Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Cadence NAND flash controller driver |
| 4 | * |
| 5 | * Copyright (C) 2019 Cadence |
| 6 | * |
| 7 | * Author: Piotr Sroka <piotrs@cadence.com> |
| 8 | */ |
| 9 | |
| 10 | #include <linux/bitfield.h> |
| 11 | #include <linux/clk.h> |
| 12 | #include <linux/dma-mapping.h> |
| 13 | #include <linux/dmaengine.h> |
| 14 | #include <linux/interrupt.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/mtd/mtd.h> |
| 17 | #include <linux/mtd/rawnand.h> |
| 18 | #include <linux/of_device.h> |
| 19 | #include <linux/iopoll.h> |
| 20 | #include <linux/slab.h> |
| 21 | |
| 22 | /* |
| 23 | * HPNFC can work in 3 modes: |
| 24 | * - PIO - can work in master or slave DMA |
| 25 | * - CDMA - needs Master DMA for accessing command descriptors. |
| 26 | * - Generic mode - can use only slave DMA. |
| 27 | * CDMA and PIO modes can be used to execute only base commands. |
| 28 | * Generic mode can be used to execute any command |
| 29 | * on NAND flash memory. Driver uses CDMA mode for |
| 30 | * block erasing, page reading, page programing. |
| 31 | * Generic mode is used for executing rest of commands. |
| 32 | */ |
| 33 | |
| 34 | #define MAX_ADDRESS_CYC 6 |
| 35 | #define MAX_ERASE_ADDRESS_CYC 3 |
| 36 | #define MAX_DATA_SIZE 0xFFFC |
| 37 | #define DMA_DATA_SIZE_ALIGN 8 |
| 38 | |
| 39 | /* Register definition. */ |
| 40 | /* |
| 41 | * Command register 0. |
| 42 | * Writing data to this register will initiate a new transaction |
| 43 | * of the NF controller. |
| 44 | */ |
| 45 | #define CMD_REG0 0x0000 |
| 46 | /* Command type field mask. */ |
| 47 | #define CMD_REG0_CT GENMASK(31, 30) |
| 48 | /* Command type CDMA. */ |
| 49 | #define CMD_REG0_CT_CDMA 0uL |
| 50 | /* Command type generic. */ |
| 51 | #define CMD_REG0_CT_GEN 3uL |
| 52 | /* Command thread number field mask. */ |
| 53 | #define CMD_REG0_TN GENMASK(27, 24) |
| 54 | |
| 55 | /* Command register 2. */ |
| 56 | #define CMD_REG2 0x0008 |
| 57 | /* Command register 3. */ |
| 58 | #define CMD_REG3 0x000C |
| 59 | /* Pointer register to select which thread status will be selected. */ |
| 60 | #define CMD_STATUS_PTR 0x0010 |
| 61 | /* Command status register for selected thread. */ |
| 62 | #define CMD_STATUS 0x0014 |
| 63 | |
| 64 | /* Interrupt status register. */ |
| 65 | #define INTR_STATUS 0x0110 |
| 66 | #define INTR_STATUS_SDMA_ERR BIT(22) |
| 67 | #define INTR_STATUS_SDMA_TRIGG BIT(21) |
| 68 | #define INTR_STATUS_UNSUPP_CMD BIT(19) |
| 69 | #define INTR_STATUS_DDMA_TERR BIT(18) |
| 70 | #define INTR_STATUS_CDMA_TERR BIT(17) |
| 71 | #define INTR_STATUS_CDMA_IDL BIT(16) |
| 72 | |
| 73 | /* Interrupt enable register. */ |
| 74 | #define INTR_ENABLE 0x0114 |
| 75 | #define INTR_ENABLE_INTR_EN BIT(31) |
| 76 | #define INTR_ENABLE_SDMA_ERR_EN BIT(22) |
| 77 | #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) |
| 78 | #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) |
| 79 | #define INTR_ENABLE_DDMA_TERR_EN BIT(18) |
| 80 | #define INTR_ENABLE_CDMA_TERR_EN BIT(17) |
| 81 | #define INTR_ENABLE_CDMA_IDLE_EN BIT(16) |
| 82 | |
| 83 | /* Controller internal state. */ |
| 84 | #define CTRL_STATUS 0x0118 |
| 85 | #define CTRL_STATUS_INIT_COMP BIT(9) |
| 86 | #define CTRL_STATUS_CTRL_BUSY BIT(8) |
| 87 | |
| 88 | /* Command Engine threads state. */ |
| 89 | #define TRD_STATUS 0x0120 |
| 90 | |
| 91 | /* Command Engine interrupt thread error status. */ |
| 92 | #define TRD_ERR_INT_STATUS 0x0128 |
| 93 | /* Command Engine interrupt thread error enable. */ |
| 94 | #define TRD_ERR_INT_STATUS_EN 0x0130 |
| 95 | /* Command Engine interrupt thread complete status. */ |
| 96 | #define TRD_COMP_INT_STATUS 0x0138 |
| 97 | |
| 98 | /* |
| 99 | * Transfer config 0 register. |
| 100 | * Configures data transfer parameters. |
| 101 | */ |
| 102 | #define TRAN_CFG_0 0x0400 |
| 103 | /* Offset value from the beginning of the page. */ |
| 104 | #define TRAN_CFG_0_OFFSET GENMASK(31, 16) |
| 105 | /* Numbers of sectors to transfer within singlNF device's page. */ |
| 106 | #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) |
| 107 | |
| 108 | /* |
| 109 | * Transfer config 1 register. |
| 110 | * Configures data transfer parameters. |
| 111 | */ |
| 112 | #define TRAN_CFG_1 0x0404 |
| 113 | /* Size of last data sector. */ |
| 114 | #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) |
| 115 | /* Size of not-last data sector. */ |
| 116 | #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) |
| 117 | |
| 118 | /* ECC engine configuration register 0. */ |
| 119 | #define ECC_CONFIG_0 0x0428 |
| 120 | /* Correction strength. */ |
| 121 | #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) |
| 122 | /* Enable erased pages detection mechanism. */ |
| 123 | #define ECC_CONFIG_0_ERASE_DET_EN BIT(1) |
| 124 | /* Enable controller ECC check bits generation and correction. */ |
| 125 | #define ECC_CONFIG_0_ECC_EN BIT(0) |
| 126 | |
| 127 | /* ECC engine configuration register 1. */ |
| 128 | #define ECC_CONFIG_1 0x042C |
| 129 | |
| 130 | /* Multiplane settings register. */ |
| 131 | #define MULTIPLANE_CFG 0x0434 |
| 132 | /* Cache operation settings. */ |
| 133 | #define CACHE_CFG 0x0438 |
| 134 | |
| 135 | /* DMA settings register. */ |
| 136 | #define DMA_SETINGS 0x043C |
| 137 | /* Enable SDMA error report on access unprepared slave DMA interface. */ |
| 138 | #define DMA_SETINGS_SDMA_ERR_RSP BIT(17) |
| 139 | |
| 140 | /* Transferred data block size for the slave DMA module. */ |
| 141 | #define SDMA_SIZE 0x0440 |
| 142 | |
| 143 | /* Thread number associated with transferred data block |
| 144 | * for the slave DMA module. |
| 145 | */ |
| 146 | #define SDMA_TRD_NUM 0x0444 |
| 147 | /* Thread number mask. */ |
| 148 | #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) |
| 149 | |
| 150 | #define CONTROL_DATA_CTRL 0x0494 |
| 151 | /* Thread number mask. */ |
| 152 | #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) |
| 153 | |
| 154 | #define CTRL_VERSION 0x800 |
| 155 | #define CTRL_VERSION_REV GENMASK(7, 0) |
| 156 | |
| 157 | /* Available hardware features of the controller. */ |
| 158 | #define CTRL_FEATURES 0x804 |
| 159 | /* Support for NV-DDR2/3 work mode. */ |
| 160 | #define CTRL_FEATURES_NVDDR_2_3 BIT(28) |
| 161 | /* Support for NV-DDR work mode. */ |
| 162 | #define CTRL_FEATURES_NVDDR BIT(27) |
| 163 | /* Support for asynchronous work mode. */ |
| 164 | #define CTRL_FEATURES_ASYNC BIT(26) |
| 165 | /* Support for asynchronous work mode. */ |
| 166 | #define CTRL_FEATURES_N_BANKS GENMASK(25, 24) |
| 167 | /* Slave and Master DMA data width. */ |
| 168 | #define CTRL_FEATURES_DMA_DWITH64 BIT(21) |
| 169 | /* Availability of Control Data feature.*/ |
| 170 | #define CTRL_FEATURES_CONTROL_DATA BIT(10) |
| 171 | |
| 172 | /* BCH Engine identification register 0 - correction strengths. */ |
| 173 | #define BCH_CFG_0 0x838 |
| 174 | #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) |
| 175 | #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) |
| 176 | #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) |
| 177 | #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) |
| 178 | |
| 179 | /* BCH Engine identification register 1 - correction strengths. */ |
| 180 | #define BCH_CFG_1 0x83C |
| 181 | #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) |
| 182 | #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) |
| 183 | #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) |
| 184 | #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) |
| 185 | |
| 186 | /* BCH Engine identification register 2 - sector sizes. */ |
| 187 | #define BCH_CFG_2 0x840 |
| 188 | #define BCH_CFG_2_SECT_0 GENMASK(15, 0) |
| 189 | #define BCH_CFG_2_SECT_1 GENMASK(31, 16) |
| 190 | |
| 191 | /* BCH Engine identification register 3. */ |
| 192 | #define BCH_CFG_3 0x844 |
| 193 | #define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16) |
| 194 | |
| 195 | /* Ready/Busy# line status. */ |
| 196 | #define RBN_SETINGS 0x1004 |
| 197 | |
| 198 | /* Common settings. */ |
| 199 | #define COMMON_SET 0x1008 |
| 200 | /* 16 bit device connected to the NAND Flash interface. */ |
| 201 | #define COMMON_SET_DEVICE_16BIT BIT(8) |
| 202 | |
| 203 | /* Skip_bytes registers. */ |
| 204 | #define SKIP_BYTES_CONF 0x100C |
| 205 | #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) |
| 206 | #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) |
| 207 | |
| 208 | #define SKIP_BYTES_OFFSET 0x1010 |
| 209 | #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) |
| 210 | |
| 211 | /* Timings configuration. */ |
| 212 | #define ASYNC_TOGGLE_TIMINGS 0x101c |
| 213 | #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) |
| 214 | #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) |
| 215 | #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) |
| 216 | #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) |
| 217 | |
| 218 | #define TIMINGS0 0x1024 |
| 219 | #define TIMINGS0_TADL GENMASK(31, 24) |
| 220 | #define TIMINGS0_TCCS GENMASK(23, 16) |
| 221 | #define TIMINGS0_TWHR GENMASK(15, 8) |
| 222 | #define TIMINGS0_TRHW GENMASK(7, 0) |
| 223 | |
| 224 | #define TIMINGS1 0x1028 |
| 225 | #define TIMINGS1_TRHZ GENMASK(31, 24) |
| 226 | #define TIMINGS1_TWB GENMASK(23, 16) |
| 227 | #define TIMINGS1_TVDLY GENMASK(7, 0) |
| 228 | |
| 229 | #define TIMINGS2 0x102c |
| 230 | #define TIMINGS2_TFEAT GENMASK(25, 16) |
| 231 | #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) |
| 232 | #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) |
| 233 | |
| 234 | /* Configuration of the resynchronization of slave DLL of PHY. */ |
| 235 | #define DLL_PHY_CTRL 0x1034 |
| 236 | #define DLL_PHY_CTRL_DLL_RST_N BIT(24) |
| 237 | #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) |
| 238 | #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) |
| 239 | #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) |
| 240 | #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) |
| 241 | |
| 242 | /* Register controlling DQ related timing. */ |
| 243 | #define PHY_DQ_TIMING 0x2000 |
| 244 | /* Register controlling DSQ related timing. */ |
| 245 | #define PHY_DQS_TIMING 0x2004 |
| 246 | #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) |
| 247 | #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) |
| 248 | #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) |
| 249 | |
| 250 | /* Register controlling the gate and loopback control related timing. */ |
| 251 | #define PHY_GATE_LPBK_CTRL 0x2008 |
| 252 | #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) |
| 253 | |
| 254 | /* Register holds the control for the master DLL logic. */ |
| 255 | #define PHY_DLL_MASTER_CTRL 0x200C |
| 256 | #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) |
| 257 | |
| 258 | /* Register holds the control for the slave DLL logic. */ |
| 259 | #define PHY_DLL_SLAVE_CTRL 0x2010 |
| 260 | |
| 261 | /* This register handles the global control settings for the PHY. */ |
| 262 | #define PHY_CTRL 0x2080 |
| 263 | #define PHY_CTRL_SDR_DQS BIT(14) |
| 264 | #define PHY_CTRL_PHONY_DQS GENMASK(9, 4) |
| 265 | |
| 266 | /* |
| 267 | * This register handles the global control settings |
| 268 | * for the termination selects for reads. |
| 269 | */ |
| 270 | #define PHY_TSEL 0x2084 |
| 271 | |
| 272 | /* Generic command layout. */ |
| 273 | #define GCMD_LAY_CS GENMASK_ULL(11, 8) |
| 274 | /* |
| 275 | * This bit informs the minicotroller if it has to wait for tWB |
| 276 | * after sending the last CMD/ADDR/DATA in the sequence. |
| 277 | */ |
| 278 | #define GCMD_LAY_TWB BIT_ULL(6) |
| 279 | /* Type of generic instruction. */ |
| 280 | #define GCMD_LAY_INSTR GENMASK_ULL(5, 0) |
| 281 | |
| 282 | /* Generic CMD sequence type. */ |
| 283 | #define GCMD_LAY_INSTR_CMD 0 |
| 284 | /* Generic ADDR sequence type. */ |
| 285 | #define GCMD_LAY_INSTR_ADDR 1 |
| 286 | /* Generic data transfer sequence type. */ |
| 287 | #define GCMD_LAY_INSTR_DATA 2 |
| 288 | |
| 289 | /* Input part of generic command type of input is command. */ |
| 290 | #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) |
| 291 | |
| 292 | /* Generic command address sequence - address fields. */ |
| 293 | #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) |
| 294 | /* Generic command address sequence - address size. */ |
| 295 | #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) |
| 296 | |
| 297 | /* Transfer direction field of generic command data sequence. */ |
| 298 | #define GCMD_DIR BIT_ULL(11) |
| 299 | /* Read transfer direction of generic command data sequence. */ |
| 300 | #define GCMD_DIR_READ 0 |
| 301 | /* Write transfer direction of generic command data sequence. */ |
| 302 | #define GCMD_DIR_WRITE 1 |
| 303 | |
| 304 | /* ECC enabled flag of generic command data sequence - ECC enabled. */ |
| 305 | #define GCMD_ECC_EN BIT_ULL(12) |
| 306 | /* Generic command data sequence - sector size. */ |
| 307 | #define GCMD_SECT_SIZE GENMASK_ULL(31, 16) |
| 308 | /* Generic command data sequence - sector count. */ |
| 309 | #define GCMD_SECT_CNT GENMASK_ULL(39, 32) |
| 310 | /* Generic command data sequence - last sector size. */ |
| 311 | #define GCMD_LAST_SIZE GENMASK_ULL(55, 40) |
| 312 | |
| 313 | /* CDMA descriptor fields. */ |
| 314 | /* Erase command type of CDMA descriptor. */ |
| 315 | #define CDMA_CT_ERASE 0x1000 |
| 316 | /* Program page command type of CDMA descriptor. */ |
| 317 | #define CDMA_CT_WR 0x2100 |
| 318 | /* Read page command type of CDMA descriptor. */ |
| 319 | #define CDMA_CT_RD 0x2200 |
| 320 | |
| 321 | /* Flash pointer memory shift. */ |
| 322 | #define CDMA_CFPTR_MEM_SHIFT 24 |
| 323 | /* Flash pointer memory mask. */ |
| 324 | #define CDMA_CFPTR_MEM GENMASK(26, 24) |
| 325 | |
| 326 | /* |
| 327 | * Command DMA descriptor flags. If set causes issue interrupt after |
| 328 | * the completion of descriptor processing. |
| 329 | */ |
| 330 | #define CDMA_CF_INT BIT(8) |
| 331 | /* |
| 332 | * Command DMA descriptor flags - the next descriptor |
| 333 | * address field is valid and descriptor processing should continue. |
| 334 | */ |
| 335 | #define CDMA_CF_CONT BIT(9) |
| 336 | /* DMA master flag of command DMA descriptor. */ |
| 337 | #define CDMA_CF_DMA_MASTER BIT(10) |
| 338 | |
| 339 | /* Operation complete status of command descriptor. */ |
| 340 | #define CDMA_CS_COMP BIT(15) |
| 341 | /* Operation complete status of command descriptor. */ |
| 342 | /* Command descriptor status - operation fail. */ |
| 343 | #define CDMA_CS_FAIL BIT(14) |
| 344 | /* Command descriptor status - page erased. */ |
| 345 | #define CDMA_CS_ERP BIT(11) |
| 346 | /* Command descriptor status - timeout occurred. */ |
| 347 | #define CDMA_CS_TOUT BIT(10) |
| 348 | /* |
| 349 | * Maximum amount of correction applied to one ECC sector. |
| 350 | * It is part of command descriptor status. |
| 351 | */ |
| 352 | #define CDMA_CS_MAXERR GENMASK(9, 2) |
| 353 | /* Command descriptor status - uncorrectable ECC error. */ |
| 354 | #define CDMA_CS_UNCE BIT(1) |
| 355 | /* Command descriptor status - descriptor error. */ |
| 356 | #define CDMA_CS_ERR BIT(0) |
| 357 | |
| 358 | /* Status of operation - OK. */ |
| 359 | #define STAT_OK 0 |
| 360 | /* Status of operation - FAIL. */ |
| 361 | #define STAT_FAIL 2 |
| 362 | /* Status of operation - uncorrectable ECC error. */ |
| 363 | #define STAT_ECC_UNCORR 3 |
| 364 | /* Status of operation - page erased. */ |
| 365 | #define STAT_ERASED 5 |
| 366 | /* Status of operation - correctable ECC error. */ |
| 367 | #define STAT_ECC_CORR 6 |
| 368 | /* Status of operation - unsuspected state. */ |
| 369 | #define STAT_UNKNOWN 7 |
| 370 | /* Status of operation - operation is not completed yet. */ |
| 371 | #define STAT_BUSY 0xFF |
| 372 | |
| 373 | #define BCH_MAX_NUM_CORR_CAPS 8 |
| 374 | #define BCH_MAX_NUM_SECTOR_SIZES 2 |
| 375 | |
| 376 | struct cadence_nand_timings { |
| 377 | u32 async_toggle_timings; |
| 378 | u32 timings0; |
| 379 | u32 timings1; |
| 380 | u32 timings2; |
| 381 | u32 dll_phy_ctrl; |
| 382 | u32 phy_ctrl; |
| 383 | u32 phy_dqs_timing; |
| 384 | u32 phy_gate_lpbk_ctrl; |
| 385 | }; |
| 386 | |
| 387 | /* Command DMA descriptor. */ |
| 388 | struct cadence_nand_cdma_desc { |
| 389 | /* Next descriptor address. */ |
| 390 | u64 next_pointer; |
| 391 | |
| 392 | /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ |
| 393 | u32 flash_pointer; |
| 394 | /*field appears in HPNFC version 13*/ |
| 395 | u16 bank; |
| 396 | u16 rsvd0; |
| 397 | |
| 398 | /* Operation the controller needs to perform. */ |
| 399 | u16 command_type; |
| 400 | u16 rsvd1; |
| 401 | /* Flags for operation of this command. */ |
| 402 | u16 command_flags; |
| 403 | u16 rsvd2; |
| 404 | |
| 405 | /* System/host memory address required for data DMA commands. */ |
| 406 | u64 memory_pointer; |
| 407 | |
| 408 | /* Status of operation. */ |
| 409 | u32 status; |
| 410 | u32 rsvd3; |
| 411 | |
| 412 | /* Address pointer to sync buffer location. */ |
| 413 | u64 sync_flag_pointer; |
| 414 | |
| 415 | /* Controls the buffer sync mechanism. */ |
| 416 | u32 sync_arguments; |
| 417 | u32 rsvd4; |
| 418 | |
| 419 | /* Control data pointer. */ |
| 420 | u64 ctrl_data_ptr; |
| 421 | }; |
| 422 | |
| 423 | /* Interrupt status. */ |
| 424 | struct cadence_nand_irq_status { |
| 425 | /* Thread operation complete status. */ |
| 426 | u32 trd_status; |
| 427 | /* Thread operation error. */ |
| 428 | u32 trd_error; |
| 429 | /* Controller status. */ |
| 430 | u32 status; |
| 431 | }; |
| 432 | |
| 433 | /* Cadence NAND flash controller capabilities get from driver data. */ |
| 434 | struct cadence_nand_dt_devdata { |
| 435 | /* Skew value of the output signals of the NAND Flash interface. */ |
| 436 | u32 if_skew; |
| 437 | /* It informs if slave DMA interface is connected to DMA engine. */ |
| 438 | unsigned int has_dma:1; |
| 439 | }; |
| 440 | |
| 441 | /* Cadence NAND flash controller capabilities read from registers. */ |
| 442 | struct cdns_nand_caps { |
| 443 | /* Maximum number of banks supported by hardware. */ |
| 444 | u8 max_banks; |
| 445 | /* Slave and Master DMA data width in bytes (4 or 8). */ |
| 446 | u8 data_dma_width; |
| 447 | /* Control Data feature supported. */ |
| 448 | bool data_control_supp; |
| 449 | /* Is PHY type DLL. */ |
| 450 | bool is_phy_type_dll; |
| 451 | }; |
| 452 | |
| 453 | struct cdns_nand_ctrl { |
| 454 | struct device *dev; |
| 455 | struct nand_controller controller; |
| 456 | struct cadence_nand_cdma_desc *cdma_desc; |
| 457 | /* IP capability. */ |
| 458 | const struct cadence_nand_dt_devdata *caps1; |
| 459 | struct cdns_nand_caps caps2; |
| 460 | u8 ctrl_rev; |
| 461 | dma_addr_t dma_cdma_desc; |
| 462 | u8 *buf; |
| 463 | u32 buf_size; |
| 464 | u8 curr_corr_str_idx; |
| 465 | |
| 466 | /* Register interface. */ |
| 467 | void __iomem *reg; |
| 468 | |
| 469 | struct { |
| 470 | void __iomem *virt; |
| 471 | dma_addr_t dma; |
| 472 | } io; |
| 473 | |
| 474 | int irq; |
| 475 | /* Interrupts that have happened. */ |
| 476 | struct cadence_nand_irq_status irq_status; |
| 477 | /* Interrupts we are waiting for. */ |
| 478 | struct cadence_nand_irq_status irq_mask; |
| 479 | struct completion complete; |
| 480 | /* Protect irq_mask and irq_status. */ |
| 481 | spinlock_t irq_lock; |
| 482 | |
| 483 | int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; |
| 484 | struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; |
| 485 | struct nand_ecc_caps ecc_caps; |
| 486 | |
| 487 | int curr_trans_type; |
| 488 | |
| 489 | struct dma_chan *dmac; |
| 490 | |
| 491 | u32 nf_clk_rate; |
| 492 | /* |
| 493 | * Estimated Board delay. The value includes the total |
| 494 | * round trip delay for the signals and is used for deciding on values |
| 495 | * associated with data read capture. |
| 496 | */ |
| 497 | u32 board_delay; |
| 498 | |
| 499 | struct nand_chip *selected_chip; |
| 500 | |
| 501 | unsigned long assigned_cs; |
| 502 | struct list_head chips; |
| 503 | u8 bch_metadata_size; |
| 504 | }; |
| 505 | |
| 506 | struct cdns_nand_chip { |
| 507 | struct cadence_nand_timings timings; |
| 508 | struct nand_chip chip; |
| 509 | u8 nsels; |
| 510 | struct list_head node; |
| 511 | |
| 512 | /* |
| 513 | * part of oob area of NAND flash memory page. |
| 514 | * This part is available for user to read or write. |
| 515 | */ |
| 516 | u32 avail_oob_size; |
| 517 | |
| 518 | /* Sector size. There are few sectors per mtd->writesize */ |
| 519 | u32 sector_size; |
| 520 | u32 sector_count; |
| 521 | |
| 522 | /* Offset of BBM. */ |
| 523 | u8 bbm_offs; |
| 524 | /* Number of bytes reserved for BBM. */ |
| 525 | u8 bbm_len; |
| 526 | /* ECC strength index. */ |
| 527 | u8 corr_str_idx; |
| 528 | |
| 529 | u8 cs[]; |
| 530 | }; |
| 531 | |
| 532 | struct ecc_info { |
| 533 | int (*calc_ecc_bytes)(int step_size, int strength); |
| 534 | int max_step_size; |
| 535 | }; |
| 536 | |
| 537 | static inline struct |
| 538 | cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) |
| 539 | { |
| 540 | return container_of(chip, struct cdns_nand_chip, chip); |
| 541 | } |
| 542 | |
| 543 | static inline struct |
| 544 | cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) |
| 545 | { |
| 546 | return container_of(controller, struct cdns_nand_ctrl, controller); |
| 547 | } |
| 548 | |
| 549 | static bool |
| 550 | cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, |
| 551 | u32 buf_len) |
| 552 | { |
| 553 | u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; |
| 554 | |
| 555 | return buf && virt_addr_valid(buf) && |
| 556 | likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && |
| 557 | likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); |
| 558 | } |
| 559 | |
| 560 | static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, |
| 561 | u32 reg_offset, u32 timeout_us, |
| 562 | u32 mask, bool is_clear) |
| 563 | { |
| 564 | u32 val; |
| 565 | int ret; |
| 566 | |
| 567 | ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, |
| 568 | val, !(val & mask) == is_clear, |
| 569 | 10, timeout_us); |
| 570 | |
| 571 | if (ret < 0) { |
| 572 | dev_err(cdns_ctrl->dev, |
| 573 | "Timeout while waiting for reg %x with mask %x is clear %d\n", |
| 574 | reg_offset, mask, is_clear); |
| 575 | } |
| 576 | |
| 577 | return ret; |
| 578 | } |
| 579 | |
| 580 | static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, |
| 581 | bool enable) |
| 582 | { |
| 583 | u32 reg; |
| 584 | |
| 585 | if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, |
| 586 | 1000000, |
| 587 | CTRL_STATUS_CTRL_BUSY, true)) |
| 588 | return -ETIMEDOUT; |
| 589 | |
| 590 | reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); |
| 591 | |
| 592 | if (enable) |
| 593 | reg |= ECC_CONFIG_0_ECC_EN; |
| 594 | else |
| 595 | reg &= ~ECC_CONFIG_0_ECC_EN; |
| 596 | |
| 597 | writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); |
| 598 | |
| 599 | return 0; |
| 600 | } |
| 601 | |
| 602 | static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, |
| 603 | u8 corr_str_idx) |
| 604 | { |
| 605 | u32 reg; |
| 606 | |
| 607 | if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) |
| 608 | return; |
| 609 | |
| 610 | reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); |
| 611 | reg &= ~ECC_CONFIG_0_CORR_STR; |
| 612 | reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); |
| 613 | writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); |
| 614 | |
| 615 | cdns_ctrl->curr_corr_str_idx = corr_str_idx; |
| 616 | } |
| 617 | |
| 618 | static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, |
| 619 | u8 strength) |
| 620 | { |
| 621 | int i, corr_str_idx = -1; |
| 622 | |
| 623 | for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { |
| 624 | if (cdns_ctrl->ecc_strengths[i] == strength) { |
| 625 | corr_str_idx = i; |
| 626 | break; |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | return corr_str_idx; |
| 631 | } |
| 632 | |
| 633 | static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, |
| 634 | u16 marker_value) |
| 635 | { |
| 636 | u32 reg; |
| 637 | |
| 638 | if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, |
| 639 | 1000000, |
| 640 | CTRL_STATUS_CTRL_BUSY, true)) |
| 641 | return -ETIMEDOUT; |
| 642 | |
| 643 | reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); |
| 644 | reg &= ~SKIP_BYTES_MARKER_VALUE; |
| 645 | reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, |
| 646 | marker_value); |
| 647 | |
| 648 | writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); |
| 649 | |
| 650 | return 0; |
| 651 | } |
| 652 | |
| 653 | static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, |
| 654 | u8 num_of_bytes, |
| 655 | u32 offset_value, |
| 656 | int enable) |
| 657 | { |
| 658 | u32 reg, skip_bytes_offset; |
| 659 | |
| 660 | if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, |
| 661 | 1000000, |
| 662 | CTRL_STATUS_CTRL_BUSY, true)) |
| 663 | return -ETIMEDOUT; |
| 664 | |
| 665 | if (!enable) { |
| 666 | num_of_bytes = 0; |
| 667 | offset_value = 0; |
| 668 | } |
| 669 | |
| 670 | reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); |
| 671 | reg &= ~SKIP_BYTES_NUM_OF_BYTES; |
| 672 | reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, |
| 673 | num_of_bytes); |
| 674 | skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, |
| 675 | offset_value); |
| 676 | |
| 677 | writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); |
| 678 | writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); |
| 679 | |
| 680 | return 0; |
| 681 | } |
| 682 | |
| 683 | /* Functions enables/disables hardware detection of erased data */ |
| 684 | static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, |
| 685 | bool enable, |
| 686 | u8 bitflips_threshold) |
| 687 | { |
| 688 | u32 reg; |
| 689 | |
| 690 | reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); |
| 691 | |
| 692 | if (enable) |
| 693 | reg |= ECC_CONFIG_0_ERASE_DET_EN; |
| 694 | else |
| 695 | reg &= ~ECC_CONFIG_0_ERASE_DET_EN; |
| 696 | |
| 697 | writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); |
| 698 | writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); |
| 699 | } |
| 700 | |
| 701 | static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, |
| 702 | bool bit_bus16) |
| 703 | { |
| 704 | u32 reg; |
| 705 | |
| 706 | if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, |
| 707 | 1000000, |
| 708 | CTRL_STATUS_CTRL_BUSY, true)) |
| 709 | return -ETIMEDOUT; |
| 710 | |
| 711 | reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); |
| 712 | |
| 713 | if (!bit_bus16) |
| 714 | reg &= ~COMMON_SET_DEVICE_16BIT; |
| 715 | else |
| 716 | reg |= COMMON_SET_DEVICE_16BIT; |
| 717 | writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); |
| 718 | |
| 719 | return 0; |
| 720 | } |
| 721 | |
| 722 | static void |
| 723 | cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, |
| 724 | struct cadence_nand_irq_status *irq_status) |
| 725 | { |
| 726 | writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); |
| 727 | writel_relaxed(irq_status->trd_status, |
| 728 | cdns_ctrl->reg + TRD_COMP_INT_STATUS); |
| 729 | writel_relaxed(irq_status->trd_error, |
| 730 | cdns_ctrl->reg + TRD_ERR_INT_STATUS); |
| 731 | } |
| 732 | |
| 733 | static void |
| 734 | cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, |
| 735 | struct cadence_nand_irq_status *irq_status) |
| 736 | { |
| 737 | irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); |
| 738 | irq_status->trd_status = readl_relaxed(cdns_ctrl->reg |
| 739 | + TRD_COMP_INT_STATUS); |
| 740 | irq_status->trd_error = readl_relaxed(cdns_ctrl->reg |
| 741 | + TRD_ERR_INT_STATUS); |
| 742 | } |
| 743 | |
| 744 | static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, |
| 745 | struct cadence_nand_irq_status *irq_status) |
| 746 | { |
| 747 | cadence_nand_read_int_status(cdns_ctrl, irq_status); |
| 748 | |
| 749 | return irq_status->status || irq_status->trd_status || |
| 750 | irq_status->trd_error; |
| 751 | } |
| 752 | |
| 753 | static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) |
| 754 | { |
| 755 | unsigned long flags; |
| 756 | |
| 757 | spin_lock_irqsave(&cdns_ctrl->irq_lock, flags); |
| 758 | memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); |
| 759 | memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); |
| 760 | spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags); |
| 761 | } |
| 762 | |
| 763 | /* |
| 764 | * This is the interrupt service routine. It handles all interrupts |
| 765 | * sent to this device. |
| 766 | */ |
| 767 | static irqreturn_t cadence_nand_isr(int irq, void *dev_id) |
| 768 | { |
| 769 | struct cdns_nand_ctrl *cdns_ctrl = dev_id; |
| 770 | struct cadence_nand_irq_status irq_status; |
| 771 | irqreturn_t result = IRQ_NONE; |
| 772 | |
| 773 | spin_lock(&cdns_ctrl->irq_lock); |
| 774 | |
| 775 | if (irq_detected(cdns_ctrl, &irq_status)) { |
| 776 | /* Handle interrupt. */ |
| 777 | /* First acknowledge it. */ |
| 778 | cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); |
| 779 | /* Status in the device context for someone to read. */ |
| 780 | cdns_ctrl->irq_status.status |= irq_status.status; |
| 781 | cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; |
| 782 | cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; |
| 783 | /* Notify anyone who cares that it happened. */ |
| 784 | complete(&cdns_ctrl->complete); |
| 785 | /* Tell the OS that we've handled this. */ |
| 786 | result = IRQ_HANDLED; |
| 787 | } |
| 788 | spin_unlock(&cdns_ctrl->irq_lock); |
| 789 | |
| 790 | return result; |
| 791 | } |
| 792 | |
| 793 | static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, |
| 794 | struct cadence_nand_irq_status *irq_mask) |
| 795 | { |
| 796 | writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, |
| 797 | cdns_ctrl->reg + INTR_ENABLE); |
| 798 | |
| 799 | writel_relaxed(irq_mask->trd_error, |
| 800 | cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); |
| 801 | } |
| 802 | |
| 803 | static void |
| 804 | cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, |
| 805 | struct cadence_nand_irq_status *irq_mask, |
| 806 | struct cadence_nand_irq_status *irq_status) |
| 807 | { |
| 808 | unsigned long timeout = msecs_to_jiffies(10000); |
| 809 | unsigned long time_left; |
| 810 | |
| 811 | time_left = wait_for_completion_timeout(&cdns_ctrl->complete, |
| 812 | timeout); |
| 813 | |
| 814 | *irq_status = cdns_ctrl->irq_status; |
| 815 | if (time_left == 0) { |
| 816 | /* Timeout error. */ |
| 817 | dev_err(cdns_ctrl->dev, "timeout occurred:\n"); |
| 818 | dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", |
| 819 | irq_status->status, irq_mask->status); |
| 820 | dev_err(cdns_ctrl->dev, |
| 821 | "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", |
| 822 | irq_status->trd_status, irq_mask->trd_status); |
| 823 | dev_err(cdns_ctrl->dev, |
| 824 | "\t trd_error = 0x%x, trd_error mask = 0x%x\n", |
| 825 | irq_status->trd_error, irq_mask->trd_error); |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | /* Execute generic command on NAND controller. */ |
| 830 | static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, |
| 831 | u8 chip_nr, |
| 832 | u64 mini_ctrl_cmd) |
| 833 | { |
| 834 | u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; |
| 835 | |
| 836 | mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); |
| 837 | mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; |
| 838 | mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; |
| 839 | |
| 840 | if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, |
| 841 | 1000000, |
| 842 | CTRL_STATUS_CTRL_BUSY, true)) |
| 843 | return -ETIMEDOUT; |
| 844 | |
| 845 | cadence_nand_reset_irq(cdns_ctrl); |
| 846 | |
| 847 | writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); |
| 848 | writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); |
| 849 | |
| 850 | /* Select generic command. */ |
| 851 | reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); |
| 852 | /* Thread number. */ |
| 853 | reg |= FIELD_PREP(CMD_REG0_TN, 0); |
| 854 | |
| 855 | /* Issue command. */ |
| 856 | writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); |
| 857 | |
| 858 | return 0; |
| 859 | } |
| 860 | |
| 861 | /* Wait for data on slave DMA interface. */ |
| 862 | static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, |
| 863 | u8 *out_sdma_trd, |
| 864 | u32 *out_sdma_size) |
| 865 | { |
| 866 | struct cadence_nand_irq_status irq_mask, irq_status; |
| 867 | |
| 868 | irq_mask.trd_status = 0; |
| 869 | irq_mask.trd_error = 0; |
| 870 | irq_mask.status = INTR_STATUS_SDMA_TRIGG |
| 871 | | INTR_STATUS_SDMA_ERR |
| 872 | | INTR_STATUS_UNSUPP_CMD; |
| 873 | |
| 874 | cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); |
| 875 | cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); |
| 876 | if (irq_status.status == 0) { |
| 877 | dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); |
| 878 | return -ETIMEDOUT; |
| 879 | } |
| 880 | |
| 881 | if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { |
| 882 | *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); |
| 883 | *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); |
| 884 | *out_sdma_trd = |
| 885 | FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); |
| 886 | } else { |
| 887 | dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", |
| 888 | irq_status.status); |
| 889 | return -EIO; |
| 890 | } |
| 891 | |
| 892 | return 0; |
| 893 | } |
| 894 | |
| 895 | static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) |
| 896 | { |
| 897 | u32 reg; |
| 898 | |
| 899 | reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); |
| 900 | |
| 901 | cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); |
| 902 | |
| 903 | if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) |
| 904 | cdns_ctrl->caps2.data_dma_width = 8; |
| 905 | else |
| 906 | cdns_ctrl->caps2.data_dma_width = 4; |
| 907 | |
| 908 | if (reg & CTRL_FEATURES_CONTROL_DATA) |
| 909 | cdns_ctrl->caps2.data_control_supp = true; |
| 910 | |
| 911 | if (reg & (CTRL_FEATURES_NVDDR_2_3 |
| 912 | | CTRL_FEATURES_NVDDR)) |
| 913 | cdns_ctrl->caps2.is_phy_type_dll = true; |
| 914 | } |
| 915 | |
| 916 | /* Prepare CDMA descriptor. */ |
| 917 | static void |
| 918 | cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl, |
| 919 | char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr, |
| 920 | dma_addr_t ctrl_data_ptr, u16 ctype) |
| 921 | { |
| 922 | struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; |
| 923 | |
| 924 | memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); |
| 925 | |
| 926 | /* Set fields for one descriptor. */ |
| 927 | cdma_desc->flash_pointer = flash_ptr; |
| 928 | if (cdns_ctrl->ctrl_rev >= 13) |
| 929 | cdma_desc->bank = nf_mem; |
| 930 | else |
| 931 | cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); |
| 932 | |
| 933 | cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; |
| 934 | cdma_desc->command_flags |= CDMA_CF_INT; |
| 935 | |
| 936 | cdma_desc->memory_pointer = mem_ptr; |
| 937 | cdma_desc->status = 0; |
| 938 | cdma_desc->sync_flag_pointer = 0; |
| 939 | cdma_desc->sync_arguments = 0; |
| 940 | |
| 941 | cdma_desc->command_type = ctype; |
| 942 | cdma_desc->ctrl_data_ptr = ctrl_data_ptr; |
| 943 | } |
| 944 | |
| 945 | static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, |
| 946 | u32 desc_status) |
| 947 | { |
| 948 | if (desc_status & CDMA_CS_ERP) |
| 949 | return STAT_ERASED; |
| 950 | |
| 951 | if (desc_status & CDMA_CS_UNCE) |
| 952 | return STAT_ECC_UNCORR; |
| 953 | |
| 954 | if (desc_status & CDMA_CS_ERR) { |
| 955 | dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); |
| 956 | return STAT_FAIL; |
| 957 | } |
| 958 | |
| 959 | if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) |
| 960 | return STAT_ECC_CORR; |
| 961 | |
| 962 | return STAT_FAIL; |
| 963 | } |
| 964 | |
| 965 | static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl) |
| 966 | { |
| 967 | struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc; |
| 968 | u8 status = STAT_BUSY; |
| 969 | |
| 970 | if (desc_ptr->status & CDMA_CS_FAIL) { |
| 971 | status = cadence_nand_check_desc_error(cdns_ctrl, |
| 972 | desc_ptr->status); |
| 973 | dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); |
| 974 | } else if (desc_ptr->status & CDMA_CS_COMP) { |
| 975 | /* Descriptor finished with no errors. */ |
| 976 | if (desc_ptr->command_flags & CDMA_CF_CONT) { |
| 977 | dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); |
| 978 | status = STAT_UNKNOWN; |
| 979 | } else { |
| 980 | /* Last descriptor. */ |
| 981 | status = STAT_OK; |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | return status; |
| 986 | } |
| 987 | |
| 988 | static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, |
| 989 | u8 thread) |
| 990 | { |
| 991 | u32 reg; |
| 992 | int status; |
| 993 | |
| 994 | /* Wait for thread ready. */ |
| 995 | status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, |
| 996 | 1000000, |
| 997 | BIT(thread), true); |
| 998 | if (status) |
| 999 | return status; |
| 1000 | |
| 1001 | cadence_nand_reset_irq(cdns_ctrl); |
| 1002 | reinit_completion(&cdns_ctrl->complete); |
| 1003 | |
| 1004 | writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, |
| 1005 | cdns_ctrl->reg + CMD_REG2); |
| 1006 | writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); |
| 1007 | |
| 1008 | /* Select CDMA mode. */ |
| 1009 | reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); |
| 1010 | /* Thread number. */ |
| 1011 | reg |= FIELD_PREP(CMD_REG0_TN, thread); |
| 1012 | /* Issue command. */ |
| 1013 | writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); |
| 1014 | |
| 1015 | return 0; |
| 1016 | } |
| 1017 | |
| 1018 | /* Send SDMA command and wait for finish. */ |
| 1019 | static u32 |
| 1020 | cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, |
| 1021 | u8 thread) |
| 1022 | { |
| 1023 | struct cadence_nand_irq_status irq_mask, irq_status = {0}; |
| 1024 | int status; |
| 1025 | |
| 1026 | irq_mask.trd_status = BIT(thread); |
| 1027 | irq_mask.trd_error = BIT(thread); |
| 1028 | irq_mask.status = INTR_STATUS_CDMA_TERR; |
| 1029 | |
| 1030 | cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); |
| 1031 | |
| 1032 | status = cadence_nand_cdma_send(cdns_ctrl, thread); |
| 1033 | if (status) |
| 1034 | return status; |
| 1035 | |
| 1036 | cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); |
| 1037 | |
| 1038 | if (irq_status.status == 0 && irq_status.trd_status == 0 && |
| 1039 | irq_status.trd_error == 0) { |
| 1040 | dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); |
| 1041 | return -ETIMEDOUT; |
| 1042 | } |
| 1043 | if (irq_status.status & irq_mask.status) { |
| 1044 | dev_err(cdns_ctrl->dev, "CDMA command failed\n"); |
| 1045 | return -EIO; |
| 1046 | } |
| 1047 | |
| 1048 | return 0; |
| 1049 | } |
| 1050 | |
| 1051 | /* |
| 1052 | * ECC size depends on configured ECC strength and on maximum supported |
| 1053 | * ECC step size. |
| 1054 | */ |
| 1055 | static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) |
| 1056 | { |
| 1057 | int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); |
| 1058 | |
| 1059 | return ALIGN(nbytes, 2); |
| 1060 | } |
| 1061 | |
| 1062 | #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ |
| 1063 | static int \ |
| 1064 | cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ |
| 1065 | int strength)\ |
| 1066 | {\ |
| 1067 | return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ |
| 1068 | } |
| 1069 | |
| 1070 | CADENCE_NAND_CALC_ECC_BYTES(256) |
| 1071 | CADENCE_NAND_CALC_ECC_BYTES(512) |
| 1072 | CADENCE_NAND_CALC_ECC_BYTES(1024) |
| 1073 | CADENCE_NAND_CALC_ECC_BYTES(2048) |
| 1074 | CADENCE_NAND_CALC_ECC_BYTES(4096) |
| 1075 | |
| 1076 | /* Function reads BCH capabilities. */ |
| 1077 | static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) |
| 1078 | { |
| 1079 | struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; |
| 1080 | int max_step_size = 0, nstrengths, i; |
| 1081 | u32 reg; |
| 1082 | |
| 1083 | reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3); |
| 1084 | cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg); |
| 1085 | if (cdns_ctrl->bch_metadata_size < 4) { |
| 1086 | dev_err(cdns_ctrl->dev, |
| 1087 | "Driver needs at least 4 bytes of BCH meta data\n"); |
| 1088 | return -EIO; |
| 1089 | } |
| 1090 | |
| 1091 | reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); |
| 1092 | cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); |
| 1093 | cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); |
| 1094 | cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); |
| 1095 | cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); |
| 1096 | |
| 1097 | reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); |
| 1098 | cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); |
| 1099 | cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); |
| 1100 | cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); |
| 1101 | cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); |
| 1102 | |
| 1103 | reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); |
| 1104 | cdns_ctrl->ecc_stepinfos[0].stepsize = |
| 1105 | FIELD_GET(BCH_CFG_2_SECT_0, reg); |
| 1106 | |
| 1107 | cdns_ctrl->ecc_stepinfos[1].stepsize = |
| 1108 | FIELD_GET(BCH_CFG_2_SECT_1, reg); |
| 1109 | |
| 1110 | nstrengths = 0; |
| 1111 | for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { |
| 1112 | if (cdns_ctrl->ecc_strengths[i] != 0) |
| 1113 | nstrengths++; |
| 1114 | } |
| 1115 | |
| 1116 | ecc_caps->nstepinfos = 0; |
| 1117 | for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { |
| 1118 | /* ECC strengths are common for all step infos. */ |
| 1119 | cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; |
| 1120 | cdns_ctrl->ecc_stepinfos[i].strengths = |
| 1121 | cdns_ctrl->ecc_strengths; |
| 1122 | |
| 1123 | if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) |
| 1124 | ecc_caps->nstepinfos++; |
| 1125 | |
| 1126 | if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) |
| 1127 | max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; |
| 1128 | } |
| 1129 | ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; |
| 1130 | |
| 1131 | switch (max_step_size) { |
| 1132 | case 256: |
| 1133 | ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; |
| 1134 | break; |
| 1135 | case 512: |
| 1136 | ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; |
| 1137 | break; |
| 1138 | case 1024: |
| 1139 | ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; |
| 1140 | break; |
| 1141 | case 2048: |
| 1142 | ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; |
| 1143 | break; |
| 1144 | case 4096: |
| 1145 | ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; |
| 1146 | break; |
| 1147 | default: |
| 1148 | dev_err(cdns_ctrl->dev, |
| 1149 | "Unsupported sector size(ecc step size) %d\n", |
| 1150 | max_step_size); |
| 1151 | return -EIO; |
| 1152 | } |
| 1153 | |
| 1154 | return 0; |
| 1155 | } |
| 1156 | |
| 1157 | /* Hardware initialization. */ |
| 1158 | static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) |
| 1159 | { |
| 1160 | int status; |
| 1161 | u32 reg; |
| 1162 | |
| 1163 | status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, |
| 1164 | 1000000, |
| 1165 | CTRL_STATUS_INIT_COMP, false); |
| 1166 | if (status) |
| 1167 | return status; |
| 1168 | |
| 1169 | reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); |
| 1170 | cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); |
| 1171 | |
| 1172 | dev_info(cdns_ctrl->dev, |
| 1173 | "%s: cadence nand controller version reg %x\n", |
| 1174 | __func__, reg); |
| 1175 | |
| 1176 | /* Disable cache and multiplane. */ |
| 1177 | writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); |
| 1178 | writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); |
| 1179 | |
| 1180 | /* Clear all interrupts. */ |
| 1181 | writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); |
| 1182 | |
| 1183 | cadence_nand_get_caps(cdns_ctrl); |
| 1184 | if (cadence_nand_read_bch_caps(cdns_ctrl)) |
| 1185 | return -EIO; |
| 1186 | |
| 1187 | /* |
| 1188 | * Set IO width access to 8. |
| 1189 | * It is because during SW device discovering width access |
| 1190 | * is expected to be 8. |
| 1191 | */ |
| 1192 | status = cadence_nand_set_access_width16(cdns_ctrl, false); |
| 1193 | |
| 1194 | return status; |
| 1195 | } |
| 1196 | |
| 1197 | #define TT_MAIN_OOB_AREAS 2 |
| 1198 | #define TT_RAW_PAGE 3 |
| 1199 | #define TT_BBM 4 |
| 1200 | #define TT_MAIN_OOB_AREA_EXT 5 |
| 1201 | |
| 1202 | /* Prepare size of data to transfer. */ |
| 1203 | static void |
| 1204 | cadence_nand_prepare_data_size(struct nand_chip *chip, |
| 1205 | int transfer_type) |
| 1206 | { |
| 1207 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 1208 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 1209 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1210 | u32 sec_size = 0, offset = 0, sec_cnt = 1; |
| 1211 | u32 last_sec_size = cdns_chip->sector_size; |
| 1212 | u32 data_ctrl_size = 0; |
| 1213 | u32 reg = 0; |
| 1214 | |
| 1215 | if (cdns_ctrl->curr_trans_type == transfer_type) |
| 1216 | return; |
| 1217 | |
| 1218 | switch (transfer_type) { |
| 1219 | case TT_MAIN_OOB_AREA_EXT: |
| 1220 | sec_cnt = cdns_chip->sector_count; |
| 1221 | sec_size = cdns_chip->sector_size; |
| 1222 | data_ctrl_size = cdns_chip->avail_oob_size; |
| 1223 | break; |
| 1224 | case TT_MAIN_OOB_AREAS: |
| 1225 | sec_cnt = cdns_chip->sector_count; |
| 1226 | last_sec_size = cdns_chip->sector_size |
| 1227 | + cdns_chip->avail_oob_size; |
| 1228 | sec_size = cdns_chip->sector_size; |
| 1229 | break; |
| 1230 | case TT_RAW_PAGE: |
| 1231 | last_sec_size = mtd->writesize + mtd->oobsize; |
| 1232 | break; |
| 1233 | case TT_BBM: |
| 1234 | offset = mtd->writesize + cdns_chip->bbm_offs; |
| 1235 | last_sec_size = 8; |
| 1236 | break; |
| 1237 | } |
| 1238 | |
| 1239 | reg = 0; |
| 1240 | reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); |
| 1241 | reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); |
| 1242 | writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); |
| 1243 | |
| 1244 | reg = 0; |
| 1245 | reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); |
| 1246 | reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); |
| 1247 | writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); |
| 1248 | |
| 1249 | if (cdns_ctrl->caps2.data_control_supp) { |
| 1250 | reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); |
| 1251 | reg &= ~CONTROL_DATA_CTRL_SIZE; |
| 1252 | reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); |
| 1253 | writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); |
| 1254 | } |
| 1255 | |
| 1256 | cdns_ctrl->curr_trans_type = transfer_type; |
| 1257 | } |
| 1258 | |
| 1259 | static int |
| 1260 | cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, |
| 1261 | int page, void *buf, void *ctrl_dat, u32 buf_size, |
| 1262 | u32 ctrl_dat_size, enum dma_data_direction dir, |
| 1263 | bool with_ecc) |
| 1264 | { |
| 1265 | dma_addr_t dma_buf, dma_ctrl_dat = 0; |
| 1266 | u8 thread_nr = chip_nr; |
| 1267 | int status; |
| 1268 | u16 ctype; |
| 1269 | |
| 1270 | if (dir == DMA_FROM_DEVICE) |
| 1271 | ctype = CDMA_CT_RD; |
| 1272 | else |
| 1273 | ctype = CDMA_CT_WR; |
| 1274 | |
| 1275 | cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); |
| 1276 | |
| 1277 | dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); |
| 1278 | if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { |
| 1279 | dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); |
| 1280 | return -EIO; |
| 1281 | } |
| 1282 | |
| 1283 | if (ctrl_dat && ctrl_dat_size) { |
| 1284 | dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, |
| 1285 | ctrl_dat_size, dir); |
| 1286 | if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { |
| 1287 | dma_unmap_single(cdns_ctrl->dev, dma_buf, |
| 1288 | buf_size, dir); |
| 1289 | dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); |
| 1290 | return -EIO; |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page, |
| 1295 | dma_buf, dma_ctrl_dat, ctype); |
| 1296 | |
| 1297 | status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); |
| 1298 | |
| 1299 | dma_unmap_single(cdns_ctrl->dev, dma_buf, |
| 1300 | buf_size, dir); |
| 1301 | |
| 1302 | if (ctrl_dat && ctrl_dat_size) |
| 1303 | dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, |
| 1304 | ctrl_dat_size, dir); |
| 1305 | if (status) |
| 1306 | return status; |
| 1307 | |
| 1308 | return cadence_nand_cdma_finish(cdns_ctrl); |
| 1309 | } |
| 1310 | |
| 1311 | static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, |
| 1312 | struct cadence_nand_timings *t) |
| 1313 | { |
| 1314 | writel_relaxed(t->async_toggle_timings, |
| 1315 | cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); |
| 1316 | writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); |
| 1317 | writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); |
| 1318 | writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); |
| 1319 | |
| 1320 | if (cdns_ctrl->caps2.is_phy_type_dll) |
| 1321 | writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); |
| 1322 | |
| 1323 | writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); |
| 1324 | |
| 1325 | if (cdns_ctrl->caps2.is_phy_type_dll) { |
| 1326 | writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); |
| 1327 | writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); |
| 1328 | writel_relaxed(t->phy_dqs_timing, |
| 1329 | cdns_ctrl->reg + PHY_DQS_TIMING); |
| 1330 | writel_relaxed(t->phy_gate_lpbk_ctrl, |
| 1331 | cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); |
| 1332 | writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, |
| 1333 | cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); |
| 1334 | writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | static int cadence_nand_select_target(struct nand_chip *chip) |
| 1339 | { |
| 1340 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 1341 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 1342 | |
| 1343 | if (chip == cdns_ctrl->selected_chip) |
| 1344 | return 0; |
| 1345 | |
| 1346 | if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, |
| 1347 | 1000000, |
| 1348 | CTRL_STATUS_CTRL_BUSY, true)) |
| 1349 | return -ETIMEDOUT; |
| 1350 | |
| 1351 | cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); |
| 1352 | |
| 1353 | cadence_nand_set_ecc_strength(cdns_ctrl, |
| 1354 | cdns_chip->corr_str_idx); |
| 1355 | |
| 1356 | cadence_nand_set_erase_detection(cdns_ctrl, true, |
| 1357 | chip->ecc.strength); |
| 1358 | |
| 1359 | cdns_ctrl->curr_trans_type = -1; |
| 1360 | cdns_ctrl->selected_chip = chip; |
| 1361 | |
| 1362 | return 0; |
| 1363 | } |
| 1364 | |
| 1365 | static int cadence_nand_erase(struct nand_chip *chip, u32 page) |
| 1366 | { |
| 1367 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 1368 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 1369 | int status; |
| 1370 | u8 thread_nr = cdns_chip->cs[chip->cur_cs]; |
| 1371 | |
| 1372 | cadence_nand_cdma_desc_prepare(cdns_ctrl, |
| 1373 | cdns_chip->cs[chip->cur_cs], |
| 1374 | page, 0, 0, |
| 1375 | CDMA_CT_ERASE); |
| 1376 | status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); |
| 1377 | if (status) { |
| 1378 | dev_err(cdns_ctrl->dev, "erase operation failed\n"); |
| 1379 | return -EIO; |
| 1380 | } |
| 1381 | |
| 1382 | status = cadence_nand_cdma_finish(cdns_ctrl); |
| 1383 | if (status) |
| 1384 | return status; |
| 1385 | |
| 1386 | return 0; |
| 1387 | } |
| 1388 | |
| 1389 | static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) |
| 1390 | { |
| 1391 | int status; |
| 1392 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 1393 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 1394 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1395 | |
| 1396 | cadence_nand_prepare_data_size(chip, TT_BBM); |
| 1397 | |
| 1398 | cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); |
| 1399 | |
| 1400 | /* |
| 1401 | * Read only bad block marker from offset |
| 1402 | * defined by a memory manufacturer. |
| 1403 | */ |
| 1404 | status = cadence_nand_cdma_transfer(cdns_ctrl, |
| 1405 | cdns_chip->cs[chip->cur_cs], |
| 1406 | page, cdns_ctrl->buf, NULL, |
| 1407 | mtd->oobsize, |
| 1408 | 0, DMA_FROM_DEVICE, false); |
| 1409 | if (status) { |
| 1410 | dev_err(cdns_ctrl->dev, "read BBM failed\n"); |
| 1411 | return -EIO; |
| 1412 | } |
| 1413 | |
| 1414 | memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); |
| 1415 | |
| 1416 | return 0; |
| 1417 | } |
| 1418 | |
| 1419 | static int cadence_nand_write_page(struct nand_chip *chip, |
| 1420 | const u8 *buf, int oob_required, |
| 1421 | int page) |
| 1422 | { |
| 1423 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 1424 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 1425 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1426 | int status; |
| 1427 | u16 marker_val = 0xFFFF; |
| 1428 | |
| 1429 | status = cadence_nand_select_target(chip); |
| 1430 | if (status) |
| 1431 | return status; |
| 1432 | |
| 1433 | cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, |
| 1434 | mtd->writesize |
| 1435 | + cdns_chip->bbm_offs, |
| 1436 | 1); |
| 1437 | |
| 1438 | if (oob_required) { |
| 1439 | marker_val = *(u16 *)(chip->oob_poi |
| 1440 | + cdns_chip->bbm_offs); |
| 1441 | } else { |
| 1442 | /* Set oob data to 0xFF. */ |
| 1443 | memset(cdns_ctrl->buf + mtd->writesize, 0xFF, |
| 1444 | cdns_chip->avail_oob_size); |
| 1445 | } |
| 1446 | |
| 1447 | cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); |
| 1448 | |
| 1449 | cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); |
| 1450 | |
| 1451 | if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && |
| 1452 | cdns_ctrl->caps2.data_control_supp) { |
| 1453 | u8 *oob; |
| 1454 | |
| 1455 | if (oob_required) |
| 1456 | oob = chip->oob_poi; |
| 1457 | else |
| 1458 | oob = cdns_ctrl->buf + mtd->writesize; |
| 1459 | |
| 1460 | status = cadence_nand_cdma_transfer(cdns_ctrl, |
| 1461 | cdns_chip->cs[chip->cur_cs], |
| 1462 | page, (void *)buf, oob, |
| 1463 | mtd->writesize, |
| 1464 | cdns_chip->avail_oob_size, |
| 1465 | DMA_TO_DEVICE, true); |
| 1466 | if (status) { |
| 1467 | dev_err(cdns_ctrl->dev, "write page failed\n"); |
| 1468 | return -EIO; |
| 1469 | } |
| 1470 | |
| 1471 | return 0; |
| 1472 | } |
| 1473 | |
| 1474 | if (oob_required) { |
| 1475 | /* Transfer the data to the oob area. */ |
| 1476 | memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, |
| 1477 | cdns_chip->avail_oob_size); |
| 1478 | } |
| 1479 | |
| 1480 | memcpy(cdns_ctrl->buf, buf, mtd->writesize); |
| 1481 | |
| 1482 | cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); |
| 1483 | |
| 1484 | return cadence_nand_cdma_transfer(cdns_ctrl, |
| 1485 | cdns_chip->cs[chip->cur_cs], |
| 1486 | page, cdns_ctrl->buf, NULL, |
| 1487 | mtd->writesize |
| 1488 | + cdns_chip->avail_oob_size, |
| 1489 | 0, DMA_TO_DEVICE, true); |
| 1490 | } |
| 1491 | |
| 1492 | static int cadence_nand_write_oob(struct nand_chip *chip, int page) |
| 1493 | { |
| 1494 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 1495 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1496 | |
| 1497 | memset(cdns_ctrl->buf, 0xFF, mtd->writesize); |
| 1498 | |
| 1499 | return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); |
| 1500 | } |
| 1501 | |
| 1502 | static int cadence_nand_write_page_raw(struct nand_chip *chip, |
| 1503 | const u8 *buf, int oob_required, |
| 1504 | int page) |
| 1505 | { |
| 1506 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 1507 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 1508 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1509 | int writesize = mtd->writesize; |
| 1510 | int oobsize = mtd->oobsize; |
| 1511 | int ecc_steps = chip->ecc.steps; |
| 1512 | int ecc_size = chip->ecc.size; |
| 1513 | int ecc_bytes = chip->ecc.bytes; |
| 1514 | void *tmp_buf = cdns_ctrl->buf; |
| 1515 | int oob_skip = cdns_chip->bbm_len; |
| 1516 | size_t size = writesize + oobsize; |
| 1517 | int i, pos, len; |
| 1518 | int status = 0; |
| 1519 | |
| 1520 | status = cadence_nand_select_target(chip); |
| 1521 | if (status) |
| 1522 | return status; |
| 1523 | |
| 1524 | /* |
| 1525 | * Fill the buffer with 0xff first except the full page transfer. |
| 1526 | * This simplifies the logic. |
| 1527 | */ |
| 1528 | if (!buf || !oob_required) |
| 1529 | memset(tmp_buf, 0xff, size); |
| 1530 | |
| 1531 | cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); |
| 1532 | |
| 1533 | /* Arrange the buffer for syndrome payload/ecc layout. */ |
| 1534 | if (buf) { |
| 1535 | for (i = 0; i < ecc_steps; i++) { |
| 1536 | pos = i * (ecc_size + ecc_bytes); |
| 1537 | len = ecc_size; |
| 1538 | |
| 1539 | if (pos >= writesize) |
| 1540 | pos += oob_skip; |
| 1541 | else if (pos + len > writesize) |
| 1542 | len = writesize - pos; |
| 1543 | |
| 1544 | memcpy(tmp_buf + pos, buf, len); |
| 1545 | buf += len; |
| 1546 | if (len < ecc_size) { |
| 1547 | len = ecc_size - len; |
| 1548 | memcpy(tmp_buf + writesize + oob_skip, buf, |
| 1549 | len); |
| 1550 | buf += len; |
| 1551 | } |
| 1552 | } |
| 1553 | } |
| 1554 | |
| 1555 | if (oob_required) { |
| 1556 | const u8 *oob = chip->oob_poi; |
| 1557 | u32 oob_data_offset = (cdns_chip->sector_count - 1) * |
| 1558 | (cdns_chip->sector_size + chip->ecc.bytes) |
| 1559 | + cdns_chip->sector_size + oob_skip; |
| 1560 | |
| 1561 | /* BBM at the beginning of the OOB area. */ |
| 1562 | memcpy(tmp_buf + writesize, oob, oob_skip); |
| 1563 | |
| 1564 | /* OOB free. */ |
| 1565 | memcpy(tmp_buf + oob_data_offset, oob, |
| 1566 | cdns_chip->avail_oob_size); |
| 1567 | oob += cdns_chip->avail_oob_size; |
| 1568 | |
| 1569 | /* OOB ECC. */ |
| 1570 | for (i = 0; i < ecc_steps; i++) { |
| 1571 | pos = ecc_size + i * (ecc_size + ecc_bytes); |
| 1572 | if (i == (ecc_steps - 1)) |
| 1573 | pos += cdns_chip->avail_oob_size; |
| 1574 | |
| 1575 | len = ecc_bytes; |
| 1576 | |
| 1577 | if (pos >= writesize) |
| 1578 | pos += oob_skip; |
| 1579 | else if (pos + len > writesize) |
| 1580 | len = writesize - pos; |
| 1581 | |
| 1582 | memcpy(tmp_buf + pos, oob, len); |
| 1583 | oob += len; |
| 1584 | if (len < ecc_bytes) { |
| 1585 | len = ecc_bytes - len; |
| 1586 | memcpy(tmp_buf + writesize + oob_skip, oob, |
| 1587 | len); |
| 1588 | oob += len; |
| 1589 | } |
| 1590 | } |
| 1591 | } |
| 1592 | |
| 1593 | cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); |
| 1594 | |
| 1595 | return cadence_nand_cdma_transfer(cdns_ctrl, |
| 1596 | cdns_chip->cs[chip->cur_cs], |
| 1597 | page, cdns_ctrl->buf, NULL, |
| 1598 | mtd->writesize + |
| 1599 | mtd->oobsize, |
| 1600 | 0, DMA_TO_DEVICE, false); |
| 1601 | } |
| 1602 | |
| 1603 | static int cadence_nand_write_oob_raw(struct nand_chip *chip, |
| 1604 | int page) |
| 1605 | { |
| 1606 | return cadence_nand_write_page_raw(chip, NULL, true, page); |
| 1607 | } |
| 1608 | |
| 1609 | static int cadence_nand_read_page(struct nand_chip *chip, |
| 1610 | u8 *buf, int oob_required, int page) |
| 1611 | { |
| 1612 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 1613 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 1614 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1615 | int status = 0; |
| 1616 | int ecc_err_count = 0; |
| 1617 | |
| 1618 | status = cadence_nand_select_target(chip); |
| 1619 | if (status) |
| 1620 | return status; |
| 1621 | |
| 1622 | cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, |
| 1623 | mtd->writesize |
| 1624 | + cdns_chip->bbm_offs, 1); |
| 1625 | |
| 1626 | /* |
| 1627 | * If data buffer can be accessed by DMA and data_control feature |
| 1628 | * is supported then transfer data and oob directly. |
| 1629 | */ |
| 1630 | if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && |
| 1631 | cdns_ctrl->caps2.data_control_supp) { |
| 1632 | u8 *oob; |
| 1633 | |
| 1634 | if (oob_required) |
| 1635 | oob = chip->oob_poi; |
| 1636 | else |
| 1637 | oob = cdns_ctrl->buf + mtd->writesize; |
| 1638 | |
| 1639 | cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); |
| 1640 | status = cadence_nand_cdma_transfer(cdns_ctrl, |
| 1641 | cdns_chip->cs[chip->cur_cs], |
| 1642 | page, buf, oob, |
| 1643 | mtd->writesize, |
| 1644 | cdns_chip->avail_oob_size, |
| 1645 | DMA_FROM_DEVICE, true); |
| 1646 | /* Otherwise use bounce buffer. */ |
| 1647 | } else { |
| 1648 | cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); |
| 1649 | status = cadence_nand_cdma_transfer(cdns_ctrl, |
| 1650 | cdns_chip->cs[chip->cur_cs], |
| 1651 | page, cdns_ctrl->buf, |
| 1652 | NULL, mtd->writesize |
| 1653 | + cdns_chip->avail_oob_size, |
| 1654 | 0, DMA_FROM_DEVICE, true); |
| 1655 | |
| 1656 | memcpy(buf, cdns_ctrl->buf, mtd->writesize); |
| 1657 | if (oob_required) |
| 1658 | memcpy(chip->oob_poi, |
| 1659 | cdns_ctrl->buf + mtd->writesize, |
| 1660 | mtd->oobsize); |
| 1661 | } |
| 1662 | |
| 1663 | switch (status) { |
| 1664 | case STAT_ECC_UNCORR: |
| 1665 | mtd->ecc_stats.failed++; |
| 1666 | ecc_err_count++; |
| 1667 | break; |
| 1668 | case STAT_ECC_CORR: |
| 1669 | ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, |
| 1670 | cdns_ctrl->cdma_desc->status); |
| 1671 | mtd->ecc_stats.corrected += ecc_err_count; |
| 1672 | break; |
| 1673 | case STAT_ERASED: |
| 1674 | case STAT_OK: |
| 1675 | break; |
| 1676 | default: |
| 1677 | dev_err(cdns_ctrl->dev, "read page failed\n"); |
| 1678 | return -EIO; |
| 1679 | } |
| 1680 | |
| 1681 | if (oob_required) |
| 1682 | if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) |
| 1683 | return -EIO; |
| 1684 | |
| 1685 | return ecc_err_count; |
| 1686 | } |
| 1687 | |
| 1688 | /* Reads OOB data from the device. */ |
| 1689 | static int cadence_nand_read_oob(struct nand_chip *chip, int page) |
| 1690 | { |
| 1691 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 1692 | |
| 1693 | return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); |
| 1694 | } |
| 1695 | |
| 1696 | static int cadence_nand_read_page_raw(struct nand_chip *chip, |
| 1697 | u8 *buf, int oob_required, int page) |
| 1698 | { |
| 1699 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 1700 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 1701 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1702 | int oob_skip = cdns_chip->bbm_len; |
| 1703 | int writesize = mtd->writesize; |
| 1704 | int ecc_steps = chip->ecc.steps; |
| 1705 | int ecc_size = chip->ecc.size; |
| 1706 | int ecc_bytes = chip->ecc.bytes; |
| 1707 | void *tmp_buf = cdns_ctrl->buf; |
| 1708 | int i, pos, len; |
| 1709 | int status = 0; |
| 1710 | |
| 1711 | status = cadence_nand_select_target(chip); |
| 1712 | if (status) |
| 1713 | return status; |
| 1714 | |
| 1715 | cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); |
| 1716 | |
| 1717 | cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); |
| 1718 | status = cadence_nand_cdma_transfer(cdns_ctrl, |
| 1719 | cdns_chip->cs[chip->cur_cs], |
| 1720 | page, cdns_ctrl->buf, NULL, |
| 1721 | mtd->writesize |
| 1722 | + mtd->oobsize, |
| 1723 | 0, DMA_FROM_DEVICE, false); |
| 1724 | |
| 1725 | switch (status) { |
| 1726 | case STAT_ERASED: |
| 1727 | case STAT_OK: |
| 1728 | break; |
| 1729 | default: |
| 1730 | dev_err(cdns_ctrl->dev, "read raw page failed\n"); |
| 1731 | return -EIO; |
| 1732 | } |
| 1733 | |
| 1734 | /* Arrange the buffer for syndrome payload/ecc layout. */ |
| 1735 | if (buf) { |
| 1736 | for (i = 0; i < ecc_steps; i++) { |
| 1737 | pos = i * (ecc_size + ecc_bytes); |
| 1738 | len = ecc_size; |
| 1739 | |
| 1740 | if (pos >= writesize) |
| 1741 | pos += oob_skip; |
| 1742 | else if (pos + len > writesize) |
| 1743 | len = writesize - pos; |
| 1744 | |
| 1745 | memcpy(buf, tmp_buf + pos, len); |
| 1746 | buf += len; |
| 1747 | if (len < ecc_size) { |
| 1748 | len = ecc_size - len; |
| 1749 | memcpy(buf, tmp_buf + writesize + oob_skip, |
| 1750 | len); |
| 1751 | buf += len; |
| 1752 | } |
| 1753 | } |
| 1754 | } |
| 1755 | |
| 1756 | if (oob_required) { |
| 1757 | u8 *oob = chip->oob_poi; |
| 1758 | u32 oob_data_offset = (cdns_chip->sector_count - 1) * |
| 1759 | (cdns_chip->sector_size + chip->ecc.bytes) |
| 1760 | + cdns_chip->sector_size + oob_skip; |
| 1761 | |
| 1762 | /* OOB free. */ |
| 1763 | memcpy(oob, tmp_buf + oob_data_offset, |
| 1764 | cdns_chip->avail_oob_size); |
| 1765 | |
| 1766 | /* BBM at the beginning of the OOB area. */ |
| 1767 | memcpy(oob, tmp_buf + writesize, oob_skip); |
| 1768 | |
| 1769 | oob += cdns_chip->avail_oob_size; |
| 1770 | |
| 1771 | /* OOB ECC */ |
| 1772 | for (i = 0; i < ecc_steps; i++) { |
| 1773 | pos = ecc_size + i * (ecc_size + ecc_bytes); |
| 1774 | len = ecc_bytes; |
| 1775 | |
| 1776 | if (i == (ecc_steps - 1)) |
| 1777 | pos += cdns_chip->avail_oob_size; |
| 1778 | |
| 1779 | if (pos >= writesize) |
| 1780 | pos += oob_skip; |
| 1781 | else if (pos + len > writesize) |
| 1782 | len = writesize - pos; |
| 1783 | |
| 1784 | memcpy(oob, tmp_buf + pos, len); |
| 1785 | oob += len; |
| 1786 | if (len < ecc_bytes) { |
| 1787 | len = ecc_bytes - len; |
| 1788 | memcpy(oob, tmp_buf + writesize + oob_skip, |
| 1789 | len); |
| 1790 | oob += len; |
| 1791 | } |
| 1792 | } |
| 1793 | } |
| 1794 | |
| 1795 | return 0; |
| 1796 | } |
| 1797 | |
| 1798 | static int cadence_nand_read_oob_raw(struct nand_chip *chip, |
| 1799 | int page) |
| 1800 | { |
| 1801 | return cadence_nand_read_page_raw(chip, NULL, true, page); |
| 1802 | } |
| 1803 | |
| 1804 | static void cadence_nand_slave_dma_transfer_finished(void *data) |
| 1805 | { |
| 1806 | struct completion *finished = data; |
| 1807 | |
| 1808 | complete(finished); |
| 1809 | } |
| 1810 | |
| 1811 | static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, |
| 1812 | void *buf, |
| 1813 | dma_addr_t dev_dma, size_t len, |
| 1814 | enum dma_data_direction dir) |
| 1815 | { |
| 1816 | DECLARE_COMPLETION_ONSTACK(finished); |
| 1817 | struct dma_chan *chan; |
| 1818 | struct dma_device *dma_dev; |
| 1819 | dma_addr_t src_dma, dst_dma, buf_dma; |
| 1820 | struct dma_async_tx_descriptor *tx; |
| 1821 | dma_cookie_t cookie; |
| 1822 | |
| 1823 | chan = cdns_ctrl->dmac; |
| 1824 | dma_dev = chan->device; |
| 1825 | |
| 1826 | buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); |
| 1827 | if (dma_mapping_error(dma_dev->dev, buf_dma)) { |
| 1828 | dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); |
| 1829 | goto err; |
| 1830 | } |
| 1831 | |
| 1832 | if (dir == DMA_FROM_DEVICE) { |
| 1833 | src_dma = cdns_ctrl->io.dma; |
| 1834 | dst_dma = buf_dma; |
| 1835 | } else { |
| 1836 | src_dma = buf_dma; |
| 1837 | dst_dma = cdns_ctrl->io.dma; |
| 1838 | } |
| 1839 | |
| 1840 | tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, |
| 1841 | DMA_CTRL_ACK | DMA_PREP_INTERRUPT); |
| 1842 | if (!tx) { |
| 1843 | dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); |
| 1844 | goto err_unmap; |
| 1845 | } |
| 1846 | |
| 1847 | tx->callback = cadence_nand_slave_dma_transfer_finished; |
| 1848 | tx->callback_param = &finished; |
| 1849 | |
| 1850 | cookie = dmaengine_submit(tx); |
| 1851 | if (dma_submit_error(cookie)) { |
| 1852 | dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); |
| 1853 | goto err_unmap; |
| 1854 | } |
| 1855 | |
| 1856 | dma_async_issue_pending(cdns_ctrl->dmac); |
| 1857 | wait_for_completion(&finished); |
| 1858 | |
| 1859 | dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); |
| 1860 | |
| 1861 | return 0; |
| 1862 | |
| 1863 | err_unmap: |
| 1864 | dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); |
| 1865 | |
| 1866 | err: |
| 1867 | dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); |
| 1868 | |
| 1869 | return -EIO; |
| 1870 | } |
| 1871 | |
| 1872 | static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, |
| 1873 | u8 *buf, int len) |
| 1874 | { |
| 1875 | u8 thread_nr = 0; |
| 1876 | u32 sdma_size; |
| 1877 | int status; |
| 1878 | |
| 1879 | /* Wait until slave DMA interface is ready to data transfer. */ |
| 1880 | status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); |
| 1881 | if (status) |
| 1882 | return status; |
| 1883 | |
| 1884 | if (!cdns_ctrl->caps1->has_dma) { |
| 1885 | int len_in_words = len >> 2; |
| 1886 | |
| 1887 | /* read alingment data */ |
| 1888 | ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words); |
| 1889 | if (sdma_size > len) { |
| 1890 | /* read rest data from slave DMA interface if any */ |
| 1891 | ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, |
| 1892 | sdma_size / 4 - len_in_words); |
| 1893 | /* copy rest of data */ |
| 1894 | memcpy(buf + (len_in_words << 2), cdns_ctrl->buf, |
| 1895 | len - (len_in_words << 2)); |
| 1896 | } |
| 1897 | return 0; |
| 1898 | } |
| 1899 | |
| 1900 | if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { |
| 1901 | status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, |
| 1902 | cdns_ctrl->io.dma, |
| 1903 | len, DMA_FROM_DEVICE); |
| 1904 | if (status == 0) |
| 1905 | return 0; |
| 1906 | |
| 1907 | dev_warn(cdns_ctrl->dev, |
| 1908 | "Slave DMA transfer failed. Try again using bounce buffer."); |
| 1909 | } |
| 1910 | |
| 1911 | /* If DMA transfer is not possible or failed then use bounce buffer. */ |
| 1912 | status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, |
| 1913 | cdns_ctrl->io.dma, |
| 1914 | sdma_size, DMA_FROM_DEVICE); |
| 1915 | |
| 1916 | if (status) { |
| 1917 | dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); |
| 1918 | return status; |
| 1919 | } |
| 1920 | |
| 1921 | memcpy(buf, cdns_ctrl->buf, len); |
| 1922 | |
| 1923 | return 0; |
| 1924 | } |
| 1925 | |
| 1926 | static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, |
| 1927 | const u8 *buf, int len) |
| 1928 | { |
| 1929 | u8 thread_nr = 0; |
| 1930 | u32 sdma_size; |
| 1931 | int status; |
| 1932 | |
| 1933 | /* Wait until slave DMA interface is ready to data transfer. */ |
| 1934 | status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); |
| 1935 | if (status) |
| 1936 | return status; |
| 1937 | |
| 1938 | if (!cdns_ctrl->caps1->has_dma) { |
| 1939 | int len_in_words = len >> 2; |
| 1940 | |
| 1941 | iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words); |
| 1942 | if (sdma_size > len) { |
| 1943 | /* copy rest of data */ |
| 1944 | memcpy(cdns_ctrl->buf, buf + (len_in_words << 2), |
| 1945 | len - (len_in_words << 2)); |
| 1946 | /* write all expected by nand controller data */ |
| 1947 | iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, |
| 1948 | sdma_size / 4 - len_in_words); |
| 1949 | } |
| 1950 | |
| 1951 | return 0; |
| 1952 | } |
| 1953 | |
| 1954 | if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { |
| 1955 | status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, |
| 1956 | cdns_ctrl->io.dma, |
| 1957 | len, DMA_TO_DEVICE); |
| 1958 | if (status == 0) |
| 1959 | return 0; |
| 1960 | |
| 1961 | dev_warn(cdns_ctrl->dev, |
| 1962 | "Slave DMA transfer failed. Try again using bounce buffer."); |
| 1963 | } |
| 1964 | |
| 1965 | /* If DMA transfer is not possible or failed then use bounce buffer. */ |
| 1966 | memcpy(cdns_ctrl->buf, buf, len); |
| 1967 | |
| 1968 | status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, |
| 1969 | cdns_ctrl->io.dma, |
| 1970 | sdma_size, DMA_TO_DEVICE); |
| 1971 | |
| 1972 | if (status) |
| 1973 | dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); |
| 1974 | |
| 1975 | return status; |
| 1976 | } |
| 1977 | |
| 1978 | static int cadence_nand_force_byte_access(struct nand_chip *chip, |
| 1979 | bool force_8bit) |
| 1980 | { |
| 1981 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 1982 | int status; |
| 1983 | |
| 1984 | /* |
| 1985 | * Callers of this function do not verify if the NAND is using a 16-bit |
| 1986 | * an 8-bit bus for normal operations, so we need to take care of that |
| 1987 | * here by leaving the configuration unchanged if the NAND does not have |
| 1988 | * the NAND_BUSWIDTH_16 flag set. |
| 1989 | */ |
| 1990 | if (!(chip->options & NAND_BUSWIDTH_16)) |
| 1991 | return 0; |
| 1992 | |
| 1993 | status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); |
| 1994 | |
| 1995 | return status; |
| 1996 | } |
| 1997 | |
| 1998 | static int cadence_nand_cmd_opcode(struct nand_chip *chip, |
| 1999 | const struct nand_subop *subop) |
| 2000 | { |
| 2001 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 2002 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 2003 | const struct nand_op_instr *instr; |
| 2004 | unsigned int op_id = 0; |
| 2005 | u64 mini_ctrl_cmd = 0; |
| 2006 | int ret; |
| 2007 | |
| 2008 | instr = &subop->instrs[op_id]; |
| 2009 | |
| 2010 | if (instr->delay_ns > 0) |
| 2011 | mini_ctrl_cmd |= GCMD_LAY_TWB; |
| 2012 | |
| 2013 | mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, |
| 2014 | GCMD_LAY_INSTR_CMD); |
| 2015 | mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, |
| 2016 | instr->ctx.cmd.opcode); |
| 2017 | |
| 2018 | ret = cadence_nand_generic_cmd_send(cdns_ctrl, |
| 2019 | cdns_chip->cs[chip->cur_cs], |
| 2020 | mini_ctrl_cmd); |
| 2021 | if (ret) |
| 2022 | dev_err(cdns_ctrl->dev, "send cmd %x failed\n", |
| 2023 | instr->ctx.cmd.opcode); |
| 2024 | |
| 2025 | return ret; |
| 2026 | } |
| 2027 | |
| 2028 | static int cadence_nand_cmd_address(struct nand_chip *chip, |
| 2029 | const struct nand_subop *subop) |
| 2030 | { |
| 2031 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 2032 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 2033 | const struct nand_op_instr *instr; |
| 2034 | unsigned int op_id = 0; |
| 2035 | u64 mini_ctrl_cmd = 0; |
| 2036 | unsigned int offset, naddrs; |
| 2037 | u64 address = 0; |
| 2038 | const u8 *addrs; |
| 2039 | int ret; |
| 2040 | int i; |
| 2041 | |
| 2042 | instr = &subop->instrs[op_id]; |
| 2043 | |
| 2044 | if (instr->delay_ns > 0) |
| 2045 | mini_ctrl_cmd |= GCMD_LAY_TWB; |
| 2046 | |
| 2047 | mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, |
| 2048 | GCMD_LAY_INSTR_ADDR); |
| 2049 | |
| 2050 | offset = nand_subop_get_addr_start_off(subop, op_id); |
| 2051 | naddrs = nand_subop_get_num_addr_cyc(subop, op_id); |
| 2052 | addrs = &instr->ctx.addr.addrs[offset]; |
| 2053 | |
| 2054 | for (i = 0; i < naddrs; i++) |
| 2055 | address |= (u64)addrs[i] << (8 * i); |
| 2056 | |
| 2057 | mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, |
| 2058 | address); |
| 2059 | mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, |
| 2060 | naddrs - 1); |
| 2061 | |
| 2062 | ret = cadence_nand_generic_cmd_send(cdns_ctrl, |
| 2063 | cdns_chip->cs[chip->cur_cs], |
| 2064 | mini_ctrl_cmd); |
| 2065 | if (ret) |
| 2066 | dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); |
| 2067 | |
| 2068 | return ret; |
| 2069 | } |
| 2070 | |
| 2071 | static int cadence_nand_cmd_erase(struct nand_chip *chip, |
| 2072 | const struct nand_subop *subop) |
| 2073 | { |
| 2074 | unsigned int op_id; |
| 2075 | |
| 2076 | if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { |
| 2077 | int i; |
| 2078 | const struct nand_op_instr *instr = NULL; |
| 2079 | unsigned int offset, naddrs; |
| 2080 | const u8 *addrs; |
| 2081 | u32 page = 0; |
| 2082 | |
| 2083 | instr = &subop->instrs[1]; |
| 2084 | offset = nand_subop_get_addr_start_off(subop, 1); |
| 2085 | naddrs = nand_subop_get_num_addr_cyc(subop, 1); |
| 2086 | addrs = &instr->ctx.addr.addrs[offset]; |
| 2087 | |
| 2088 | for (i = 0; i < naddrs; i++) |
| 2089 | page |= (u32)addrs[i] << (8 * i); |
| 2090 | |
| 2091 | return cadence_nand_erase(chip, page); |
| 2092 | } |
| 2093 | |
| 2094 | /* |
| 2095 | * If it is not an erase operation then handle operation |
| 2096 | * by calling exec_op function. |
| 2097 | */ |
| 2098 | for (op_id = 0; op_id < subop->ninstrs; op_id++) { |
| 2099 | int ret; |
| 2100 | const struct nand_operation nand_op = { |
| 2101 | .cs = chip->cur_cs, |
| 2102 | .instrs = &subop->instrs[op_id], |
| 2103 | .ninstrs = 1}; |
| 2104 | ret = chip->controller->ops->exec_op(chip, &nand_op, false); |
| 2105 | if (ret) |
| 2106 | return ret; |
| 2107 | } |
| 2108 | |
| 2109 | return 0; |
| 2110 | } |
| 2111 | |
| 2112 | static int cadence_nand_cmd_data(struct nand_chip *chip, |
| 2113 | const struct nand_subop *subop) |
| 2114 | { |
| 2115 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 2116 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 2117 | const struct nand_op_instr *instr; |
| 2118 | unsigned int offset, op_id = 0; |
| 2119 | u64 mini_ctrl_cmd = 0; |
| 2120 | int len = 0; |
| 2121 | int ret; |
| 2122 | |
| 2123 | instr = &subop->instrs[op_id]; |
| 2124 | |
| 2125 | if (instr->delay_ns > 0) |
| 2126 | mini_ctrl_cmd |= GCMD_LAY_TWB; |
| 2127 | |
| 2128 | mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, |
| 2129 | GCMD_LAY_INSTR_DATA); |
| 2130 | |
| 2131 | if (instr->type == NAND_OP_DATA_OUT_INSTR) |
| 2132 | mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, |
| 2133 | GCMD_DIR_WRITE); |
| 2134 | |
| 2135 | len = nand_subop_get_data_len(subop, op_id); |
| 2136 | offset = nand_subop_get_data_start_off(subop, op_id); |
| 2137 | mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); |
| 2138 | mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); |
| 2139 | if (instr->ctx.data.force_8bit) { |
| 2140 | ret = cadence_nand_force_byte_access(chip, true); |
| 2141 | if (ret) { |
| 2142 | dev_err(cdns_ctrl->dev, |
| 2143 | "cannot change byte access generic data cmd failed\n"); |
| 2144 | return ret; |
| 2145 | } |
| 2146 | } |
| 2147 | |
| 2148 | ret = cadence_nand_generic_cmd_send(cdns_ctrl, |
| 2149 | cdns_chip->cs[chip->cur_cs], |
| 2150 | mini_ctrl_cmd); |
| 2151 | if (ret) { |
| 2152 | dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); |
| 2153 | return ret; |
| 2154 | } |
| 2155 | |
| 2156 | if (instr->type == NAND_OP_DATA_IN_INSTR) { |
| 2157 | void *buf = instr->ctx.data.buf.in + offset; |
| 2158 | |
| 2159 | ret = cadence_nand_read_buf(cdns_ctrl, buf, len); |
| 2160 | } else { |
| 2161 | const void *buf = instr->ctx.data.buf.out + offset; |
| 2162 | |
| 2163 | ret = cadence_nand_write_buf(cdns_ctrl, buf, len); |
| 2164 | } |
| 2165 | |
| 2166 | if (ret) { |
| 2167 | dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); |
| 2168 | return ret; |
| 2169 | } |
| 2170 | |
| 2171 | if (instr->ctx.data.force_8bit) { |
| 2172 | ret = cadence_nand_force_byte_access(chip, false); |
| 2173 | if (ret) { |
| 2174 | dev_err(cdns_ctrl->dev, |
| 2175 | "cannot change byte access generic data cmd failed\n"); |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | return ret; |
| 2180 | } |
| 2181 | |
| 2182 | static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, |
| 2183 | const struct nand_subop *subop) |
| 2184 | { |
| 2185 | int status; |
| 2186 | unsigned int op_id = 0; |
| 2187 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 2188 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 2189 | const struct nand_op_instr *instr = &subop->instrs[op_id]; |
| 2190 | u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; |
| 2191 | |
| 2192 | status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, |
| 2193 | timeout_us, |
| 2194 | BIT(cdns_chip->cs[chip->cur_cs]), |
| 2195 | false); |
| 2196 | return status; |
| 2197 | } |
| 2198 | |
| 2199 | static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( |
| 2200 | NAND_OP_PARSER_PATTERN( |
| 2201 | cadence_nand_cmd_erase, |
| 2202 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| 2203 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), |
| 2204 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| 2205 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| 2206 | NAND_OP_PARSER_PATTERN( |
| 2207 | cadence_nand_cmd_opcode, |
| 2208 | NAND_OP_PARSER_PAT_CMD_ELEM(false)), |
| 2209 | NAND_OP_PARSER_PATTERN( |
| 2210 | cadence_nand_cmd_address, |
| 2211 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), |
| 2212 | NAND_OP_PARSER_PATTERN( |
| 2213 | cadence_nand_cmd_data, |
| 2214 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), |
| 2215 | NAND_OP_PARSER_PATTERN( |
| 2216 | cadence_nand_cmd_data, |
| 2217 | NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), |
| 2218 | NAND_OP_PARSER_PATTERN( |
| 2219 | cadence_nand_cmd_waitrdy, |
| 2220 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) |
| 2221 | ); |
| 2222 | |
| 2223 | static int cadence_nand_exec_op(struct nand_chip *chip, |
| 2224 | const struct nand_operation *op, |
| 2225 | bool check_only) |
| 2226 | { |
| 2227 | if (!check_only) { |
| 2228 | int status = cadence_nand_select_target(chip); |
| 2229 | |
| 2230 | if (status) |
| 2231 | return status; |
| 2232 | } |
| 2233 | |
| 2234 | return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, |
| 2235 | check_only); |
| 2236 | } |
| 2237 | |
| 2238 | static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, |
| 2239 | struct mtd_oob_region *oobregion) |
| 2240 | { |
| 2241 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 2242 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 2243 | |
| 2244 | if (section) |
| 2245 | return -ERANGE; |
| 2246 | |
| 2247 | oobregion->offset = cdns_chip->bbm_len; |
| 2248 | oobregion->length = cdns_chip->avail_oob_size |
| 2249 | - cdns_chip->bbm_len; |
| 2250 | |
| 2251 | return 0; |
| 2252 | } |
| 2253 | |
| 2254 | static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| 2255 | struct mtd_oob_region *oobregion) |
| 2256 | { |
| 2257 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 2258 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 2259 | |
| 2260 | if (section) |
| 2261 | return -ERANGE; |
| 2262 | |
| 2263 | oobregion->offset = cdns_chip->avail_oob_size; |
| 2264 | oobregion->length = chip->ecc.total; |
| 2265 | |
| 2266 | return 0; |
| 2267 | } |
| 2268 | |
| 2269 | static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { |
| 2270 | .free = cadence_nand_ooblayout_free, |
| 2271 | .ecc = cadence_nand_ooblayout_ecc, |
| 2272 | }; |
| 2273 | |
| 2274 | static int calc_cycl(u32 timing, u32 clock) |
| 2275 | { |
| 2276 | if (timing == 0 || clock == 0) |
| 2277 | return 0; |
| 2278 | |
| 2279 | if ((timing % clock) > 0) |
| 2280 | return timing / clock; |
| 2281 | else |
| 2282 | return timing / clock - 1; |
| 2283 | } |
| 2284 | |
| 2285 | /* Calculate max data valid window. */ |
| 2286 | static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, |
| 2287 | u32 board_delay_skew_min, u32 ext_mode) |
| 2288 | { |
| 2289 | if (ext_mode == 0) |
| 2290 | clk_period /= 2; |
| 2291 | |
| 2292 | return (trp_cnt + 1) * clk_period + trhoh_min + |
| 2293 | board_delay_skew_min; |
| 2294 | } |
| 2295 | |
| 2296 | /* Calculate data valid window. */ |
| 2297 | static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, |
| 2298 | u32 trea_max, u32 ext_mode) |
| 2299 | { |
| 2300 | if (ext_mode == 0) |
| 2301 | clk_period /= 2; |
| 2302 | |
| 2303 | return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; |
| 2304 | } |
| 2305 | |
| 2306 | static int |
| 2307 | cadence_nand_setup_interface(struct nand_chip *chip, int chipnr, |
| 2308 | const struct nand_interface_config *conf) |
| 2309 | { |
| 2310 | const struct nand_sdr_timings *sdr; |
| 2311 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 2312 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 2313 | struct cadence_nand_timings *t = &cdns_chip->timings; |
| 2314 | u32 reg; |
| 2315 | u32 board_delay = cdns_ctrl->board_delay; |
| 2316 | u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, |
| 2317 | cdns_ctrl->nf_clk_rate); |
| 2318 | u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; |
| 2319 | u32 tfeat_cnt, trhz_cnt, tvdly_cnt; |
| 2320 | u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; |
| 2321 | u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; |
| 2322 | u32 if_skew = cdns_ctrl->caps1->if_skew; |
| 2323 | u32 board_delay_skew_min = board_delay - if_skew; |
| 2324 | u32 board_delay_skew_max = board_delay + if_skew; |
| 2325 | u32 dqs_sampl_res, phony_dqs_mod; |
| 2326 | u32 tdvw, tdvw_min, tdvw_max; |
| 2327 | u32 ext_rd_mode, ext_wr_mode; |
| 2328 | u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; |
| 2329 | u32 sampling_point; |
| 2330 | |
| 2331 | sdr = nand_get_sdr_timings(conf); |
| 2332 | if (IS_ERR(sdr)) |
| 2333 | return PTR_ERR(sdr); |
| 2334 | |
| 2335 | memset(t, 0, sizeof(*t)); |
| 2336 | /* Sampling point calculation. */ |
| 2337 | |
| 2338 | if (cdns_ctrl->caps2.is_phy_type_dll) |
| 2339 | phony_dqs_mod = 2; |
| 2340 | else |
| 2341 | phony_dqs_mod = 1; |
| 2342 | |
| 2343 | dqs_sampl_res = clk_period / phony_dqs_mod; |
| 2344 | |
| 2345 | tdvw_min = sdr->tREA_max + board_delay_skew_max; |
| 2346 | /* |
| 2347 | * The idea of those calculation is to get the optimum value |
| 2348 | * for tRP and tRH timings. If it is NOT possible to sample data |
| 2349 | * with optimal tRP/tRH settings, the parameters will be extended. |
| 2350 | * If clk_period is 50ns (the lowest value) this condition is met |
| 2351 | * for asynchronous timing modes 1, 2, 3, 4 and 5. |
| 2352 | * If clk_period is 20ns the condition is met only |
| 2353 | * for asynchronous timing mode 5. |
| 2354 | */ |
| 2355 | if (sdr->tRC_min <= clk_period && |
| 2356 | sdr->tRP_min <= (clk_period / 2) && |
| 2357 | sdr->tREH_min <= (clk_period / 2)) { |
| 2358 | /* Performance mode. */ |
| 2359 | ext_rd_mode = 0; |
| 2360 | tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, |
| 2361 | sdr->tREA_max, ext_rd_mode); |
| 2362 | tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, |
| 2363 | board_delay_skew_min, |
| 2364 | ext_rd_mode); |
| 2365 | /* |
| 2366 | * Check if data valid window and sampling point can be found |
| 2367 | * and is not on the edge (ie. we have hold margin). |
| 2368 | * If not extend the tRP timings. |
| 2369 | */ |
| 2370 | if (tdvw > 0) { |
| 2371 | if (tdvw_max <= tdvw_min || |
| 2372 | (tdvw_max % dqs_sampl_res) == 0) { |
| 2373 | /* |
| 2374 | * No valid sampling point so the RE pulse need |
| 2375 | * to be widen widening by half clock cycle. |
| 2376 | */ |
| 2377 | ext_rd_mode = 1; |
| 2378 | } |
| 2379 | } else { |
| 2380 | /* |
| 2381 | * There is no valid window |
| 2382 | * to be able to sample data the tRP need to be widen. |
| 2383 | * Very safe calculations are performed here. |
| 2384 | */ |
| 2385 | trp_cnt = (sdr->tREA_max + board_delay_skew_max |
| 2386 | + dqs_sampl_res) / clk_period; |
| 2387 | ext_rd_mode = 1; |
| 2388 | } |
| 2389 | |
| 2390 | } else { |
| 2391 | /* Extended read mode. */ |
| 2392 | u32 trh; |
| 2393 | |
| 2394 | ext_rd_mode = 1; |
| 2395 | trp_cnt = calc_cycl(sdr->tRP_min, clk_period); |
| 2396 | trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); |
| 2397 | if (sdr->tREH_min >= trh) |
| 2398 | trh_cnt = calc_cycl(sdr->tREH_min, clk_period); |
| 2399 | else |
| 2400 | trh_cnt = calc_cycl(trh, clk_period); |
| 2401 | |
| 2402 | tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, |
| 2403 | sdr->tREA_max, ext_rd_mode); |
| 2404 | /* |
| 2405 | * Check if data valid window and sampling point can be found |
| 2406 | * or if it is at the edge check if previous is valid |
| 2407 | * - if not extend the tRP timings. |
| 2408 | */ |
| 2409 | if (tdvw > 0) { |
| 2410 | tdvw_max = calc_tdvw_max(trp_cnt, clk_period, |
| 2411 | sdr->tRHOH_min, |
| 2412 | board_delay_skew_min, |
| 2413 | ext_rd_mode); |
| 2414 | |
| 2415 | if ((((tdvw_max / dqs_sampl_res) |
| 2416 | * dqs_sampl_res) <= tdvw_min) || |
| 2417 | (((tdvw_max % dqs_sampl_res) == 0) && |
| 2418 | (((tdvw_max / dqs_sampl_res - 1) |
| 2419 | * dqs_sampl_res) <= tdvw_min))) { |
| 2420 | /* |
| 2421 | * Data valid window width is lower than |
| 2422 | * sampling resolution and do not hit any |
| 2423 | * sampling point to be sure the sampling point |
| 2424 | * will be found the RE low pulse width will be |
| 2425 | * extended by one clock cycle. |
| 2426 | */ |
| 2427 | trp_cnt = trp_cnt + 1; |
| 2428 | } |
| 2429 | } else { |
| 2430 | /* |
| 2431 | * There is no valid window to be able to sample data. |
| 2432 | * The tRP need to be widen. |
| 2433 | * Very safe calculations are performed here. |
| 2434 | */ |
| 2435 | trp_cnt = (sdr->tREA_max + board_delay_skew_max |
| 2436 | + dqs_sampl_res) / clk_period; |
| 2437 | } |
| 2438 | } |
| 2439 | |
| 2440 | tdvw_max = calc_tdvw_max(trp_cnt, clk_period, |
| 2441 | sdr->tRHOH_min, |
| 2442 | board_delay_skew_min, ext_rd_mode); |
| 2443 | |
| 2444 | if (sdr->tWC_min <= clk_period && |
| 2445 | (sdr->tWP_min + if_skew) <= (clk_period / 2) && |
| 2446 | (sdr->tWH_min + if_skew) <= (clk_period / 2)) { |
| 2447 | ext_wr_mode = 0; |
| 2448 | } else { |
| 2449 | u32 twh; |
| 2450 | |
| 2451 | ext_wr_mode = 1; |
| 2452 | twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); |
| 2453 | if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) |
| 2454 | twp_cnt = calc_cycl(sdr->tALS_min + if_skew, |
| 2455 | clk_period); |
| 2456 | |
| 2457 | twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); |
| 2458 | if (sdr->tWH_min >= twh) |
| 2459 | twh = sdr->tWH_min; |
| 2460 | |
| 2461 | twh_cnt = calc_cycl(twh + if_skew, clk_period); |
| 2462 | } |
| 2463 | |
| 2464 | reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); |
| 2465 | reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); |
| 2466 | reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); |
| 2467 | reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); |
| 2468 | t->async_toggle_timings = reg; |
| 2469 | dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); |
| 2470 | |
| 2471 | tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); |
| 2472 | tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); |
| 2473 | twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); |
| 2474 | trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); |
| 2475 | reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); |
| 2476 | |
| 2477 | /* |
| 2478 | * If timing exceeds delay field in timing register |
| 2479 | * then use maximum value. |
| 2480 | */ |
| 2481 | if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) |
| 2482 | reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); |
| 2483 | else |
| 2484 | reg |= TIMINGS0_TCCS; |
| 2485 | |
| 2486 | reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); |
| 2487 | reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); |
| 2488 | t->timings0 = reg; |
| 2489 | dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); |
| 2490 | |
| 2491 | /* The following is related to single signal so skew is not needed. */ |
| 2492 | trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); |
| 2493 | trhz_cnt = trhz_cnt + 1; |
| 2494 | twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); |
| 2495 | /* |
| 2496 | * Because of the two stage syncflop the value must be increased by 3 |
| 2497 | * first value is related with sync, second value is related |
| 2498 | * with output if delay. |
| 2499 | */ |
| 2500 | twb_cnt = twb_cnt + 3 + 5; |
| 2501 | /* |
| 2502 | * The following is related to the we edge of the random data input |
| 2503 | * sequence so skew is not needed. |
| 2504 | */ |
| 2505 | tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); |
| 2506 | reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); |
| 2507 | reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); |
| 2508 | reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); |
| 2509 | t->timings1 = reg; |
| 2510 | dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); |
| 2511 | |
| 2512 | tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); |
| 2513 | if (tfeat_cnt < twb_cnt) |
| 2514 | tfeat_cnt = twb_cnt; |
| 2515 | |
| 2516 | tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); |
| 2517 | tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); |
| 2518 | |
| 2519 | reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); |
| 2520 | reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); |
| 2521 | reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); |
| 2522 | t->timings2 = reg; |
| 2523 | dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); |
| 2524 | |
| 2525 | if (cdns_ctrl->caps2.is_phy_type_dll) { |
| 2526 | reg = DLL_PHY_CTRL_DLL_RST_N; |
| 2527 | if (ext_wr_mode) |
| 2528 | reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; |
| 2529 | if (ext_rd_mode) |
| 2530 | reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; |
| 2531 | |
| 2532 | reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); |
| 2533 | reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); |
| 2534 | t->dll_phy_ctrl = reg; |
| 2535 | dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); |
| 2536 | } |
| 2537 | |
| 2538 | /* Sampling point calculation. */ |
| 2539 | if ((tdvw_max % dqs_sampl_res) > 0) |
| 2540 | sampling_point = tdvw_max / dqs_sampl_res; |
| 2541 | else |
| 2542 | sampling_point = (tdvw_max / dqs_sampl_res - 1); |
| 2543 | |
| 2544 | if (sampling_point * dqs_sampl_res > tdvw_min) { |
| 2545 | dll_phy_dqs_timing = |
| 2546 | FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); |
| 2547 | dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; |
| 2548 | phony_dqs_timing = sampling_point / phony_dqs_mod; |
| 2549 | |
| 2550 | if ((sampling_point % 2) > 0) { |
| 2551 | dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; |
| 2552 | if ((tdvw_max % dqs_sampl_res) == 0) |
| 2553 | /* |
| 2554 | * Calculation for sampling point at the edge |
| 2555 | * of data and being odd number. |
| 2556 | */ |
| 2557 | phony_dqs_timing = (tdvw_max / dqs_sampl_res) |
| 2558 | / phony_dqs_mod - 1; |
| 2559 | |
| 2560 | if (!cdns_ctrl->caps2.is_phy_type_dll) |
| 2561 | phony_dqs_timing--; |
| 2562 | |
| 2563 | } else { |
| 2564 | phony_dqs_timing--; |
| 2565 | } |
| 2566 | rd_del_sel = phony_dqs_timing + 3; |
| 2567 | } else { |
| 2568 | dev_warn(cdns_ctrl->dev, |
| 2569 | "ERROR : cannot find valid sampling point\n"); |
| 2570 | } |
| 2571 | |
| 2572 | reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); |
| 2573 | if (cdns_ctrl->caps2.is_phy_type_dll) |
| 2574 | reg |= PHY_CTRL_SDR_DQS; |
| 2575 | t->phy_ctrl = reg; |
| 2576 | dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); |
| 2577 | |
| 2578 | if (cdns_ctrl->caps2.is_phy_type_dll) { |
| 2579 | dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); |
| 2580 | dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); |
| 2581 | dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", |
| 2582 | dll_phy_dqs_timing); |
| 2583 | t->phy_dqs_timing = dll_phy_dqs_timing; |
| 2584 | |
| 2585 | reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); |
| 2586 | dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", |
| 2587 | reg); |
| 2588 | t->phy_gate_lpbk_ctrl = reg; |
| 2589 | |
| 2590 | dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", |
| 2591 | PHY_DLL_MASTER_CTRL_BYPASS_MODE); |
| 2592 | dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); |
| 2593 | } |
| 2594 | |
| 2595 | return 0; |
| 2596 | } |
| 2597 | |
| 2598 | static int cadence_nand_attach_chip(struct nand_chip *chip) |
| 2599 | { |
| 2600 | struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); |
| 2601 | struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| 2602 | u32 ecc_size; |
| 2603 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 2604 | int ret; |
| 2605 | |
| 2606 | if (chip->options & NAND_BUSWIDTH_16) { |
| 2607 | ret = cadence_nand_set_access_width16(cdns_ctrl, true); |
| 2608 | if (ret) |
| 2609 | return ret; |
| 2610 | } |
| 2611 | |
| 2612 | chip->bbt_options |= NAND_BBT_USE_FLASH; |
| 2613 | chip->bbt_options |= NAND_BBT_NO_OOB; |
| 2614 | chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| 2615 | |
| 2616 | chip->options |= NAND_NO_SUBPAGE_WRITE; |
| 2617 | |
| 2618 | cdns_chip->bbm_offs = chip->badblockpos; |
| 2619 | cdns_chip->bbm_offs &= ~0x01; |
| 2620 | /* this value should be even number */ |
| 2621 | cdns_chip->bbm_len = 2; |
| 2622 | |
| 2623 | ret = nand_ecc_choose_conf(chip, |
| 2624 | &cdns_ctrl->ecc_caps, |
| 2625 | mtd->oobsize - cdns_chip->bbm_len); |
| 2626 | if (ret) { |
| 2627 | dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); |
| 2628 | return ret; |
| 2629 | } |
| 2630 | |
| 2631 | dev_dbg(cdns_ctrl->dev, |
| 2632 | "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", |
| 2633 | chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); |
| 2634 | |
| 2635 | /* Error correction configuration. */ |
| 2636 | cdns_chip->sector_size = chip->ecc.size; |
| 2637 | cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; |
| 2638 | ecc_size = cdns_chip->sector_count * chip->ecc.bytes; |
| 2639 | |
| 2640 | cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; |
| 2641 | |
| 2642 | if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size) |
| 2643 | cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size; |
| 2644 | |
| 2645 | if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) |
| 2646 | > mtd->oobsize) |
| 2647 | cdns_chip->avail_oob_size -= 4; |
| 2648 | |
| 2649 | ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength); |
| 2650 | if (ret < 0) |
| 2651 | return -EINVAL; |
| 2652 | |
| 2653 | cdns_chip->corr_str_idx = (u8)ret; |
| 2654 | |
| 2655 | if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, |
| 2656 | 1000000, |
| 2657 | CTRL_STATUS_CTRL_BUSY, true)) |
| 2658 | return -ETIMEDOUT; |
| 2659 | |
| 2660 | cadence_nand_set_ecc_strength(cdns_ctrl, |
| 2661 | cdns_chip->corr_str_idx); |
| 2662 | |
| 2663 | cadence_nand_set_erase_detection(cdns_ctrl, true, |
| 2664 | chip->ecc.strength); |
| 2665 | |
| 2666 | /* Override the default read operations. */ |
| 2667 | chip->ecc.read_page = cadence_nand_read_page; |
| 2668 | chip->ecc.read_page_raw = cadence_nand_read_page_raw; |
| 2669 | chip->ecc.write_page = cadence_nand_write_page; |
| 2670 | chip->ecc.write_page_raw = cadence_nand_write_page_raw; |
| 2671 | chip->ecc.read_oob = cadence_nand_read_oob; |
| 2672 | chip->ecc.write_oob = cadence_nand_write_oob; |
| 2673 | chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; |
| 2674 | chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; |
| 2675 | |
| 2676 | if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) |
| 2677 | cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; |
| 2678 | |
| 2679 | /* Is 32-bit DMA supported? */ |
| 2680 | ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); |
| 2681 | if (ret) { |
| 2682 | dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); |
| 2683 | return ret; |
| 2684 | } |
| 2685 | |
| 2686 | mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); |
| 2687 | |
| 2688 | return 0; |
| 2689 | } |
| 2690 | |
| 2691 | static const struct nand_controller_ops cadence_nand_controller_ops = { |
| 2692 | .attach_chip = cadence_nand_attach_chip, |
| 2693 | .exec_op = cadence_nand_exec_op, |
| 2694 | .setup_interface = cadence_nand_setup_interface, |
| 2695 | }; |
| 2696 | |
| 2697 | static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, |
| 2698 | struct device_node *np) |
| 2699 | { |
| 2700 | struct cdns_nand_chip *cdns_chip; |
| 2701 | struct mtd_info *mtd; |
| 2702 | struct nand_chip *chip; |
| 2703 | int nsels, ret, i; |
| 2704 | u32 cs; |
| 2705 | |
| 2706 | nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); |
| 2707 | if (nsels <= 0) { |
| 2708 | dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); |
| 2709 | return -EINVAL; |
| 2710 | } |
| 2711 | |
| 2712 | /* Allocate the nand chip structure. */ |
| 2713 | cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + |
| 2714 | (nsels * sizeof(u8)), |
| 2715 | GFP_KERNEL); |
| 2716 | if (!cdns_chip) { |
| 2717 | dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); |
| 2718 | return -ENOMEM; |
| 2719 | } |
| 2720 | |
| 2721 | cdns_chip->nsels = nsels; |
| 2722 | |
| 2723 | for (i = 0; i < nsels; i++) { |
| 2724 | /* Retrieve CS id. */ |
| 2725 | ret = of_property_read_u32_index(np, "reg", i, &cs); |
| 2726 | if (ret) { |
| 2727 | dev_err(cdns_ctrl->dev, |
| 2728 | "could not retrieve reg property: %d\n", |
| 2729 | ret); |
| 2730 | return ret; |
| 2731 | } |
| 2732 | |
| 2733 | if (cs >= cdns_ctrl->caps2.max_banks) { |
| 2734 | dev_err(cdns_ctrl->dev, |
| 2735 | "invalid reg value: %u (max CS = %d)\n", |
| 2736 | cs, cdns_ctrl->caps2.max_banks); |
| 2737 | return -EINVAL; |
| 2738 | } |
| 2739 | |
| 2740 | if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { |
| 2741 | dev_err(cdns_ctrl->dev, |
| 2742 | "CS %d already assigned\n", cs); |
| 2743 | return -EINVAL; |
| 2744 | } |
| 2745 | |
| 2746 | cdns_chip->cs[i] = cs; |
| 2747 | } |
| 2748 | |
| 2749 | chip = &cdns_chip->chip; |
| 2750 | chip->controller = &cdns_ctrl->controller; |
| 2751 | nand_set_flash_node(chip, np); |
| 2752 | |
| 2753 | mtd = nand_to_mtd(chip); |
| 2754 | mtd->dev.parent = cdns_ctrl->dev; |
| 2755 | |
| 2756 | /* |
| 2757 | * Default to HW ECC engine mode. If the nand-ecc-mode property is given |
| 2758 | * in the DT node, this entry will be overwritten in nand_scan_ident(). |
| 2759 | */ |
| 2760 | chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| 2761 | |
| 2762 | ret = nand_scan(chip, cdns_chip->nsels); |
| 2763 | if (ret) { |
| 2764 | dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); |
| 2765 | return ret; |
| 2766 | } |
| 2767 | |
| 2768 | ret = mtd_device_register(mtd, NULL, 0); |
| 2769 | if (ret) { |
| 2770 | dev_err(cdns_ctrl->dev, |
| 2771 | "failed to register mtd device: %d\n", ret); |
| 2772 | nand_cleanup(chip); |
| 2773 | return ret; |
| 2774 | } |
| 2775 | |
| 2776 | list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); |
| 2777 | |
| 2778 | return 0; |
| 2779 | } |
| 2780 | |
| 2781 | static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) |
| 2782 | { |
| 2783 | struct cdns_nand_chip *entry, *temp; |
| 2784 | struct nand_chip *chip; |
| 2785 | int ret; |
| 2786 | |
| 2787 | list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { |
| 2788 | chip = &entry->chip; |
| 2789 | ret = mtd_device_unregister(nand_to_mtd(chip)); |
| 2790 | WARN_ON(ret); |
| 2791 | nand_cleanup(chip); |
| 2792 | list_del(&entry->node); |
| 2793 | } |
| 2794 | } |
| 2795 | |
| 2796 | static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) |
| 2797 | { |
| 2798 | struct device_node *np = cdns_ctrl->dev->of_node; |
| 2799 | struct device_node *nand_np; |
| 2800 | int max_cs = cdns_ctrl->caps2.max_banks; |
| 2801 | int nchips, ret; |
| 2802 | |
| 2803 | nchips = of_get_child_count(np); |
| 2804 | |
| 2805 | if (nchips > max_cs) { |
| 2806 | dev_err(cdns_ctrl->dev, |
| 2807 | "too many NAND chips: %d (max = %d CS)\n", |
| 2808 | nchips, max_cs); |
| 2809 | return -EINVAL; |
| 2810 | } |
| 2811 | |
| 2812 | for_each_child_of_node(np, nand_np) { |
| 2813 | ret = cadence_nand_chip_init(cdns_ctrl, nand_np); |
| 2814 | if (ret) { |
| 2815 | of_node_put(nand_np); |
| 2816 | cadence_nand_chips_cleanup(cdns_ctrl); |
| 2817 | return ret; |
| 2818 | } |
| 2819 | } |
| 2820 | |
| 2821 | return 0; |
| 2822 | } |
| 2823 | |
| 2824 | static void |
| 2825 | cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) |
| 2826 | { |
| 2827 | /* Disable interrupts. */ |
| 2828 | writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); |
| 2829 | } |
| 2830 | |
| 2831 | static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) |
| 2832 | { |
| 2833 | dma_cap_mask_t mask; |
| 2834 | int ret; |
| 2835 | |
| 2836 | cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, |
| 2837 | sizeof(*cdns_ctrl->cdma_desc), |
| 2838 | &cdns_ctrl->dma_cdma_desc, |
| 2839 | GFP_KERNEL); |
| 2840 | if (!cdns_ctrl->dma_cdma_desc) |
| 2841 | return -ENOMEM; |
| 2842 | |
| 2843 | cdns_ctrl->buf_size = SZ_16K; |
| 2844 | cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); |
| 2845 | if (!cdns_ctrl->buf) { |
| 2846 | ret = -ENOMEM; |
| 2847 | goto free_buf_desc; |
| 2848 | } |
| 2849 | |
| 2850 | if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, |
| 2851 | IRQF_SHARED, "cadence-nand-controller", |
| 2852 | cdns_ctrl)) { |
| 2853 | dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); |
| 2854 | ret = -ENODEV; |
| 2855 | goto free_buf; |
| 2856 | } |
| 2857 | |
| 2858 | spin_lock_init(&cdns_ctrl->irq_lock); |
| 2859 | init_completion(&cdns_ctrl->complete); |
| 2860 | |
| 2861 | ret = cadence_nand_hw_init(cdns_ctrl); |
| 2862 | if (ret) |
| 2863 | goto disable_irq; |
| 2864 | |
| 2865 | dma_cap_zero(mask); |
| 2866 | dma_cap_set(DMA_MEMCPY, mask); |
| 2867 | |
| 2868 | if (cdns_ctrl->caps1->has_dma) { |
| 2869 | cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL); |
| 2870 | if (!cdns_ctrl->dmac) { |
| 2871 | dev_err(cdns_ctrl->dev, |
| 2872 | "Unable to get a DMA channel\n"); |
| 2873 | ret = -EBUSY; |
| 2874 | goto disable_irq; |
| 2875 | } |
| 2876 | } |
| 2877 | |
| 2878 | nand_controller_init(&cdns_ctrl->controller); |
| 2879 | INIT_LIST_HEAD(&cdns_ctrl->chips); |
| 2880 | |
| 2881 | cdns_ctrl->controller.ops = &cadence_nand_controller_ops; |
| 2882 | cdns_ctrl->curr_corr_str_idx = 0xFF; |
| 2883 | |
| 2884 | ret = cadence_nand_chips_init(cdns_ctrl); |
| 2885 | if (ret) { |
| 2886 | dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", |
| 2887 | ret); |
| 2888 | goto dma_release_chnl; |
| 2889 | } |
| 2890 | |
| 2891 | kfree(cdns_ctrl->buf); |
| 2892 | cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); |
| 2893 | if (!cdns_ctrl->buf) { |
| 2894 | ret = -ENOMEM; |
| 2895 | goto dma_release_chnl; |
| 2896 | } |
| 2897 | |
| 2898 | return 0; |
| 2899 | |
| 2900 | dma_release_chnl: |
| 2901 | if (cdns_ctrl->dmac) |
| 2902 | dma_release_channel(cdns_ctrl->dmac); |
| 2903 | |
| 2904 | disable_irq: |
| 2905 | cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); |
| 2906 | |
| 2907 | free_buf: |
| 2908 | kfree(cdns_ctrl->buf); |
| 2909 | |
| 2910 | free_buf_desc: |
| 2911 | dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), |
| 2912 | cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); |
| 2913 | |
| 2914 | return ret; |
| 2915 | } |
| 2916 | |
| 2917 | /* Driver exit point. */ |
| 2918 | static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) |
| 2919 | { |
| 2920 | cadence_nand_chips_cleanup(cdns_ctrl); |
| 2921 | cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); |
| 2922 | kfree(cdns_ctrl->buf); |
| 2923 | dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), |
| 2924 | cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); |
| 2925 | |
| 2926 | if (cdns_ctrl->dmac) |
| 2927 | dma_release_channel(cdns_ctrl->dmac); |
| 2928 | } |
| 2929 | |
| 2930 | struct cadence_nand_dt { |
| 2931 | struct cdns_nand_ctrl cdns_ctrl; |
| 2932 | struct clk *clk; |
| 2933 | }; |
| 2934 | |
| 2935 | static const struct cadence_nand_dt_devdata cadence_nand_default = { |
| 2936 | .if_skew = 0, |
| 2937 | .has_dma = 1, |
| 2938 | }; |
| 2939 | |
| 2940 | static const struct of_device_id cadence_nand_dt_ids[] = { |
| 2941 | { |
| 2942 | .compatible = "cdns,hp-nfc", |
| 2943 | .data = &cadence_nand_default |
| 2944 | }, {} |
| 2945 | }; |
| 2946 | |
| 2947 | MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); |
| 2948 | |
| 2949 | static int cadence_nand_dt_probe(struct platform_device *ofdev) |
| 2950 | { |
| 2951 | struct resource *res; |
| 2952 | struct cadence_nand_dt *dt; |
| 2953 | struct cdns_nand_ctrl *cdns_ctrl; |
| 2954 | int ret; |
| 2955 | const struct of_device_id *of_id; |
| 2956 | const struct cadence_nand_dt_devdata *devdata; |
| 2957 | u32 val; |
| 2958 | |
| 2959 | of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev); |
| 2960 | if (of_id) { |
| 2961 | ofdev->id_entry = of_id->data; |
| 2962 | devdata = of_id->data; |
| 2963 | } else { |
| 2964 | pr_err("Failed to find the right device id.\n"); |
| 2965 | return -ENOMEM; |
| 2966 | } |
| 2967 | |
| 2968 | dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); |
| 2969 | if (!dt) |
| 2970 | return -ENOMEM; |
| 2971 | |
| 2972 | cdns_ctrl = &dt->cdns_ctrl; |
| 2973 | cdns_ctrl->caps1 = devdata; |
| 2974 | |
| 2975 | cdns_ctrl->dev = &ofdev->dev; |
| 2976 | cdns_ctrl->irq = platform_get_irq(ofdev, 0); |
| 2977 | if (cdns_ctrl->irq < 0) |
| 2978 | return cdns_ctrl->irq; |
| 2979 | |
| 2980 | dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); |
| 2981 | |
| 2982 | cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); |
| 2983 | if (IS_ERR(cdns_ctrl->reg)) |
| 2984 | return PTR_ERR(cdns_ctrl->reg); |
| 2985 | |
| 2986 | res = platform_get_resource(ofdev, IORESOURCE_MEM, 1); |
| 2987 | cdns_ctrl->io.dma = res->start; |
| 2988 | cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res); |
| 2989 | if (IS_ERR(cdns_ctrl->io.virt)) |
| 2990 | return PTR_ERR(cdns_ctrl->io.virt); |
| 2991 | |
| 2992 | dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); |
| 2993 | if (IS_ERR(dt->clk)) |
| 2994 | return PTR_ERR(dt->clk); |
| 2995 | |
| 2996 | cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); |
| 2997 | |
| 2998 | ret = of_property_read_u32(ofdev->dev.of_node, |
| 2999 | "cdns,board-delay-ps", &val); |
| 3000 | if (ret) { |
| 3001 | val = 4830; |
| 3002 | dev_info(cdns_ctrl->dev, |
| 3003 | "missing cdns,board-delay-ps property, %d was set\n", |
| 3004 | val); |
| 3005 | } |
| 3006 | cdns_ctrl->board_delay = val; |
| 3007 | |
| 3008 | ret = cadence_nand_init(cdns_ctrl); |
| 3009 | if (ret) |
| 3010 | return ret; |
| 3011 | |
| 3012 | platform_set_drvdata(ofdev, dt); |
| 3013 | return 0; |
| 3014 | } |
| 3015 | |
| 3016 | static int cadence_nand_dt_remove(struct platform_device *ofdev) |
| 3017 | { |
| 3018 | struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); |
| 3019 | |
| 3020 | cadence_nand_remove(&dt->cdns_ctrl); |
| 3021 | |
| 3022 | return 0; |
| 3023 | } |
| 3024 | |
| 3025 | static struct platform_driver cadence_nand_dt_driver = { |
| 3026 | .probe = cadence_nand_dt_probe, |
| 3027 | .remove = cadence_nand_dt_remove, |
| 3028 | .driver = { |
| 3029 | .name = "cadence-nand-controller", |
| 3030 | .of_match_table = cadence_nand_dt_ids, |
| 3031 | }, |
| 3032 | }; |
| 3033 | |
| 3034 | module_platform_driver(cadence_nand_dt_driver); |
| 3035 | |
| 3036 | MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>"); |
| 3037 | MODULE_LICENSE("GPL v2"); |
| 3038 | MODULE_DESCRIPTION("Driver for Cadence NAND flash controller"); |
| 3039 | |