blob: 4180371bf864219f42c16775623ab2d81e5392e4 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * fs/crypto/hooks.c
4 *
5 * Encryption hooks for higher-level filesystem operations.
6 */
7
Olivier Deprez157378f2022-04-04 15:47:50 +02008#include <linux/key.h>
9
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010#include "fscrypt_private.h"
11
12/**
Olivier Deprez157378f2022-04-04 15:47:50 +020013 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014 * @inode: the inode being opened
15 * @filp: the struct file being set up
16 *
17 * Currently, an encrypted regular file can only be opened if its encryption key
18 * is available; access to the raw encrypted contents is not supported.
19 * Therefore, we first set up the inode's encryption key (if not already done)
20 * and return an error if it's unavailable.
21 *
22 * We also verify that if the parent directory (from the path via which the file
23 * is being opened) is encrypted, then the inode being opened uses the same
24 * encryption policy. This is needed as part of the enforcement that all files
25 * in an encrypted directory tree use the same encryption policy, as a
26 * protection against certain types of offline attacks. Note that this check is
27 * needed even when opening an *unencrypted* file, since it's forbidden to have
28 * an unencrypted file in an encrypted directory.
29 *
30 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
31 */
32int fscrypt_file_open(struct inode *inode, struct file *filp)
33{
34 int err;
35 struct dentry *dir;
36
37 err = fscrypt_require_key(inode);
38 if (err)
39 return err;
40
41 dir = dget_parent(file_dentry(filp));
42 if (IS_ENCRYPTED(d_inode(dir)) &&
43 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
David Brazdil0f672f62019-12-10 10:32:29 +000044 fscrypt_warn(inode,
45 "Inconsistent encryption context (parent directory: %lu)",
46 d_inode(dir)->i_ino);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000047 err = -EPERM;
48 }
49 dput(dir);
50 return err;
51}
52EXPORT_SYMBOL_GPL(fscrypt_file_open);
53
David Brazdil0f672f62019-12-10 10:32:29 +000054int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
55 struct dentry *dentry)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000056{
57 int err;
58
59 err = fscrypt_require_key(dir);
60 if (err)
61 return err;
62
Olivier Deprez0e641232021-09-23 10:07:05 +020063 /* ... in case we looked up no-key name before key was added */
64 if (fscrypt_is_nokey_name(dentry))
David Brazdil0f672f62019-12-10 10:32:29 +000065 return -ENOKEY;
66
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000067 if (!fscrypt_has_permitted_context(dir, inode))
David Brazdil0f672f62019-12-10 10:32:29 +000068 return -EXDEV;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000069
70 return 0;
71}
72EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
73
74int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
75 struct inode *new_dir, struct dentry *new_dentry,
76 unsigned int flags)
77{
78 int err;
79
80 err = fscrypt_require_key(old_dir);
81 if (err)
82 return err;
83
84 err = fscrypt_require_key(new_dir);
85 if (err)
86 return err;
87
Olivier Deprez0e641232021-09-23 10:07:05 +020088 /* ... in case we looked up no-key name(s) before key was added */
89 if (fscrypt_is_nokey_name(old_dentry) ||
90 fscrypt_is_nokey_name(new_dentry))
David Brazdil0f672f62019-12-10 10:32:29 +000091 return -ENOKEY;
92
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000093 if (old_dir != new_dir) {
94 if (IS_ENCRYPTED(new_dir) &&
95 !fscrypt_has_permitted_context(new_dir,
96 d_inode(old_dentry)))
David Brazdil0f672f62019-12-10 10:32:29 +000097 return -EXDEV;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000098
99 if ((flags & RENAME_EXCHANGE) &&
100 IS_ENCRYPTED(old_dir) &&
101 !fscrypt_has_permitted_context(old_dir,
102 d_inode(new_dentry)))
David Brazdil0f672f62019-12-10 10:32:29 +0000103 return -EXDEV;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000104 }
105 return 0;
106}
107EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
108
David Brazdil0f672f62019-12-10 10:32:29 +0000109int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
110 struct fscrypt_name *fname)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000111{
David Brazdil0f672f62019-12-10 10:32:29 +0000112 int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000113
David Brazdil0f672f62019-12-10 10:32:29 +0000114 if (err && err != -ENOENT)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000115 return err;
116
Olivier Deprez157378f2022-04-04 15:47:50 +0200117 if (fname->is_nokey_name) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000118 spin_lock(&dentry->d_lock);
Olivier Deprez157378f2022-04-04 15:47:50 +0200119 dentry->d_flags |= DCACHE_NOKEY_NAME;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000120 spin_unlock(&dentry->d_lock);
David Brazdil0f672f62019-12-10 10:32:29 +0000121 d_set_d_op(dentry, &fscrypt_d_ops);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000122 }
David Brazdil0f672f62019-12-10 10:32:29 +0000123 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000124}
125EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
126
Olivier Deprez157378f2022-04-04 15:47:50 +0200127/**
128 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
129 * @inode: the inode on which flags are being changed
130 * @oldflags: the old flags
131 * @flags: the new flags
132 *
133 * The caller should be holding i_rwsem for write.
134 *
135 * Return: 0 on success; -errno if the flags change isn't allowed or if
136 * another error occurs.
137 */
138int fscrypt_prepare_setflags(struct inode *inode,
139 unsigned int oldflags, unsigned int flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000140{
Olivier Deprez157378f2022-04-04 15:47:50 +0200141 struct fscrypt_info *ci;
142 struct fscrypt_master_key *mk;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000143 int err;
144
145 /*
Olivier Deprez157378f2022-04-04 15:47:50 +0200146 * When the CASEFOLD flag is set on an encrypted directory, we must
147 * derive the secret key needed for the dirhash. This is only possible
148 * if the directory uses a v2 encryption policy.
149 */
150 if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
151 err = fscrypt_require_key(inode);
152 if (err)
153 return err;
154 ci = inode->i_crypt_info;
155 if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
156 return -EINVAL;
157 mk = ci->ci_master_key->payload.data[0];
158 down_read(&mk->mk_secret_sem);
159 if (is_master_key_secret_present(&mk->mk_secret))
160 err = fscrypt_derive_dirhash_key(ci, mk);
161 else
162 err = -ENOKEY;
163 up_read(&mk->mk_secret_sem);
164 return err;
165 }
166 return 0;
167}
168
169/**
170 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
171 * @dir: directory in which the symlink is being created
172 * @target: plaintext symlink target
173 * @len: length of @target excluding null terminator
174 * @max_len: space the filesystem has available to store the symlink target
175 * @disk_link: (out) the on-disk symlink target being prepared
176 *
177 * This function computes the size the symlink target will require on-disk,
178 * stores it in @disk_link->len, and validates it against @max_len. An
179 * encrypted symlink may be longer than the original.
180 *
181 * Additionally, @disk_link->name is set to @target if the symlink will be
182 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted
183 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
184 * on-disk target later. (The reason for the two-step process is that some
185 * filesystems need to know the size of the symlink target before creating the
186 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
187 *
188 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
189 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
190 * occurred while setting up the encryption key.
191 */
192int fscrypt_prepare_symlink(struct inode *dir, const char *target,
193 unsigned int len, unsigned int max_len,
194 struct fscrypt_str *disk_link)
195{
196 const union fscrypt_policy *policy;
197
198 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000199 * To calculate the size of the encrypted symlink target we need to know
200 * the amount of NUL padding, which is determined by the flags set in
201 * the encryption policy which will be inherited from the directory.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000202 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200203 policy = fscrypt_policy_to_inherit(dir);
204 if (policy == NULL) {
205 /* Not encrypted */
206 disk_link->name = (unsigned char *)target;
207 disk_link->len = len + 1;
208 if (disk_link->len > max_len)
209 return -ENAMETOOLONG;
210 return 0;
211 }
212 if (IS_ERR(policy))
213 return PTR_ERR(policy);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000214
215 /*
216 * Calculate the size of the encrypted symlink and verify it won't
217 * exceed max_len. Note that for historical reasons, encrypted symlink
218 * targets are prefixed with the ciphertext length, despite this
219 * actually being redundant with i_size. This decreases by 2 bytes the
220 * longest symlink target we can accept.
221 *
222 * We could recover 1 byte by not counting a null terminator, but
223 * counting it (even though it is meaningless for ciphertext) is simpler
224 * for now since filesystems will assume it is there and subtract it.
225 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200226 if (!fscrypt_fname_encrypted_size(policy, len,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000227 max_len - sizeof(struct fscrypt_symlink_data),
228 &disk_link->len))
229 return -ENAMETOOLONG;
230 disk_link->len += sizeof(struct fscrypt_symlink_data);
231
232 disk_link->name = NULL;
233 return 0;
234}
Olivier Deprez157378f2022-04-04 15:47:50 +0200235EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000236
237int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
238 unsigned int len, struct fscrypt_str *disk_link)
239{
240 int err;
241 struct qstr iname = QSTR_INIT(target, len);
242 struct fscrypt_symlink_data *sd;
243 unsigned int ciphertext_len;
244
Olivier Deprez157378f2022-04-04 15:47:50 +0200245 /*
246 * fscrypt_prepare_new_inode() should have already set up the new
247 * symlink inode's encryption key. We don't wait until now to do it,
248 * since we may be in a filesystem transaction now.
249 */
250 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
251 return -ENOKEY;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000252
253 if (disk_link->name) {
254 /* filesystem-provided buffer */
255 sd = (struct fscrypt_symlink_data *)disk_link->name;
256 } else {
257 sd = kmalloc(disk_link->len, GFP_NOFS);
258 if (!sd)
259 return -ENOMEM;
260 }
261 ciphertext_len = disk_link->len - sizeof(*sd);
262 sd->len = cpu_to_le16(ciphertext_len);
263
Olivier Deprez157378f2022-04-04 15:47:50 +0200264 err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
265 ciphertext_len);
David Brazdil0f672f62019-12-10 10:32:29 +0000266 if (err)
267 goto err_free_sd;
268
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000269 /*
270 * Null-terminating the ciphertext doesn't make sense, but we still
271 * count the null terminator in the length, so we might as well
272 * initialize it just in case the filesystem writes it out.
273 */
274 sd->encrypted_path[ciphertext_len] = '\0';
275
David Brazdil0f672f62019-12-10 10:32:29 +0000276 /* Cache the plaintext symlink target for later use by get_link() */
277 err = -ENOMEM;
278 inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
279 if (!inode->i_link)
280 goto err_free_sd;
281
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000282 if (!disk_link->name)
283 disk_link->name = (unsigned char *)sd;
284 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000285
286err_free_sd:
287 if (!disk_link->name)
288 kfree(sd);
289 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000290}
291EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
292
293/**
Olivier Deprez157378f2022-04-04 15:47:50 +0200294 * fscrypt_get_symlink() - get the target of an encrypted symlink
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000295 * @inode: the symlink inode
296 * @caddr: the on-disk contents of the symlink
297 * @max_size: size of @caddr buffer
David Brazdil0f672f62019-12-10 10:32:29 +0000298 * @done: if successful, will be set up to free the returned target if needed
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000299 *
300 * If the symlink's encryption key is available, we decrypt its target.
301 * Otherwise, we encode its target for presentation.
302 *
303 * This may sleep, so the filesystem must have dropped out of RCU mode already.
304 *
305 * Return: the presentable symlink target or an ERR_PTR()
306 */
307const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
308 unsigned int max_size,
309 struct delayed_call *done)
310{
311 const struct fscrypt_symlink_data *sd;
312 struct fscrypt_str cstr, pstr;
David Brazdil0f672f62019-12-10 10:32:29 +0000313 bool has_key;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000314 int err;
315
316 /* This is for encrypted symlinks only */
317 if (WARN_ON(!IS_ENCRYPTED(inode)))
318 return ERR_PTR(-EINVAL);
319
David Brazdil0f672f62019-12-10 10:32:29 +0000320 /* If the decrypted target is already cached, just return it. */
321 pstr.name = READ_ONCE(inode->i_link);
322 if (pstr.name)
323 return pstr.name;
324
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000325 /*
326 * Try to set up the symlink's encryption key, but we can continue
327 * regardless of whether the key is available or not.
328 */
329 err = fscrypt_get_encryption_info(inode);
330 if (err)
331 return ERR_PTR(err);
David Brazdil0f672f62019-12-10 10:32:29 +0000332 has_key = fscrypt_has_encryption_key(inode);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000333
334 /*
335 * For historical reasons, encrypted symlink targets are prefixed with
336 * the ciphertext length, even though this is redundant with i_size.
337 */
338
339 if (max_size < sizeof(*sd))
340 return ERR_PTR(-EUCLEAN);
341 sd = caddr;
342 cstr.name = (unsigned char *)sd->encrypted_path;
343 cstr.len = le16_to_cpu(sd->len);
344
345 if (cstr.len == 0)
346 return ERR_PTR(-EUCLEAN);
347
348 if (cstr.len + sizeof(*sd) - 1 > max_size)
349 return ERR_PTR(-EUCLEAN);
350
Olivier Deprez157378f2022-04-04 15:47:50 +0200351 err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000352 if (err)
353 return ERR_PTR(err);
354
355 err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
356 if (err)
357 goto err_kfree;
358
359 err = -EUCLEAN;
360 if (pstr.name[0] == '\0')
361 goto err_kfree;
362
363 pstr.name[pstr.len] = '\0';
David Brazdil0f672f62019-12-10 10:32:29 +0000364
365 /*
366 * Cache decrypted symlink targets in i_link for later use. Don't cache
367 * symlink targets encoded without the key, since those become outdated
368 * once the key is added. This pairs with the READ_ONCE() above and in
369 * the VFS path lookup code.
370 */
371 if (!has_key ||
372 cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
373 set_delayed_call(done, kfree_link, pstr.name);
374
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000375 return pstr.name;
376
377err_kfree:
378 kfree(pstr.name);
379 return ERR_PTR(err);
380}
381EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
Olivier Deprez0e641232021-09-23 10:07:05 +0200382
383/**
384 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
385 * @path: the path for the encrypted symlink being queried
386 * @stat: the struct being filled with the symlink's attributes
387 *
388 * Override st_size of encrypted symlinks to be the length of the decrypted
389 * symlink target (or the no-key encoded symlink target, if the key is
390 * unavailable) rather than the length of the encrypted symlink target. This is
391 * necessary for st_size to match the symlink target that userspace actually
392 * sees. POSIX requires this, and some userspace programs depend on it.
393 *
394 * This requires reading the symlink target from disk if needed, setting up the
395 * inode's encryption key if possible, and then decrypting or encoding the
396 * symlink target. This makes lstat() more heavyweight than is normally the
397 * case. However, decrypted symlink targets will be cached in ->i_link, so
398 * usually the symlink won't have to be read and decrypted again later if/when
399 * it is actually followed, readlink() is called, or lstat() is called again.
400 *
401 * Return: 0 on success, -errno on failure
402 */
403int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
404{
405 struct dentry *dentry = path->dentry;
406 struct inode *inode = d_inode(dentry);
407 const char *link;
408 DEFINE_DELAYED_CALL(done);
409
410 /*
411 * To get the symlink target that userspace will see (whether it's the
412 * decrypted target or the no-key encoded target), we can just get it in
413 * the same way the VFS does during path resolution and readlink().
414 */
415 link = READ_ONCE(inode->i_link);
416 if (!link) {
417 link = inode->i_op->get_link(dentry, inode, &done);
418 if (IS_ERR(link))
419 return PTR_ERR(link);
420 }
421 stat->size = strlen(link);
422 do_delayed_call(&done);
423 return 0;
424}
425EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);