Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| 4 | */ |
| 5 | |
| 6 | #include "noise.h" |
| 7 | #include "device.h" |
| 8 | #include "peer.h" |
| 9 | #include "messages.h" |
| 10 | #include "queueing.h" |
| 11 | #include "peerlookup.h" |
| 12 | |
| 13 | #include <linux/rcupdate.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/bitmap.h> |
| 16 | #include <linux/scatterlist.h> |
| 17 | #include <linux/highmem.h> |
| 18 | #include <crypto/algapi.h> |
| 19 | |
| 20 | /* This implements Noise_IKpsk2: |
| 21 | * |
| 22 | * <- s |
| 23 | * ****** |
| 24 | * -> e, es, s, ss, {t} |
| 25 | * <- e, ee, se, psk, {} |
| 26 | */ |
| 27 | |
| 28 | static const u8 handshake_name[37] = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s"; |
| 29 | static const u8 identifier_name[34] = "WireGuard v1 zx2c4 Jason@zx2c4.com"; |
| 30 | static u8 handshake_init_hash[NOISE_HASH_LEN] __ro_after_init; |
| 31 | static u8 handshake_init_chaining_key[NOISE_HASH_LEN] __ro_after_init; |
| 32 | static atomic64_t keypair_counter = ATOMIC64_INIT(0); |
| 33 | |
| 34 | void __init wg_noise_init(void) |
| 35 | { |
| 36 | struct blake2s_state blake; |
| 37 | |
| 38 | blake2s(handshake_init_chaining_key, handshake_name, NULL, |
| 39 | NOISE_HASH_LEN, sizeof(handshake_name), 0); |
| 40 | blake2s_init(&blake, NOISE_HASH_LEN); |
| 41 | blake2s_update(&blake, handshake_init_chaining_key, NOISE_HASH_LEN); |
| 42 | blake2s_update(&blake, identifier_name, sizeof(identifier_name)); |
| 43 | blake2s_final(&blake, handshake_init_hash); |
| 44 | } |
| 45 | |
| 46 | /* Must hold peer->handshake.static_identity->lock */ |
| 47 | void wg_noise_precompute_static_static(struct wg_peer *peer) |
| 48 | { |
| 49 | down_write(&peer->handshake.lock); |
| 50 | if (!peer->handshake.static_identity->has_identity || |
| 51 | !curve25519(peer->handshake.precomputed_static_static, |
| 52 | peer->handshake.static_identity->static_private, |
| 53 | peer->handshake.remote_static)) |
| 54 | memset(peer->handshake.precomputed_static_static, 0, |
| 55 | NOISE_PUBLIC_KEY_LEN); |
| 56 | up_write(&peer->handshake.lock); |
| 57 | } |
| 58 | |
| 59 | void wg_noise_handshake_init(struct noise_handshake *handshake, |
| 60 | struct noise_static_identity *static_identity, |
| 61 | const u8 peer_public_key[NOISE_PUBLIC_KEY_LEN], |
| 62 | const u8 peer_preshared_key[NOISE_SYMMETRIC_KEY_LEN], |
| 63 | struct wg_peer *peer) |
| 64 | { |
| 65 | memset(handshake, 0, sizeof(*handshake)); |
| 66 | init_rwsem(&handshake->lock); |
| 67 | handshake->entry.type = INDEX_HASHTABLE_HANDSHAKE; |
| 68 | handshake->entry.peer = peer; |
| 69 | memcpy(handshake->remote_static, peer_public_key, NOISE_PUBLIC_KEY_LEN); |
| 70 | if (peer_preshared_key) |
| 71 | memcpy(handshake->preshared_key, peer_preshared_key, |
| 72 | NOISE_SYMMETRIC_KEY_LEN); |
| 73 | handshake->static_identity = static_identity; |
| 74 | handshake->state = HANDSHAKE_ZEROED; |
| 75 | wg_noise_precompute_static_static(peer); |
| 76 | } |
| 77 | |
| 78 | static void handshake_zero(struct noise_handshake *handshake) |
| 79 | { |
| 80 | memset(&handshake->ephemeral_private, 0, NOISE_PUBLIC_KEY_LEN); |
| 81 | memset(&handshake->remote_ephemeral, 0, NOISE_PUBLIC_KEY_LEN); |
| 82 | memset(&handshake->hash, 0, NOISE_HASH_LEN); |
| 83 | memset(&handshake->chaining_key, 0, NOISE_HASH_LEN); |
| 84 | handshake->remote_index = 0; |
| 85 | handshake->state = HANDSHAKE_ZEROED; |
| 86 | } |
| 87 | |
| 88 | void wg_noise_handshake_clear(struct noise_handshake *handshake) |
| 89 | { |
| 90 | down_write(&handshake->lock); |
| 91 | wg_index_hashtable_remove( |
| 92 | handshake->entry.peer->device->index_hashtable, |
| 93 | &handshake->entry); |
| 94 | handshake_zero(handshake); |
| 95 | up_write(&handshake->lock); |
| 96 | } |
| 97 | |
| 98 | static struct noise_keypair *keypair_create(struct wg_peer *peer) |
| 99 | { |
| 100 | struct noise_keypair *keypair = kzalloc(sizeof(*keypair), GFP_KERNEL); |
| 101 | |
| 102 | if (unlikely(!keypair)) |
| 103 | return NULL; |
| 104 | spin_lock_init(&keypair->receiving_counter.lock); |
| 105 | keypair->internal_id = atomic64_inc_return(&keypair_counter); |
| 106 | keypair->entry.type = INDEX_HASHTABLE_KEYPAIR; |
| 107 | keypair->entry.peer = peer; |
| 108 | kref_init(&keypair->refcount); |
| 109 | return keypair; |
| 110 | } |
| 111 | |
| 112 | static void keypair_free_rcu(struct rcu_head *rcu) |
| 113 | { |
| 114 | kfree_sensitive(container_of(rcu, struct noise_keypair, rcu)); |
| 115 | } |
| 116 | |
| 117 | static void keypair_free_kref(struct kref *kref) |
| 118 | { |
| 119 | struct noise_keypair *keypair = |
| 120 | container_of(kref, struct noise_keypair, refcount); |
| 121 | |
| 122 | net_dbg_ratelimited("%s: Keypair %llu destroyed for peer %llu\n", |
| 123 | keypair->entry.peer->device->dev->name, |
| 124 | keypair->internal_id, |
| 125 | keypair->entry.peer->internal_id); |
| 126 | wg_index_hashtable_remove(keypair->entry.peer->device->index_hashtable, |
| 127 | &keypair->entry); |
| 128 | call_rcu(&keypair->rcu, keypair_free_rcu); |
| 129 | } |
| 130 | |
| 131 | void wg_noise_keypair_put(struct noise_keypair *keypair, bool unreference_now) |
| 132 | { |
| 133 | if (unlikely(!keypair)) |
| 134 | return; |
| 135 | if (unlikely(unreference_now)) |
| 136 | wg_index_hashtable_remove( |
| 137 | keypair->entry.peer->device->index_hashtable, |
| 138 | &keypair->entry); |
| 139 | kref_put(&keypair->refcount, keypair_free_kref); |
| 140 | } |
| 141 | |
| 142 | struct noise_keypair *wg_noise_keypair_get(struct noise_keypair *keypair) |
| 143 | { |
| 144 | RCU_LOCKDEP_WARN(!rcu_read_lock_bh_held(), |
| 145 | "Taking noise keypair reference without holding the RCU BH read lock"); |
| 146 | if (unlikely(!keypair || !kref_get_unless_zero(&keypair->refcount))) |
| 147 | return NULL; |
| 148 | return keypair; |
| 149 | } |
| 150 | |
| 151 | void wg_noise_keypairs_clear(struct noise_keypairs *keypairs) |
| 152 | { |
| 153 | struct noise_keypair *old; |
| 154 | |
| 155 | spin_lock_bh(&keypairs->keypair_update_lock); |
| 156 | |
| 157 | /* We zero the next_keypair before zeroing the others, so that |
| 158 | * wg_noise_received_with_keypair returns early before subsequent ones |
| 159 | * are zeroed. |
| 160 | */ |
| 161 | old = rcu_dereference_protected(keypairs->next_keypair, |
| 162 | lockdep_is_held(&keypairs->keypair_update_lock)); |
| 163 | RCU_INIT_POINTER(keypairs->next_keypair, NULL); |
| 164 | wg_noise_keypair_put(old, true); |
| 165 | |
| 166 | old = rcu_dereference_protected(keypairs->previous_keypair, |
| 167 | lockdep_is_held(&keypairs->keypair_update_lock)); |
| 168 | RCU_INIT_POINTER(keypairs->previous_keypair, NULL); |
| 169 | wg_noise_keypair_put(old, true); |
| 170 | |
| 171 | old = rcu_dereference_protected(keypairs->current_keypair, |
| 172 | lockdep_is_held(&keypairs->keypair_update_lock)); |
| 173 | RCU_INIT_POINTER(keypairs->current_keypair, NULL); |
| 174 | wg_noise_keypair_put(old, true); |
| 175 | |
| 176 | spin_unlock_bh(&keypairs->keypair_update_lock); |
| 177 | } |
| 178 | |
| 179 | void wg_noise_expire_current_peer_keypairs(struct wg_peer *peer) |
| 180 | { |
| 181 | struct noise_keypair *keypair; |
| 182 | |
| 183 | wg_noise_handshake_clear(&peer->handshake); |
| 184 | wg_noise_reset_last_sent_handshake(&peer->last_sent_handshake); |
| 185 | |
| 186 | spin_lock_bh(&peer->keypairs.keypair_update_lock); |
| 187 | keypair = rcu_dereference_protected(peer->keypairs.next_keypair, |
| 188 | lockdep_is_held(&peer->keypairs.keypair_update_lock)); |
| 189 | if (keypair) |
| 190 | keypair->sending.is_valid = false; |
| 191 | keypair = rcu_dereference_protected(peer->keypairs.current_keypair, |
| 192 | lockdep_is_held(&peer->keypairs.keypair_update_lock)); |
| 193 | if (keypair) |
| 194 | keypair->sending.is_valid = false; |
| 195 | spin_unlock_bh(&peer->keypairs.keypair_update_lock); |
| 196 | } |
| 197 | |
| 198 | static void add_new_keypair(struct noise_keypairs *keypairs, |
| 199 | struct noise_keypair *new_keypair) |
| 200 | { |
| 201 | struct noise_keypair *previous_keypair, *next_keypair, *current_keypair; |
| 202 | |
| 203 | spin_lock_bh(&keypairs->keypair_update_lock); |
| 204 | previous_keypair = rcu_dereference_protected(keypairs->previous_keypair, |
| 205 | lockdep_is_held(&keypairs->keypair_update_lock)); |
| 206 | next_keypair = rcu_dereference_protected(keypairs->next_keypair, |
| 207 | lockdep_is_held(&keypairs->keypair_update_lock)); |
| 208 | current_keypair = rcu_dereference_protected(keypairs->current_keypair, |
| 209 | lockdep_is_held(&keypairs->keypair_update_lock)); |
| 210 | if (new_keypair->i_am_the_initiator) { |
| 211 | /* If we're the initiator, it means we've sent a handshake, and |
| 212 | * received a confirmation response, which means this new |
| 213 | * keypair can now be used. |
| 214 | */ |
| 215 | if (next_keypair) { |
| 216 | /* If there already was a next keypair pending, we |
| 217 | * demote it to be the previous keypair, and free the |
| 218 | * existing current. Note that this means KCI can result |
| 219 | * in this transition. It would perhaps be more sound to |
| 220 | * always just get rid of the unused next keypair |
| 221 | * instead of putting it in the previous slot, but this |
| 222 | * might be a bit less robust. Something to think about |
| 223 | * for the future. |
| 224 | */ |
| 225 | RCU_INIT_POINTER(keypairs->next_keypair, NULL); |
| 226 | rcu_assign_pointer(keypairs->previous_keypair, |
| 227 | next_keypair); |
| 228 | wg_noise_keypair_put(current_keypair, true); |
| 229 | } else /* If there wasn't an existing next keypair, we replace |
| 230 | * the previous with the current one. |
| 231 | */ |
| 232 | rcu_assign_pointer(keypairs->previous_keypair, |
| 233 | current_keypair); |
| 234 | /* At this point we can get rid of the old previous keypair, and |
| 235 | * set up the new keypair. |
| 236 | */ |
| 237 | wg_noise_keypair_put(previous_keypair, true); |
| 238 | rcu_assign_pointer(keypairs->current_keypair, new_keypair); |
| 239 | } else { |
| 240 | /* If we're the responder, it means we can't use the new keypair |
| 241 | * until we receive confirmation via the first data packet, so |
| 242 | * we get rid of the existing previous one, the possibly |
| 243 | * existing next one, and slide in the new next one. |
| 244 | */ |
| 245 | rcu_assign_pointer(keypairs->next_keypair, new_keypair); |
| 246 | wg_noise_keypair_put(next_keypair, true); |
| 247 | RCU_INIT_POINTER(keypairs->previous_keypair, NULL); |
| 248 | wg_noise_keypair_put(previous_keypair, true); |
| 249 | } |
| 250 | spin_unlock_bh(&keypairs->keypair_update_lock); |
| 251 | } |
| 252 | |
| 253 | bool wg_noise_received_with_keypair(struct noise_keypairs *keypairs, |
| 254 | struct noise_keypair *received_keypair) |
| 255 | { |
| 256 | struct noise_keypair *old_keypair; |
| 257 | bool key_is_new; |
| 258 | |
| 259 | /* We first check without taking the spinlock. */ |
| 260 | key_is_new = received_keypair == |
| 261 | rcu_access_pointer(keypairs->next_keypair); |
| 262 | if (likely(!key_is_new)) |
| 263 | return false; |
| 264 | |
| 265 | spin_lock_bh(&keypairs->keypair_update_lock); |
| 266 | /* After locking, we double check that things didn't change from |
| 267 | * beneath us. |
| 268 | */ |
| 269 | if (unlikely(received_keypair != |
| 270 | rcu_dereference_protected(keypairs->next_keypair, |
| 271 | lockdep_is_held(&keypairs->keypair_update_lock)))) { |
| 272 | spin_unlock_bh(&keypairs->keypair_update_lock); |
| 273 | return false; |
| 274 | } |
| 275 | |
| 276 | /* When we've finally received the confirmation, we slide the next |
| 277 | * into the current, the current into the previous, and get rid of |
| 278 | * the old previous. |
| 279 | */ |
| 280 | old_keypair = rcu_dereference_protected(keypairs->previous_keypair, |
| 281 | lockdep_is_held(&keypairs->keypair_update_lock)); |
| 282 | rcu_assign_pointer(keypairs->previous_keypair, |
| 283 | rcu_dereference_protected(keypairs->current_keypair, |
| 284 | lockdep_is_held(&keypairs->keypair_update_lock))); |
| 285 | wg_noise_keypair_put(old_keypair, true); |
| 286 | rcu_assign_pointer(keypairs->current_keypair, received_keypair); |
| 287 | RCU_INIT_POINTER(keypairs->next_keypair, NULL); |
| 288 | |
| 289 | spin_unlock_bh(&keypairs->keypair_update_lock); |
| 290 | return true; |
| 291 | } |
| 292 | |
| 293 | /* Must hold static_identity->lock */ |
| 294 | void wg_noise_set_static_identity_private_key( |
| 295 | struct noise_static_identity *static_identity, |
| 296 | const u8 private_key[NOISE_PUBLIC_KEY_LEN]) |
| 297 | { |
| 298 | memcpy(static_identity->static_private, private_key, |
| 299 | NOISE_PUBLIC_KEY_LEN); |
| 300 | curve25519_clamp_secret(static_identity->static_private); |
| 301 | static_identity->has_identity = curve25519_generate_public( |
| 302 | static_identity->static_public, private_key); |
| 303 | } |
| 304 | |
| 305 | /* This is Hugo Krawczyk's HKDF: |
| 306 | * - https://eprint.iacr.org/2010/264.pdf |
| 307 | * - https://tools.ietf.org/html/rfc5869 |
| 308 | */ |
| 309 | static void kdf(u8 *first_dst, u8 *second_dst, u8 *third_dst, const u8 *data, |
| 310 | size_t first_len, size_t second_len, size_t third_len, |
| 311 | size_t data_len, const u8 chaining_key[NOISE_HASH_LEN]) |
| 312 | { |
| 313 | u8 output[BLAKE2S_HASH_SIZE + 1]; |
| 314 | u8 secret[BLAKE2S_HASH_SIZE]; |
| 315 | |
| 316 | WARN_ON(IS_ENABLED(DEBUG) && |
| 317 | (first_len > BLAKE2S_HASH_SIZE || |
| 318 | second_len > BLAKE2S_HASH_SIZE || |
| 319 | third_len > BLAKE2S_HASH_SIZE || |
| 320 | ((second_len || second_dst || third_len || third_dst) && |
| 321 | (!first_len || !first_dst)) || |
| 322 | ((third_len || third_dst) && (!second_len || !second_dst)))); |
| 323 | |
| 324 | /* Extract entropy from data into secret */ |
| 325 | blake2s256_hmac(secret, data, chaining_key, data_len, NOISE_HASH_LEN); |
| 326 | |
| 327 | if (!first_dst || !first_len) |
| 328 | goto out; |
| 329 | |
| 330 | /* Expand first key: key = secret, data = 0x1 */ |
| 331 | output[0] = 1; |
| 332 | blake2s256_hmac(output, output, secret, 1, BLAKE2S_HASH_SIZE); |
| 333 | memcpy(first_dst, output, first_len); |
| 334 | |
| 335 | if (!second_dst || !second_len) |
| 336 | goto out; |
| 337 | |
| 338 | /* Expand second key: key = secret, data = first-key || 0x2 */ |
| 339 | output[BLAKE2S_HASH_SIZE] = 2; |
| 340 | blake2s256_hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1, |
| 341 | BLAKE2S_HASH_SIZE); |
| 342 | memcpy(second_dst, output, second_len); |
| 343 | |
| 344 | if (!third_dst || !third_len) |
| 345 | goto out; |
| 346 | |
| 347 | /* Expand third key: key = secret, data = second-key || 0x3 */ |
| 348 | output[BLAKE2S_HASH_SIZE] = 3; |
| 349 | blake2s256_hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1, |
| 350 | BLAKE2S_HASH_SIZE); |
| 351 | memcpy(third_dst, output, third_len); |
| 352 | |
| 353 | out: |
| 354 | /* Clear sensitive data from stack */ |
| 355 | memzero_explicit(secret, BLAKE2S_HASH_SIZE); |
| 356 | memzero_explicit(output, BLAKE2S_HASH_SIZE + 1); |
| 357 | } |
| 358 | |
| 359 | static void derive_keys(struct noise_symmetric_key *first_dst, |
| 360 | struct noise_symmetric_key *second_dst, |
| 361 | const u8 chaining_key[NOISE_HASH_LEN]) |
| 362 | { |
| 363 | u64 birthdate = ktime_get_coarse_boottime_ns(); |
| 364 | kdf(first_dst->key, second_dst->key, NULL, NULL, |
| 365 | NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0, |
| 366 | chaining_key); |
| 367 | first_dst->birthdate = second_dst->birthdate = birthdate; |
| 368 | first_dst->is_valid = second_dst->is_valid = true; |
| 369 | } |
| 370 | |
| 371 | static bool __must_check mix_dh(u8 chaining_key[NOISE_HASH_LEN], |
| 372 | u8 key[NOISE_SYMMETRIC_KEY_LEN], |
| 373 | const u8 private[NOISE_PUBLIC_KEY_LEN], |
| 374 | const u8 public[NOISE_PUBLIC_KEY_LEN]) |
| 375 | { |
| 376 | u8 dh_calculation[NOISE_PUBLIC_KEY_LEN]; |
| 377 | |
| 378 | if (unlikely(!curve25519(dh_calculation, private, public))) |
| 379 | return false; |
| 380 | kdf(chaining_key, key, NULL, dh_calculation, NOISE_HASH_LEN, |
| 381 | NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, chaining_key); |
| 382 | memzero_explicit(dh_calculation, NOISE_PUBLIC_KEY_LEN); |
| 383 | return true; |
| 384 | } |
| 385 | |
| 386 | static bool __must_check mix_precomputed_dh(u8 chaining_key[NOISE_HASH_LEN], |
| 387 | u8 key[NOISE_SYMMETRIC_KEY_LEN], |
| 388 | const u8 precomputed[NOISE_PUBLIC_KEY_LEN]) |
| 389 | { |
| 390 | static u8 zero_point[NOISE_PUBLIC_KEY_LEN]; |
| 391 | if (unlikely(!crypto_memneq(precomputed, zero_point, NOISE_PUBLIC_KEY_LEN))) |
| 392 | return false; |
| 393 | kdf(chaining_key, key, NULL, precomputed, NOISE_HASH_LEN, |
| 394 | NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, |
| 395 | chaining_key); |
| 396 | return true; |
| 397 | } |
| 398 | |
| 399 | static void mix_hash(u8 hash[NOISE_HASH_LEN], const u8 *src, size_t src_len) |
| 400 | { |
| 401 | struct blake2s_state blake; |
| 402 | |
| 403 | blake2s_init(&blake, NOISE_HASH_LEN); |
| 404 | blake2s_update(&blake, hash, NOISE_HASH_LEN); |
| 405 | blake2s_update(&blake, src, src_len); |
| 406 | blake2s_final(&blake, hash); |
| 407 | } |
| 408 | |
| 409 | static void mix_psk(u8 chaining_key[NOISE_HASH_LEN], u8 hash[NOISE_HASH_LEN], |
| 410 | u8 key[NOISE_SYMMETRIC_KEY_LEN], |
| 411 | const u8 psk[NOISE_SYMMETRIC_KEY_LEN]) |
| 412 | { |
| 413 | u8 temp_hash[NOISE_HASH_LEN]; |
| 414 | |
| 415 | kdf(chaining_key, temp_hash, key, psk, NOISE_HASH_LEN, NOISE_HASH_LEN, |
| 416 | NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, chaining_key); |
| 417 | mix_hash(hash, temp_hash, NOISE_HASH_LEN); |
| 418 | memzero_explicit(temp_hash, NOISE_HASH_LEN); |
| 419 | } |
| 420 | |
| 421 | static void handshake_init(u8 chaining_key[NOISE_HASH_LEN], |
| 422 | u8 hash[NOISE_HASH_LEN], |
| 423 | const u8 remote_static[NOISE_PUBLIC_KEY_LEN]) |
| 424 | { |
| 425 | memcpy(hash, handshake_init_hash, NOISE_HASH_LEN); |
| 426 | memcpy(chaining_key, handshake_init_chaining_key, NOISE_HASH_LEN); |
| 427 | mix_hash(hash, remote_static, NOISE_PUBLIC_KEY_LEN); |
| 428 | } |
| 429 | |
| 430 | static void message_encrypt(u8 *dst_ciphertext, const u8 *src_plaintext, |
| 431 | size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN], |
| 432 | u8 hash[NOISE_HASH_LEN]) |
| 433 | { |
| 434 | chacha20poly1305_encrypt(dst_ciphertext, src_plaintext, src_len, hash, |
| 435 | NOISE_HASH_LEN, |
| 436 | 0 /* Always zero for Noise_IK */, key); |
| 437 | mix_hash(hash, dst_ciphertext, noise_encrypted_len(src_len)); |
| 438 | } |
| 439 | |
| 440 | static bool message_decrypt(u8 *dst_plaintext, const u8 *src_ciphertext, |
| 441 | size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN], |
| 442 | u8 hash[NOISE_HASH_LEN]) |
| 443 | { |
| 444 | if (!chacha20poly1305_decrypt(dst_plaintext, src_ciphertext, src_len, |
| 445 | hash, NOISE_HASH_LEN, |
| 446 | 0 /* Always zero for Noise_IK */, key)) |
| 447 | return false; |
| 448 | mix_hash(hash, src_ciphertext, src_len); |
| 449 | return true; |
| 450 | } |
| 451 | |
| 452 | static void message_ephemeral(u8 ephemeral_dst[NOISE_PUBLIC_KEY_LEN], |
| 453 | const u8 ephemeral_src[NOISE_PUBLIC_KEY_LEN], |
| 454 | u8 chaining_key[NOISE_HASH_LEN], |
| 455 | u8 hash[NOISE_HASH_LEN]) |
| 456 | { |
| 457 | if (ephemeral_dst != ephemeral_src) |
| 458 | memcpy(ephemeral_dst, ephemeral_src, NOISE_PUBLIC_KEY_LEN); |
| 459 | mix_hash(hash, ephemeral_src, NOISE_PUBLIC_KEY_LEN); |
| 460 | kdf(chaining_key, NULL, NULL, ephemeral_src, NOISE_HASH_LEN, 0, 0, |
| 461 | NOISE_PUBLIC_KEY_LEN, chaining_key); |
| 462 | } |
| 463 | |
| 464 | static void tai64n_now(u8 output[NOISE_TIMESTAMP_LEN]) |
| 465 | { |
| 466 | struct timespec64 now; |
| 467 | |
| 468 | ktime_get_real_ts64(&now); |
| 469 | |
| 470 | /* In order to prevent some sort of infoleak from precise timers, we |
| 471 | * round down the nanoseconds part to the closest rounded-down power of |
| 472 | * two to the maximum initiations per second allowed anyway by the |
| 473 | * implementation. |
| 474 | */ |
| 475 | now.tv_nsec = ALIGN_DOWN(now.tv_nsec, |
| 476 | rounddown_pow_of_two(NSEC_PER_SEC / INITIATIONS_PER_SECOND)); |
| 477 | |
| 478 | /* https://cr.yp.to/libtai/tai64.html */ |
| 479 | *(__be64 *)output = cpu_to_be64(0x400000000000000aULL + now.tv_sec); |
| 480 | *(__be32 *)(output + sizeof(__be64)) = cpu_to_be32(now.tv_nsec); |
| 481 | } |
| 482 | |
| 483 | bool |
| 484 | wg_noise_handshake_create_initiation(struct message_handshake_initiation *dst, |
| 485 | struct noise_handshake *handshake) |
| 486 | { |
| 487 | u8 timestamp[NOISE_TIMESTAMP_LEN]; |
| 488 | u8 key[NOISE_SYMMETRIC_KEY_LEN]; |
| 489 | bool ret = false; |
| 490 | |
| 491 | /* We need to wait for crng _before_ taking any locks, since |
| 492 | * curve25519_generate_secret uses get_random_bytes_wait. |
| 493 | */ |
| 494 | wait_for_random_bytes(); |
| 495 | |
| 496 | down_read(&handshake->static_identity->lock); |
| 497 | down_write(&handshake->lock); |
| 498 | |
| 499 | if (unlikely(!handshake->static_identity->has_identity)) |
| 500 | goto out; |
| 501 | |
| 502 | dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION); |
| 503 | |
| 504 | handshake_init(handshake->chaining_key, handshake->hash, |
| 505 | handshake->remote_static); |
| 506 | |
| 507 | /* e */ |
| 508 | curve25519_generate_secret(handshake->ephemeral_private); |
| 509 | if (!curve25519_generate_public(dst->unencrypted_ephemeral, |
| 510 | handshake->ephemeral_private)) |
| 511 | goto out; |
| 512 | message_ephemeral(dst->unencrypted_ephemeral, |
| 513 | dst->unencrypted_ephemeral, handshake->chaining_key, |
| 514 | handshake->hash); |
| 515 | |
| 516 | /* es */ |
| 517 | if (!mix_dh(handshake->chaining_key, key, handshake->ephemeral_private, |
| 518 | handshake->remote_static)) |
| 519 | goto out; |
| 520 | |
| 521 | /* s */ |
| 522 | message_encrypt(dst->encrypted_static, |
| 523 | handshake->static_identity->static_public, |
| 524 | NOISE_PUBLIC_KEY_LEN, key, handshake->hash); |
| 525 | |
| 526 | /* ss */ |
| 527 | if (!mix_precomputed_dh(handshake->chaining_key, key, |
| 528 | handshake->precomputed_static_static)) |
| 529 | goto out; |
| 530 | |
| 531 | /* {t} */ |
| 532 | tai64n_now(timestamp); |
| 533 | message_encrypt(dst->encrypted_timestamp, timestamp, |
| 534 | NOISE_TIMESTAMP_LEN, key, handshake->hash); |
| 535 | |
| 536 | dst->sender_index = wg_index_hashtable_insert( |
| 537 | handshake->entry.peer->device->index_hashtable, |
| 538 | &handshake->entry); |
| 539 | |
| 540 | handshake->state = HANDSHAKE_CREATED_INITIATION; |
| 541 | ret = true; |
| 542 | |
| 543 | out: |
| 544 | up_write(&handshake->lock); |
| 545 | up_read(&handshake->static_identity->lock); |
| 546 | memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); |
| 547 | return ret; |
| 548 | } |
| 549 | |
| 550 | struct wg_peer * |
| 551 | wg_noise_handshake_consume_initiation(struct message_handshake_initiation *src, |
| 552 | struct wg_device *wg) |
| 553 | { |
| 554 | struct wg_peer *peer = NULL, *ret_peer = NULL; |
| 555 | struct noise_handshake *handshake; |
| 556 | bool replay_attack, flood_attack; |
| 557 | u8 key[NOISE_SYMMETRIC_KEY_LEN]; |
| 558 | u8 chaining_key[NOISE_HASH_LEN]; |
| 559 | u8 hash[NOISE_HASH_LEN]; |
| 560 | u8 s[NOISE_PUBLIC_KEY_LEN]; |
| 561 | u8 e[NOISE_PUBLIC_KEY_LEN]; |
| 562 | u8 t[NOISE_TIMESTAMP_LEN]; |
| 563 | u64 initiation_consumption; |
| 564 | |
| 565 | down_read(&wg->static_identity.lock); |
| 566 | if (unlikely(!wg->static_identity.has_identity)) |
| 567 | goto out; |
| 568 | |
| 569 | handshake_init(chaining_key, hash, wg->static_identity.static_public); |
| 570 | |
| 571 | /* e */ |
| 572 | message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash); |
| 573 | |
| 574 | /* es */ |
| 575 | if (!mix_dh(chaining_key, key, wg->static_identity.static_private, e)) |
| 576 | goto out; |
| 577 | |
| 578 | /* s */ |
| 579 | if (!message_decrypt(s, src->encrypted_static, |
| 580 | sizeof(src->encrypted_static), key, hash)) |
| 581 | goto out; |
| 582 | |
| 583 | /* Lookup which peer we're actually talking to */ |
| 584 | peer = wg_pubkey_hashtable_lookup(wg->peer_hashtable, s); |
| 585 | if (!peer) |
| 586 | goto out; |
| 587 | handshake = &peer->handshake; |
| 588 | |
| 589 | /* ss */ |
| 590 | if (!mix_precomputed_dh(chaining_key, key, |
| 591 | handshake->precomputed_static_static)) |
| 592 | goto out; |
| 593 | |
| 594 | /* {t} */ |
| 595 | if (!message_decrypt(t, src->encrypted_timestamp, |
| 596 | sizeof(src->encrypted_timestamp), key, hash)) |
| 597 | goto out; |
| 598 | |
| 599 | down_read(&handshake->lock); |
| 600 | replay_attack = memcmp(t, handshake->latest_timestamp, |
| 601 | NOISE_TIMESTAMP_LEN) <= 0; |
| 602 | flood_attack = (s64)handshake->last_initiation_consumption + |
| 603 | NSEC_PER_SEC / INITIATIONS_PER_SECOND > |
| 604 | (s64)ktime_get_coarse_boottime_ns(); |
| 605 | up_read(&handshake->lock); |
| 606 | if (replay_attack || flood_attack) |
| 607 | goto out; |
| 608 | |
| 609 | /* Success! Copy everything to peer */ |
| 610 | down_write(&handshake->lock); |
| 611 | memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN); |
| 612 | if (memcmp(t, handshake->latest_timestamp, NOISE_TIMESTAMP_LEN) > 0) |
| 613 | memcpy(handshake->latest_timestamp, t, NOISE_TIMESTAMP_LEN); |
| 614 | memcpy(handshake->hash, hash, NOISE_HASH_LEN); |
| 615 | memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN); |
| 616 | handshake->remote_index = src->sender_index; |
| 617 | initiation_consumption = ktime_get_coarse_boottime_ns(); |
| 618 | if ((s64)(handshake->last_initiation_consumption - initiation_consumption) < 0) |
| 619 | handshake->last_initiation_consumption = initiation_consumption; |
| 620 | handshake->state = HANDSHAKE_CONSUMED_INITIATION; |
| 621 | up_write(&handshake->lock); |
| 622 | ret_peer = peer; |
| 623 | |
| 624 | out: |
| 625 | memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); |
| 626 | memzero_explicit(hash, NOISE_HASH_LEN); |
| 627 | memzero_explicit(chaining_key, NOISE_HASH_LEN); |
| 628 | up_read(&wg->static_identity.lock); |
| 629 | if (!ret_peer) |
| 630 | wg_peer_put(peer); |
| 631 | return ret_peer; |
| 632 | } |
| 633 | |
| 634 | bool wg_noise_handshake_create_response(struct message_handshake_response *dst, |
| 635 | struct noise_handshake *handshake) |
| 636 | { |
| 637 | u8 key[NOISE_SYMMETRIC_KEY_LEN]; |
| 638 | bool ret = false; |
| 639 | |
| 640 | /* We need to wait for crng _before_ taking any locks, since |
| 641 | * curve25519_generate_secret uses get_random_bytes_wait. |
| 642 | */ |
| 643 | wait_for_random_bytes(); |
| 644 | |
| 645 | down_read(&handshake->static_identity->lock); |
| 646 | down_write(&handshake->lock); |
| 647 | |
| 648 | if (handshake->state != HANDSHAKE_CONSUMED_INITIATION) |
| 649 | goto out; |
| 650 | |
| 651 | dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE); |
| 652 | dst->receiver_index = handshake->remote_index; |
| 653 | |
| 654 | /* e */ |
| 655 | curve25519_generate_secret(handshake->ephemeral_private); |
| 656 | if (!curve25519_generate_public(dst->unencrypted_ephemeral, |
| 657 | handshake->ephemeral_private)) |
| 658 | goto out; |
| 659 | message_ephemeral(dst->unencrypted_ephemeral, |
| 660 | dst->unencrypted_ephemeral, handshake->chaining_key, |
| 661 | handshake->hash); |
| 662 | |
| 663 | /* ee */ |
| 664 | if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private, |
| 665 | handshake->remote_ephemeral)) |
| 666 | goto out; |
| 667 | |
| 668 | /* se */ |
| 669 | if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private, |
| 670 | handshake->remote_static)) |
| 671 | goto out; |
| 672 | |
| 673 | /* psk */ |
| 674 | mix_psk(handshake->chaining_key, handshake->hash, key, |
| 675 | handshake->preshared_key); |
| 676 | |
| 677 | /* {} */ |
| 678 | message_encrypt(dst->encrypted_nothing, NULL, 0, key, handshake->hash); |
| 679 | |
| 680 | dst->sender_index = wg_index_hashtable_insert( |
| 681 | handshake->entry.peer->device->index_hashtable, |
| 682 | &handshake->entry); |
| 683 | |
| 684 | handshake->state = HANDSHAKE_CREATED_RESPONSE; |
| 685 | ret = true; |
| 686 | |
| 687 | out: |
| 688 | up_write(&handshake->lock); |
| 689 | up_read(&handshake->static_identity->lock); |
| 690 | memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); |
| 691 | return ret; |
| 692 | } |
| 693 | |
| 694 | struct wg_peer * |
| 695 | wg_noise_handshake_consume_response(struct message_handshake_response *src, |
| 696 | struct wg_device *wg) |
| 697 | { |
| 698 | enum noise_handshake_state state = HANDSHAKE_ZEROED; |
| 699 | struct wg_peer *peer = NULL, *ret_peer = NULL; |
| 700 | struct noise_handshake *handshake; |
| 701 | u8 key[NOISE_SYMMETRIC_KEY_LEN]; |
| 702 | u8 hash[NOISE_HASH_LEN]; |
| 703 | u8 chaining_key[NOISE_HASH_LEN]; |
| 704 | u8 e[NOISE_PUBLIC_KEY_LEN]; |
| 705 | u8 ephemeral_private[NOISE_PUBLIC_KEY_LEN]; |
| 706 | u8 static_private[NOISE_PUBLIC_KEY_LEN]; |
| 707 | u8 preshared_key[NOISE_SYMMETRIC_KEY_LEN]; |
| 708 | |
| 709 | down_read(&wg->static_identity.lock); |
| 710 | |
| 711 | if (unlikely(!wg->static_identity.has_identity)) |
| 712 | goto out; |
| 713 | |
| 714 | handshake = (struct noise_handshake *)wg_index_hashtable_lookup( |
| 715 | wg->index_hashtable, INDEX_HASHTABLE_HANDSHAKE, |
| 716 | src->receiver_index, &peer); |
| 717 | if (unlikely(!handshake)) |
| 718 | goto out; |
| 719 | |
| 720 | down_read(&handshake->lock); |
| 721 | state = handshake->state; |
| 722 | memcpy(hash, handshake->hash, NOISE_HASH_LEN); |
| 723 | memcpy(chaining_key, handshake->chaining_key, NOISE_HASH_LEN); |
| 724 | memcpy(ephemeral_private, handshake->ephemeral_private, |
| 725 | NOISE_PUBLIC_KEY_LEN); |
| 726 | memcpy(preshared_key, handshake->preshared_key, |
| 727 | NOISE_SYMMETRIC_KEY_LEN); |
| 728 | up_read(&handshake->lock); |
| 729 | |
| 730 | if (state != HANDSHAKE_CREATED_INITIATION) |
| 731 | goto fail; |
| 732 | |
| 733 | /* e */ |
| 734 | message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash); |
| 735 | |
| 736 | /* ee */ |
| 737 | if (!mix_dh(chaining_key, NULL, ephemeral_private, e)) |
| 738 | goto fail; |
| 739 | |
| 740 | /* se */ |
| 741 | if (!mix_dh(chaining_key, NULL, wg->static_identity.static_private, e)) |
| 742 | goto fail; |
| 743 | |
| 744 | /* psk */ |
| 745 | mix_psk(chaining_key, hash, key, preshared_key); |
| 746 | |
| 747 | /* {} */ |
| 748 | if (!message_decrypt(NULL, src->encrypted_nothing, |
| 749 | sizeof(src->encrypted_nothing), key, hash)) |
| 750 | goto fail; |
| 751 | |
| 752 | /* Success! Copy everything to peer */ |
| 753 | down_write(&handshake->lock); |
| 754 | /* It's important to check that the state is still the same, while we |
| 755 | * have an exclusive lock. |
| 756 | */ |
| 757 | if (handshake->state != state) { |
| 758 | up_write(&handshake->lock); |
| 759 | goto fail; |
| 760 | } |
| 761 | memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN); |
| 762 | memcpy(handshake->hash, hash, NOISE_HASH_LEN); |
| 763 | memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN); |
| 764 | handshake->remote_index = src->sender_index; |
| 765 | handshake->state = HANDSHAKE_CONSUMED_RESPONSE; |
| 766 | up_write(&handshake->lock); |
| 767 | ret_peer = peer; |
| 768 | goto out; |
| 769 | |
| 770 | fail: |
| 771 | wg_peer_put(peer); |
| 772 | out: |
| 773 | memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); |
| 774 | memzero_explicit(hash, NOISE_HASH_LEN); |
| 775 | memzero_explicit(chaining_key, NOISE_HASH_LEN); |
| 776 | memzero_explicit(ephemeral_private, NOISE_PUBLIC_KEY_LEN); |
| 777 | memzero_explicit(static_private, NOISE_PUBLIC_KEY_LEN); |
| 778 | memzero_explicit(preshared_key, NOISE_SYMMETRIC_KEY_LEN); |
| 779 | up_read(&wg->static_identity.lock); |
| 780 | return ret_peer; |
| 781 | } |
| 782 | |
| 783 | bool wg_noise_handshake_begin_session(struct noise_handshake *handshake, |
| 784 | struct noise_keypairs *keypairs) |
| 785 | { |
| 786 | struct noise_keypair *new_keypair; |
| 787 | bool ret = false; |
| 788 | |
| 789 | down_write(&handshake->lock); |
| 790 | if (handshake->state != HANDSHAKE_CREATED_RESPONSE && |
| 791 | handshake->state != HANDSHAKE_CONSUMED_RESPONSE) |
| 792 | goto out; |
| 793 | |
| 794 | new_keypair = keypair_create(handshake->entry.peer); |
| 795 | if (!new_keypair) |
| 796 | goto out; |
| 797 | new_keypair->i_am_the_initiator = handshake->state == |
| 798 | HANDSHAKE_CONSUMED_RESPONSE; |
| 799 | new_keypair->remote_index = handshake->remote_index; |
| 800 | |
| 801 | if (new_keypair->i_am_the_initiator) |
| 802 | derive_keys(&new_keypair->sending, &new_keypair->receiving, |
| 803 | handshake->chaining_key); |
| 804 | else |
| 805 | derive_keys(&new_keypair->receiving, &new_keypair->sending, |
| 806 | handshake->chaining_key); |
| 807 | |
| 808 | handshake_zero(handshake); |
| 809 | rcu_read_lock_bh(); |
| 810 | if (likely(!READ_ONCE(container_of(handshake, struct wg_peer, |
| 811 | handshake)->is_dead))) { |
| 812 | add_new_keypair(keypairs, new_keypair); |
| 813 | net_dbg_ratelimited("%s: Keypair %llu created for peer %llu\n", |
| 814 | handshake->entry.peer->device->dev->name, |
| 815 | new_keypair->internal_id, |
| 816 | handshake->entry.peer->internal_id); |
| 817 | ret = wg_index_hashtable_replace( |
| 818 | handshake->entry.peer->device->index_hashtable, |
| 819 | &handshake->entry, &new_keypair->entry); |
| 820 | } else { |
| 821 | kfree_sensitive(new_keypair); |
| 822 | } |
| 823 | rcu_read_unlock_bh(); |
| 824 | |
| 825 | out: |
| 826 | up_write(&handshake->lock); |
| 827 | return ret; |
| 828 | } |