
1337 inode = find_inode(sb, head, test, data);
1338 spin_unlock(&inode_hash_lock);
1339
1340 return IS_ERR(inode) ? NULL : inode;
1341}
1342EXPORT_SYMBOL(ilookup5_nowait);
1343
1344/**
1345 * ilookup5 - search for an inode in the inode cache
1346 * @sb: super block of file system to search
1347 * @hashval: hash value (usually inode number) to search for
1348 * @test: callback used for comparisons between inodes
1349 * @data: opaque data pointer to pass to @test
1350 *
1351 * Search for the inode specified by @hashval and @data in the inode cache,
1352 * and if the inode is in the cache, return the inode with an incremented
1353 * reference count. Waits on I_NEW before returning the inode.
1354 * returned with an incremented reference count.
1355 *
1356 * This is a generalized version of ilookup() for file systems where the
1357 * inode number is not sufficient for unique identification of an inode.
1358 *
1359 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1360 */
1361struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1362 int (*test)(struct inode *, void *), void *data)
1363{
1364 struct inode *inode;
1365again:
1366 inode = ilookup5_nowait(sb, hashval, test, data);
1367 if (inode) {
1368 wait_on_inode(inode);
1369 if (unlikely(inode_unhashed(inode))) {
1370 iput(inode);
1371 goto again;
1372 }
1373 }
1374 return inode;
1375}
1376EXPORT_SYMBOL(ilookup5);
1377
1378/**
1379 * ilookup - search for an inode in the inode cache
1380 * @sb: super block of file system to search
1381 * @ino: inode number to search for
1382 *
1383 * Search for the inode @ino in the inode cache, and if the inode is in the
1384 * cache, the inode is returned with an incremented reference count.
1385 */
1386struct inode *ilookup(struct super_block *sb, unsigned long ino)
1387{
1388 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1389 struct inode *inode;
1390again:
1391 spin_lock(&inode_hash_lock);
1392 inode = find_inode_fast(sb, head, ino);
1393 spin_unlock(&inode_hash_lock);
1394
1395 if (inode) {
1396 if (IS_ERR(inode))
1397 return NULL;
1398 wait_on_inode(inode);
1399 if (unlikely(inode_unhashed(inode))) {
1400 iput(inode);
1401 goto again;
1402 }
1403 }
1404 return inode;
1405}
1406EXPORT_SYMBOL(ilookup);
1407
1408/**
1409 * find_inode_nowait - find an inode in the inode cache
1410 * @sb: super block of file system to search
1411 * @hashval: hash value (usually inode number) to search for
1412 * @match: callback used for comparisons between inodes
1413 * @data: opaque data pointer to pass to @match
1414 *
1415 * Search for the inode specified by @hashval and @data in the inode
1416 * cache, where the helper function @match will return 0 if the inode
1417 * does not match, 1 if the inode does match, and -1 if the search
1418 * should be stopped. The @match function must be responsible for
1419 * taking the i_lock spin_lock and checking i_state for an inode being
1420 * freed or being initialized, and incrementing the reference count
1421 * before returning 1. It also must not sleep, since it is called with
1422 * the inode_hash_lock spinlock held.
1423 *
1424 * This is a even more generalized version of ilookup5() when the
1425 * function must never block --- find_inode() can block in
1426 * __wait_on_freeing_inode() --- or when the caller can not increment
1427 * the reference count because the resulting iput() might cause an
1428 * inode eviction. The tradeoff is that the @match funtion must be
1429 * very carefully implemented.
1430 */
1431struct inode *find_inode_nowait(struct super_block *sb,
1432 unsigned long hashval,
1433 int (*match)(struct inode *, unsigned long,
1434 void *),
1435 void *data)
1436{
1437 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1438 struct inode *inode, *ret_inode = NULL;
1439 int mval;
1440
1441 spin_lock(&inode_hash_lock);
1442 hlist_for_each_entry(inode, head, i_hash) {
1443 if (inode->i_sb != sb)
1444 continue;
1445 mval = match(inode, hashval, data);
1446 if (mval == 0)
1447 continue;
1448 if (mval == 1)
1449 ret_inode = inode;
1450 goto out;
1451 }
1452out:
1453 spin_unlock(&inode_hash_lock);
1454 return ret_inode;
1455}
1456EXPORT_SYMBOL(find_inode_nowait);
1457
Olivier Deprez157378f2022-04-04 15:47:50 +02001458/**
1459 * find_inode_rcu - find an inode in the inode cache
1460 * @sb: Super block of file system to search
1461 * @hashval: Key to hash
1462 * @test: Function to test match on an inode
1463 * @data: Data for test function
1464 *
1465 * Search for the inode specified by @hashval and @data in the inode cache,
1466 * where the helper function @test will return 0 if the inode does not match
1467 * and 1 if it does. The @test function must be responsible for taking the
1468 * i_lock spin_lock and checking i_state for an inode being freed or being
1469 * initialized.
1470 *
1471 * If successful, this will return the inode for which the @test function
1472 * returned 1 and NULL otherwise.
1473 *
1474 * The @test function is not permitted to take a ref on any inode presented.
1475 * It is also not permitted to sleep.
1476 *
1477 * The caller must hold the RCU read lock.
1478 */
1479struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1480 int (*test)(struct inode *, void *), void *data)
1481{
1482 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1483 struct inode *inode;
1484
1485 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1486 "suspicious find_inode_rcu() usage");
1487
1488 hlist_for_each_entry_rcu(inode, head, i_hash) {
1489 if (inode->i_sb == sb &&
1490 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1491 test(inode, data))
1492 return inode;
1493 }
1494 return NULL;
1495}
1496EXPORT_SYMBOL(find_inode_rcu);
1497
1498/**
1499 * find_inode_by_rcu - Find an inode in the inode cache
1500 * @sb: Super block of file system to search
1501 * @ino: The inode number to match
1502 *
1503 * Search for the inode specified by @hashval and @data in the inode cache,
1504 * where the helper function @test will return 0 if the inode does not match
1505 * and 1 if it does. The @test function must be responsible for taking the
1506 * i_lock spin_lock and checking i_state for an inode being freed or being
1507 * initialized.
1508 *
1509 * If successful, this will return the inode for which the @test function
1510 * returned 1 and NULL otherwise.
1511 *
1512 * The @test function is not permitted to take a ref on any inode presented.
1513 * It is also not permitted to sleep.
1514 *
1515 * The caller must hold the RCU read lock.
1516 */
1517struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1518 unsigned long ino)
1519{
1520 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1521 struct inode *inode;
1522
1523 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1524 "suspicious find_inode_by_ino_rcu() usage");
1525
1526 hlist_for_each_entry_rcu(inode, head, i_hash) {
1527 if (inode->i_ino == ino &&
1528 inode->i_sb == sb &&
1529 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1530 return inode;
1531 }
1532 return NULL;
1533}
1534EXPORT_SYMBOL(find_inode_by_ino_rcu);
1535
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001536int insert_inode_locked(struct inode *inode)
1537{
1538 struct super_block *sb = inode->i_sb;
1539 ino_t ino = inode->i_ino;
1540 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1541
1542 while (1) {
1543 struct inode *old = NULL;
1544 spin_lock(&inode_hash_lock);
1545 hlist_for_each_entry(old, head, i_hash) {
1546 if (old->i_ino != ino)
1547 continue;
1548 if (old->i_sb != sb)
1549 continue;
1550 spin_lock(&old->i_lock);
1551 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1552 spin_unlock(&old->i_lock);
1553 continue;
1554 }
1555 break;
1556 }
1557 if (likely(!old)) {
1558 spin_lock(&inode->i_lock);
1559 inode->i_state |= I_NEW | I_CREATING;
Olivier Deprez157378f2022-04-04 15:47:50 +02001560 hlist_add_head_rcu(&inode->i_hash, head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001561 spin_unlock(&inode->i_lock);
1562 spin_unlock(&inode_hash_lock);
1563 return 0;
1564 }
1565 if (unlikely(old->i_state & I_CREATING)) {
1566 spin_unlock(&old->i_lock);
1567 spin_unlock(&inode_hash_lock);
1568 return -EBUSY;
1569 }
1570 __iget(old);
1571 spin_unlock(&old->i_lock);
1572 spin_unlock(&inode_hash_lock);
1573 wait_on_inode(old);
1574 if (unlikely(!inode_unhashed(old))) {
1575 iput(old);
1576 return -EBUSY;
1577 }
1578 iput(old);
1579 }
1580}
1581EXPORT_SYMBOL(insert_inode_locked);
1582
1583int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1584 int (*test)(struct inode *, void *), void *data)
1585{
1586 struct inode *old;
1587
1588 inode->i_state |= I_CREATING;
1589 old = inode_insert5(inode, hashval, test, NULL, data);
1590
1591 if (old != inode) {
1592 iput(old);
1593 return -EBUSY;
1594 }
1595 return 0;
1596}
1597EXPORT_SYMBOL(insert_inode_locked4);
1598
1599
1600int generic_delete_inode(struct inode *inode)
1601{
1602 return 1;
1603}
1604EXPORT_SYMBOL(generic_delete_inode);
1605
1606/*
1607 * Called when we're dropping the last reference
1608 * to an inode.
1609 *
1610 * Call the FS "drop_inode()" function, defaulting to
1611 * the legacy UNIX filesystem behaviour. If it tells
1612 * us to evict inode, do so. Otherwise, retain inode
1613 * in cache if fs is alive, sync and evict if fs is
1614 * shutting down.
1615 */
1616static void iput_final(struct inode *inode)
1617{
1618 struct super_block *sb = inode->i_sb;
1619 const struct super_operations *op = inode->i_sb->s_op;
Olivier Deprez157378f2022-04-04 15:47:50 +02001620 unsigned long state;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001621 int drop;
1622
1623 WARN_ON(inode->i_state & I_NEW);
1624
1625 if (op->drop_inode)
1626 drop = op->drop_inode(inode);
1627 else
1628 drop = generic_drop_inode(inode);
1629
Olivier Deprez157378f2022-04-04 15:47:50 +02001630 if (!drop &&
1631 !(inode->i_state & I_DONTCACHE) &&
1632 (sb->s_flags & SB_ACTIVE)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001633 inode_add_lru(inode);
1634 spin_unlock(&inode->i_lock);
1635 return;
1636 }
1637
Olivier Deprez157378f2022-04-04 15:47:50 +02001638 state = inode->i_state;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001639 if (!drop) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001640 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001641 spin_unlock(&inode->i_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02001642
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001643 write_inode_now(inode, 1);
Olivier Deprez157378f2022-04-04 15:47:50 +02001644
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001645 spin_lock(&inode->i_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02001646 state = inode->i_state;
1647 WARN_ON(state & I_NEW);
1648 state &= ~I_WILL_FREE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001649 }
1650
Olivier Deprez157378f2022-04-04 15:47:50 +02001651 WRITE_ONCE(inode->i_state, state | I_FREEING);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001652 if (!list_empty(&inode->i_lru))
1653 inode_lru_list_del(inode);
1654 spin_unlock(&inode->i_lock);
1655
1656 evict(inode);
1657}
1658
1659/**
1660 * iput - put an inode
1661 * @inode: inode to put
1662 *
1663 * Puts an inode, dropping its usage count. If the inode use count hits
1664 * zero, the inode is then freed and may also be destroyed.
1665 *
1666 * Consequently, iput() can sleep.
1667 */
1668void iput(struct inode *inode)
1669{
1670 if (!inode)
1671 return;
1672 BUG_ON(inode->i_state & I_CLEAR);
1673retry:
1674 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1675 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1676 atomic_inc(&inode->i_count);
1677 spin_unlock(&inode->i_lock);
1678 trace_writeback_lazytime_iput(inode);
1679 mark_inode_dirty_sync(inode);
1680 goto retry;
1681 }
1682 iput_final(inode);
1683 }
1684}
1685EXPORT_SYMBOL(iput);
1686
Olivier Deprez157378f2022-04-04 15:47:50 +02001687#ifdef CONFIG_BLOCK
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001688/**
1689 * bmap - find a block number in a file
Olivier Deprez157378f2022-04-04 15:47:50 +02001690 * @inode: inode owning the block number being requested
1691 * @block: pointer containing the block to find
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001692 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001693 * Replaces the value in ``*block`` with the block number on the device holding
1694 * corresponding to the requested block number in the file.
1695 * That is, asked for block 4 of inode 1 the function will replace the
1696 * 4 in ``*block``, with disk block relative to the disk start that holds that
1697 * block of the file.
1698 *
1699 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1700 * hole, returns 0 and ``*block`` is also set to 0.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001701 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001702int bmap(struct inode *inode, sector_t *block)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001703{
Olivier Deprez157378f2022-04-04 15:47:50 +02001704 if (!inode->i_mapping->a_ops->bmap)
1705 return -EINVAL;
1706
1707 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1708 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001709}
1710EXPORT_SYMBOL(bmap);
Olivier Deprez157378f2022-04-04 15:47:50 +02001711#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001712
1713/*
1714 * With relative atime, only update atime if the previous atime is
1715 * earlier than either the ctime or mtime or if at least a day has
1716 * passed since the last atime update.
1717 */
1718static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
David Brazdil0f672f62019-12-10 10:32:29 +00001719 struct timespec64 now)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001720{
1721
1722 if (!(mnt->mnt_flags & MNT_RELATIME))
1723 return 1;
1724 /*
1725 * Is mtime younger than atime? If yes, update atime:
1726 */
1727 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1728 return 1;
1729 /*
1730 * Is ctime younger than atime? If yes, update atime:
1731 */
1732 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1733 return 1;
1734
1735 /*
1736 * Is the previous atime value older than a day? If yes,
1737 * update atime:
1738 */
1739 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1740 return 1;
1741 /*
1742 * Good, we can skip the atime update:
1743 */
1744 return 0;
1745}
1746
1747int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1748{
1749 int iflags = I_DIRTY_TIME;
1750 bool dirty = false;
1751
1752 if (flags & S_ATIME)
1753 inode->i_atime = *time;
1754 if (flags & S_VERSION)
1755 dirty = inode_maybe_inc_iversion(inode, false);
1756 if (flags & S_CTIME)
1757 inode->i_ctime = *time;
1758 if (flags & S_MTIME)
1759 inode->i_mtime = *time;
1760 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1761 !(inode->i_sb->s_flags & SB_LAZYTIME))
1762 dirty = true;
1763
1764 if (dirty)
1765 iflags |= I_DIRTY_SYNC;
1766 __mark_inode_dirty(inode, iflags);
1767 return 0;
1768}
1769EXPORT_SYMBOL(generic_update_time);
1770
1771/*
1772 * This does the actual work of updating an inodes time or version. Must have
1773 * had called mnt_want_write() before calling this.
1774 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001775int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001776{
Olivier Deprez157378f2022-04-04 15:47:50 +02001777 if (inode->i_op->update_time)
1778 return inode->i_op->update_time(inode, time, flags);
1779 return generic_update_time(inode, time, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001780}
Olivier Deprez157378f2022-04-04 15:47:50 +02001781EXPORT_SYMBOL(inode_update_time);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001782
1783/**
1784 * touch_atime - update the access time
1785 * @path: the &struct path to update
1786 * @inode: inode to update
1787 *
1788 * Update the accessed time on an inode and mark it for writeback.
1789 * This function automatically handles read only file systems and media,
1790 * as well as the "noatime" flag and inode specific "noatime" markers.
1791 */
1792bool atime_needs_update(const struct path *path, struct inode *inode)
1793{
1794 struct vfsmount *mnt = path->mnt;
1795 struct timespec64 now;
1796
1797 if (inode->i_flags & S_NOATIME)
1798 return false;
1799
1800 /* Atime updates will likely cause i_uid and i_gid to be written
1801 * back improprely if their true value is unknown to the vfs.
1802 */
1803 if (HAS_UNMAPPED_ID(inode))
1804 return false;
1805
1806 if (IS_NOATIME(inode))
1807 return false;
1808 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1809 return false;
1810
1811 if (mnt->mnt_flags & MNT_NOATIME)
1812 return false;
1813 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1814 return false;
1815
1816 now = current_time(inode);
1817
David Brazdil0f672f62019-12-10 10:32:29 +00001818 if (!relatime_need_update(mnt, inode, now))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001819 return false;
1820
1821 if (timespec64_equal(&inode->i_atime, &now))
1822 return false;
1823
1824 return true;
1825}
1826
1827void touch_atime(const struct path *path)
1828{
1829 struct vfsmount *mnt = path->mnt;
1830 struct inode *inode = d_inode(path->dentry);
1831 struct timespec64 now;
1832
1833 if (!atime_needs_update(path, inode))
1834 return;
1835
1836 if (!sb_start_write_trylock(inode->i_sb))
1837 return;
1838
1839 if (__mnt_want_write(mnt) != 0)
1840 goto skip_update;
1841 /*
1842 * File systems can error out when updating inodes if they need to
1843 * allocate new space to modify an inode (such is the case for
1844 * Btrfs), but since we touch atime while walking down the path we
1845 * really don't care if we failed to update the atime of the file,
1846 * so just ignore the return value.
1847 * We may also fail on filesystems that have the ability to make parts
1848 * of the fs read only, e.g. subvolumes in Btrfs.
1849 */
1850 now = current_time(inode);
Olivier Deprez157378f2022-04-04 15:47:50 +02001851 inode_update_time(inode, &now, S_ATIME);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001852 __mnt_drop_write(mnt);
1853skip_update:
1854 sb_end_write(inode->i_sb);
1855}
1856EXPORT_SYMBOL(touch_atime);
1857
1858/*
1859 * The logic we want is
1860 *
1861 * if suid or (sgid and xgrp)
1862 * remove privs
1863 */
1864int should_remove_suid(struct dentry *dentry)
1865{
1866 umode_t mode = d_inode(dentry)->i_mode;
1867 int kill = 0;
1868
1869 /* suid always must be killed */
1870 if (unlikely(mode & S_ISUID))
1871 kill = ATTR_KILL_SUID;
1872
1873 /*
1874 * sgid without any exec bits is just a mandatory locking mark; leave
1875 * it alone. If some exec bits are set, it's a real sgid; kill it.
1876 */
1877 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1878 kill |= ATTR_KILL_SGID;
1879
1880 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1881 return kill;
1882
1883 return 0;
1884}
1885EXPORT_SYMBOL(should_remove_suid);
1886
1887/*
1888 * Return mask of changes for notify_change() that need to be done as a
1889 * response to write or truncate. Return 0 if nothing has to be changed.
1890 * Negative value on error (change should be denied).
1891 */
1892int dentry_needs_remove_privs(struct dentry *dentry)
1893{
1894 struct inode *inode = d_inode(dentry);
1895 int mask = 0;
1896 int ret;
1897
1898 if (IS_NOSEC(inode))
1899 return 0;
1900
1901 mask = should_remove_suid(dentry);
1902 ret = security_inode_need_killpriv(dentry);
1903 if (ret < 0)
1904 return ret;
1905 if (ret)
1906 mask |= ATTR_KILL_PRIV;
1907 return mask;
1908}
1909
1910static int __remove_privs(struct dentry *dentry, int kill)
1911{
1912 struct iattr newattrs;
1913
1914 newattrs.ia_valid = ATTR_FORCE | kill;
1915 /*
1916 * Note we call this on write, so notify_change will not
1917 * encounter any conflicting delegations:
1918 */
1919 return notify_change(dentry, &newattrs, NULL);
1920}
1921
1922/*
1923 * Remove special file priviledges (suid, capabilities) when file is written
1924 * to or truncated.
1925 */
1926int file_remove_privs(struct file *file)
1927{
1928 struct dentry *dentry = file_dentry(file);
1929 struct inode *inode = file_inode(file);
1930 int kill;
1931 int error = 0;
1932
David Brazdil0f672f62019-12-10 10:32:29 +00001933 /*
1934 * Fast path for nothing security related.
1935 * As well for non-regular files, e.g. blkdev inodes.
1936 * For example, blkdev_write_iter() might get here
1937 * trying to remove privs which it is not allowed to.
1938 */
1939 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001940 return 0;
1941
1942 kill = dentry_needs_remove_privs(dentry);
1943 if (kill < 0)
1944 return kill;
1945 if (kill)
1946 error = __remove_privs(dentry, kill);
1947 if (!error)
1948 inode_has_no_xattr(inode);
1949
1950 return error;
1951}
1952EXPORT_SYMBOL(file_remove_privs);
1953
1954/**
1955 * file_update_time - update mtime and ctime time
1956 * @file: file accessed
1957 *
1958 * Update the mtime and ctime members of an inode and mark the inode
1959 * for writeback. Note that this function is meant exclusively for
1960 * usage in the file write path of filesystems, and filesystems may
1961 * choose to explicitly ignore update via this function with the
1962 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1963 * timestamps are handled by the server. This can return an error for
1964 * file systems who need to allocate space in order to update an inode.
1965 */
1966
1967int file_update_time(struct file *file)
1968{
1969 struct inode *inode = file_inode(file);
1970 struct timespec64 now;
1971 int sync_it = 0;
1972 int ret;
1973
1974 /* First try to exhaust all avenues to not sync */
1975 if (IS_NOCMTIME(inode))
1976 return 0;
1977
1978 now = current_time(inode);
1979 if (!timespec64_equal(&inode->i_mtime, &now))
1980 sync_it = S_MTIME;
1981
1982 if (!timespec64_equal(&inode->i_ctime, &now))
1983 sync_it |= S_CTIME;
1984
1985 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1986 sync_it |= S_VERSION;
1987
1988 if (!sync_it)
1989 return 0;
1990
1991 /* Finally allowed to write? Takes lock. */
1992 if (__mnt_want_write_file(file))
1993 return 0;
1994
Olivier Deprez157378f2022-04-04 15:47:50 +02001995 ret = inode_update_time(inode, &now, sync_it);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001996 __mnt_drop_write_file(file);
1997
1998 return ret;
1999}
2000EXPORT_SYMBOL(file_update_time);
2001
David Brazdil0f672f62019-12-10 10:32:29 +00002002/* Caller must hold the file's inode lock */
2003int file_modified(struct file *file)
2004{
2005 int err;
2006
2007 /*
2008 * Clear the security bits if the process is not being run by root.
2009 * This keeps people from modifying setuid and setgid binaries.
2010 */
2011 err = file_remove_privs(file);
2012 if (err)
2013 return err;
2014
2015 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2016 return 0;
2017
2018 return file_update_time(file);
2019}
2020EXPORT_SYMBOL(file_modified);
2021
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002022int inode_needs_sync(struct inode *inode)
2023{
2024 if (IS_SYNC(inode))
2025 return 1;
2026 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2027 return 1;
2028 return 0;
2029}
2030EXPORT_SYMBOL(inode_needs_sync);
2031
2032/*
2033 * If we try to find an inode in the inode hash while it is being
2034 * deleted, we have to wait until the filesystem completes its
2035 * deletion before reporting that it isn't found. This function waits
2036 * until the deletion _might_ have completed. Callers are responsible
2037 * to recheck inode state.
2038 *
2039 * It doesn't matter if I_NEW is not set initially, a call to
2040 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2041 * will DTRT.
2042 */
2043static void __wait_on_freeing_inode(struct inode *inode)
2044{
2045 wait_queue_head_t *wq;
2046 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2047 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2048 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2049 spin_unlock(&inode->i_lock);
2050 spin_unlock(&inode_hash_lock);
2051 schedule();
2052 finish_wait(wq, &wait.wq_entry);
2053 spin_lock(&inode_hash_lock);
2054}
2055
2056static __initdata unsigned long ihash_entries;
2057static int __init set_ihash_entries(char *str)
2058{
2059 if (!str)
2060 return 0;
2061 ihash_entries = simple_strtoul(str, &str, 0);
2062 return 1;
2063}
2064__setup("ihash_entries=", set_ihash_entries);
2065
2066/*
2067 * Initialize the waitqueues and inode hash table.
2068 */
2069void __init inode_init_early(void)
2070{
2071 /* If hashes are distributed across NUMA nodes, defer
2072 * hash allocation until vmalloc space is available.
2073 */
2074 if (hashdist)
2075 return;
2076
2077 inode_hashtable =
2078 alloc_large_system_hash("Inode-cache",
2079 sizeof(struct hlist_head),
2080 ihash_entries,
2081 14,
2082 HASH_EARLY | HASH_ZERO,
2083 &i_hash_shift,
2084 &i_hash_mask,
2085 0,
2086 0);
2087}
2088
2089void __init inode_init(void)
2090{
2091 /* inode slab cache */
2092 inode_cachep = kmem_cache_create("inode_cache",
2093 sizeof(struct inode),
2094 0,
2095 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2096 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2097 init_once);
2098
2099 /* Hash may have been set up in inode_init_early */
2100 if (!hashdist)
2101 return;
2102
2103 inode_hashtable =
2104 alloc_large_system_hash("Inode-cache",
2105 sizeof(struct hlist_head),
2106 ihash_entries,
2107 14,
2108 HASH_ZERO,
2109 &i_hash_shift,
2110 &i_hash_mask,
2111 0,
2112 0);
2113}
2114
2115void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2116{
2117 inode->i_mode = mode;
2118 if (S_ISCHR(mode)) {
2119 inode->i_fop = &def_chr_fops;
2120 inode->i_rdev = rdev;
2121 } else if (S_ISBLK(mode)) {
2122 inode->i_fop = &def_blk_fops;
2123 inode->i_rdev = rdev;
2124 } else if (S_ISFIFO(mode))
2125 inode->i_fop = &pipefifo_fops;
2126 else if (S_ISSOCK(mode))
2127 ; /* leave it no_open_fops */
2128 else
2129 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2130 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2131 inode->i_ino);
2132}
2133EXPORT_SYMBOL(init_special_inode);
2134
2135/**
2136 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2137 * @inode: New inode
2138 * @dir: Directory inode
2139 * @mode: mode of the new inode
2140 */
2141void inode_init_owner(struct inode *inode, const struct inode *dir,
2142 umode_t mode)
2143{
2144 inode->i_uid = current_fsuid();
2145 if (dir && dir->i_mode & S_ISGID) {
2146 inode->i_gid = dir->i_gid;
2147
2148 /* Directories are special, and always inherit S_ISGID */
2149 if (S_ISDIR(mode))
2150 mode |= S_ISGID;
2151 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2152 !in_group_p(inode->i_gid) &&
2153 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2154 mode &= ~S_ISGID;
2155 } else
2156 inode->i_gid = current_fsgid();
2157 inode->i_mode = mode;
2158}
2159EXPORT_SYMBOL(inode_init_owner);
2160
2161/**
2162 * inode_owner_or_capable - check current task permissions to inode
2163 * @inode: inode being checked
2164 *
2165 * Return true if current either has CAP_FOWNER in a namespace with the
2166 * inode owner uid mapped, or owns the file.
2167 */
2168bool inode_owner_or_capable(const struct inode *inode)
2169{
2170 struct user_namespace *ns;
2171
2172 if (uid_eq(current_fsuid(), inode->i_uid))
2173 return true;
2174
2175 ns = current_user_ns();
2176 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2177 return true;
2178 return false;
2179}
2180EXPORT_SYMBOL(inode_owner_or_capable);
2181
2182/*
2183 * Direct i/o helper functions
2184 */
2185static void __inode_dio_wait(struct inode *inode)
2186{
2187 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2188 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2189
2190 do {
2191 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2192 if (atomic_read(&inode->i_dio_count))
2193 schedule();
2194 } while (atomic_read(&inode->i_dio_count));
2195 finish_wait(wq, &q.wq_entry);
2196}
2197
2198/**
2199 * inode_dio_wait - wait for outstanding DIO requests to finish
2200 * @inode: inode to wait for
2201 *
2202 * Waits for all pending direct I/O requests to finish so that we can
2203 * proceed with a truncate or equivalent operation.
2204 *
2205 * Must be called under a lock that serializes taking new references
2206 * to i_dio_count, usually by inode->i_mutex.
2207 */
2208void inode_dio_wait(struct inode *inode)
2209{
2210 if (atomic_read(&inode->i_dio_count))
2211 __inode_dio_wait(inode);
2212}
2213EXPORT_SYMBOL(inode_dio_wait);
2214
2215/*
2216 * inode_set_flags - atomically set some inode flags
2217 *
2218 * Note: the caller should be holding i_mutex, or else be sure that
2219 * they have exclusive access to the inode structure (i.e., while the
2220 * inode is being instantiated). The reason for the cmpxchg() loop
2221 * --- which wouldn't be necessary if all code paths which modify
2222 * i_flags actually followed this rule, is that there is at least one
2223 * code path which doesn't today so we use cmpxchg() out of an abundance
2224 * of caution.
2225 *
2226 * In the long run, i_mutex is overkill, and we should probably look
2227 * at using the i_lock spinlock to protect i_flags, and then make sure
2228 * it is so documented in include/linux/fs.h and that all code follows
2229 * the locking convention!!
2230 */
2231void inode_set_flags(struct inode *inode, unsigned int flags,
2232 unsigned int mask)
2233{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002234 WARN_ON_ONCE(flags & ~mask);
David Brazdil0f672f62019-12-10 10:32:29 +00002235 set_mask_bits(&inode->i_flags, mask, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002236}
2237EXPORT_SYMBOL(inode_set_flags);
2238
2239void inode_nohighmem(struct inode *inode)
2240{
2241 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2242}
2243EXPORT_SYMBOL(inode_nohighmem);
2244
2245/**
David Brazdil0f672f62019-12-10 10:32:29 +00002246 * timestamp_truncate - Truncate timespec to a granularity
2247 * @t: Timespec
2248 * @inode: inode being updated
2249 *
2250 * Truncate a timespec to the granularity supported by the fs
2251 * containing the inode. Always rounds down. gran must
2252 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2253 */
2254struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2255{
2256 struct super_block *sb = inode->i_sb;
2257 unsigned int gran = sb->s_time_gran;
2258
2259 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2260 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2261 t.tv_nsec = 0;
2262
2263 /* Avoid division in the common cases 1 ns and 1 s. */
2264 if (gran == 1)
2265 ; /* nothing */
2266 else if (gran == NSEC_PER_SEC)
2267 t.tv_nsec = 0;
2268 else if (gran > 1 && gran < NSEC_PER_SEC)
2269 t.tv_nsec -= t.tv_nsec % gran;
2270 else
2271 WARN(1, "invalid file time granularity: %u", gran);
2272 return t;
2273}
2274EXPORT_SYMBOL(timestamp_truncate);
2275
2276/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002277 * current_time - Return FS time
2278 * @inode: inode.
2279 *
2280 * Return the current time truncated to the time granularity supported by
2281 * the fs.
2282 *
2283 * Note that inode and inode->sb cannot be NULL.
2284 * Otherwise, the function warns and returns time without truncation.
2285 */
2286struct timespec64 current_time(struct inode *inode)
2287{
David Brazdil0f672f62019-12-10 10:32:29 +00002288 struct timespec64 now;
2289
2290 ktime_get_coarse_real_ts64(&now);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002291
2292 if (unlikely(!inode->i_sb)) {
2293 WARN(1, "current_time() called with uninitialized super_block in the inode");
2294 return now;
2295 }
2296
David Brazdil0f672f62019-12-10 10:32:29 +00002297 return timestamp_truncate(now, inode);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002298}
2299EXPORT_SYMBOL(current_time);
David Brazdil0f672f62019-12-10 10:32:29 +00002300
2301/*
2302 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2303 * configurations.
2304 *
2305 * Note: the caller should be holding i_mutex, or else be sure that they have
2306 * exclusive access to the inode structure.
2307 */
2308int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2309 unsigned int flags)
2310{
2311 /*
2312 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2313 * the relevant capability.
2314 *
2315 * This test looks nicer. Thanks to Pauline Middelink
2316 */
2317 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2318 !capable(CAP_LINUX_IMMUTABLE))
2319 return -EPERM;
2320
Olivier Deprez157378f2022-04-04 15:47:50 +02002321 return fscrypt_prepare_setflags(inode, oldflags, flags);
David Brazdil0f672f62019-12-10 10:32:29 +00002322}
2323EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2324
2325/*
2326 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2327 * configurations.
2328 *
2329 * Note: the caller should be holding i_mutex, or else be sure that they have
2330 * exclusive access to the inode structure.
2331 */
2332int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2333 struct fsxattr *fa)
2334{
2335 /*
2336 * Can't modify an immutable/append-only file unless we have
2337 * appropriate permission.
2338 */
2339 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2340 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2341 !capable(CAP_LINUX_IMMUTABLE))
2342 return -EPERM;
2343
2344 /*
2345 * Project Quota ID state is only allowed to change from within the init
2346 * namespace. Enforce that restriction only if we are trying to change
2347 * the quota ID state. Everything else is allowed in user namespaces.
2348 */
2349 if (current_user_ns() != &init_user_ns) {
2350 if (old_fa->fsx_projid != fa->fsx_projid)
2351 return -EINVAL;
2352 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2353 FS_XFLAG_PROJINHERIT)
2354 return -EINVAL;
2355 }
2356
2357 /* Check extent size hints. */
2358 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2359 return -EINVAL;
2360
2361 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2362 !S_ISDIR(inode->i_mode))
2363 return -EINVAL;
2364
2365 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2366 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2367 return -EINVAL;
2368
2369 /*
2370 * It is only valid to set the DAX flag on regular files and
2371 * directories on filesystems.
2372 */
2373 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2374 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2375 return -EINVAL;
2376
2377 /* Extent size hints of zero turn off the flags. */
2378 if (fa->fsx_extsize == 0)
2379 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2380 if (fa->fsx_cowextsize == 0)
2381 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2382
2383 return 0;
2384}
2385EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);