blob: c05ec6fad77f6df8b7cf63fa29304b04e8b343e9 [file] [log] [blame]
Olivier Deprez157378f2022-04-04 15:47:50 +02001// SPDX-License-Identifier: GPL-2.0
2/*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10#include <linux/delay.h>
11#include <linux/ktime.h>
12
13#include "sb_regs.h"
14#include "tb.h"
15
16#define USB4_DATA_DWORDS 16
17#define USB4_DATA_RETRIES 3
18
19enum usb4_switch_op {
20 USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
21 USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
22 USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
23 USB4_SWITCH_OP_NVM_WRITE = 0x20,
24 USB4_SWITCH_OP_NVM_AUTH = 0x21,
25 USB4_SWITCH_OP_NVM_READ = 0x22,
26 USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
27 USB4_SWITCH_OP_DROM_READ = 0x24,
28 USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
29};
30
31enum usb4_sb_target {
32 USB4_SB_TARGET_ROUTER,
33 USB4_SB_TARGET_PARTNER,
34 USB4_SB_TARGET_RETIMER,
35};
36
37#define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
38#define USB4_NVM_READ_OFFSET_SHIFT 2
39#define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
40#define USB4_NVM_READ_LENGTH_SHIFT 24
41
42#define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
43#define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
44
45#define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
46#define USB4_DROM_ADDRESS_SHIFT 2
47#define USB4_DROM_SIZE_MASK GENMASK(19, 15)
48#define USB4_DROM_SIZE_SHIFT 15
49
50#define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
51
52typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
53typedef int (*write_block_fn)(void *, const void *, size_t);
54
55static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
56 u32 value, int timeout_msec)
57{
58 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
59
60 do {
61 u32 val;
62 int ret;
63
64 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
65 if (ret)
66 return ret;
67
68 if ((val & bit) == value)
69 return 0;
70
71 usleep_range(50, 100);
72 } while (ktime_before(ktime_get(), timeout));
73
74 return -ETIMEDOUT;
75}
76
77static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
78 size_t dwords)
79{
80 if (dwords > USB4_DATA_DWORDS)
81 return -EINVAL;
82
83 return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
84}
85
86static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
87 size_t dwords)
88{
89 if (dwords > USB4_DATA_DWORDS)
90 return -EINVAL;
91
92 return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
93}
94
95static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
96{
97 return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
98}
99
100static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
101{
102 return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
103}
104
105static int usb4_do_read_data(u16 address, void *buf, size_t size,
106 read_block_fn read_block, void *read_block_data)
107{
108 unsigned int retries = USB4_DATA_RETRIES;
109 unsigned int offset;
110
111 do {
112 unsigned int dwaddress, dwords;
113 u8 data[USB4_DATA_DWORDS * 4];
114 size_t nbytes;
115 int ret;
116
117 offset = address & 3;
118 nbytes = min_t(size_t, size + offset, USB4_DATA_DWORDS * 4);
119
120 dwaddress = address / 4;
121 dwords = ALIGN(nbytes, 4) / 4;
122
123 ret = read_block(read_block_data, dwaddress, data, dwords);
124 if (ret) {
125 if (ret != -ENODEV && retries--)
126 continue;
127 return ret;
128 }
129
130 nbytes -= offset;
131 memcpy(buf, data + offset, nbytes);
132
133 size -= nbytes;
134 address += nbytes;
135 buf += nbytes;
136 } while (size > 0);
137
138 return 0;
139}
140
141static int usb4_do_write_data(unsigned int address, const void *buf, size_t size,
142 write_block_fn write_next_block, void *write_block_data)
143{
144 unsigned int retries = USB4_DATA_RETRIES;
145 unsigned int offset;
146
147 offset = address & 3;
148 address = address & ~3;
149
150 do {
151 u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
152 u8 data[USB4_DATA_DWORDS * 4];
153 int ret;
154
155 memcpy(data + offset, buf, nbytes);
156
157 ret = write_next_block(write_block_data, data, nbytes / 4);
158 if (ret) {
159 if (ret == -ETIMEDOUT) {
160 if (retries--)
161 continue;
162 ret = -EIO;
163 }
164 return ret;
165 }
166
167 size -= nbytes;
168 address += nbytes;
169 buf += nbytes;
170 } while (size > 0);
171
172 return 0;
173}
174
175static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
176{
177 u32 val;
178 int ret;
179
180 val = opcode | ROUTER_CS_26_OV;
181 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
182 if (ret)
183 return ret;
184
185 ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
186 if (ret)
187 return ret;
188
189 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
190 if (ret)
191 return ret;
192
193 if (val & ROUTER_CS_26_ONS)
194 return -EOPNOTSUPP;
195
196 *status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
197 return 0;
198}
199
200static void usb4_switch_check_wakes(struct tb_switch *sw)
201{
202 struct tb_port *port;
203 bool wakeup = false;
204 u32 val;
205
206 if (!device_may_wakeup(&sw->dev))
207 return;
208
209 if (tb_route(sw)) {
210 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
211 return;
212
213 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
214 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
215 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
216
217 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
218 }
219
220 /* Check for any connected downstream ports for USB4 wake */
221 tb_switch_for_each_port(sw, port) {
222 if (!tb_port_has_remote(port))
223 continue;
224
225 if (tb_port_read(port, &val, TB_CFG_PORT,
226 port->cap_usb4 + PORT_CS_18, 1))
227 break;
228
229 tb_port_dbg(port, "USB4 wake: %s\n",
230 (val & PORT_CS_18_WOU4S) ? "yes" : "no");
231
232 if (val & PORT_CS_18_WOU4S)
233 wakeup = true;
234 }
235
236 if (wakeup)
237 pm_wakeup_event(&sw->dev, 0);
238}
239
240static bool link_is_usb4(struct tb_port *port)
241{
242 u32 val;
243
244 if (!port->cap_usb4)
245 return false;
246
247 if (tb_port_read(port, &val, TB_CFG_PORT,
248 port->cap_usb4 + PORT_CS_18, 1))
249 return false;
250
251 return !(val & PORT_CS_18_TCM);
252}
253
254/**
255 * usb4_switch_setup() - Additional setup for USB4 device
256 * @sw: USB4 router to setup
257 *
258 * USB4 routers need additional settings in order to enable all the
259 * tunneling. This function enables USB and PCIe tunneling if it can be
260 * enabled (e.g the parent switch also supports them). If USB tunneling
261 * is not available for some reason (like that there is Thunderbolt 3
262 * switch upstream) then the internal xHCI controller is enabled
263 * instead.
264 */
265int usb4_switch_setup(struct tb_switch *sw)
266{
267 struct tb_port *downstream_port;
268 struct tb_switch *parent;
269 bool tbt3, xhci;
270 u32 val = 0;
271 int ret;
272
273 usb4_switch_check_wakes(sw);
274
275 if (!tb_route(sw))
276 return 0;
277
278 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
279 if (ret)
280 return ret;
281
282 parent = tb_switch_parent(sw);
283 downstream_port = tb_port_at(tb_route(sw), parent);
284 sw->link_usb4 = link_is_usb4(downstream_port);
285 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3");
286
287 xhci = val & ROUTER_CS_6_HCI;
288 tbt3 = !(val & ROUTER_CS_6_TNS);
289
290 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
291 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
292
293 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
294 if (ret)
295 return ret;
296
297 if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
298 val |= ROUTER_CS_5_UTO;
299 xhci = false;
300 }
301
302 /* Only enable PCIe tunneling if the parent router supports it */
303 if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
304 val |= ROUTER_CS_5_PTO;
305 /*
306 * xHCI can be enabled if PCIe tunneling is supported
307 * and the parent does not have any USB3 dowstream
308 * adapters (so we cannot do USB 3.x tunneling).
309 */
310 if (xhci)
311 val |= ROUTER_CS_5_HCO;
312 }
313
314 /* TBT3 supported by the CM */
315 val |= ROUTER_CS_5_C3S;
316 /* Tunneling configuration is ready now */
317 val |= ROUTER_CS_5_CV;
318
319 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
320 if (ret)
321 return ret;
322
323 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
324 ROUTER_CS_6_CR, 50);
325}
326
327/**
328 * usb4_switch_read_uid() - Read UID from USB4 router
329 * @sw: USB4 router
330 * @uid: UID is stored here
331 *
332 * Reads 64-bit UID from USB4 router config space.
333 */
334int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
335{
336 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
337}
338
339static int usb4_switch_drom_read_block(void *data,
340 unsigned int dwaddress, void *buf,
341 size_t dwords)
342{
343 struct tb_switch *sw = data;
344 u8 status = 0;
345 u32 metadata;
346 int ret;
347
348 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
349 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
350 USB4_DROM_ADDRESS_MASK;
351
352 ret = usb4_switch_op_write_metadata(sw, metadata);
353 if (ret)
354 return ret;
355
356 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
357 if (ret)
358 return ret;
359
360 if (status)
361 return -EIO;
362
363 return usb4_switch_op_read_data(sw, buf, dwords);
364}
365
366/**
367 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
368 * @sw: USB4 router
369 * @address: Byte address inside DROM to start reading
370 * @buf: Buffer where the DROM content is stored
371 * @size: Number of bytes to read from DROM
372 *
373 * Uses USB4 router operations to read router DROM. For devices this
374 * should always work but for hosts it may return %-EOPNOTSUPP in which
375 * case the host router does not have DROM.
376 */
377int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
378 size_t size)
379{
380 return usb4_do_read_data(address, buf, size,
381 usb4_switch_drom_read_block, sw);
382}
383
384/**
385 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
386 * @sw: USB4 router
387 *
388 * Checks whether conditions are met so that lane bonding can be
389 * established with the upstream router. Call only for device routers.
390 */
391bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
392{
393 struct tb_port *up;
394 int ret;
395 u32 val;
396
397 up = tb_upstream_port(sw);
398 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
399 if (ret)
400 return false;
401
402 return !!(val & PORT_CS_18_BE);
403}
404
405/**
406 * usb4_switch_set_wake() - Enabled/disable wake
407 * @sw: USB4 router
408 * @flags: Wakeup flags (%0 to disable)
409 *
410 * Enables/disables router to wake up from sleep.
411 */
412int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
413{
414 struct tb_port *port;
415 u64 route = tb_route(sw);
416 u32 val;
417 int ret;
418
419 /*
420 * Enable wakes coming from all USB4 downstream ports (from
421 * child routers). For device routers do this also for the
422 * upstream USB4 port.
423 */
424 tb_switch_for_each_port(sw, port) {
425 if (!tb_port_is_null(port))
426 continue;
427 if (!route && tb_is_upstream_port(port))
428 continue;
429 if (!port->cap_usb4)
430 continue;
431
432 ret = tb_port_read(port, &val, TB_CFG_PORT,
433 port->cap_usb4 + PORT_CS_19, 1);
434 if (ret)
435 return ret;
436
437 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
438
439 if (flags & TB_WAKE_ON_CONNECT)
440 val |= PORT_CS_19_WOC;
441 if (flags & TB_WAKE_ON_DISCONNECT)
442 val |= PORT_CS_19_WOD;
443 if (flags & TB_WAKE_ON_USB4)
444 val |= PORT_CS_19_WOU4;
445
446 ret = tb_port_write(port, &val, TB_CFG_PORT,
447 port->cap_usb4 + PORT_CS_19, 1);
448 if (ret)
449 return ret;
450 }
451
452 /*
453 * Enable wakes from PCIe and USB 3.x on this router. Only
454 * needed for device routers.
455 */
456 if (route) {
457 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
458 if (ret)
459 return ret;
460
461 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU);
462 if (flags & TB_WAKE_ON_USB3)
463 val |= ROUTER_CS_5_WOU;
464 if (flags & TB_WAKE_ON_PCIE)
465 val |= ROUTER_CS_5_WOP;
466
467 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
468 if (ret)
469 return ret;
470 }
471
472 return 0;
473}
474
475/**
476 * usb4_switch_set_sleep() - Prepare the router to enter sleep
477 * @sw: USB4 router
478 *
479 * Sets sleep bit for the router. Returns when the router sleep ready
480 * bit has been asserted.
481 */
482int usb4_switch_set_sleep(struct tb_switch *sw)
483{
484 int ret;
485 u32 val;
486
487 /* Set sleep bit and wait for sleep ready to be asserted */
488 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
489 if (ret)
490 return ret;
491
492 val |= ROUTER_CS_5_SLP;
493
494 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
495 if (ret)
496 return ret;
497
498 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
499 ROUTER_CS_6_SLPR, 500);
500}
501
502/**
503 * usb4_switch_nvm_sector_size() - Return router NVM sector size
504 * @sw: USB4 router
505 *
506 * If the router supports NVM operations this function returns the NVM
507 * sector size in bytes. If NVM operations are not supported returns
508 * %-EOPNOTSUPP.
509 */
510int usb4_switch_nvm_sector_size(struct tb_switch *sw)
511{
512 u32 metadata;
513 u8 status;
514 int ret;
515
516 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
517 if (ret)
518 return ret;
519
520 if (status)
521 return status == 0x2 ? -EOPNOTSUPP : -EIO;
522
523 ret = usb4_switch_op_read_metadata(sw, &metadata);
524 if (ret)
525 return ret;
526
527 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
528}
529
530static int usb4_switch_nvm_read_block(void *data,
531 unsigned int dwaddress, void *buf, size_t dwords)
532{
533 struct tb_switch *sw = data;
534 u8 status = 0;
535 u32 metadata;
536 int ret;
537
538 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
539 USB4_NVM_READ_LENGTH_MASK;
540 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
541 USB4_NVM_READ_OFFSET_MASK;
542
543 ret = usb4_switch_op_write_metadata(sw, metadata);
544 if (ret)
545 return ret;
546
547 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
548 if (ret)
549 return ret;
550
551 if (status)
552 return -EIO;
553
554 return usb4_switch_op_read_data(sw, buf, dwords);
555}
556
557/**
558 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
559 * @sw: USB4 router
560 * @address: Starting address in bytes
561 * @buf: Read data is placed here
562 * @size: How many bytes to read
563 *
564 * Reads NVM contents of the router. If NVM is not supported returns
565 * %-EOPNOTSUPP.
566 */
567int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
568 size_t size)
569{
570 return usb4_do_read_data(address, buf, size,
571 usb4_switch_nvm_read_block, sw);
572}
573
574static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
575 unsigned int address)
576{
577 u32 metadata, dwaddress;
578 u8 status = 0;
579 int ret;
580
581 dwaddress = address / 4;
582 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
583 USB4_NVM_SET_OFFSET_MASK;
584
585 ret = usb4_switch_op_write_metadata(sw, metadata);
586 if (ret)
587 return ret;
588
589 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
590 if (ret)
591 return ret;
592
593 return status ? -EIO : 0;
594}
595
596static int usb4_switch_nvm_write_next_block(void *data, const void *buf,
597 size_t dwords)
598{
599 struct tb_switch *sw = data;
600 u8 status;
601 int ret;
602
603 ret = usb4_switch_op_write_data(sw, buf, dwords);
604 if (ret)
605 return ret;
606
607 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
608 if (ret)
609 return ret;
610
611 return status ? -EIO : 0;
612}
613
614/**
615 * usb4_switch_nvm_write() - Write to the router NVM
616 * @sw: USB4 router
617 * @address: Start address where to write in bytes
618 * @buf: Pointer to the data to write
619 * @size: Size of @buf in bytes
620 *
621 * Writes @buf to the router NVM using USB4 router operations. If NVM
622 * write is not supported returns %-EOPNOTSUPP.
623 */
624int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
625 const void *buf, size_t size)
626{
627 int ret;
628
629 ret = usb4_switch_nvm_set_offset(sw, address);
630 if (ret)
631 return ret;
632
633 return usb4_do_write_data(address, buf, size,
634 usb4_switch_nvm_write_next_block, sw);
635}
636
637/**
638 * usb4_switch_nvm_authenticate() - Authenticate new NVM
639 * @sw: USB4 router
640 *
641 * After the new NVM has been written via usb4_switch_nvm_write(), this
642 * function triggers NVM authentication process. If the authentication
643 * is successful the router is power cycled and the new NVM starts
644 * running. In case of failure returns negative errno.
645 */
646int usb4_switch_nvm_authenticate(struct tb_switch *sw)
647{
648 u8 status = 0;
649 int ret;
650
651 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
652 if (ret)
653 return ret;
654
655 switch (status) {
656 case 0x0:
657 tb_sw_dbg(sw, "NVM authentication successful\n");
658 return 0;
659 case 0x1:
660 return -EINVAL;
661 case 0x2:
662 return -EAGAIN;
663 case 0x3:
664 return -EOPNOTSUPP;
665 default:
666 return -EIO;
667 }
668}
669
670/**
671 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
672 * @sw: USB4 router
673 * @in: DP IN adapter
674 *
675 * For DP tunneling this function can be used to query availability of
676 * DP IN resource. Returns true if the resource is available for DP
677 * tunneling, false otherwise.
678 */
679bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
680{
681 u8 status;
682 int ret;
683
684 ret = usb4_switch_op_write_metadata(sw, in->port);
685 if (ret)
686 return false;
687
688 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
689 /*
690 * If DP resource allocation is not supported assume it is
691 * always available.
692 */
693 if (ret == -EOPNOTSUPP)
694 return true;
695 else if (ret)
696 return false;
697
698 return !status;
699}
700
701/**
702 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
703 * @sw: USB4 router
704 * @in: DP IN adapter
705 *
706 * Allocates DP IN resource for DP tunneling using USB4 router
707 * operations. If the resource was allocated returns %0. Otherwise
708 * returns negative errno, in particular %-EBUSY if the resource is
709 * already allocated.
710 */
711int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
712{
713 u8 status;
714 int ret;
715
716 ret = usb4_switch_op_write_metadata(sw, in->port);
717 if (ret)
718 return ret;
719
720 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
721 if (ret == -EOPNOTSUPP)
722 return 0;
723 else if (ret)
724 return ret;
725
726 return status ? -EBUSY : 0;
727}
728
729/**
730 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
731 * @sw: USB4 router
732 * @in: DP IN adapter
733 *
734 * Releases the previously allocated DP IN resource.
735 */
736int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
737{
738 u8 status;
739 int ret;
740
741 ret = usb4_switch_op_write_metadata(sw, in->port);
742 if (ret)
743 return ret;
744
745 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
746 if (ret == -EOPNOTSUPP)
747 return 0;
748 else if (ret)
749 return ret;
750
751 return status ? -EIO : 0;
752}
753
754static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
755{
756 struct tb_port *p;
757 int usb4_idx = 0;
758
759 /* Assume port is primary */
760 tb_switch_for_each_port(sw, p) {
761 if (!tb_port_is_null(p))
762 continue;
763 if (tb_is_upstream_port(p))
764 continue;
765 if (!p->link_nr) {
766 if (p == port)
767 break;
768 usb4_idx++;
769 }
770 }
771
772 return usb4_idx;
773}
774
775/**
776 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
777 * @sw: USB4 router
778 * @port: USB4 port
779 *
780 * USB4 routers have direct mapping between USB4 ports and PCIe
781 * downstream adapters where the PCIe topology is extended. This
782 * function returns the corresponding downstream PCIe adapter or %NULL
783 * if no such mapping was possible.
784 */
785struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
786 const struct tb_port *port)
787{
788 int usb4_idx = usb4_port_idx(sw, port);
789 struct tb_port *p;
790 int pcie_idx = 0;
791
792 /* Find PCIe down port matching usb4_port */
793 tb_switch_for_each_port(sw, p) {
794 if (!tb_port_is_pcie_down(p))
795 continue;
796
797 if (pcie_idx == usb4_idx)
798 return p;
799
800 pcie_idx++;
801 }
802
803 return NULL;
804}
805
806/**
807 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
808 * @sw: USB4 router
809 * @port: USB4 port
810 *
811 * USB4 routers have direct mapping between USB4 ports and USB 3.x
812 * downstream adapters where the USB 3.x topology is extended. This
813 * function returns the corresponding downstream USB 3.x adapter or
814 * %NULL if no such mapping was possible.
815 */
816struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
817 const struct tb_port *port)
818{
819 int usb4_idx = usb4_port_idx(sw, port);
820 struct tb_port *p;
821 int usb_idx = 0;
822
823 /* Find USB3 down port matching usb4_port */
824 tb_switch_for_each_port(sw, p) {
825 if (!tb_port_is_usb3_down(p))
826 continue;
827
828 if (usb_idx == usb4_idx)
829 return p;
830
831 usb_idx++;
832 }
833
834 return NULL;
835}
836
837/**
838 * usb4_port_unlock() - Unlock USB4 downstream port
839 * @port: USB4 port to unlock
840 *
841 * Unlocks USB4 downstream port so that the connection manager can
842 * access the router below this port.
843 */
844int usb4_port_unlock(struct tb_port *port)
845{
846 int ret;
847 u32 val;
848
849 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
850 if (ret)
851 return ret;
852
853 val &= ~ADP_CS_4_LCK;
854 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
855}
856
857static int usb4_port_set_configured(struct tb_port *port, bool configured)
858{
859 int ret;
860 u32 val;
861
862 if (!port->cap_usb4)
863 return -EINVAL;
864
865 ret = tb_port_read(port, &val, TB_CFG_PORT,
866 port->cap_usb4 + PORT_CS_19, 1);
867 if (ret)
868 return ret;
869
870 if (configured)
871 val |= PORT_CS_19_PC;
872 else
873 val &= ~PORT_CS_19_PC;
874
875 return tb_port_write(port, &val, TB_CFG_PORT,
876 port->cap_usb4 + PORT_CS_19, 1);
877}
878
879/**
880 * usb4_port_configure() - Set USB4 port configured
881 * @port: USB4 router
882 *
883 * Sets the USB4 link to be configured for power management purposes.
884 */
885int usb4_port_configure(struct tb_port *port)
886{
887 return usb4_port_set_configured(port, true);
888}
889
890/**
891 * usb4_port_unconfigure() - Set USB4 port unconfigured
892 * @port: USB4 router
893 *
894 * Sets the USB4 link to be unconfigured for power management purposes.
895 */
896void usb4_port_unconfigure(struct tb_port *port)
897{
898 usb4_port_set_configured(port, false);
899}
900
901static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
902{
903 int ret;
904 u32 val;
905
906 if (!port->cap_usb4)
907 return -EINVAL;
908
909 ret = tb_port_read(port, &val, TB_CFG_PORT,
910 port->cap_usb4 + PORT_CS_19, 1);
911 if (ret)
912 return ret;
913
914 if (configured)
915 val |= PORT_CS_19_PID;
916 else
917 val &= ~PORT_CS_19_PID;
918
919 return tb_port_write(port, &val, TB_CFG_PORT,
920 port->cap_usb4 + PORT_CS_19, 1);
921}
922
923/**
924 * usb4_port_configure_xdomain() - Configure port for XDomain
925 * @port: USB4 port connected to another host
926 *
927 * Marks the USB4 port as being connected to another host. Returns %0 in
928 * success and negative errno in failure.
929 */
930int usb4_port_configure_xdomain(struct tb_port *port)
931{
932 return usb4_set_xdomain_configured(port, true);
933}
934
935/**
936 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
937 * @port: USB4 port that was connected to another host
938 *
939 * Clears USB4 port from being marked as XDomain.
940 */
941void usb4_port_unconfigure_xdomain(struct tb_port *port)
942{
943 usb4_set_xdomain_configured(port, false);
944}
945
946static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
947 u32 value, int timeout_msec)
948{
949 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
950
951 do {
952 u32 val;
953 int ret;
954
955 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
956 if (ret)
957 return ret;
958
959 if ((val & bit) == value)
960 return 0;
961
962 usleep_range(50, 100);
963 } while (ktime_before(ktime_get(), timeout));
964
965 return -ETIMEDOUT;
966}
967
968static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
969{
970 if (dwords > USB4_DATA_DWORDS)
971 return -EINVAL;
972
973 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
974 dwords);
975}
976
977static int usb4_port_write_data(struct tb_port *port, const void *data,
978 size_t dwords)
979{
980 if (dwords > USB4_DATA_DWORDS)
981 return -EINVAL;
982
983 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
984 dwords);
985}
986
987static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
988 u8 index, u8 reg, void *buf, u8 size)
989{
990 size_t dwords = DIV_ROUND_UP(size, 4);
991 int ret;
992 u32 val;
993
994 if (!port->cap_usb4)
995 return -EINVAL;
996
997 val = reg;
998 val |= size << PORT_CS_1_LENGTH_SHIFT;
999 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1000 if (target == USB4_SB_TARGET_RETIMER)
1001 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1002 val |= PORT_CS_1_PND;
1003
1004 ret = tb_port_write(port, &val, TB_CFG_PORT,
1005 port->cap_usb4 + PORT_CS_1, 1);
1006 if (ret)
1007 return ret;
1008
1009 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1010 PORT_CS_1_PND, 0, 500);
1011 if (ret)
1012 return ret;
1013
1014 ret = tb_port_read(port, &val, TB_CFG_PORT,
1015 port->cap_usb4 + PORT_CS_1, 1);
1016 if (ret)
1017 return ret;
1018
1019 if (val & PORT_CS_1_NR)
1020 return -ENODEV;
1021 if (val & PORT_CS_1_RC)
1022 return -EIO;
1023
1024 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1025}
1026
1027static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1028 u8 index, u8 reg, const void *buf, u8 size)
1029{
1030 size_t dwords = DIV_ROUND_UP(size, 4);
1031 int ret;
1032 u32 val;
1033
1034 if (!port->cap_usb4)
1035 return -EINVAL;
1036
1037 if (buf) {
1038 ret = usb4_port_write_data(port, buf, dwords);
1039 if (ret)
1040 return ret;
1041 }
1042
1043 val = reg;
1044 val |= size << PORT_CS_1_LENGTH_SHIFT;
1045 val |= PORT_CS_1_WNR_WRITE;
1046 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1047 if (target == USB4_SB_TARGET_RETIMER)
1048 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1049 val |= PORT_CS_1_PND;
1050
1051 ret = tb_port_write(port, &val, TB_CFG_PORT,
1052 port->cap_usb4 + PORT_CS_1, 1);
1053 if (ret)
1054 return ret;
1055
1056 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1057 PORT_CS_1_PND, 0, 500);
1058 if (ret)
1059 return ret;
1060
1061 ret = tb_port_read(port, &val, TB_CFG_PORT,
1062 port->cap_usb4 + PORT_CS_1, 1);
1063 if (ret)
1064 return ret;
1065
1066 if (val & PORT_CS_1_NR)
1067 return -ENODEV;
1068 if (val & PORT_CS_1_RC)
1069 return -EIO;
1070
1071 return 0;
1072}
1073
1074static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1075 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1076{
1077 ktime_t timeout;
1078 u32 val;
1079 int ret;
1080
1081 val = opcode;
1082 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1083 sizeof(val));
1084 if (ret)
1085 return ret;
1086
1087 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1088
1089 do {
1090 /* Check results */
1091 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1092 &val, sizeof(val));
1093 if (ret)
1094 return ret;
1095
1096 switch (val) {
1097 case 0:
1098 return 0;
1099
1100 case USB4_SB_OPCODE_ERR:
1101 return -EAGAIN;
1102
1103 case USB4_SB_OPCODE_ONS:
1104 return -EOPNOTSUPP;
1105
1106 default:
1107 if (val != opcode)
1108 return -EIO;
1109 break;
1110 }
1111 } while (ktime_before(ktime_get(), timeout));
1112
1113 return -ETIMEDOUT;
1114}
1115
1116/**
1117 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1118 * @port: USB4 port
1119 *
1120 * This forces the USB4 port to send broadcast RT transaction which
1121 * makes the retimers on the link to assign index to themselves. Returns
1122 * %0 in case of success and negative errno if there was an error.
1123 */
1124int usb4_port_enumerate_retimers(struct tb_port *port)
1125{
1126 u32 val;
1127
1128 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1129 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1130 USB4_SB_OPCODE, &val, sizeof(val));
1131}
1132
1133static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1134 enum usb4_sb_opcode opcode,
1135 int timeout_msec)
1136{
1137 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1138 timeout_msec);
1139}
1140
1141/**
1142 * usb4_port_retimer_read() - Read from retimer sideband registers
1143 * @port: USB4 port
1144 * @index: Retimer index
1145 * @reg: Sideband register to read
1146 * @buf: Data from @reg is stored here
1147 * @size: Number of bytes to read
1148 *
1149 * Function reads retimer sideband registers starting from @reg. The
1150 * retimer is connected to @port at @index. Returns %0 in case of
1151 * success, and read data is copied to @buf. If there is no retimer
1152 * present at given @index returns %-ENODEV. In any other failure
1153 * returns negative errno.
1154 */
1155int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1156 u8 size)
1157{
1158 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1159 size);
1160}
1161
1162/**
1163 * usb4_port_retimer_write() - Write to retimer sideband registers
1164 * @port: USB4 port
1165 * @index: Retimer index
1166 * @reg: Sideband register to write
1167 * @buf: Data that is written starting from @reg
1168 * @size: Number of bytes to write
1169 *
1170 * Writes retimer sideband registers starting from @reg. The retimer is
1171 * connected to @port at @index. Returns %0 in case of success. If there
1172 * is no retimer present at given @index returns %-ENODEV. In any other
1173 * failure returns negative errno.
1174 */
1175int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1176 const void *buf, u8 size)
1177{
1178 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1179 size);
1180}
1181
1182/**
1183 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1184 * @port: USB4 port
1185 * @index: Retimer index
1186 *
1187 * If the retimer at @index is last one (connected directly to the
1188 * Type-C port) this function returns %1. If it is not returns %0. If
1189 * the retimer is not present returns %-ENODEV. Otherwise returns
1190 * negative errno.
1191 */
1192int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1193{
1194 u32 metadata;
1195 int ret;
1196
1197 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1198 500);
1199 if (ret)
1200 return ret;
1201
1202 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1203 sizeof(metadata));
1204 return ret ? ret : metadata & 1;
1205}
1206
1207/**
1208 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1209 * @port: USB4 port
1210 * @index: Retimer index
1211 *
1212 * Reads NVM sector size (in bytes) of a retimer at @index. This
1213 * operation can be used to determine whether the retimer supports NVM
1214 * upgrade for example. Returns sector size in bytes or negative errno
1215 * in case of error. Specifically returns %-ENODEV if there is no
1216 * retimer at @index.
1217 */
1218int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1219{
1220 u32 metadata;
1221 int ret;
1222
1223 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1224 500);
1225 if (ret)
1226 return ret;
1227
1228 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1229 sizeof(metadata));
1230 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1231}
1232
1233static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1234 unsigned int address)
1235{
1236 u32 metadata, dwaddress;
1237 int ret;
1238
1239 dwaddress = address / 4;
1240 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1241 USB4_NVM_SET_OFFSET_MASK;
1242
1243 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1244 sizeof(metadata));
1245 if (ret)
1246 return ret;
1247
1248 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1249 500);
1250}
1251
1252struct retimer_info {
1253 struct tb_port *port;
1254 u8 index;
1255};
1256
1257static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf,
1258 size_t dwords)
1259
1260{
1261 const struct retimer_info *info = data;
1262 struct tb_port *port = info->port;
1263 u8 index = info->index;
1264 int ret;
1265
1266 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1267 buf, dwords * 4);
1268 if (ret)
1269 return ret;
1270
1271 return usb4_port_retimer_op(port, index,
1272 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1273}
1274
1275/**
1276 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1277 * @port: USB4 port
1278 * @index: Retimer index
1279 * @address: Byte address where to start the write
1280 * @buf: Data to write
1281 * @size: Size in bytes how much to write
1282 *
1283 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1284 * upgrade. Returns %0 if the data was written successfully and negative
1285 * errno in case of failure. Specifically returns %-ENODEV if there is
1286 * no retimer at @index.
1287 */
1288int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1289 const void *buf, size_t size)
1290{
1291 struct retimer_info info = { .port = port, .index = index };
1292 int ret;
1293
1294 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1295 if (ret)
1296 return ret;
1297
1298 return usb4_do_write_data(address, buf, size,
1299 usb4_port_retimer_nvm_write_next_block, &info);
1300}
1301
1302/**
1303 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1304 * @port: USB4 port
1305 * @index: Retimer index
1306 *
1307 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1308 * this function can be used to trigger the NVM upgrade process. If
1309 * successful the retimer restarts with the new NVM and may not have the
1310 * index set so one needs to call usb4_port_enumerate_retimers() to
1311 * force index to be assigned.
1312 */
1313int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1314{
1315 u32 val;
1316
1317 /*
1318 * We need to use the raw operation here because once the
1319 * authentication completes the retimer index is not set anymore
1320 * so we do not get back the status now.
1321 */
1322 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1323 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1324 USB4_SB_OPCODE, &val, sizeof(val));
1325}
1326
1327/**
1328 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1329 * @port: USB4 port
1330 * @index: Retimer index
1331 * @status: Raw status code read from metadata
1332 *
1333 * This can be called after usb4_port_retimer_nvm_authenticate() and
1334 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1335 *
1336 * Returns %0 if the authentication status was successfully read. The
1337 * completion metadata (the result) is then stored into @status. If
1338 * reading the status fails, returns negative errno.
1339 */
1340int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1341 u32 *status)
1342{
1343 u32 metadata, val;
1344 int ret;
1345
1346 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1347 sizeof(val));
1348 if (ret)
1349 return ret;
1350
1351 switch (val) {
1352 case 0:
1353 *status = 0;
1354 return 0;
1355
1356 case USB4_SB_OPCODE_ERR:
1357 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1358 &metadata, sizeof(metadata));
1359 if (ret)
1360 return ret;
1361
1362 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1363 return 0;
1364
1365 case USB4_SB_OPCODE_ONS:
1366 return -EOPNOTSUPP;
1367
1368 default:
1369 return -EIO;
1370 }
1371}
1372
1373static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1374 void *buf, size_t dwords)
1375{
1376 const struct retimer_info *info = data;
1377 struct tb_port *port = info->port;
1378 u8 index = info->index;
1379 u32 metadata;
1380 int ret;
1381
1382 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1383 if (dwords < USB4_DATA_DWORDS)
1384 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1385
1386 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1387 sizeof(metadata));
1388 if (ret)
1389 return ret;
1390
1391 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1392 if (ret)
1393 return ret;
1394
1395 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1396 dwords * 4);
1397}
1398
1399/**
1400 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1401 * @port: USB4 port
1402 * @index: Retimer index
1403 * @address: NVM address (in bytes) to start reading
1404 * @buf: Data read from NVM is stored here
1405 * @size: Number of bytes to read
1406 *
1407 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1408 * read was successful and negative errno in case of failure.
1409 * Specifically returns %-ENODEV if there is no retimer at @index.
1410 */
1411int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1412 unsigned int address, void *buf, size_t size)
1413{
1414 struct retimer_info info = { .port = port, .index = index };
1415
1416 return usb4_do_read_data(address, buf, size,
1417 usb4_port_retimer_nvm_read_block, &info);
1418}
1419
1420/**
1421 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1422 * @port: USB3 adapter port
1423 *
1424 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1425 * Negative errno in case of error.
1426 */
1427int usb4_usb3_port_max_link_rate(struct tb_port *port)
1428{
1429 int ret, lr;
1430 u32 val;
1431
1432 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1433 return -EINVAL;
1434
1435 ret = tb_port_read(port, &val, TB_CFG_PORT,
1436 port->cap_adap + ADP_USB3_CS_4, 1);
1437 if (ret)
1438 return ret;
1439
1440 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1441 return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1442}
1443
1444/**
1445 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1446 * @port: USB3 adapter port
1447 *
1448 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1449 * link is not up returns %0 and negative errno in case of failure.
1450 */
1451int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1452{
1453 int ret, lr;
1454 u32 val;
1455
1456 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1457 return -EINVAL;
1458
1459 ret = tb_port_read(port, &val, TB_CFG_PORT,
1460 port->cap_adap + ADP_USB3_CS_4, 1);
1461 if (ret)
1462 return ret;
1463
1464 if (!(val & ADP_USB3_CS_4_ULV))
1465 return 0;
1466
1467 lr = val & ADP_USB3_CS_4_ALR_MASK;
1468 return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1469}
1470
1471static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1472{
1473 int ret;
1474 u32 val;
1475
1476 if (!tb_port_is_usb3_down(port))
1477 return -EINVAL;
1478 if (tb_route(port->sw))
1479 return -EINVAL;
1480
1481 ret = tb_port_read(port, &val, TB_CFG_PORT,
1482 port->cap_adap + ADP_USB3_CS_2, 1);
1483 if (ret)
1484 return ret;
1485
1486 if (request)
1487 val |= ADP_USB3_CS_2_CMR;
1488 else
1489 val &= ~ADP_USB3_CS_2_CMR;
1490
1491 ret = tb_port_write(port, &val, TB_CFG_PORT,
1492 port->cap_adap + ADP_USB3_CS_2, 1);
1493 if (ret)
1494 return ret;
1495
1496 /*
1497 * We can use val here directly as the CMR bit is in the same place
1498 * as HCA. Just mask out others.
1499 */
1500 val &= ADP_USB3_CS_2_CMR;
1501 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1502 ADP_USB3_CS_1_HCA, val, 1500);
1503}
1504
1505static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1506{
1507 return usb4_usb3_port_cm_request(port, true);
1508}
1509
1510static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1511{
1512 return usb4_usb3_port_cm_request(port, false);
1513}
1514
1515static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1516{
1517 unsigned long uframes;
1518
1519 uframes = bw * 512UL << scale;
1520 return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1521}
1522
1523static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1524{
1525 unsigned long uframes;
1526
1527 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1528 uframes = ((unsigned long)mbps * 1000 * 1000) / 8000;
1529 return DIV_ROUND_UP(uframes, 512UL << scale);
1530}
1531
1532static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1533 int *upstream_bw,
1534 int *downstream_bw)
1535{
1536 u32 val, bw, scale;
1537 int ret;
1538
1539 ret = tb_port_read(port, &val, TB_CFG_PORT,
1540 port->cap_adap + ADP_USB3_CS_2, 1);
1541 if (ret)
1542 return ret;
1543
1544 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1545 port->cap_adap + ADP_USB3_CS_3, 1);
1546 if (ret)
1547 return ret;
1548
1549 scale &= ADP_USB3_CS_3_SCALE_MASK;
1550
1551 bw = val & ADP_USB3_CS_2_AUBW_MASK;
1552 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1553
1554 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1555 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1556
1557 return 0;
1558}
1559
1560/**
1561 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1562 * @port: USB3 adapter port
1563 * @upstream_bw: Allocated upstream bandwidth is stored here
1564 * @downstream_bw: Allocated downstream bandwidth is stored here
1565 *
1566 * Stores currently allocated USB3 bandwidth into @upstream_bw and
1567 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1568 * errno in failure.
1569 */
1570int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1571 int *downstream_bw)
1572{
1573 int ret;
1574
1575 ret = usb4_usb3_port_set_cm_request(port);
1576 if (ret)
1577 return ret;
1578
1579 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
1580 downstream_bw);
1581 usb4_usb3_port_clear_cm_request(port);
1582
1583 return ret;
1584}
1585
1586static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
1587 int *upstream_bw,
1588 int *downstream_bw)
1589{
1590 u32 val, bw, scale;
1591 int ret;
1592
1593 ret = tb_port_read(port, &val, TB_CFG_PORT,
1594 port->cap_adap + ADP_USB3_CS_1, 1);
1595 if (ret)
1596 return ret;
1597
1598 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1599 port->cap_adap + ADP_USB3_CS_3, 1);
1600 if (ret)
1601 return ret;
1602
1603 scale &= ADP_USB3_CS_3_SCALE_MASK;
1604
1605 bw = val & ADP_USB3_CS_1_CUBW_MASK;
1606 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1607
1608 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
1609 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1610
1611 return 0;
1612}
1613
1614static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
1615 int upstream_bw,
1616 int downstream_bw)
1617{
1618 u32 val, ubw, dbw, scale;
1619 int ret;
1620
1621 /* Read the used scale, hardware default is 0 */
1622 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1623 port->cap_adap + ADP_USB3_CS_3, 1);
1624 if (ret)
1625 return ret;
1626
1627 scale &= ADP_USB3_CS_3_SCALE_MASK;
1628 ubw = mbps_to_usb3_bw(upstream_bw, scale);
1629 dbw = mbps_to_usb3_bw(downstream_bw, scale);
1630
1631 ret = tb_port_read(port, &val, TB_CFG_PORT,
1632 port->cap_adap + ADP_USB3_CS_2, 1);
1633 if (ret)
1634 return ret;
1635
1636 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
1637 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
1638 val |= ubw;
1639
1640 return tb_port_write(port, &val, TB_CFG_PORT,
1641 port->cap_adap + ADP_USB3_CS_2, 1);
1642}
1643
1644/**
1645 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1646 * @port: USB3 adapter port
1647 * @upstream_bw: New upstream bandwidth
1648 * @downstream_bw: New downstream bandwidth
1649 *
1650 * This can be used to set how much bandwidth is allocated for the USB3
1651 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1652 * new values programmed to the USB3 adapter allocation registers. If
1653 * the values are lower than what is currently consumed the allocation
1654 * is set to what is currently consumed instead (consumed bandwidth
1655 * cannot be taken away by CM). The actual new values are returned in
1656 * @upstream_bw and @downstream_bw.
1657 *
1658 * Returns %0 in case of success and negative errno if there was a
1659 * failure.
1660 */
1661int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1662 int *downstream_bw)
1663{
1664 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
1665
1666 ret = usb4_usb3_port_set_cm_request(port);
1667 if (ret)
1668 return ret;
1669
1670 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1671 &consumed_down);
1672 if (ret)
1673 goto err_request;
1674
1675 /* Don't allow it go lower than what is consumed */
1676 allocate_up = max(*upstream_bw, consumed_up);
1677 allocate_down = max(*downstream_bw, consumed_down);
1678
1679 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
1680 allocate_down);
1681 if (ret)
1682 goto err_request;
1683
1684 *upstream_bw = allocate_up;
1685 *downstream_bw = allocate_down;
1686
1687err_request:
1688 usb4_usb3_port_clear_cm_request(port);
1689 return ret;
1690}
1691
1692/**
1693 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1694 * @port: USB3 adapter port
1695 * @upstream_bw: New allocated upstream bandwidth
1696 * @downstream_bw: New allocated downstream bandwidth
1697 *
1698 * Releases USB3 allocated bandwidth down to what is actually consumed.
1699 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1700 *
1701 * Returns 0% in success and negative errno in case of failure.
1702 */
1703int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1704 int *downstream_bw)
1705{
1706 int ret, consumed_up, consumed_down;
1707
1708 ret = usb4_usb3_port_set_cm_request(port);
1709 if (ret)
1710 return ret;
1711
1712 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1713 &consumed_down);
1714 if (ret)
1715 goto err_request;
1716
1717 /*
1718 * Always keep 1000 Mb/s to make sure xHCI has at least some
1719 * bandwidth available for isochronous traffic.
1720 */
1721 if (consumed_up < 1000)
1722 consumed_up = 1000;
1723 if (consumed_down < 1000)
1724 consumed_down = 1000;
1725
1726 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
1727 consumed_down);
1728 if (ret)
1729 goto err_request;
1730
1731 *upstream_bw = consumed_up;
1732 *downstream_bw = consumed_down;
1733
1734err_request:
1735 usb4_usb3_port_clear_cm_request(port);
1736 return ret;
1737}