Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. |
| 4 | * Copyright (C) 2019-2020 Linaro Ltd. |
| 5 | */ |
| 6 | |
| 7 | #include <linux/types.h> |
| 8 | #include <linux/device.h> |
| 9 | #include <linux/slab.h> |
| 10 | #include <linux/bitfield.h> |
| 11 | #include <linux/if_rmnet.h> |
| 12 | #include <linux/dma-direction.h> |
| 13 | |
| 14 | #include "gsi.h" |
| 15 | #include "gsi_trans.h" |
| 16 | #include "ipa.h" |
| 17 | #include "ipa_data.h" |
| 18 | #include "ipa_endpoint.h" |
| 19 | #include "ipa_cmd.h" |
| 20 | #include "ipa_mem.h" |
| 21 | #include "ipa_modem.h" |
| 22 | #include "ipa_table.h" |
| 23 | #include "ipa_gsi.h" |
| 24 | #include "ipa_clock.h" |
| 25 | |
| 26 | #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) |
| 27 | |
| 28 | #define IPA_REPLENISH_BATCH 16 |
| 29 | |
| 30 | /* RX buffer is 1 page (or a power-of-2 contiguous pages) */ |
| 31 | #define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */ |
| 32 | |
| 33 | /* The amount of RX buffer space consumed by standard skb overhead */ |
| 34 | #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) |
| 35 | |
| 36 | /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ |
| 37 | #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ |
| 38 | |
| 39 | #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 |
| 40 | #define IPA_AGGR_TIME_LIMIT_DEFAULT 500 /* microseconds */ |
| 41 | |
| 42 | /** enum ipa_status_opcode - status element opcode hardware values */ |
| 43 | enum ipa_status_opcode { |
| 44 | IPA_STATUS_OPCODE_PACKET = 0x01, |
| 45 | IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, |
| 46 | IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, |
| 47 | IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, |
| 48 | }; |
| 49 | |
| 50 | /** enum ipa_status_exception - status element exception type */ |
| 51 | enum ipa_status_exception { |
| 52 | /* 0 means no exception */ |
| 53 | IPA_STATUS_EXCEPTION_DEAGGR = 0x01, |
| 54 | }; |
| 55 | |
| 56 | /* Status element provided by hardware */ |
| 57 | struct ipa_status { |
| 58 | u8 opcode; /* enum ipa_status_opcode */ |
| 59 | u8 exception; /* enum ipa_status_exception */ |
| 60 | __le16 mask; |
| 61 | __le16 pkt_len; |
| 62 | u8 endp_src_idx; |
| 63 | u8 endp_dst_idx; |
| 64 | __le32 metadata; |
| 65 | __le32 flags1; |
| 66 | __le64 flags2; |
| 67 | __le32 flags3; |
| 68 | __le32 flags4; |
| 69 | }; |
| 70 | |
| 71 | /* Field masks for struct ipa_status structure fields */ |
| 72 | #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) |
| 73 | #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) |
| 74 | |
| 75 | #ifdef IPA_VALIDATE |
| 76 | |
| 77 | static void ipa_endpoint_validate_build(void) |
| 78 | { |
| 79 | /* The aggregation byte limit defines the point at which an |
| 80 | * aggregation window will close. It is programmed into the |
| 81 | * IPA hardware as a number of KB. We don't use "hard byte |
| 82 | * limit" aggregation, which means that we need to supply |
| 83 | * enough space in a receive buffer to hold a complete MTU |
| 84 | * plus normal skb overhead *after* that aggregation byte |
| 85 | * limit has been crossed. |
| 86 | * |
| 87 | * This check just ensures we don't define a receive buffer |
| 88 | * size that would exceed what we can represent in the field |
| 89 | * that is used to program its size. |
| 90 | */ |
| 91 | BUILD_BUG_ON(IPA_RX_BUFFER_SIZE > |
| 92 | field_max(AGGR_BYTE_LIMIT_FMASK) * SZ_1K + |
| 93 | IPA_MTU + IPA_RX_BUFFER_OVERHEAD); |
| 94 | |
| 95 | /* I honestly don't know where this requirement comes from. But |
| 96 | * it holds, and if we someday need to loosen the constraint we |
| 97 | * can try to track it down. |
| 98 | */ |
| 99 | BUILD_BUG_ON(sizeof(struct ipa_status) % 4); |
| 100 | } |
| 101 | |
| 102 | static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, |
| 103 | const struct ipa_gsi_endpoint_data *all_data, |
| 104 | const struct ipa_gsi_endpoint_data *data) |
| 105 | { |
| 106 | const struct ipa_gsi_endpoint_data *other_data; |
| 107 | struct device *dev = &ipa->pdev->dev; |
| 108 | enum ipa_endpoint_name other_name; |
| 109 | |
| 110 | if (ipa_gsi_endpoint_data_empty(data)) |
| 111 | return true; |
| 112 | |
| 113 | if (!data->toward_ipa) { |
| 114 | if (data->endpoint.filter_support) { |
| 115 | dev_err(dev, "filtering not supported for " |
| 116 | "RX endpoint %u\n", |
| 117 | data->endpoint_id); |
| 118 | return false; |
| 119 | } |
| 120 | |
| 121 | return true; /* Nothing more to check for RX */ |
| 122 | } |
| 123 | |
| 124 | if (data->endpoint.config.status_enable) { |
| 125 | other_name = data->endpoint.config.tx.status_endpoint; |
| 126 | if (other_name >= count) { |
| 127 | dev_err(dev, "status endpoint name %u out of range " |
| 128 | "for endpoint %u\n", |
| 129 | other_name, data->endpoint_id); |
| 130 | return false; |
| 131 | } |
| 132 | |
| 133 | /* Status endpoint must be defined... */ |
| 134 | other_data = &all_data[other_name]; |
| 135 | if (ipa_gsi_endpoint_data_empty(other_data)) { |
| 136 | dev_err(dev, "DMA endpoint name %u undefined " |
| 137 | "for endpoint %u\n", |
| 138 | other_name, data->endpoint_id); |
| 139 | return false; |
| 140 | } |
| 141 | |
| 142 | /* ...and has to be an RX endpoint... */ |
| 143 | if (other_data->toward_ipa) { |
| 144 | dev_err(dev, |
| 145 | "status endpoint for endpoint %u not RX\n", |
| 146 | data->endpoint_id); |
| 147 | return false; |
| 148 | } |
| 149 | |
| 150 | /* ...and if it's to be an AP endpoint... */ |
| 151 | if (other_data->ee_id == GSI_EE_AP) { |
| 152 | /* ...make sure it has status enabled. */ |
| 153 | if (!other_data->endpoint.config.status_enable) { |
| 154 | dev_err(dev, |
| 155 | "status not enabled for endpoint %u\n", |
| 156 | other_data->endpoint_id); |
| 157 | return false; |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | if (data->endpoint.config.dma_mode) { |
| 163 | other_name = data->endpoint.config.dma_endpoint; |
| 164 | if (other_name >= count) { |
| 165 | dev_err(dev, "DMA endpoint name %u out of range " |
| 166 | "for endpoint %u\n", |
| 167 | other_name, data->endpoint_id); |
| 168 | return false; |
| 169 | } |
| 170 | |
| 171 | other_data = &all_data[other_name]; |
| 172 | if (ipa_gsi_endpoint_data_empty(other_data)) { |
| 173 | dev_err(dev, "DMA endpoint name %u undefined " |
| 174 | "for endpoint %u\n", |
| 175 | other_name, data->endpoint_id); |
| 176 | return false; |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | return true; |
| 181 | } |
| 182 | |
| 183 | static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, |
| 184 | const struct ipa_gsi_endpoint_data *data) |
| 185 | { |
| 186 | const struct ipa_gsi_endpoint_data *dp = data; |
| 187 | struct device *dev = &ipa->pdev->dev; |
| 188 | enum ipa_endpoint_name name; |
| 189 | |
| 190 | ipa_endpoint_validate_build(); |
| 191 | |
| 192 | if (count > IPA_ENDPOINT_COUNT) { |
| 193 | dev_err(dev, "too many endpoints specified (%u > %u)\n", |
| 194 | count, IPA_ENDPOINT_COUNT); |
| 195 | return false; |
| 196 | } |
| 197 | |
| 198 | /* Make sure needed endpoints have defined data */ |
| 199 | if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { |
| 200 | dev_err(dev, "command TX endpoint not defined\n"); |
| 201 | return false; |
| 202 | } |
| 203 | if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { |
| 204 | dev_err(dev, "LAN RX endpoint not defined\n"); |
| 205 | return false; |
| 206 | } |
| 207 | if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { |
| 208 | dev_err(dev, "AP->modem TX endpoint not defined\n"); |
| 209 | return false; |
| 210 | } |
| 211 | if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { |
| 212 | dev_err(dev, "AP<-modem RX endpoint not defined\n"); |
| 213 | return false; |
| 214 | } |
| 215 | |
| 216 | for (name = 0; name < count; name++, dp++) |
| 217 | if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) |
| 218 | return false; |
| 219 | |
| 220 | return true; |
| 221 | } |
| 222 | |
| 223 | #else /* !IPA_VALIDATE */ |
| 224 | |
| 225 | static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, |
| 226 | const struct ipa_gsi_endpoint_data *data) |
| 227 | { |
| 228 | return true; |
| 229 | } |
| 230 | |
| 231 | #endif /* !IPA_VALIDATE */ |
| 232 | |
| 233 | /* Allocate a transaction to use on a non-command endpoint */ |
| 234 | static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, |
| 235 | u32 tre_count) |
| 236 | { |
| 237 | struct gsi *gsi = &endpoint->ipa->gsi; |
| 238 | u32 channel_id = endpoint->channel_id; |
| 239 | enum dma_data_direction direction; |
| 240 | |
| 241 | direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; |
| 242 | |
| 243 | return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); |
| 244 | } |
| 245 | |
| 246 | /* suspend_delay represents suspend for RX, delay for TX endpoints. |
| 247 | * Note that suspend is not supported starting with IPA v4.0. |
| 248 | */ |
| 249 | static bool |
| 250 | ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) |
| 251 | { |
| 252 | u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); |
| 253 | struct ipa *ipa = endpoint->ipa; |
| 254 | bool state; |
| 255 | u32 mask; |
| 256 | u32 val; |
| 257 | |
| 258 | /* Suspend is not supported for IPA v4.0+. Delay doesn't work |
| 259 | * correctly on IPA v4.2. |
| 260 | * |
| 261 | * if (endpoint->toward_ipa) |
| 262 | * assert(ipa->version != IPA_VERSION_4.2); |
| 263 | * else |
| 264 | * assert(ipa->version == IPA_VERSION_3_5_1); |
| 265 | */ |
| 266 | mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; |
| 267 | |
| 268 | val = ioread32(ipa->reg_virt + offset); |
| 269 | /* Don't bother if it's already in the requested state */ |
| 270 | state = !!(val & mask); |
| 271 | if (suspend_delay != state) { |
| 272 | val ^= mask; |
| 273 | iowrite32(val, ipa->reg_virt + offset); |
| 274 | } |
| 275 | |
| 276 | return state; |
| 277 | } |
| 278 | |
| 279 | /* We currently don't care what the previous state was for delay mode */ |
| 280 | static void |
| 281 | ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) |
| 282 | { |
| 283 | /* assert(endpoint->toward_ipa); */ |
| 284 | |
| 285 | /* Delay mode doesn't work properly for IPA v4.2 */ |
| 286 | if (endpoint->ipa->version != IPA_VERSION_4_2) |
| 287 | (void)ipa_endpoint_init_ctrl(endpoint, enable); |
| 288 | } |
| 289 | |
| 290 | static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) |
| 291 | { |
| 292 | u32 mask = BIT(endpoint->endpoint_id); |
| 293 | struct ipa *ipa = endpoint->ipa; |
| 294 | u32 offset; |
| 295 | u32 val; |
| 296 | |
| 297 | /* assert(mask & ipa->available); */ |
| 298 | offset = ipa_reg_state_aggr_active_offset(ipa->version); |
| 299 | val = ioread32(ipa->reg_virt + offset); |
| 300 | |
| 301 | return !!(val & mask); |
| 302 | } |
| 303 | |
| 304 | static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) |
| 305 | { |
| 306 | u32 mask = BIT(endpoint->endpoint_id); |
| 307 | struct ipa *ipa = endpoint->ipa; |
| 308 | |
| 309 | /* assert(mask & ipa->available); */ |
| 310 | iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); |
| 311 | } |
| 312 | |
| 313 | /** |
| 314 | * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt |
| 315 | * @endpoint: Endpoint on which to emulate a suspend |
| 316 | * |
| 317 | * Emulate suspend IPA interrupt to unsuspend an endpoint suspended |
| 318 | * with an open aggregation frame. This is to work around a hardware |
| 319 | * issue in IPA version 3.5.1 where the suspend interrupt will not be |
| 320 | * generated when it should be. |
| 321 | */ |
| 322 | static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) |
| 323 | { |
| 324 | struct ipa *ipa = endpoint->ipa; |
| 325 | |
| 326 | if (!endpoint->data->aggregation) |
| 327 | return; |
| 328 | |
| 329 | /* Nothing to do if the endpoint doesn't have aggregation open */ |
| 330 | if (!ipa_endpoint_aggr_active(endpoint)) |
| 331 | return; |
| 332 | |
| 333 | /* Force close aggregation */ |
| 334 | ipa_endpoint_force_close(endpoint); |
| 335 | |
| 336 | ipa_interrupt_simulate_suspend(ipa->interrupt); |
| 337 | } |
| 338 | |
| 339 | /* Returns previous suspend state (true means suspend was enabled) */ |
| 340 | static bool |
| 341 | ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) |
| 342 | { |
| 343 | bool suspended; |
| 344 | |
| 345 | if (endpoint->ipa->version != IPA_VERSION_3_5_1) |
| 346 | return enable; /* For IPA v4.0+, no change made */ |
| 347 | |
| 348 | /* assert(!endpoint->toward_ipa); */ |
| 349 | |
| 350 | suspended = ipa_endpoint_init_ctrl(endpoint, enable); |
| 351 | |
| 352 | /* A client suspended with an open aggregation frame will not |
| 353 | * generate a SUSPEND IPA interrupt. If enabling suspend, have |
| 354 | * ipa_endpoint_suspend_aggr() handle this. |
| 355 | */ |
| 356 | if (enable && !suspended) |
| 357 | ipa_endpoint_suspend_aggr(endpoint); |
| 358 | |
| 359 | return suspended; |
| 360 | } |
| 361 | |
| 362 | /* Enable or disable delay or suspend mode on all modem endpoints */ |
| 363 | void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) |
| 364 | { |
| 365 | u32 endpoint_id; |
| 366 | |
| 367 | /* DELAY mode doesn't work correctly on IPA v4.2 */ |
| 368 | if (ipa->version == IPA_VERSION_4_2) |
| 369 | return; |
| 370 | |
| 371 | for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { |
| 372 | struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; |
| 373 | |
| 374 | if (endpoint->ee_id != GSI_EE_MODEM) |
| 375 | continue; |
| 376 | |
| 377 | /* Set TX delay mode or RX suspend mode */ |
| 378 | if (endpoint->toward_ipa) |
| 379 | ipa_endpoint_program_delay(endpoint, enable); |
| 380 | else |
| 381 | (void)ipa_endpoint_program_suspend(endpoint, enable); |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | /* Reset all modem endpoints to use the default exception endpoint */ |
| 386 | int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) |
| 387 | { |
| 388 | u32 initialized = ipa->initialized; |
| 389 | struct gsi_trans *trans; |
| 390 | u32 count; |
| 391 | |
| 392 | /* We need one command per modem TX endpoint. We can get an upper |
| 393 | * bound on that by assuming all initialized endpoints are modem->IPA. |
| 394 | * That won't happen, and we could be more precise, but this is fine |
| 395 | * for now. We need to end the transaction with a "tag process." |
| 396 | */ |
| 397 | count = hweight32(initialized) + ipa_cmd_tag_process_count(); |
| 398 | trans = ipa_cmd_trans_alloc(ipa, count); |
| 399 | if (!trans) { |
| 400 | dev_err(&ipa->pdev->dev, |
| 401 | "no transaction to reset modem exception endpoints\n"); |
| 402 | return -EBUSY; |
| 403 | } |
| 404 | |
| 405 | while (initialized) { |
| 406 | u32 endpoint_id = __ffs(initialized); |
| 407 | struct ipa_endpoint *endpoint; |
| 408 | u32 offset; |
| 409 | |
| 410 | initialized ^= BIT(endpoint_id); |
| 411 | |
| 412 | /* We only reset modem TX endpoints */ |
| 413 | endpoint = &ipa->endpoint[endpoint_id]; |
| 414 | if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) |
| 415 | continue; |
| 416 | |
| 417 | offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); |
| 418 | |
| 419 | /* Value written is 0, and all bits are updated. That |
| 420 | * means status is disabled on the endpoint, and as a |
| 421 | * result all other fields in the register are ignored. |
| 422 | */ |
| 423 | ipa_cmd_register_write_add(trans, offset, 0, ~0, false); |
| 424 | } |
| 425 | |
| 426 | ipa_cmd_tag_process_add(trans); |
| 427 | |
| 428 | /* XXX This should have a 1 second timeout */ |
| 429 | gsi_trans_commit_wait(trans); |
| 430 | |
| 431 | return 0; |
| 432 | } |
| 433 | |
| 434 | static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) |
| 435 | { |
| 436 | u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); |
| 437 | u32 val = 0; |
| 438 | |
| 439 | /* FRAG_OFFLOAD_EN is 0 */ |
| 440 | if (endpoint->data->checksum) { |
| 441 | if (endpoint->toward_ipa) { |
| 442 | u32 checksum_offset; |
| 443 | |
| 444 | val |= u32_encode_bits(IPA_CS_OFFLOAD_UL, |
| 445 | CS_OFFLOAD_EN_FMASK); |
| 446 | /* Checksum header offset is in 4-byte units */ |
| 447 | checksum_offset = sizeof(struct rmnet_map_header); |
| 448 | checksum_offset /= sizeof(u32); |
| 449 | val |= u32_encode_bits(checksum_offset, |
| 450 | CS_METADATA_HDR_OFFSET_FMASK); |
| 451 | } else { |
| 452 | val |= u32_encode_bits(IPA_CS_OFFLOAD_DL, |
| 453 | CS_OFFLOAD_EN_FMASK); |
| 454 | } |
| 455 | } else { |
| 456 | val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE, |
| 457 | CS_OFFLOAD_EN_FMASK); |
| 458 | } |
| 459 | /* CS_GEN_QMB_MASTER_SEL is 0 */ |
| 460 | |
| 461 | iowrite32(val, endpoint->ipa->reg_virt + offset); |
| 462 | } |
| 463 | |
| 464 | /** |
| 465 | * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register |
| 466 | * @endpoint: Endpoint pointer |
| 467 | * |
| 468 | * We program QMAP endpoints so each packet received is preceded by a QMAP |
| 469 | * header structure. The QMAP header contains a 1-byte mux_id and 2-byte |
| 470 | * packet size field, and we have the IPA hardware populate both for each |
| 471 | * received packet. The header is configured (in the HDR_EXT register) |
| 472 | * to use big endian format. |
| 473 | * |
| 474 | * The packet size is written into the QMAP header's pkt_len field. That |
| 475 | * location is defined here using the HDR_OFST_PKT_SIZE field. |
| 476 | * |
| 477 | * The mux_id comes from a 4-byte metadata value supplied with each packet |
| 478 | * by the modem. It is *not* a QMAP header, but it does contain the mux_id |
| 479 | * value that we want, in its low-order byte. A bitmask defined in the |
| 480 | * endpoint's METADATA_MASK register defines which byte within the modem |
| 481 | * metadata contains the mux_id. And the OFST_METADATA field programmed |
| 482 | * here indicates where the extracted byte should be placed within the QMAP |
| 483 | * header. |
| 484 | */ |
| 485 | static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) |
| 486 | { |
| 487 | u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); |
| 488 | u32 val = 0; |
| 489 | |
| 490 | if (endpoint->data->qmap) { |
| 491 | size_t header_size = sizeof(struct rmnet_map_header); |
| 492 | |
| 493 | /* We might supply a checksum header after the QMAP header */ |
| 494 | if (endpoint->toward_ipa && endpoint->data->checksum) |
| 495 | header_size += sizeof(struct rmnet_map_ul_csum_header); |
| 496 | val |= u32_encode_bits(header_size, HDR_LEN_FMASK); |
| 497 | |
| 498 | /* Define how to fill fields in a received QMAP header */ |
| 499 | if (!endpoint->toward_ipa) { |
| 500 | u32 off; /* Field offset within header */ |
| 501 | |
| 502 | /* Where IPA will write the metadata value */ |
| 503 | off = offsetof(struct rmnet_map_header, mux_id); |
| 504 | val |= u32_encode_bits(off, HDR_OFST_METADATA_FMASK); |
| 505 | |
| 506 | /* Where IPA will write the length */ |
| 507 | off = offsetof(struct rmnet_map_header, pkt_len); |
| 508 | val |= HDR_OFST_PKT_SIZE_VALID_FMASK; |
| 509 | val |= u32_encode_bits(off, HDR_OFST_PKT_SIZE_FMASK); |
| 510 | } |
| 511 | /* For QMAP TX, metadata offset is 0 (modem assumes this) */ |
| 512 | val |= HDR_OFST_METADATA_VALID_FMASK; |
| 513 | |
| 514 | /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ |
| 515 | /* HDR_A5_MUX is 0 */ |
| 516 | /* HDR_LEN_INC_DEAGG_HDR is 0 */ |
| 517 | /* HDR_METADATA_REG_VALID is 0 (TX only) */ |
| 518 | } |
| 519 | |
| 520 | iowrite32(val, endpoint->ipa->reg_virt + offset); |
| 521 | } |
| 522 | |
| 523 | static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) |
| 524 | { |
| 525 | u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); |
| 526 | u32 pad_align = endpoint->data->rx.pad_align; |
| 527 | u32 val = 0; |
| 528 | |
| 529 | val |= HDR_ENDIANNESS_FMASK; /* big endian */ |
| 530 | |
| 531 | /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet |
| 532 | * driver assumes this field is meaningful in packets it receives, |
| 533 | * and assumes the header's payload length includes that padding. |
| 534 | * The RMNet driver does *not* pad packets it sends, however, so |
| 535 | * the pad field (although 0) should be ignored. |
| 536 | */ |
| 537 | if (endpoint->data->qmap && !endpoint->toward_ipa) { |
| 538 | val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; |
| 539 | /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ |
| 540 | val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK; |
| 541 | /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ |
| 542 | } |
| 543 | |
| 544 | /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ |
| 545 | if (!endpoint->toward_ipa) |
| 546 | val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); |
| 547 | |
| 548 | iowrite32(val, endpoint->ipa->reg_virt + offset); |
| 549 | } |
| 550 | |
| 551 | |
| 552 | static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) |
| 553 | { |
| 554 | u32 endpoint_id = endpoint->endpoint_id; |
| 555 | u32 val = 0; |
| 556 | u32 offset; |
| 557 | |
| 558 | if (endpoint->toward_ipa) |
| 559 | return; /* Register not valid for TX endpoints */ |
| 560 | |
| 561 | offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); |
| 562 | |
| 563 | /* Note that HDR_ENDIANNESS indicates big endian header fields */ |
| 564 | if (endpoint->data->qmap) |
| 565 | val = cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); |
| 566 | |
| 567 | iowrite32(val, endpoint->ipa->reg_virt + offset); |
| 568 | } |
| 569 | |
| 570 | static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) |
| 571 | { |
| 572 | u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); |
| 573 | u32 val; |
| 574 | |
| 575 | if (!endpoint->toward_ipa) |
| 576 | return; /* Register not valid for RX endpoints */ |
| 577 | |
| 578 | if (endpoint->data->dma_mode) { |
| 579 | enum ipa_endpoint_name name = endpoint->data->dma_endpoint; |
| 580 | u32 dma_endpoint_id; |
| 581 | |
| 582 | dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; |
| 583 | |
| 584 | val = u32_encode_bits(IPA_DMA, MODE_FMASK); |
| 585 | val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); |
| 586 | } else { |
| 587 | val = u32_encode_bits(IPA_BASIC, MODE_FMASK); |
| 588 | } |
| 589 | /* All other bits unspecified (and 0) */ |
| 590 | |
| 591 | iowrite32(val, endpoint->ipa->reg_virt + offset); |
| 592 | } |
| 593 | |
| 594 | /* Compute the aggregation size value to use for a given buffer size */ |
| 595 | static u32 ipa_aggr_size_kb(u32 rx_buffer_size) |
| 596 | { |
| 597 | /* We don't use "hard byte limit" aggregation, so we define the |
| 598 | * aggregation limit such that our buffer has enough space *after* |
| 599 | * that limit to receive a full MTU of data, plus overhead. |
| 600 | */ |
| 601 | rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; |
| 602 | |
| 603 | return rx_buffer_size / SZ_1K; |
| 604 | } |
| 605 | |
| 606 | static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) |
| 607 | { |
| 608 | u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); |
| 609 | u32 val = 0; |
| 610 | |
| 611 | if (endpoint->data->aggregation) { |
| 612 | if (!endpoint->toward_ipa) { |
| 613 | u32 limit; |
| 614 | |
| 615 | val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); |
| 616 | val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); |
| 617 | |
| 618 | limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE); |
| 619 | val |= u32_encode_bits(limit, AGGR_BYTE_LIMIT_FMASK); |
| 620 | |
| 621 | limit = IPA_AGGR_TIME_LIMIT_DEFAULT; |
| 622 | limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY); |
| 623 | val |= u32_encode_bits(limit, AGGR_TIME_LIMIT_FMASK); |
| 624 | |
| 625 | /* AGGR_PKT_LIMIT is 0 (unlimited) */ |
| 626 | |
| 627 | if (endpoint->data->rx.aggr_close_eof) |
| 628 | val |= AGGR_SW_EOF_ACTIVE_FMASK; |
| 629 | /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */ |
| 630 | } else { |
| 631 | val |= u32_encode_bits(IPA_ENABLE_DEAGGR, |
| 632 | AGGR_EN_FMASK); |
| 633 | val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); |
| 634 | /* other fields ignored */ |
| 635 | } |
| 636 | /* AGGR_FORCE_CLOSE is 0 */ |
| 637 | } else { |
| 638 | val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); |
| 639 | /* other fields ignored */ |
| 640 | } |
| 641 | |
| 642 | iowrite32(val, endpoint->ipa->reg_virt + offset); |
| 643 | } |
| 644 | |
| 645 | /* The head-of-line blocking timer is defined as a tick count, where each |
| 646 | * tick represents 128 cycles of the IPA core clock. Return the value |
| 647 | * that should be written to that register that represents the timeout |
| 648 | * period provided. |
| 649 | */ |
| 650 | static u32 ipa_reg_init_hol_block_timer_val(struct ipa *ipa, u32 microseconds) |
| 651 | { |
| 652 | u32 width; |
| 653 | u32 scale; |
| 654 | u64 ticks; |
| 655 | u64 rate; |
| 656 | u32 high; |
| 657 | u32 val; |
| 658 | |
| 659 | if (!microseconds) |
| 660 | return 0; /* Nothing to compute if timer period is 0 */ |
| 661 | |
| 662 | /* Use 64 bit arithmetic to avoid overflow... */ |
| 663 | rate = ipa_clock_rate(ipa); |
| 664 | ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); |
| 665 | /* ...but we still need to fit into a 32-bit register */ |
| 666 | WARN_ON(ticks > U32_MAX); |
| 667 | |
| 668 | /* IPA v3.5.1 just records the tick count */ |
| 669 | if (ipa->version == IPA_VERSION_3_5_1) |
| 670 | return (u32)ticks; |
| 671 | |
| 672 | /* For IPA v4.2, the tick count is represented by base and |
| 673 | * scale fields within the 32-bit timer register, where: |
| 674 | * ticks = base << scale; |
| 675 | * The best precision is achieved when the base value is as |
| 676 | * large as possible. Find the highest set bit in the tick |
| 677 | * count, and extract the number of bits in the base field |
| 678 | * such that that high bit is included. |
| 679 | */ |
| 680 | high = fls(ticks); /* 1..32 */ |
| 681 | width = HWEIGHT32(BASE_VALUE_FMASK); |
| 682 | scale = high > width ? high - width : 0; |
| 683 | if (scale) { |
| 684 | /* If we're scaling, round up to get a closer result */ |
| 685 | ticks += 1 << (scale - 1); |
| 686 | /* High bit was set, so rounding might have affected it */ |
| 687 | if (fls(ticks) != high) |
| 688 | scale++; |
| 689 | } |
| 690 | |
| 691 | val = u32_encode_bits(scale, SCALE_FMASK); |
| 692 | val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK); |
| 693 | |
| 694 | return val; |
| 695 | } |
| 696 | |
| 697 | /* If microseconds is 0, timeout is immediate */ |
| 698 | static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, |
| 699 | u32 microseconds) |
| 700 | { |
| 701 | u32 endpoint_id = endpoint->endpoint_id; |
| 702 | struct ipa *ipa = endpoint->ipa; |
| 703 | u32 offset; |
| 704 | u32 val; |
| 705 | |
| 706 | /* This should only be changed when HOL_BLOCK_EN is disabled */ |
| 707 | offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); |
| 708 | val = ipa_reg_init_hol_block_timer_val(ipa, microseconds); |
| 709 | iowrite32(val, ipa->reg_virt + offset); |
| 710 | } |
| 711 | |
| 712 | static void |
| 713 | ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable) |
| 714 | { |
| 715 | u32 endpoint_id = endpoint->endpoint_id; |
| 716 | u32 offset; |
| 717 | u32 val; |
| 718 | |
| 719 | val = enable ? HOL_BLOCK_EN_FMASK : 0; |
| 720 | offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); |
| 721 | iowrite32(val, endpoint->ipa->reg_virt + offset); |
| 722 | } |
| 723 | |
| 724 | void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) |
| 725 | { |
| 726 | u32 i; |
| 727 | |
| 728 | for (i = 0; i < IPA_ENDPOINT_MAX; i++) { |
| 729 | struct ipa_endpoint *endpoint = &ipa->endpoint[i]; |
| 730 | |
| 731 | if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) |
| 732 | continue; |
| 733 | |
| 734 | ipa_endpoint_init_hol_block_enable(endpoint, false); |
| 735 | ipa_endpoint_init_hol_block_timer(endpoint, 0); |
| 736 | ipa_endpoint_init_hol_block_enable(endpoint, true); |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) |
| 741 | { |
| 742 | u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); |
| 743 | u32 val = 0; |
| 744 | |
| 745 | if (!endpoint->toward_ipa) |
| 746 | return; /* Register not valid for RX endpoints */ |
| 747 | |
| 748 | /* DEAGGR_HDR_LEN is 0 */ |
| 749 | /* PACKET_OFFSET_VALID is 0 */ |
| 750 | /* PACKET_OFFSET_LOCATION is ignored (not valid) */ |
| 751 | /* MAX_PACKET_LEN is 0 (not enforced) */ |
| 752 | |
| 753 | iowrite32(val, endpoint->ipa->reg_virt + offset); |
| 754 | } |
| 755 | |
| 756 | static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) |
| 757 | { |
| 758 | u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); |
| 759 | u32 seq_type = endpoint->seq_type; |
| 760 | u32 val = 0; |
| 761 | |
| 762 | if (!endpoint->toward_ipa) |
| 763 | return; /* Register not valid for RX endpoints */ |
| 764 | |
| 765 | /* Sequencer type is made up of four nibbles */ |
| 766 | val |= u32_encode_bits(seq_type & 0xf, HPS_SEQ_TYPE_FMASK); |
| 767 | val |= u32_encode_bits((seq_type >> 4) & 0xf, DPS_SEQ_TYPE_FMASK); |
| 768 | /* The second two apply to replicated packets */ |
| 769 | val |= u32_encode_bits((seq_type >> 8) & 0xf, HPS_REP_SEQ_TYPE_FMASK); |
| 770 | val |= u32_encode_bits((seq_type >> 12) & 0xf, DPS_REP_SEQ_TYPE_FMASK); |
| 771 | |
| 772 | iowrite32(val, endpoint->ipa->reg_virt + offset); |
| 773 | } |
| 774 | |
| 775 | /** |
| 776 | * ipa_endpoint_skb_tx() - Transmit a socket buffer |
| 777 | * @endpoint: Endpoint pointer |
| 778 | * @skb: Socket buffer to send |
| 779 | * |
| 780 | * Returns: 0 if successful, or a negative error code |
| 781 | */ |
| 782 | int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) |
| 783 | { |
| 784 | struct gsi_trans *trans; |
| 785 | u32 nr_frags; |
| 786 | int ret; |
| 787 | |
| 788 | /* Make sure source endpoint's TLV FIFO has enough entries to |
| 789 | * hold the linear portion of the skb and all its fragments. |
| 790 | * If not, see if we can linearize it before giving up. |
| 791 | */ |
| 792 | nr_frags = skb_shinfo(skb)->nr_frags; |
| 793 | if (1 + nr_frags > endpoint->trans_tre_max) { |
| 794 | if (skb_linearize(skb)) |
| 795 | return -E2BIG; |
| 796 | nr_frags = 0; |
| 797 | } |
| 798 | |
| 799 | trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); |
| 800 | if (!trans) |
| 801 | return -EBUSY; |
| 802 | |
| 803 | ret = gsi_trans_skb_add(trans, skb); |
| 804 | if (ret) |
| 805 | goto err_trans_free; |
| 806 | trans->data = skb; /* transaction owns skb now */ |
| 807 | |
| 808 | gsi_trans_commit(trans, !netdev_xmit_more()); |
| 809 | |
| 810 | return 0; |
| 811 | |
| 812 | err_trans_free: |
| 813 | gsi_trans_free(trans); |
| 814 | |
| 815 | return -ENOMEM; |
| 816 | } |
| 817 | |
| 818 | static void ipa_endpoint_status(struct ipa_endpoint *endpoint) |
| 819 | { |
| 820 | u32 endpoint_id = endpoint->endpoint_id; |
| 821 | struct ipa *ipa = endpoint->ipa; |
| 822 | u32 val = 0; |
| 823 | u32 offset; |
| 824 | |
| 825 | offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); |
| 826 | |
| 827 | if (endpoint->data->status_enable) { |
| 828 | val |= STATUS_EN_FMASK; |
| 829 | if (endpoint->toward_ipa) { |
| 830 | enum ipa_endpoint_name name; |
| 831 | u32 status_endpoint_id; |
| 832 | |
| 833 | name = endpoint->data->tx.status_endpoint; |
| 834 | status_endpoint_id = ipa->name_map[name]->endpoint_id; |
| 835 | |
| 836 | val |= u32_encode_bits(status_endpoint_id, |
| 837 | STATUS_ENDP_FMASK); |
| 838 | } |
| 839 | /* STATUS_LOCATION is 0 (status element precedes packet) */ |
| 840 | /* The next field is present for IPA v4.0 and above */ |
| 841 | /* STATUS_PKT_SUPPRESS_FMASK is 0 */ |
| 842 | } |
| 843 | |
| 844 | iowrite32(val, ipa->reg_virt + offset); |
| 845 | } |
| 846 | |
| 847 | static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint) |
| 848 | { |
| 849 | struct gsi_trans *trans; |
| 850 | bool doorbell = false; |
| 851 | struct page *page; |
| 852 | u32 offset; |
| 853 | u32 len; |
| 854 | int ret; |
| 855 | |
| 856 | page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE)); |
| 857 | if (!page) |
| 858 | return -ENOMEM; |
| 859 | |
| 860 | trans = ipa_endpoint_trans_alloc(endpoint, 1); |
| 861 | if (!trans) |
| 862 | goto err_free_pages; |
| 863 | |
| 864 | /* Offset the buffer to make space for skb headroom */ |
| 865 | offset = NET_SKB_PAD; |
| 866 | len = IPA_RX_BUFFER_SIZE - offset; |
| 867 | |
| 868 | ret = gsi_trans_page_add(trans, page, len, offset); |
| 869 | if (ret) |
| 870 | goto err_trans_free; |
| 871 | trans->data = page; /* transaction owns page now */ |
| 872 | |
| 873 | if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) { |
| 874 | doorbell = true; |
| 875 | endpoint->replenish_ready = 0; |
| 876 | } |
| 877 | |
| 878 | gsi_trans_commit(trans, doorbell); |
| 879 | |
| 880 | return 0; |
| 881 | |
| 882 | err_trans_free: |
| 883 | gsi_trans_free(trans); |
| 884 | err_free_pages: |
| 885 | __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); |
| 886 | |
| 887 | return -ENOMEM; |
| 888 | } |
| 889 | |
| 890 | /** |
| 891 | * ipa_endpoint_replenish() - Replenish the Rx packets cache. |
| 892 | * @endpoint: Endpoint to be replenished |
| 893 | * @count: Number of buffers to send to hardware |
| 894 | * |
| 895 | * Allocate RX packet wrapper structures with maximal socket buffers |
| 896 | * for an endpoint. These are supplied to the hardware, which fills |
| 897 | * them with incoming data. |
| 898 | */ |
| 899 | static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, u32 count) |
| 900 | { |
| 901 | struct gsi *gsi; |
| 902 | u32 backlog; |
| 903 | |
| 904 | if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags)) { |
| 905 | if (count) |
| 906 | atomic_add(count, &endpoint->replenish_saved); |
| 907 | return; |
| 908 | } |
| 909 | |
| 910 | /* If already active, just update the backlog */ |
| 911 | if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags)) { |
| 912 | if (count) |
| 913 | atomic_add(count, &endpoint->replenish_backlog); |
| 914 | return; |
| 915 | } |
| 916 | |
| 917 | while (atomic_dec_not_zero(&endpoint->replenish_backlog)) |
| 918 | if (ipa_endpoint_replenish_one(endpoint)) |
| 919 | goto try_again_later; |
| 920 | |
| 921 | clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); |
| 922 | |
| 923 | if (count) |
| 924 | atomic_add(count, &endpoint->replenish_backlog); |
| 925 | |
| 926 | return; |
| 927 | |
| 928 | try_again_later: |
| 929 | clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); |
| 930 | |
| 931 | /* The last one didn't succeed, so fix the backlog */ |
| 932 | backlog = atomic_add_return(count + 1, &endpoint->replenish_backlog); |
| 933 | |
| 934 | /* Whenever a receive buffer transaction completes we'll try to |
| 935 | * replenish again. It's unlikely, but if we fail to supply even |
| 936 | * one buffer, nothing will trigger another replenish attempt. |
| 937 | * Receive buffer transactions use one TRE, so schedule work to |
| 938 | * try replenishing again if our backlog is *all* available TREs. |
| 939 | */ |
| 940 | gsi = &endpoint->ipa->gsi; |
| 941 | if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id)) |
| 942 | schedule_delayed_work(&endpoint->replenish_work, |
| 943 | msecs_to_jiffies(1)); |
| 944 | } |
| 945 | |
| 946 | static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) |
| 947 | { |
| 948 | struct gsi *gsi = &endpoint->ipa->gsi; |
| 949 | u32 max_backlog; |
| 950 | u32 saved; |
| 951 | |
| 952 | set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); |
| 953 | while ((saved = atomic_xchg(&endpoint->replenish_saved, 0))) |
| 954 | atomic_add(saved, &endpoint->replenish_backlog); |
| 955 | |
| 956 | /* Start replenishing if hardware currently has no buffers */ |
| 957 | max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id); |
| 958 | if (atomic_read(&endpoint->replenish_backlog) == max_backlog) |
| 959 | ipa_endpoint_replenish(endpoint, 0); |
| 960 | } |
| 961 | |
| 962 | static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) |
| 963 | { |
| 964 | u32 backlog; |
| 965 | |
| 966 | clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); |
| 967 | while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0))) |
| 968 | atomic_add(backlog, &endpoint->replenish_saved); |
| 969 | } |
| 970 | |
| 971 | static void ipa_endpoint_replenish_work(struct work_struct *work) |
| 972 | { |
| 973 | struct delayed_work *dwork = to_delayed_work(work); |
| 974 | struct ipa_endpoint *endpoint; |
| 975 | |
| 976 | endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); |
| 977 | |
| 978 | ipa_endpoint_replenish(endpoint, 0); |
| 979 | } |
| 980 | |
| 981 | static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, |
| 982 | void *data, u32 len, u32 extra) |
| 983 | { |
| 984 | struct sk_buff *skb; |
| 985 | |
| 986 | skb = __dev_alloc_skb(len, GFP_ATOMIC); |
| 987 | if (skb) { |
| 988 | skb_put(skb, len); |
| 989 | memcpy(skb->data, data, len); |
| 990 | skb->truesize += extra; |
| 991 | } |
| 992 | |
| 993 | /* Now receive it, or drop it if there's no netdev */ |
| 994 | if (endpoint->netdev) |
| 995 | ipa_modem_skb_rx(endpoint->netdev, skb); |
| 996 | else if (skb) |
| 997 | dev_kfree_skb_any(skb); |
| 998 | } |
| 999 | |
| 1000 | static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, |
| 1001 | struct page *page, u32 len) |
| 1002 | { |
| 1003 | struct sk_buff *skb; |
| 1004 | |
| 1005 | /* Nothing to do if there's no netdev */ |
| 1006 | if (!endpoint->netdev) |
| 1007 | return false; |
| 1008 | |
| 1009 | /* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */ |
| 1010 | skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE); |
| 1011 | if (skb) { |
| 1012 | /* Reserve the headroom and account for the data */ |
| 1013 | skb_reserve(skb, NET_SKB_PAD); |
| 1014 | skb_put(skb, len); |
| 1015 | } |
| 1016 | |
| 1017 | /* Receive the buffer (or record drop if unable to build it) */ |
| 1018 | ipa_modem_skb_rx(endpoint->netdev, skb); |
| 1019 | |
| 1020 | return skb != NULL; |
| 1021 | } |
| 1022 | |
| 1023 | /* The format of a packet status element is the same for several status |
| 1024 | * types (opcodes). Other types aren't currently supported. |
| 1025 | */ |
| 1026 | static bool ipa_status_format_packet(enum ipa_status_opcode opcode) |
| 1027 | { |
| 1028 | switch (opcode) { |
| 1029 | case IPA_STATUS_OPCODE_PACKET: |
| 1030 | case IPA_STATUS_OPCODE_DROPPED_PACKET: |
| 1031 | case IPA_STATUS_OPCODE_SUSPENDED_PACKET: |
| 1032 | case IPA_STATUS_OPCODE_PACKET_2ND_PASS: |
| 1033 | return true; |
| 1034 | default: |
| 1035 | return false; |
| 1036 | } |
| 1037 | } |
| 1038 | |
| 1039 | static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, |
| 1040 | const struct ipa_status *status) |
| 1041 | { |
| 1042 | u32 endpoint_id; |
| 1043 | |
| 1044 | if (!ipa_status_format_packet(status->opcode)) |
| 1045 | return true; |
| 1046 | if (!status->pkt_len) |
| 1047 | return true; |
| 1048 | endpoint_id = u32_get_bits(status->endp_dst_idx, |
| 1049 | IPA_STATUS_DST_IDX_FMASK); |
| 1050 | if (endpoint_id != endpoint->endpoint_id) |
| 1051 | return true; |
| 1052 | |
| 1053 | return false; /* Don't skip this packet, process it */ |
| 1054 | } |
| 1055 | |
| 1056 | /* Return whether the status indicates the packet should be dropped */ |
| 1057 | static bool ipa_status_drop_packet(const struct ipa_status *status) |
| 1058 | { |
| 1059 | u32 val; |
| 1060 | |
| 1061 | /* Deaggregation exceptions we drop; all other types we consume */ |
| 1062 | if (status->exception) |
| 1063 | return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; |
| 1064 | |
| 1065 | /* Drop the packet if it fails to match a routing rule; otherwise no */ |
| 1066 | val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); |
| 1067 | |
| 1068 | return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); |
| 1069 | } |
| 1070 | |
| 1071 | static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, |
| 1072 | struct page *page, u32 total_len) |
| 1073 | { |
| 1074 | void *data = page_address(page) + NET_SKB_PAD; |
| 1075 | u32 unused = IPA_RX_BUFFER_SIZE - total_len; |
| 1076 | u32 resid = total_len; |
| 1077 | |
| 1078 | while (resid) { |
| 1079 | const struct ipa_status *status = data; |
| 1080 | u32 align; |
| 1081 | u32 len; |
| 1082 | |
| 1083 | if (resid < sizeof(*status)) { |
| 1084 | dev_err(&endpoint->ipa->pdev->dev, |
| 1085 | "short message (%u bytes < %zu byte status)\n", |
| 1086 | resid, sizeof(*status)); |
| 1087 | break; |
| 1088 | } |
| 1089 | |
| 1090 | /* Skip over status packets that lack packet data */ |
| 1091 | if (ipa_endpoint_status_skip(endpoint, status)) { |
| 1092 | data += sizeof(*status); |
| 1093 | resid -= sizeof(*status); |
| 1094 | continue; |
| 1095 | } |
| 1096 | |
| 1097 | /* Compute the amount of buffer space consumed by the |
| 1098 | * packet, including the status element. If the hardware |
| 1099 | * is configured to pad packet data to an aligned boundary, |
| 1100 | * account for that. And if checksum offload is is enabled |
| 1101 | * a trailer containing computed checksum information will |
| 1102 | * be appended. |
| 1103 | */ |
| 1104 | align = endpoint->data->rx.pad_align ? : 1; |
| 1105 | len = le16_to_cpu(status->pkt_len); |
| 1106 | len = sizeof(*status) + ALIGN(len, align); |
| 1107 | if (endpoint->data->checksum) |
| 1108 | len += sizeof(struct rmnet_map_dl_csum_trailer); |
| 1109 | |
| 1110 | /* Charge the new packet with a proportional fraction of |
| 1111 | * the unused space in the original receive buffer. |
| 1112 | * XXX Charge a proportion of the *whole* receive buffer? |
| 1113 | */ |
| 1114 | if (!ipa_status_drop_packet(status)) { |
| 1115 | u32 extra = unused * len / total_len; |
| 1116 | void *data2 = data + sizeof(*status); |
| 1117 | u32 len2 = le16_to_cpu(status->pkt_len); |
| 1118 | |
| 1119 | /* Client receives only packet data (no status) */ |
| 1120 | ipa_endpoint_skb_copy(endpoint, data2, len2, extra); |
| 1121 | } |
| 1122 | |
| 1123 | /* Consume status and the full packet it describes */ |
| 1124 | data += len; |
| 1125 | resid -= len; |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */ |
| 1130 | static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint, |
| 1131 | struct gsi_trans *trans) |
| 1132 | { |
| 1133 | } |
| 1134 | |
| 1135 | /* Complete transaction initiated in ipa_endpoint_replenish_one() */ |
| 1136 | static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint, |
| 1137 | struct gsi_trans *trans) |
| 1138 | { |
| 1139 | struct page *page; |
| 1140 | |
| 1141 | ipa_endpoint_replenish(endpoint, 1); |
| 1142 | |
| 1143 | if (trans->cancelled) |
| 1144 | return; |
| 1145 | |
| 1146 | /* Parse or build a socket buffer using the actual received length */ |
| 1147 | page = trans->data; |
| 1148 | if (endpoint->data->status_enable) |
| 1149 | ipa_endpoint_status_parse(endpoint, page, trans->len); |
| 1150 | else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) |
| 1151 | trans->data = NULL; /* Pages have been consumed */ |
| 1152 | } |
| 1153 | |
| 1154 | void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, |
| 1155 | struct gsi_trans *trans) |
| 1156 | { |
| 1157 | if (endpoint->toward_ipa) |
| 1158 | ipa_endpoint_tx_complete(endpoint, trans); |
| 1159 | else |
| 1160 | ipa_endpoint_rx_complete(endpoint, trans); |
| 1161 | } |
| 1162 | |
| 1163 | void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, |
| 1164 | struct gsi_trans *trans) |
| 1165 | { |
| 1166 | if (endpoint->toward_ipa) { |
| 1167 | struct ipa *ipa = endpoint->ipa; |
| 1168 | |
| 1169 | /* Nothing to do for command transactions */ |
| 1170 | if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { |
| 1171 | struct sk_buff *skb = trans->data; |
| 1172 | |
| 1173 | if (skb) |
| 1174 | dev_kfree_skb_any(skb); |
| 1175 | } |
| 1176 | } else { |
| 1177 | struct page *page = trans->data; |
| 1178 | |
| 1179 | if (page) |
| 1180 | __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) |
| 1185 | { |
| 1186 | u32 val; |
| 1187 | |
| 1188 | /* ROUTE_DIS is 0 */ |
| 1189 | val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); |
| 1190 | val |= ROUTE_DEF_HDR_TABLE_FMASK; |
| 1191 | val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); |
| 1192 | val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); |
| 1193 | val |= ROUTE_DEF_RETAIN_HDR_FMASK; |
| 1194 | |
| 1195 | iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); |
| 1196 | } |
| 1197 | |
| 1198 | void ipa_endpoint_default_route_clear(struct ipa *ipa) |
| 1199 | { |
| 1200 | ipa_endpoint_default_route_set(ipa, 0); |
| 1201 | } |
| 1202 | |
| 1203 | /** |
| 1204 | * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active |
| 1205 | * @endpoint: Endpoint to be reset |
| 1206 | * |
| 1207 | * If aggregation is active on an RX endpoint when a reset is performed |
| 1208 | * on its underlying GSI channel, a special sequence of actions must be |
| 1209 | * taken to ensure the IPA pipeline is properly cleared. |
| 1210 | * |
| 1211 | * Return: 0 if successful, or a negative error code |
| 1212 | */ |
| 1213 | static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) |
| 1214 | { |
| 1215 | struct device *dev = &endpoint->ipa->pdev->dev; |
| 1216 | struct ipa *ipa = endpoint->ipa; |
| 1217 | struct gsi *gsi = &ipa->gsi; |
| 1218 | bool suspended = false; |
| 1219 | dma_addr_t addr; |
| 1220 | bool legacy; |
| 1221 | u32 retries; |
| 1222 | u32 len = 1; |
| 1223 | void *virt; |
| 1224 | int ret; |
| 1225 | |
| 1226 | virt = kzalloc(len, GFP_KERNEL); |
| 1227 | if (!virt) |
| 1228 | return -ENOMEM; |
| 1229 | |
| 1230 | addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); |
| 1231 | if (dma_mapping_error(dev, addr)) { |
| 1232 | ret = -ENOMEM; |
| 1233 | goto out_kfree; |
| 1234 | } |
| 1235 | |
| 1236 | /* Force close aggregation before issuing the reset */ |
| 1237 | ipa_endpoint_force_close(endpoint); |
| 1238 | |
| 1239 | /* Reset and reconfigure the channel with the doorbell engine |
| 1240 | * disabled. Then poll until we know aggregation is no longer |
| 1241 | * active. We'll re-enable the doorbell (if appropriate) when |
| 1242 | * we reset again below. |
| 1243 | */ |
| 1244 | gsi_channel_reset(gsi, endpoint->channel_id, false); |
| 1245 | |
| 1246 | /* Make sure the channel isn't suspended */ |
| 1247 | suspended = ipa_endpoint_program_suspend(endpoint, false); |
| 1248 | |
| 1249 | /* Start channel and do a 1 byte read */ |
| 1250 | ret = gsi_channel_start(gsi, endpoint->channel_id); |
| 1251 | if (ret) |
| 1252 | goto out_suspend_again; |
| 1253 | |
| 1254 | ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); |
| 1255 | if (ret) |
| 1256 | goto err_endpoint_stop; |
| 1257 | |
| 1258 | /* Wait for aggregation to be closed on the channel */ |
| 1259 | retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; |
| 1260 | do { |
| 1261 | if (!ipa_endpoint_aggr_active(endpoint)) |
| 1262 | break; |
| 1263 | msleep(1); |
| 1264 | } while (retries--); |
| 1265 | |
| 1266 | /* Check one last time */ |
| 1267 | if (ipa_endpoint_aggr_active(endpoint)) |
| 1268 | dev_err(dev, "endpoint %u still active during reset\n", |
| 1269 | endpoint->endpoint_id); |
| 1270 | |
| 1271 | gsi_trans_read_byte_done(gsi, endpoint->channel_id); |
| 1272 | |
| 1273 | ret = gsi_channel_stop(gsi, endpoint->channel_id); |
| 1274 | if (ret) |
| 1275 | goto out_suspend_again; |
| 1276 | |
| 1277 | /* Finally, reset and reconfigure the channel again (re-enabling the |
| 1278 | * the doorbell engine if appropriate). Sleep for 1 millisecond to |
| 1279 | * complete the channel reset sequence. Finish by suspending the |
| 1280 | * channel again (if necessary). |
| 1281 | */ |
| 1282 | legacy = ipa->version == IPA_VERSION_3_5_1; |
| 1283 | gsi_channel_reset(gsi, endpoint->channel_id, legacy); |
| 1284 | |
| 1285 | msleep(1); |
| 1286 | |
| 1287 | goto out_suspend_again; |
| 1288 | |
| 1289 | err_endpoint_stop: |
| 1290 | (void)gsi_channel_stop(gsi, endpoint->channel_id); |
| 1291 | out_suspend_again: |
| 1292 | if (suspended) |
| 1293 | (void)ipa_endpoint_program_suspend(endpoint, true); |
| 1294 | dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); |
| 1295 | out_kfree: |
| 1296 | kfree(virt); |
| 1297 | |
| 1298 | return ret; |
| 1299 | } |
| 1300 | |
| 1301 | static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) |
| 1302 | { |
| 1303 | u32 channel_id = endpoint->channel_id; |
| 1304 | struct ipa *ipa = endpoint->ipa; |
| 1305 | bool special; |
| 1306 | bool legacy; |
| 1307 | int ret = 0; |
| 1308 | |
| 1309 | /* On IPA v3.5.1, if an RX endpoint is reset while aggregation |
| 1310 | * is active, we need to handle things specially to recover. |
| 1311 | * All other cases just need to reset the underlying GSI channel. |
| 1312 | * |
| 1313 | * IPA v3.5.1 enables the doorbell engine. Newer versions do not. |
| 1314 | */ |
| 1315 | legacy = ipa->version == IPA_VERSION_3_5_1; |
| 1316 | special = !endpoint->toward_ipa && endpoint->data->aggregation; |
| 1317 | if (special && ipa_endpoint_aggr_active(endpoint)) |
| 1318 | ret = ipa_endpoint_reset_rx_aggr(endpoint); |
| 1319 | else |
| 1320 | gsi_channel_reset(&ipa->gsi, channel_id, legacy); |
| 1321 | |
| 1322 | if (ret) |
| 1323 | dev_err(&ipa->pdev->dev, |
| 1324 | "error %d resetting channel %u for endpoint %u\n", |
| 1325 | ret, endpoint->channel_id, endpoint->endpoint_id); |
| 1326 | } |
| 1327 | |
| 1328 | static void ipa_endpoint_program(struct ipa_endpoint *endpoint) |
| 1329 | { |
| 1330 | if (endpoint->toward_ipa) |
| 1331 | ipa_endpoint_program_delay(endpoint, false); |
| 1332 | else |
| 1333 | (void)ipa_endpoint_program_suspend(endpoint, false); |
| 1334 | ipa_endpoint_init_cfg(endpoint); |
| 1335 | ipa_endpoint_init_hdr(endpoint); |
| 1336 | ipa_endpoint_init_hdr_ext(endpoint); |
| 1337 | ipa_endpoint_init_hdr_metadata_mask(endpoint); |
| 1338 | ipa_endpoint_init_mode(endpoint); |
| 1339 | ipa_endpoint_init_aggr(endpoint); |
| 1340 | ipa_endpoint_init_deaggr(endpoint); |
| 1341 | ipa_endpoint_init_seq(endpoint); |
| 1342 | ipa_endpoint_status(endpoint); |
| 1343 | } |
| 1344 | |
| 1345 | int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) |
| 1346 | { |
| 1347 | struct ipa *ipa = endpoint->ipa; |
| 1348 | struct gsi *gsi = &ipa->gsi; |
| 1349 | int ret; |
| 1350 | |
| 1351 | ret = gsi_channel_start(gsi, endpoint->channel_id); |
| 1352 | if (ret) { |
| 1353 | dev_err(&ipa->pdev->dev, |
| 1354 | "error %d starting %cX channel %u for endpoint %u\n", |
| 1355 | ret, endpoint->toward_ipa ? 'T' : 'R', |
| 1356 | endpoint->channel_id, endpoint->endpoint_id); |
| 1357 | return ret; |
| 1358 | } |
| 1359 | |
| 1360 | if (!endpoint->toward_ipa) { |
| 1361 | ipa_interrupt_suspend_enable(ipa->interrupt, |
| 1362 | endpoint->endpoint_id); |
| 1363 | ipa_endpoint_replenish_enable(endpoint); |
| 1364 | } |
| 1365 | |
| 1366 | ipa->enabled |= BIT(endpoint->endpoint_id); |
| 1367 | |
| 1368 | return 0; |
| 1369 | } |
| 1370 | |
| 1371 | void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) |
| 1372 | { |
| 1373 | u32 mask = BIT(endpoint->endpoint_id); |
| 1374 | struct ipa *ipa = endpoint->ipa; |
| 1375 | struct gsi *gsi = &ipa->gsi; |
| 1376 | int ret; |
| 1377 | |
| 1378 | if (!(ipa->enabled & mask)) |
| 1379 | return; |
| 1380 | |
| 1381 | ipa->enabled ^= mask; |
| 1382 | |
| 1383 | if (!endpoint->toward_ipa) { |
| 1384 | ipa_endpoint_replenish_disable(endpoint); |
| 1385 | ipa_interrupt_suspend_disable(ipa->interrupt, |
| 1386 | endpoint->endpoint_id); |
| 1387 | } |
| 1388 | |
| 1389 | /* Note that if stop fails, the channel's state is not well-defined */ |
| 1390 | ret = gsi_channel_stop(gsi, endpoint->channel_id); |
| 1391 | if (ret) |
| 1392 | dev_err(&ipa->pdev->dev, |
| 1393 | "error %d attempting to stop endpoint %u\n", ret, |
| 1394 | endpoint->endpoint_id); |
| 1395 | } |
| 1396 | |
| 1397 | void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) |
| 1398 | { |
| 1399 | struct device *dev = &endpoint->ipa->pdev->dev; |
| 1400 | struct gsi *gsi = &endpoint->ipa->gsi; |
| 1401 | bool stop_channel; |
| 1402 | int ret; |
| 1403 | |
| 1404 | if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) |
| 1405 | return; |
| 1406 | |
| 1407 | if (!endpoint->toward_ipa) { |
| 1408 | ipa_endpoint_replenish_disable(endpoint); |
| 1409 | (void)ipa_endpoint_program_suspend(endpoint, true); |
| 1410 | } |
| 1411 | |
| 1412 | /* IPA v3.5.1 doesn't use channel stop for suspend */ |
| 1413 | stop_channel = endpoint->ipa->version != IPA_VERSION_3_5_1; |
| 1414 | ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel); |
| 1415 | if (ret) |
| 1416 | dev_err(dev, "error %d suspending channel %u\n", ret, |
| 1417 | endpoint->channel_id); |
| 1418 | } |
| 1419 | |
| 1420 | void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) |
| 1421 | { |
| 1422 | struct device *dev = &endpoint->ipa->pdev->dev; |
| 1423 | struct gsi *gsi = &endpoint->ipa->gsi; |
| 1424 | bool start_channel; |
| 1425 | int ret; |
| 1426 | |
| 1427 | if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) |
| 1428 | return; |
| 1429 | |
| 1430 | if (!endpoint->toward_ipa) |
| 1431 | (void)ipa_endpoint_program_suspend(endpoint, false); |
| 1432 | |
| 1433 | /* IPA v3.5.1 doesn't use channel start for resume */ |
| 1434 | start_channel = endpoint->ipa->version != IPA_VERSION_3_5_1; |
| 1435 | ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel); |
| 1436 | if (ret) |
| 1437 | dev_err(dev, "error %d resuming channel %u\n", ret, |
| 1438 | endpoint->channel_id); |
| 1439 | else if (!endpoint->toward_ipa) |
| 1440 | ipa_endpoint_replenish_enable(endpoint); |
| 1441 | } |
| 1442 | |
| 1443 | void ipa_endpoint_suspend(struct ipa *ipa) |
| 1444 | { |
| 1445 | if (!ipa->setup_complete) |
| 1446 | return; |
| 1447 | |
| 1448 | if (ipa->modem_netdev) |
| 1449 | ipa_modem_suspend(ipa->modem_netdev); |
| 1450 | |
| 1451 | ipa_cmd_tag_process(ipa); |
| 1452 | |
| 1453 | ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); |
| 1454 | ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); |
| 1455 | } |
| 1456 | |
| 1457 | void ipa_endpoint_resume(struct ipa *ipa) |
| 1458 | { |
| 1459 | if (!ipa->setup_complete) |
| 1460 | return; |
| 1461 | |
| 1462 | ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); |
| 1463 | ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); |
| 1464 | |
| 1465 | if (ipa->modem_netdev) |
| 1466 | ipa_modem_resume(ipa->modem_netdev); |
| 1467 | } |
| 1468 | |
| 1469 | static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) |
| 1470 | { |
| 1471 | struct gsi *gsi = &endpoint->ipa->gsi; |
| 1472 | u32 channel_id = endpoint->channel_id; |
| 1473 | |
| 1474 | /* Only AP endpoints get set up */ |
| 1475 | if (endpoint->ee_id != GSI_EE_AP) |
| 1476 | return; |
| 1477 | |
| 1478 | endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id); |
| 1479 | if (!endpoint->toward_ipa) { |
| 1480 | /* RX transactions require a single TRE, so the maximum |
| 1481 | * backlog is the same as the maximum outstanding TREs. |
| 1482 | */ |
| 1483 | clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); |
| 1484 | clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); |
| 1485 | atomic_set(&endpoint->replenish_saved, |
| 1486 | gsi_channel_tre_max(gsi, endpoint->channel_id)); |
| 1487 | atomic_set(&endpoint->replenish_backlog, 0); |
| 1488 | INIT_DELAYED_WORK(&endpoint->replenish_work, |
| 1489 | ipa_endpoint_replenish_work); |
| 1490 | } |
| 1491 | |
| 1492 | ipa_endpoint_program(endpoint); |
| 1493 | |
| 1494 | endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); |
| 1495 | } |
| 1496 | |
| 1497 | static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) |
| 1498 | { |
| 1499 | endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); |
| 1500 | |
| 1501 | if (!endpoint->toward_ipa) |
| 1502 | cancel_delayed_work_sync(&endpoint->replenish_work); |
| 1503 | |
| 1504 | ipa_endpoint_reset(endpoint); |
| 1505 | } |
| 1506 | |
| 1507 | void ipa_endpoint_setup(struct ipa *ipa) |
| 1508 | { |
| 1509 | u32 initialized = ipa->initialized; |
| 1510 | |
| 1511 | ipa->set_up = 0; |
| 1512 | while (initialized) { |
| 1513 | u32 endpoint_id = __ffs(initialized); |
| 1514 | |
| 1515 | initialized ^= BIT(endpoint_id); |
| 1516 | |
| 1517 | ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); |
| 1518 | } |
| 1519 | } |
| 1520 | |
| 1521 | void ipa_endpoint_teardown(struct ipa *ipa) |
| 1522 | { |
| 1523 | u32 set_up = ipa->set_up; |
| 1524 | |
| 1525 | while (set_up) { |
| 1526 | u32 endpoint_id = __fls(set_up); |
| 1527 | |
| 1528 | set_up ^= BIT(endpoint_id); |
| 1529 | |
| 1530 | ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); |
| 1531 | } |
| 1532 | ipa->set_up = 0; |
| 1533 | } |
| 1534 | |
| 1535 | int ipa_endpoint_config(struct ipa *ipa) |
| 1536 | { |
| 1537 | struct device *dev = &ipa->pdev->dev; |
| 1538 | u32 initialized; |
| 1539 | u32 rx_base; |
| 1540 | u32 rx_mask; |
| 1541 | u32 tx_mask; |
| 1542 | int ret = 0; |
| 1543 | u32 max; |
| 1544 | u32 val; |
| 1545 | |
| 1546 | /* Find out about the endpoints supplied by the hardware, and ensure |
| 1547 | * the highest one doesn't exceed the number we support. |
| 1548 | */ |
| 1549 | val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); |
| 1550 | |
| 1551 | /* Our RX is an IPA producer */ |
| 1552 | rx_base = u32_get_bits(val, BAM_PROD_LOWEST_FMASK); |
| 1553 | max = rx_base + u32_get_bits(val, BAM_MAX_PROD_PIPES_FMASK); |
| 1554 | if (max > IPA_ENDPOINT_MAX) { |
| 1555 | dev_err(dev, "too many endpoints (%u > %u)\n", |
| 1556 | max, IPA_ENDPOINT_MAX); |
| 1557 | return -EINVAL; |
| 1558 | } |
| 1559 | rx_mask = GENMASK(max - 1, rx_base); |
| 1560 | |
| 1561 | /* Our TX is an IPA consumer */ |
| 1562 | max = u32_get_bits(val, BAM_MAX_CONS_PIPES_FMASK); |
| 1563 | tx_mask = GENMASK(max - 1, 0); |
| 1564 | |
| 1565 | ipa->available = rx_mask | tx_mask; |
| 1566 | |
| 1567 | /* Check for initialized endpoints not supported by the hardware */ |
| 1568 | if (ipa->initialized & ~ipa->available) { |
| 1569 | dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", |
| 1570 | ipa->initialized & ~ipa->available); |
| 1571 | ret = -EINVAL; /* Report other errors too */ |
| 1572 | } |
| 1573 | |
| 1574 | initialized = ipa->initialized; |
| 1575 | while (initialized) { |
| 1576 | u32 endpoint_id = __ffs(initialized); |
| 1577 | struct ipa_endpoint *endpoint; |
| 1578 | |
| 1579 | initialized ^= BIT(endpoint_id); |
| 1580 | |
| 1581 | /* Make sure it's pointing in the right direction */ |
| 1582 | endpoint = &ipa->endpoint[endpoint_id]; |
| 1583 | if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) { |
| 1584 | dev_err(dev, "endpoint id %u wrong direction\n", |
| 1585 | endpoint_id); |
| 1586 | ret = -EINVAL; |
| 1587 | } |
| 1588 | } |
| 1589 | |
| 1590 | return ret; |
| 1591 | } |
| 1592 | |
| 1593 | void ipa_endpoint_deconfig(struct ipa *ipa) |
| 1594 | { |
| 1595 | ipa->available = 0; /* Nothing more to do */ |
| 1596 | } |
| 1597 | |
| 1598 | static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, |
| 1599 | const struct ipa_gsi_endpoint_data *data) |
| 1600 | { |
| 1601 | struct ipa_endpoint *endpoint; |
| 1602 | |
| 1603 | endpoint = &ipa->endpoint[data->endpoint_id]; |
| 1604 | |
| 1605 | if (data->ee_id == GSI_EE_AP) |
| 1606 | ipa->channel_map[data->channel_id] = endpoint; |
| 1607 | ipa->name_map[name] = endpoint; |
| 1608 | |
| 1609 | endpoint->ipa = ipa; |
| 1610 | endpoint->ee_id = data->ee_id; |
| 1611 | endpoint->seq_type = data->endpoint.seq_type; |
| 1612 | endpoint->channel_id = data->channel_id; |
| 1613 | endpoint->endpoint_id = data->endpoint_id; |
| 1614 | endpoint->toward_ipa = data->toward_ipa; |
| 1615 | endpoint->data = &data->endpoint.config; |
| 1616 | |
| 1617 | ipa->initialized |= BIT(endpoint->endpoint_id); |
| 1618 | } |
| 1619 | |
| 1620 | void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) |
| 1621 | { |
| 1622 | endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); |
| 1623 | |
| 1624 | memset(endpoint, 0, sizeof(*endpoint)); |
| 1625 | } |
| 1626 | |
| 1627 | void ipa_endpoint_exit(struct ipa *ipa) |
| 1628 | { |
| 1629 | u32 initialized = ipa->initialized; |
| 1630 | |
| 1631 | while (initialized) { |
| 1632 | u32 endpoint_id = __fls(initialized); |
| 1633 | |
| 1634 | initialized ^= BIT(endpoint_id); |
| 1635 | |
| 1636 | ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); |
| 1637 | } |
| 1638 | memset(ipa->name_map, 0, sizeof(ipa->name_map)); |
| 1639 | memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); |
| 1640 | } |
| 1641 | |
| 1642 | /* Returns a bitmask of endpoints that support filtering, or 0 on error */ |
| 1643 | u32 ipa_endpoint_init(struct ipa *ipa, u32 count, |
| 1644 | const struct ipa_gsi_endpoint_data *data) |
| 1645 | { |
| 1646 | enum ipa_endpoint_name name; |
| 1647 | u32 filter_map; |
| 1648 | |
| 1649 | if (!ipa_endpoint_data_valid(ipa, count, data)) |
| 1650 | return 0; /* Error */ |
| 1651 | |
| 1652 | ipa->initialized = 0; |
| 1653 | |
| 1654 | filter_map = 0; |
| 1655 | for (name = 0; name < count; name++, data++) { |
| 1656 | if (ipa_gsi_endpoint_data_empty(data)) |
| 1657 | continue; /* Skip over empty slots */ |
| 1658 | |
| 1659 | ipa_endpoint_init_one(ipa, name, data); |
| 1660 | |
| 1661 | if (data->endpoint.filter_support) |
| 1662 | filter_map |= BIT(data->endpoint_id); |
| 1663 | } |
| 1664 | |
| 1665 | if (!ipa_filter_map_valid(ipa, filter_map)) |
| 1666 | goto err_endpoint_exit; |
| 1667 | |
| 1668 | return filter_map; /* Non-zero bitmask */ |
| 1669 | |
| 1670 | err_endpoint_exit: |
| 1671 | ipa_endpoint_exit(ipa); |
| 1672 | |
| 1673 | return 0; /* Error */ |
| 1674 | } |