Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright © 2006-2014 Intel Corporation. |
| 4 | * |
| 5 | * Authors: David Woodhouse <dwmw2@infradead.org>, |
| 6 | * Ashok Raj <ashok.raj@intel.com>, |
| 7 | * Shaohua Li <shaohua.li@intel.com>, |
| 8 | * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, |
| 9 | * Fenghua Yu <fenghua.yu@intel.com> |
| 10 | * Joerg Roedel <jroedel@suse.de> |
| 11 | */ |
| 12 | |
| 13 | #define pr_fmt(fmt) "DMAR: " fmt |
| 14 | #define dev_fmt(fmt) pr_fmt(fmt) |
| 15 | |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/bitmap.h> |
| 18 | #include <linux/debugfs.h> |
| 19 | #include <linux/export.h> |
| 20 | #include <linux/slab.h> |
| 21 | #include <linux/irq.h> |
| 22 | #include <linux/interrupt.h> |
| 23 | #include <linux/spinlock.h> |
| 24 | #include <linux/pci.h> |
| 25 | #include <linux/dmar.h> |
| 26 | #include <linux/dma-map-ops.h> |
| 27 | #include <linux/mempool.h> |
| 28 | #include <linux/memory.h> |
| 29 | #include <linux/cpu.h> |
| 30 | #include <linux/timer.h> |
| 31 | #include <linux/io.h> |
| 32 | #include <linux/iova.h> |
| 33 | #include <linux/iommu.h> |
| 34 | #include <linux/intel-iommu.h> |
| 35 | #include <linux/syscore_ops.h> |
| 36 | #include <linux/tboot.h> |
| 37 | #include <linux/dmi.h> |
| 38 | #include <linux/pci-ats.h> |
| 39 | #include <linux/memblock.h> |
| 40 | #include <linux/dma-map-ops.h> |
| 41 | #include <linux/dma-direct.h> |
| 42 | #include <linux/crash_dump.h> |
| 43 | #include <linux/numa.h> |
| 44 | #include <linux/swiotlb.h> |
| 45 | #include <asm/irq_remapping.h> |
| 46 | #include <asm/cacheflush.h> |
| 47 | #include <asm/iommu.h> |
| 48 | #include <trace/events/intel_iommu.h> |
| 49 | |
| 50 | #include "../irq_remapping.h" |
| 51 | #include "pasid.h" |
| 52 | |
| 53 | #define ROOT_SIZE VTD_PAGE_SIZE |
| 54 | #define CONTEXT_SIZE VTD_PAGE_SIZE |
| 55 | |
| 56 | #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) |
| 57 | #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) |
| 58 | #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) |
| 59 | #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) |
| 60 | |
| 61 | #define IOAPIC_RANGE_START (0xfee00000) |
| 62 | #define IOAPIC_RANGE_END (0xfeefffff) |
| 63 | #define IOVA_START_ADDR (0x1000) |
| 64 | |
| 65 | #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57 |
| 66 | |
| 67 | #define MAX_AGAW_WIDTH 64 |
| 68 | #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT) |
| 69 | |
| 70 | #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1) |
| 71 | #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1) |
| 72 | |
| 73 | /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR |
| 74 | to match. That way, we can use 'unsigned long' for PFNs with impunity. */ |
| 75 | #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ |
| 76 | __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) |
| 77 | #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) |
| 78 | |
| 79 | /* IO virtual address start page frame number */ |
| 80 | #define IOVA_START_PFN (1) |
| 81 | |
| 82 | #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) |
| 83 | |
| 84 | /* page table handling */ |
| 85 | #define LEVEL_STRIDE (9) |
| 86 | #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) |
| 87 | |
| 88 | /* |
| 89 | * This bitmap is used to advertise the page sizes our hardware support |
| 90 | * to the IOMMU core, which will then use this information to split |
| 91 | * physically contiguous memory regions it is mapping into page sizes |
| 92 | * that we support. |
| 93 | * |
| 94 | * Traditionally the IOMMU core just handed us the mappings directly, |
| 95 | * after making sure the size is an order of a 4KiB page and that the |
| 96 | * mapping has natural alignment. |
| 97 | * |
| 98 | * To retain this behavior, we currently advertise that we support |
| 99 | * all page sizes that are an order of 4KiB. |
| 100 | * |
| 101 | * If at some point we'd like to utilize the IOMMU core's new behavior, |
| 102 | * we could change this to advertise the real page sizes we support. |
| 103 | */ |
| 104 | #define INTEL_IOMMU_PGSIZES (~0xFFFUL) |
| 105 | |
| 106 | static inline int agaw_to_level(int agaw) |
| 107 | { |
| 108 | return agaw + 2; |
| 109 | } |
| 110 | |
| 111 | static inline int agaw_to_width(int agaw) |
| 112 | { |
| 113 | return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH); |
| 114 | } |
| 115 | |
| 116 | static inline int width_to_agaw(int width) |
| 117 | { |
| 118 | return DIV_ROUND_UP(width - 30, LEVEL_STRIDE); |
| 119 | } |
| 120 | |
| 121 | static inline unsigned int level_to_offset_bits(int level) |
| 122 | { |
| 123 | return (level - 1) * LEVEL_STRIDE; |
| 124 | } |
| 125 | |
| 126 | static inline int pfn_level_offset(u64 pfn, int level) |
| 127 | { |
| 128 | return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; |
| 129 | } |
| 130 | |
| 131 | static inline u64 level_mask(int level) |
| 132 | { |
| 133 | return -1ULL << level_to_offset_bits(level); |
| 134 | } |
| 135 | |
| 136 | static inline u64 level_size(int level) |
| 137 | { |
| 138 | return 1ULL << level_to_offset_bits(level); |
| 139 | } |
| 140 | |
| 141 | static inline u64 align_to_level(u64 pfn, int level) |
| 142 | { |
| 143 | return (pfn + level_size(level) - 1) & level_mask(level); |
| 144 | } |
| 145 | |
| 146 | static inline unsigned long lvl_to_nr_pages(unsigned int lvl) |
| 147 | { |
| 148 | return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH); |
| 149 | } |
| 150 | |
| 151 | /* VT-d pages must always be _smaller_ than MM pages. Otherwise things |
| 152 | are never going to work. */ |
| 153 | static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) |
| 154 | { |
| 155 | return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); |
| 156 | } |
| 157 | |
| 158 | static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) |
| 159 | { |
| 160 | return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); |
| 161 | } |
| 162 | static inline unsigned long page_to_dma_pfn(struct page *pg) |
| 163 | { |
| 164 | return mm_to_dma_pfn(page_to_pfn(pg)); |
| 165 | } |
| 166 | static inline unsigned long virt_to_dma_pfn(void *p) |
| 167 | { |
| 168 | return page_to_dma_pfn(virt_to_page(p)); |
| 169 | } |
| 170 | |
| 171 | /* global iommu list, set NULL for ignored DMAR units */ |
| 172 | static struct intel_iommu **g_iommus; |
| 173 | |
| 174 | static void __init check_tylersburg_isoch(void); |
| 175 | static int rwbf_quirk; |
| 176 | |
| 177 | /* |
| 178 | * set to 1 to panic kernel if can't successfully enable VT-d |
| 179 | * (used when kernel is launched w/ TXT) |
| 180 | */ |
| 181 | static int force_on = 0; |
| 182 | static int intel_iommu_tboot_noforce; |
| 183 | static int no_platform_optin; |
| 184 | |
| 185 | #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) |
| 186 | |
| 187 | /* |
| 188 | * Take a root_entry and return the Lower Context Table Pointer (LCTP) |
| 189 | * if marked present. |
| 190 | */ |
| 191 | static phys_addr_t root_entry_lctp(struct root_entry *re) |
| 192 | { |
| 193 | if (!(re->lo & 1)) |
| 194 | return 0; |
| 195 | |
| 196 | return re->lo & VTD_PAGE_MASK; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Take a root_entry and return the Upper Context Table Pointer (UCTP) |
| 201 | * if marked present. |
| 202 | */ |
| 203 | static phys_addr_t root_entry_uctp(struct root_entry *re) |
| 204 | { |
| 205 | if (!(re->hi & 1)) |
| 206 | return 0; |
| 207 | |
| 208 | return re->hi & VTD_PAGE_MASK; |
| 209 | } |
| 210 | |
| 211 | static inline void context_clear_pasid_enable(struct context_entry *context) |
| 212 | { |
| 213 | context->lo &= ~(1ULL << 11); |
| 214 | } |
| 215 | |
| 216 | static inline bool context_pasid_enabled(struct context_entry *context) |
| 217 | { |
| 218 | return !!(context->lo & (1ULL << 11)); |
| 219 | } |
| 220 | |
| 221 | static inline void context_set_copied(struct context_entry *context) |
| 222 | { |
| 223 | context->hi |= (1ull << 3); |
| 224 | } |
| 225 | |
| 226 | static inline bool context_copied(struct context_entry *context) |
| 227 | { |
| 228 | return !!(context->hi & (1ULL << 3)); |
| 229 | } |
| 230 | |
| 231 | static inline bool __context_present(struct context_entry *context) |
| 232 | { |
| 233 | return (context->lo & 1); |
| 234 | } |
| 235 | |
| 236 | bool context_present(struct context_entry *context) |
| 237 | { |
| 238 | return context_pasid_enabled(context) ? |
| 239 | __context_present(context) : |
| 240 | __context_present(context) && !context_copied(context); |
| 241 | } |
| 242 | |
| 243 | static inline void context_set_present(struct context_entry *context) |
| 244 | { |
| 245 | context->lo |= 1; |
| 246 | } |
| 247 | |
| 248 | static inline void context_set_fault_enable(struct context_entry *context) |
| 249 | { |
| 250 | context->lo &= (((u64)-1) << 2) | 1; |
| 251 | } |
| 252 | |
| 253 | static inline void context_set_translation_type(struct context_entry *context, |
| 254 | unsigned long value) |
| 255 | { |
| 256 | context->lo &= (((u64)-1) << 4) | 3; |
| 257 | context->lo |= (value & 3) << 2; |
| 258 | } |
| 259 | |
| 260 | static inline void context_set_address_root(struct context_entry *context, |
| 261 | unsigned long value) |
| 262 | { |
| 263 | context->lo &= ~VTD_PAGE_MASK; |
| 264 | context->lo |= value & VTD_PAGE_MASK; |
| 265 | } |
| 266 | |
| 267 | static inline void context_set_address_width(struct context_entry *context, |
| 268 | unsigned long value) |
| 269 | { |
| 270 | context->hi |= value & 7; |
| 271 | } |
| 272 | |
| 273 | static inline void context_set_domain_id(struct context_entry *context, |
| 274 | unsigned long value) |
| 275 | { |
| 276 | context->hi |= (value & ((1 << 16) - 1)) << 8; |
| 277 | } |
| 278 | |
| 279 | static inline int context_domain_id(struct context_entry *c) |
| 280 | { |
| 281 | return((c->hi >> 8) & 0xffff); |
| 282 | } |
| 283 | |
| 284 | static inline void context_clear_entry(struct context_entry *context) |
| 285 | { |
| 286 | context->lo = 0; |
| 287 | context->hi = 0; |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * This domain is a statically identity mapping domain. |
| 292 | * 1. This domain creats a static 1:1 mapping to all usable memory. |
| 293 | * 2. It maps to each iommu if successful. |
| 294 | * 3. Each iommu mapps to this domain if successful. |
| 295 | */ |
| 296 | static struct dmar_domain *si_domain; |
| 297 | static int hw_pass_through = 1; |
| 298 | |
| 299 | #define for_each_domain_iommu(idx, domain) \ |
| 300 | for (idx = 0; idx < g_num_of_iommus; idx++) \ |
| 301 | if (domain->iommu_refcnt[idx]) |
| 302 | |
| 303 | struct dmar_rmrr_unit { |
| 304 | struct list_head list; /* list of rmrr units */ |
| 305 | struct acpi_dmar_header *hdr; /* ACPI header */ |
| 306 | u64 base_address; /* reserved base address*/ |
| 307 | u64 end_address; /* reserved end address */ |
| 308 | struct dmar_dev_scope *devices; /* target devices */ |
| 309 | int devices_cnt; /* target device count */ |
| 310 | }; |
| 311 | |
| 312 | struct dmar_atsr_unit { |
| 313 | struct list_head list; /* list of ATSR units */ |
| 314 | struct acpi_dmar_header *hdr; /* ACPI header */ |
| 315 | struct dmar_dev_scope *devices; /* target devices */ |
| 316 | int devices_cnt; /* target device count */ |
| 317 | u8 include_all:1; /* include all ports */ |
| 318 | }; |
| 319 | |
| 320 | static LIST_HEAD(dmar_atsr_units); |
| 321 | static LIST_HEAD(dmar_rmrr_units); |
| 322 | |
| 323 | #define for_each_rmrr_units(rmrr) \ |
| 324 | list_for_each_entry(rmrr, &dmar_rmrr_units, list) |
| 325 | |
| 326 | /* bitmap for indexing intel_iommus */ |
| 327 | static int g_num_of_iommus; |
| 328 | |
| 329 | static void domain_exit(struct dmar_domain *domain); |
| 330 | static void domain_remove_dev_info(struct dmar_domain *domain); |
| 331 | static void dmar_remove_one_dev_info(struct device *dev); |
| 332 | static void __dmar_remove_one_dev_info(struct device_domain_info *info); |
| 333 | static int intel_iommu_attach_device(struct iommu_domain *domain, |
| 334 | struct device *dev); |
| 335 | static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, |
| 336 | dma_addr_t iova); |
| 337 | |
| 338 | #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON |
| 339 | int dmar_disabled = 0; |
| 340 | #else |
| 341 | int dmar_disabled = 1; |
| 342 | #endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */ |
| 343 | |
| 344 | #ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON |
| 345 | int intel_iommu_sm = 1; |
| 346 | #else |
| 347 | int intel_iommu_sm; |
| 348 | #endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */ |
| 349 | |
| 350 | int intel_iommu_enabled = 0; |
| 351 | EXPORT_SYMBOL_GPL(intel_iommu_enabled); |
| 352 | |
| 353 | static int dmar_map_gfx = 1; |
| 354 | static int dmar_forcedac; |
| 355 | static int intel_iommu_strict; |
| 356 | static int intel_iommu_superpage = 1; |
| 357 | static int iommu_identity_mapping; |
| 358 | static int intel_no_bounce; |
| 359 | static int iommu_skip_te_disable; |
| 360 | |
| 361 | #define IDENTMAP_GFX 2 |
| 362 | #define IDENTMAP_AZALIA 4 |
| 363 | |
| 364 | int intel_iommu_gfx_mapped; |
| 365 | EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped); |
| 366 | |
| 367 | #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2)) |
| 368 | struct device_domain_info *get_domain_info(struct device *dev) |
| 369 | { |
| 370 | struct device_domain_info *info; |
| 371 | |
| 372 | if (!dev) |
| 373 | return NULL; |
| 374 | |
| 375 | info = dev_iommu_priv_get(dev); |
| 376 | if (unlikely(info == DEFER_DEVICE_DOMAIN_INFO)) |
| 377 | return NULL; |
| 378 | |
| 379 | return info; |
| 380 | } |
| 381 | |
| 382 | DEFINE_SPINLOCK(device_domain_lock); |
| 383 | static LIST_HEAD(device_domain_list); |
| 384 | |
| 385 | #define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) && \ |
| 386 | to_pci_dev(d)->untrusted) |
| 387 | |
| 388 | /* |
| 389 | * Iterate over elements in device_domain_list and call the specified |
| 390 | * callback @fn against each element. |
| 391 | */ |
| 392 | int for_each_device_domain(int (*fn)(struct device_domain_info *info, |
| 393 | void *data), void *data) |
| 394 | { |
| 395 | int ret = 0; |
| 396 | unsigned long flags; |
| 397 | struct device_domain_info *info; |
| 398 | |
| 399 | spin_lock_irqsave(&device_domain_lock, flags); |
| 400 | list_for_each_entry(info, &device_domain_list, global) { |
| 401 | ret = fn(info, data); |
| 402 | if (ret) { |
| 403 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 404 | return ret; |
| 405 | } |
| 406 | } |
| 407 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 408 | |
| 409 | return 0; |
| 410 | } |
| 411 | |
| 412 | const struct iommu_ops intel_iommu_ops; |
| 413 | |
| 414 | static bool translation_pre_enabled(struct intel_iommu *iommu) |
| 415 | { |
| 416 | return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); |
| 417 | } |
| 418 | |
| 419 | static void clear_translation_pre_enabled(struct intel_iommu *iommu) |
| 420 | { |
| 421 | iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; |
| 422 | } |
| 423 | |
| 424 | static void init_translation_status(struct intel_iommu *iommu) |
| 425 | { |
| 426 | u32 gsts; |
| 427 | |
| 428 | gsts = readl(iommu->reg + DMAR_GSTS_REG); |
| 429 | if (gsts & DMA_GSTS_TES) |
| 430 | iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; |
| 431 | } |
| 432 | |
| 433 | static int __init intel_iommu_setup(char *str) |
| 434 | { |
| 435 | if (!str) |
| 436 | return -EINVAL; |
| 437 | while (*str) { |
| 438 | if (!strncmp(str, "on", 2)) { |
| 439 | dmar_disabled = 0; |
| 440 | pr_info("IOMMU enabled\n"); |
| 441 | } else if (!strncmp(str, "off", 3)) { |
| 442 | dmar_disabled = 1; |
| 443 | no_platform_optin = 1; |
| 444 | pr_info("IOMMU disabled\n"); |
| 445 | } else if (!strncmp(str, "igfx_off", 8)) { |
| 446 | dmar_map_gfx = 0; |
| 447 | pr_info("Disable GFX device mapping\n"); |
| 448 | } else if (!strncmp(str, "forcedac", 8)) { |
| 449 | pr_info("Forcing DAC for PCI devices\n"); |
| 450 | dmar_forcedac = 1; |
| 451 | } else if (!strncmp(str, "strict", 6)) { |
| 452 | pr_info("Disable batched IOTLB flush\n"); |
| 453 | intel_iommu_strict = 1; |
| 454 | } else if (!strncmp(str, "sp_off", 6)) { |
| 455 | pr_info("Disable supported super page\n"); |
| 456 | intel_iommu_superpage = 0; |
| 457 | } else if (!strncmp(str, "sm_on", 5)) { |
| 458 | pr_info("Intel-IOMMU: scalable mode supported\n"); |
| 459 | intel_iommu_sm = 1; |
| 460 | } else if (!strncmp(str, "tboot_noforce", 13)) { |
| 461 | pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n"); |
| 462 | intel_iommu_tboot_noforce = 1; |
| 463 | } else if (!strncmp(str, "nobounce", 8)) { |
| 464 | pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n"); |
| 465 | intel_no_bounce = 1; |
| 466 | } |
| 467 | |
| 468 | str += strcspn(str, ","); |
| 469 | while (*str == ',') |
| 470 | str++; |
| 471 | } |
| 472 | return 0; |
| 473 | } |
| 474 | __setup("intel_iommu=", intel_iommu_setup); |
| 475 | |
| 476 | static struct kmem_cache *iommu_domain_cache; |
| 477 | static struct kmem_cache *iommu_devinfo_cache; |
| 478 | |
| 479 | static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did) |
| 480 | { |
| 481 | struct dmar_domain **domains; |
| 482 | int idx = did >> 8; |
| 483 | |
| 484 | domains = iommu->domains[idx]; |
| 485 | if (!domains) |
| 486 | return NULL; |
| 487 | |
| 488 | return domains[did & 0xff]; |
| 489 | } |
| 490 | |
| 491 | static void set_iommu_domain(struct intel_iommu *iommu, u16 did, |
| 492 | struct dmar_domain *domain) |
| 493 | { |
| 494 | struct dmar_domain **domains; |
| 495 | int idx = did >> 8; |
| 496 | |
| 497 | if (!iommu->domains[idx]) { |
| 498 | size_t size = 256 * sizeof(struct dmar_domain *); |
| 499 | iommu->domains[idx] = kzalloc(size, GFP_ATOMIC); |
| 500 | } |
| 501 | |
| 502 | domains = iommu->domains[idx]; |
| 503 | if (WARN_ON(!domains)) |
| 504 | return; |
| 505 | else |
| 506 | domains[did & 0xff] = domain; |
| 507 | } |
| 508 | |
| 509 | void *alloc_pgtable_page(int node) |
| 510 | { |
| 511 | struct page *page; |
| 512 | void *vaddr = NULL; |
| 513 | |
| 514 | page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); |
| 515 | if (page) |
| 516 | vaddr = page_address(page); |
| 517 | return vaddr; |
| 518 | } |
| 519 | |
| 520 | void free_pgtable_page(void *vaddr) |
| 521 | { |
| 522 | free_page((unsigned long)vaddr); |
| 523 | } |
| 524 | |
| 525 | static inline void *alloc_domain_mem(void) |
| 526 | { |
| 527 | return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); |
| 528 | } |
| 529 | |
| 530 | static void free_domain_mem(void *vaddr) |
| 531 | { |
| 532 | kmem_cache_free(iommu_domain_cache, vaddr); |
| 533 | } |
| 534 | |
| 535 | static inline void * alloc_devinfo_mem(void) |
| 536 | { |
| 537 | return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); |
| 538 | } |
| 539 | |
| 540 | static inline void free_devinfo_mem(void *vaddr) |
| 541 | { |
| 542 | kmem_cache_free(iommu_devinfo_cache, vaddr); |
| 543 | } |
| 544 | |
| 545 | static inline int domain_type_is_si(struct dmar_domain *domain) |
| 546 | { |
| 547 | return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY; |
| 548 | } |
| 549 | |
| 550 | static inline bool domain_use_first_level(struct dmar_domain *domain) |
| 551 | { |
| 552 | return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL; |
| 553 | } |
| 554 | |
| 555 | static inline int domain_pfn_supported(struct dmar_domain *domain, |
| 556 | unsigned long pfn) |
| 557 | { |
| 558 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
| 559 | |
| 560 | return !(addr_width < BITS_PER_LONG && pfn >> addr_width); |
| 561 | } |
| 562 | |
| 563 | static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) |
| 564 | { |
| 565 | unsigned long sagaw; |
| 566 | int agaw = -1; |
| 567 | |
| 568 | sagaw = cap_sagaw(iommu->cap); |
| 569 | for (agaw = width_to_agaw(max_gaw); |
| 570 | agaw >= 0; agaw--) { |
| 571 | if (test_bit(agaw, &sagaw)) |
| 572 | break; |
| 573 | } |
| 574 | |
| 575 | return agaw; |
| 576 | } |
| 577 | |
| 578 | /* |
| 579 | * Calculate max SAGAW for each iommu. |
| 580 | */ |
| 581 | int iommu_calculate_max_sagaw(struct intel_iommu *iommu) |
| 582 | { |
| 583 | return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); |
| 584 | } |
| 585 | |
| 586 | /* |
| 587 | * calculate agaw for each iommu. |
| 588 | * "SAGAW" may be different across iommus, use a default agaw, and |
| 589 | * get a supported less agaw for iommus that don't support the default agaw. |
| 590 | */ |
| 591 | int iommu_calculate_agaw(struct intel_iommu *iommu) |
| 592 | { |
| 593 | return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); |
| 594 | } |
| 595 | |
| 596 | /* This functionin only returns single iommu in a domain */ |
| 597 | struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) |
| 598 | { |
| 599 | int iommu_id; |
| 600 | |
| 601 | /* si_domain and vm domain should not get here. */ |
| 602 | if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA)) |
| 603 | return NULL; |
| 604 | |
| 605 | for_each_domain_iommu(iommu_id, domain) |
| 606 | break; |
| 607 | |
| 608 | if (iommu_id < 0 || iommu_id >= g_num_of_iommus) |
| 609 | return NULL; |
| 610 | |
| 611 | return g_iommus[iommu_id]; |
| 612 | } |
| 613 | |
| 614 | static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu) |
| 615 | { |
| 616 | return sm_supported(iommu) ? |
| 617 | ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap); |
| 618 | } |
| 619 | |
| 620 | static void domain_update_iommu_coherency(struct dmar_domain *domain) |
| 621 | { |
| 622 | struct dmar_drhd_unit *drhd; |
| 623 | struct intel_iommu *iommu; |
| 624 | bool found = false; |
| 625 | int i; |
| 626 | |
| 627 | domain->iommu_coherency = 1; |
| 628 | |
| 629 | for_each_domain_iommu(i, domain) { |
| 630 | found = true; |
| 631 | if (!iommu_paging_structure_coherency(g_iommus[i])) { |
| 632 | domain->iommu_coherency = 0; |
| 633 | break; |
| 634 | } |
| 635 | } |
| 636 | if (found) |
| 637 | return; |
| 638 | |
| 639 | /* No hardware attached; use lowest common denominator */ |
| 640 | rcu_read_lock(); |
| 641 | for_each_active_iommu(iommu, drhd) { |
| 642 | if (!iommu_paging_structure_coherency(iommu)) { |
| 643 | domain->iommu_coherency = 0; |
| 644 | break; |
| 645 | } |
| 646 | } |
| 647 | rcu_read_unlock(); |
| 648 | } |
| 649 | |
| 650 | static int domain_update_iommu_snooping(struct intel_iommu *skip) |
| 651 | { |
| 652 | struct dmar_drhd_unit *drhd; |
| 653 | struct intel_iommu *iommu; |
| 654 | int ret = 1; |
| 655 | |
| 656 | rcu_read_lock(); |
| 657 | for_each_active_iommu(iommu, drhd) { |
| 658 | if (iommu != skip) { |
| 659 | /* |
| 660 | * If the hardware is operating in the scalable mode, |
| 661 | * the snooping control is always supported since we |
| 662 | * always set PASID-table-entry.PGSNP bit if the domain |
| 663 | * is managed outside (UNMANAGED). |
| 664 | */ |
| 665 | if (!sm_supported(iommu) && |
| 666 | !ecap_sc_support(iommu->ecap)) { |
| 667 | ret = 0; |
| 668 | break; |
| 669 | } |
| 670 | } |
| 671 | } |
| 672 | rcu_read_unlock(); |
| 673 | |
| 674 | return ret; |
| 675 | } |
| 676 | |
| 677 | static int domain_update_iommu_superpage(struct dmar_domain *domain, |
| 678 | struct intel_iommu *skip) |
| 679 | { |
| 680 | struct dmar_drhd_unit *drhd; |
| 681 | struct intel_iommu *iommu; |
| 682 | int mask = 0x3; |
| 683 | |
| 684 | if (!intel_iommu_superpage) { |
| 685 | return 0; |
| 686 | } |
| 687 | |
| 688 | /* set iommu_superpage to the smallest common denominator */ |
| 689 | rcu_read_lock(); |
| 690 | for_each_active_iommu(iommu, drhd) { |
| 691 | if (iommu != skip) { |
| 692 | if (domain && domain_use_first_level(domain)) { |
| 693 | if (!cap_fl1gp_support(iommu->cap)) |
| 694 | mask = 0x1; |
| 695 | } else { |
| 696 | mask &= cap_super_page_val(iommu->cap); |
| 697 | } |
| 698 | |
| 699 | if (!mask) |
| 700 | break; |
| 701 | } |
| 702 | } |
| 703 | rcu_read_unlock(); |
| 704 | |
| 705 | return fls(mask); |
| 706 | } |
| 707 | |
| 708 | static int domain_update_device_node(struct dmar_domain *domain) |
| 709 | { |
| 710 | struct device_domain_info *info; |
| 711 | int nid = NUMA_NO_NODE; |
| 712 | |
| 713 | assert_spin_locked(&device_domain_lock); |
| 714 | |
| 715 | if (list_empty(&domain->devices)) |
| 716 | return NUMA_NO_NODE; |
| 717 | |
| 718 | list_for_each_entry(info, &domain->devices, link) { |
| 719 | if (!info->dev) |
| 720 | continue; |
| 721 | |
| 722 | /* |
| 723 | * There could possibly be multiple device numa nodes as devices |
| 724 | * within the same domain may sit behind different IOMMUs. There |
| 725 | * isn't perfect answer in such situation, so we select first |
| 726 | * come first served policy. |
| 727 | */ |
| 728 | nid = dev_to_node(info->dev); |
| 729 | if (nid != NUMA_NO_NODE) |
| 730 | break; |
| 731 | } |
| 732 | |
| 733 | return nid; |
| 734 | } |
| 735 | |
| 736 | /* Some capabilities may be different across iommus */ |
| 737 | static void domain_update_iommu_cap(struct dmar_domain *domain) |
| 738 | { |
| 739 | domain_update_iommu_coherency(domain); |
| 740 | domain->iommu_snooping = domain_update_iommu_snooping(NULL); |
| 741 | domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL); |
| 742 | |
| 743 | /* |
| 744 | * If RHSA is missing, we should default to the device numa domain |
| 745 | * as fall back. |
| 746 | */ |
| 747 | if (domain->nid == NUMA_NO_NODE) |
| 748 | domain->nid = domain_update_device_node(domain); |
| 749 | |
| 750 | /* |
| 751 | * First-level translation restricts the input-address to a |
| 752 | * canonical address (i.e., address bits 63:N have the same |
| 753 | * value as address bit [N-1], where N is 48-bits with 4-level |
| 754 | * paging and 57-bits with 5-level paging). Hence, skip bit |
| 755 | * [N-1]. |
| 756 | */ |
| 757 | if (domain_use_first_level(domain)) |
| 758 | domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1); |
| 759 | else |
| 760 | domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw); |
| 761 | } |
| 762 | |
| 763 | struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus, |
| 764 | u8 devfn, int alloc) |
| 765 | { |
| 766 | struct root_entry *root = &iommu->root_entry[bus]; |
| 767 | struct context_entry *context; |
| 768 | u64 *entry; |
| 769 | |
| 770 | entry = &root->lo; |
| 771 | if (sm_supported(iommu)) { |
| 772 | if (devfn >= 0x80) { |
| 773 | devfn -= 0x80; |
| 774 | entry = &root->hi; |
| 775 | } |
| 776 | devfn *= 2; |
| 777 | } |
| 778 | if (*entry & 1) |
| 779 | context = phys_to_virt(*entry & VTD_PAGE_MASK); |
| 780 | else { |
| 781 | unsigned long phy_addr; |
| 782 | if (!alloc) |
| 783 | return NULL; |
| 784 | |
| 785 | context = alloc_pgtable_page(iommu->node); |
| 786 | if (!context) |
| 787 | return NULL; |
| 788 | |
| 789 | __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); |
| 790 | phy_addr = virt_to_phys((void *)context); |
| 791 | *entry = phy_addr | 1; |
| 792 | __iommu_flush_cache(iommu, entry, sizeof(*entry)); |
| 793 | } |
| 794 | return &context[devfn]; |
| 795 | } |
| 796 | |
| 797 | static bool attach_deferred(struct device *dev) |
| 798 | { |
| 799 | return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO; |
| 800 | } |
| 801 | |
| 802 | /** |
| 803 | * is_downstream_to_pci_bridge - test if a device belongs to the PCI |
| 804 | * sub-hierarchy of a candidate PCI-PCI bridge |
| 805 | * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy |
| 806 | * @bridge: the candidate PCI-PCI bridge |
| 807 | * |
| 808 | * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false. |
| 809 | */ |
| 810 | static bool |
| 811 | is_downstream_to_pci_bridge(struct device *dev, struct device *bridge) |
| 812 | { |
| 813 | struct pci_dev *pdev, *pbridge; |
| 814 | |
| 815 | if (!dev_is_pci(dev) || !dev_is_pci(bridge)) |
| 816 | return false; |
| 817 | |
| 818 | pdev = to_pci_dev(dev); |
| 819 | pbridge = to_pci_dev(bridge); |
| 820 | |
| 821 | if (pbridge->subordinate && |
| 822 | pbridge->subordinate->number <= pdev->bus->number && |
| 823 | pbridge->subordinate->busn_res.end >= pdev->bus->number) |
| 824 | return true; |
| 825 | |
| 826 | return false; |
| 827 | } |
| 828 | |
| 829 | static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev) |
| 830 | { |
| 831 | struct dmar_drhd_unit *drhd; |
| 832 | u32 vtbar; |
| 833 | int rc; |
| 834 | |
| 835 | /* We know that this device on this chipset has its own IOMMU. |
| 836 | * If we find it under a different IOMMU, then the BIOS is lying |
| 837 | * to us. Hope that the IOMMU for this device is actually |
| 838 | * disabled, and it needs no translation... |
| 839 | */ |
| 840 | rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); |
| 841 | if (rc) { |
| 842 | /* "can't" happen */ |
| 843 | dev_info(&pdev->dev, "failed to run vt-d quirk\n"); |
| 844 | return false; |
| 845 | } |
| 846 | vtbar &= 0xffff0000; |
| 847 | |
| 848 | /* we know that the this iommu should be at offset 0xa000 from vtbar */ |
| 849 | drhd = dmar_find_matched_drhd_unit(pdev); |
| 850 | if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) { |
| 851 | pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"); |
| 852 | add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| 853 | return true; |
| 854 | } |
| 855 | |
| 856 | return false; |
| 857 | } |
| 858 | |
| 859 | static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev) |
| 860 | { |
| 861 | if (!iommu || iommu->drhd->ignored) |
| 862 | return true; |
| 863 | |
| 864 | if (dev_is_pci(dev)) { |
| 865 | struct pci_dev *pdev = to_pci_dev(dev); |
| 866 | |
| 867 | if (pdev->vendor == PCI_VENDOR_ID_INTEL && |
| 868 | pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB && |
| 869 | quirk_ioat_snb_local_iommu(pdev)) |
| 870 | return true; |
| 871 | } |
| 872 | |
| 873 | return false; |
| 874 | } |
| 875 | |
| 876 | struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn) |
| 877 | { |
| 878 | struct dmar_drhd_unit *drhd = NULL; |
| 879 | struct pci_dev *pdev = NULL; |
| 880 | struct intel_iommu *iommu; |
| 881 | struct device *tmp; |
| 882 | u16 segment = 0; |
| 883 | int i; |
| 884 | |
| 885 | if (!dev) |
| 886 | return NULL; |
| 887 | |
| 888 | if (dev_is_pci(dev)) { |
| 889 | struct pci_dev *pf_pdev; |
| 890 | |
| 891 | pdev = pci_real_dma_dev(to_pci_dev(dev)); |
| 892 | |
| 893 | /* VFs aren't listed in scope tables; we need to look up |
| 894 | * the PF instead to find the IOMMU. */ |
| 895 | pf_pdev = pci_physfn(pdev); |
| 896 | dev = &pf_pdev->dev; |
| 897 | segment = pci_domain_nr(pdev->bus); |
| 898 | } else if (has_acpi_companion(dev)) |
| 899 | dev = &ACPI_COMPANION(dev)->dev; |
| 900 | |
| 901 | rcu_read_lock(); |
| 902 | for_each_iommu(iommu, drhd) { |
| 903 | if (pdev && segment != drhd->segment) |
| 904 | continue; |
| 905 | |
| 906 | for_each_active_dev_scope(drhd->devices, |
| 907 | drhd->devices_cnt, i, tmp) { |
| 908 | if (tmp == dev) { |
| 909 | /* For a VF use its original BDF# not that of the PF |
| 910 | * which we used for the IOMMU lookup. Strictly speaking |
| 911 | * we could do this for all PCI devices; we only need to |
| 912 | * get the BDF# from the scope table for ACPI matches. */ |
| 913 | if (pdev && pdev->is_virtfn) |
| 914 | goto got_pdev; |
| 915 | |
| 916 | if (bus && devfn) { |
| 917 | *bus = drhd->devices[i].bus; |
| 918 | *devfn = drhd->devices[i].devfn; |
| 919 | } |
| 920 | goto out; |
| 921 | } |
| 922 | |
| 923 | if (is_downstream_to_pci_bridge(dev, tmp)) |
| 924 | goto got_pdev; |
| 925 | } |
| 926 | |
| 927 | if (pdev && drhd->include_all) { |
| 928 | got_pdev: |
| 929 | if (bus && devfn) { |
| 930 | *bus = pdev->bus->number; |
| 931 | *devfn = pdev->devfn; |
| 932 | } |
| 933 | goto out; |
| 934 | } |
| 935 | } |
| 936 | iommu = NULL; |
| 937 | out: |
| 938 | if (iommu_is_dummy(iommu, dev)) |
| 939 | iommu = NULL; |
| 940 | |
| 941 | rcu_read_unlock(); |
| 942 | |
| 943 | return iommu; |
| 944 | } |
| 945 | |
| 946 | static void domain_flush_cache(struct dmar_domain *domain, |
| 947 | void *addr, int size) |
| 948 | { |
| 949 | if (!domain->iommu_coherency) |
| 950 | clflush_cache_range(addr, size); |
| 951 | } |
| 952 | |
| 953 | static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| 954 | { |
| 955 | struct context_entry *context; |
| 956 | int ret = 0; |
| 957 | unsigned long flags; |
| 958 | |
| 959 | spin_lock_irqsave(&iommu->lock, flags); |
| 960 | context = iommu_context_addr(iommu, bus, devfn, 0); |
| 961 | if (context) |
| 962 | ret = context_present(context); |
| 963 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 964 | return ret; |
| 965 | } |
| 966 | |
| 967 | static void free_context_table(struct intel_iommu *iommu) |
| 968 | { |
| 969 | int i; |
| 970 | unsigned long flags; |
| 971 | struct context_entry *context; |
| 972 | |
| 973 | spin_lock_irqsave(&iommu->lock, flags); |
| 974 | if (!iommu->root_entry) { |
| 975 | goto out; |
| 976 | } |
| 977 | for (i = 0; i < ROOT_ENTRY_NR; i++) { |
| 978 | context = iommu_context_addr(iommu, i, 0, 0); |
| 979 | if (context) |
| 980 | free_pgtable_page(context); |
| 981 | |
| 982 | if (!sm_supported(iommu)) |
| 983 | continue; |
| 984 | |
| 985 | context = iommu_context_addr(iommu, i, 0x80, 0); |
| 986 | if (context) |
| 987 | free_pgtable_page(context); |
| 988 | |
| 989 | } |
| 990 | free_pgtable_page(iommu->root_entry); |
| 991 | iommu->root_entry = NULL; |
| 992 | out: |
| 993 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 994 | } |
| 995 | |
| 996 | static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, |
| 997 | unsigned long pfn, int *target_level) |
| 998 | { |
| 999 | struct dma_pte *parent, *pte; |
| 1000 | int level = agaw_to_level(domain->agaw); |
| 1001 | int offset; |
| 1002 | |
| 1003 | BUG_ON(!domain->pgd); |
| 1004 | |
| 1005 | if (!domain_pfn_supported(domain, pfn)) |
| 1006 | /* Address beyond IOMMU's addressing capabilities. */ |
| 1007 | return NULL; |
| 1008 | |
| 1009 | parent = domain->pgd; |
| 1010 | |
| 1011 | while (1) { |
| 1012 | void *tmp_page; |
| 1013 | |
| 1014 | offset = pfn_level_offset(pfn, level); |
| 1015 | pte = &parent[offset]; |
| 1016 | if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) |
| 1017 | break; |
| 1018 | if (level == *target_level) |
| 1019 | break; |
| 1020 | |
| 1021 | if (!dma_pte_present(pte)) { |
| 1022 | uint64_t pteval; |
| 1023 | |
| 1024 | tmp_page = alloc_pgtable_page(domain->nid); |
| 1025 | |
| 1026 | if (!tmp_page) |
| 1027 | return NULL; |
| 1028 | |
| 1029 | domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); |
| 1030 | pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; |
| 1031 | if (domain_use_first_level(domain)) { |
| 1032 | pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US; |
| 1033 | if (domain->domain.type == IOMMU_DOMAIN_DMA) |
| 1034 | pteval |= DMA_FL_PTE_ACCESS; |
| 1035 | } |
| 1036 | if (cmpxchg64(&pte->val, 0ULL, pteval)) |
| 1037 | /* Someone else set it while we were thinking; use theirs. */ |
| 1038 | free_pgtable_page(tmp_page); |
| 1039 | else |
| 1040 | domain_flush_cache(domain, pte, sizeof(*pte)); |
| 1041 | } |
| 1042 | if (level == 1) |
| 1043 | break; |
| 1044 | |
| 1045 | parent = phys_to_virt(dma_pte_addr(pte)); |
| 1046 | level--; |
| 1047 | } |
| 1048 | |
| 1049 | if (!*target_level) |
| 1050 | *target_level = level; |
| 1051 | |
| 1052 | return pte; |
| 1053 | } |
| 1054 | |
| 1055 | /* return address's pte at specific level */ |
| 1056 | static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, |
| 1057 | unsigned long pfn, |
| 1058 | int level, int *large_page) |
| 1059 | { |
| 1060 | struct dma_pte *parent, *pte; |
| 1061 | int total = agaw_to_level(domain->agaw); |
| 1062 | int offset; |
| 1063 | |
| 1064 | parent = domain->pgd; |
| 1065 | while (level <= total) { |
| 1066 | offset = pfn_level_offset(pfn, total); |
| 1067 | pte = &parent[offset]; |
| 1068 | if (level == total) |
| 1069 | return pte; |
| 1070 | |
| 1071 | if (!dma_pte_present(pte)) { |
| 1072 | *large_page = total; |
| 1073 | break; |
| 1074 | } |
| 1075 | |
| 1076 | if (dma_pte_superpage(pte)) { |
| 1077 | *large_page = total; |
| 1078 | return pte; |
| 1079 | } |
| 1080 | |
| 1081 | parent = phys_to_virt(dma_pte_addr(pte)); |
| 1082 | total--; |
| 1083 | } |
| 1084 | return NULL; |
| 1085 | } |
| 1086 | |
| 1087 | /* clear last level pte, a tlb flush should be followed */ |
| 1088 | static void dma_pte_clear_range(struct dmar_domain *domain, |
| 1089 | unsigned long start_pfn, |
| 1090 | unsigned long last_pfn) |
| 1091 | { |
| 1092 | unsigned int large_page; |
| 1093 | struct dma_pte *first_pte, *pte; |
| 1094 | |
| 1095 | BUG_ON(!domain_pfn_supported(domain, start_pfn)); |
| 1096 | BUG_ON(!domain_pfn_supported(domain, last_pfn)); |
| 1097 | BUG_ON(start_pfn > last_pfn); |
| 1098 | |
| 1099 | /* we don't need lock here; nobody else touches the iova range */ |
| 1100 | do { |
| 1101 | large_page = 1; |
| 1102 | first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); |
| 1103 | if (!pte) { |
| 1104 | start_pfn = align_to_level(start_pfn + 1, large_page + 1); |
| 1105 | continue; |
| 1106 | } |
| 1107 | do { |
| 1108 | dma_clear_pte(pte); |
| 1109 | start_pfn += lvl_to_nr_pages(large_page); |
| 1110 | pte++; |
| 1111 | } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); |
| 1112 | |
| 1113 | domain_flush_cache(domain, first_pte, |
| 1114 | (void *)pte - (void *)first_pte); |
| 1115 | |
| 1116 | } while (start_pfn && start_pfn <= last_pfn); |
| 1117 | } |
| 1118 | |
| 1119 | static void dma_pte_free_level(struct dmar_domain *domain, int level, |
| 1120 | int retain_level, struct dma_pte *pte, |
| 1121 | unsigned long pfn, unsigned long start_pfn, |
| 1122 | unsigned long last_pfn) |
| 1123 | { |
| 1124 | pfn = max(start_pfn, pfn); |
| 1125 | pte = &pte[pfn_level_offset(pfn, level)]; |
| 1126 | |
| 1127 | do { |
| 1128 | unsigned long level_pfn; |
| 1129 | struct dma_pte *level_pte; |
| 1130 | |
| 1131 | if (!dma_pte_present(pte) || dma_pte_superpage(pte)) |
| 1132 | goto next; |
| 1133 | |
| 1134 | level_pfn = pfn & level_mask(level); |
| 1135 | level_pte = phys_to_virt(dma_pte_addr(pte)); |
| 1136 | |
| 1137 | if (level > 2) { |
| 1138 | dma_pte_free_level(domain, level - 1, retain_level, |
| 1139 | level_pte, level_pfn, start_pfn, |
| 1140 | last_pfn); |
| 1141 | } |
| 1142 | |
| 1143 | /* |
| 1144 | * Free the page table if we're below the level we want to |
| 1145 | * retain and the range covers the entire table. |
| 1146 | */ |
| 1147 | if (level < retain_level && !(start_pfn > level_pfn || |
| 1148 | last_pfn < level_pfn + level_size(level) - 1)) { |
| 1149 | dma_clear_pte(pte); |
| 1150 | domain_flush_cache(domain, pte, sizeof(*pte)); |
| 1151 | free_pgtable_page(level_pte); |
| 1152 | } |
| 1153 | next: |
| 1154 | pfn += level_size(level); |
| 1155 | } while (!first_pte_in_page(++pte) && pfn <= last_pfn); |
| 1156 | } |
| 1157 | |
| 1158 | /* |
| 1159 | * clear last level (leaf) ptes and free page table pages below the |
| 1160 | * level we wish to keep intact. |
| 1161 | */ |
| 1162 | static void dma_pte_free_pagetable(struct dmar_domain *domain, |
| 1163 | unsigned long start_pfn, |
| 1164 | unsigned long last_pfn, |
| 1165 | int retain_level) |
| 1166 | { |
| 1167 | BUG_ON(!domain_pfn_supported(domain, start_pfn)); |
| 1168 | BUG_ON(!domain_pfn_supported(domain, last_pfn)); |
| 1169 | BUG_ON(start_pfn > last_pfn); |
| 1170 | |
| 1171 | dma_pte_clear_range(domain, start_pfn, last_pfn); |
| 1172 | |
| 1173 | /* We don't need lock here; nobody else touches the iova range */ |
| 1174 | dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level, |
| 1175 | domain->pgd, 0, start_pfn, last_pfn); |
| 1176 | |
| 1177 | /* free pgd */ |
| 1178 | if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { |
| 1179 | free_pgtable_page(domain->pgd); |
| 1180 | domain->pgd = NULL; |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | /* When a page at a given level is being unlinked from its parent, we don't |
| 1185 | need to *modify* it at all. All we need to do is make a list of all the |
| 1186 | pages which can be freed just as soon as we've flushed the IOTLB and we |
| 1187 | know the hardware page-walk will no longer touch them. |
| 1188 | The 'pte' argument is the *parent* PTE, pointing to the page that is to |
| 1189 | be freed. */ |
| 1190 | static struct page *dma_pte_list_pagetables(struct dmar_domain *domain, |
| 1191 | int level, struct dma_pte *pte, |
| 1192 | struct page *freelist) |
| 1193 | { |
| 1194 | struct page *pg; |
| 1195 | |
| 1196 | pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); |
| 1197 | pg->freelist = freelist; |
| 1198 | freelist = pg; |
| 1199 | |
| 1200 | if (level == 1) |
| 1201 | return freelist; |
| 1202 | |
| 1203 | pte = page_address(pg); |
| 1204 | do { |
| 1205 | if (dma_pte_present(pte) && !dma_pte_superpage(pte)) |
| 1206 | freelist = dma_pte_list_pagetables(domain, level - 1, |
| 1207 | pte, freelist); |
| 1208 | pte++; |
| 1209 | } while (!first_pte_in_page(pte)); |
| 1210 | |
| 1211 | return freelist; |
| 1212 | } |
| 1213 | |
| 1214 | static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level, |
| 1215 | struct dma_pte *pte, unsigned long pfn, |
| 1216 | unsigned long start_pfn, |
| 1217 | unsigned long last_pfn, |
| 1218 | struct page *freelist) |
| 1219 | { |
| 1220 | struct dma_pte *first_pte = NULL, *last_pte = NULL; |
| 1221 | |
| 1222 | pfn = max(start_pfn, pfn); |
| 1223 | pte = &pte[pfn_level_offset(pfn, level)]; |
| 1224 | |
| 1225 | do { |
| 1226 | unsigned long level_pfn; |
| 1227 | |
| 1228 | if (!dma_pte_present(pte)) |
| 1229 | goto next; |
| 1230 | |
| 1231 | level_pfn = pfn & level_mask(level); |
| 1232 | |
| 1233 | /* If range covers entire pagetable, free it */ |
| 1234 | if (start_pfn <= level_pfn && |
| 1235 | last_pfn >= level_pfn + level_size(level) - 1) { |
| 1236 | /* These suborbinate page tables are going away entirely. Don't |
| 1237 | bother to clear them; we're just going to *free* them. */ |
| 1238 | if (level > 1 && !dma_pte_superpage(pte)) |
| 1239 | freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist); |
| 1240 | |
| 1241 | dma_clear_pte(pte); |
| 1242 | if (!first_pte) |
| 1243 | first_pte = pte; |
| 1244 | last_pte = pte; |
| 1245 | } else if (level > 1) { |
| 1246 | /* Recurse down into a level that isn't *entirely* obsolete */ |
| 1247 | freelist = dma_pte_clear_level(domain, level - 1, |
| 1248 | phys_to_virt(dma_pte_addr(pte)), |
| 1249 | level_pfn, start_pfn, last_pfn, |
| 1250 | freelist); |
| 1251 | } |
| 1252 | next: |
| 1253 | pfn += level_size(level); |
| 1254 | } while (!first_pte_in_page(++pte) && pfn <= last_pfn); |
| 1255 | |
| 1256 | if (first_pte) |
| 1257 | domain_flush_cache(domain, first_pte, |
| 1258 | (void *)++last_pte - (void *)first_pte); |
| 1259 | |
| 1260 | return freelist; |
| 1261 | } |
| 1262 | |
| 1263 | /* We can't just free the pages because the IOMMU may still be walking |
| 1264 | the page tables, and may have cached the intermediate levels. The |
| 1265 | pages can only be freed after the IOTLB flush has been done. */ |
| 1266 | static struct page *domain_unmap(struct dmar_domain *domain, |
| 1267 | unsigned long start_pfn, |
| 1268 | unsigned long last_pfn) |
| 1269 | { |
| 1270 | struct page *freelist; |
| 1271 | |
| 1272 | BUG_ON(!domain_pfn_supported(domain, start_pfn)); |
| 1273 | BUG_ON(!domain_pfn_supported(domain, last_pfn)); |
| 1274 | BUG_ON(start_pfn > last_pfn); |
| 1275 | |
| 1276 | /* we don't need lock here; nobody else touches the iova range */ |
| 1277 | freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw), |
| 1278 | domain->pgd, 0, start_pfn, last_pfn, NULL); |
| 1279 | |
| 1280 | /* free pgd */ |
| 1281 | if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { |
| 1282 | struct page *pgd_page = virt_to_page(domain->pgd); |
| 1283 | pgd_page->freelist = freelist; |
| 1284 | freelist = pgd_page; |
| 1285 | |
| 1286 | domain->pgd = NULL; |
| 1287 | } |
| 1288 | |
| 1289 | return freelist; |
| 1290 | } |
| 1291 | |
| 1292 | static void dma_free_pagelist(struct page *freelist) |
| 1293 | { |
| 1294 | struct page *pg; |
| 1295 | |
| 1296 | while ((pg = freelist)) { |
| 1297 | freelist = pg->freelist; |
| 1298 | free_pgtable_page(page_address(pg)); |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | static void iova_entry_free(unsigned long data) |
| 1303 | { |
| 1304 | struct page *freelist = (struct page *)data; |
| 1305 | |
| 1306 | dma_free_pagelist(freelist); |
| 1307 | } |
| 1308 | |
| 1309 | /* iommu handling */ |
| 1310 | static int iommu_alloc_root_entry(struct intel_iommu *iommu) |
| 1311 | { |
| 1312 | struct root_entry *root; |
| 1313 | unsigned long flags; |
| 1314 | |
| 1315 | root = (struct root_entry *)alloc_pgtable_page(iommu->node); |
| 1316 | if (!root) { |
| 1317 | pr_err("Allocating root entry for %s failed\n", |
| 1318 | iommu->name); |
| 1319 | return -ENOMEM; |
| 1320 | } |
| 1321 | |
| 1322 | __iommu_flush_cache(iommu, root, ROOT_SIZE); |
| 1323 | |
| 1324 | spin_lock_irqsave(&iommu->lock, flags); |
| 1325 | iommu->root_entry = root; |
| 1326 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 1327 | |
| 1328 | return 0; |
| 1329 | } |
| 1330 | |
| 1331 | static void iommu_set_root_entry(struct intel_iommu *iommu) |
| 1332 | { |
| 1333 | u64 addr; |
| 1334 | u32 sts; |
| 1335 | unsigned long flag; |
| 1336 | |
| 1337 | addr = virt_to_phys(iommu->root_entry); |
| 1338 | if (sm_supported(iommu)) |
| 1339 | addr |= DMA_RTADDR_SMT; |
| 1340 | |
| 1341 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1342 | dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); |
| 1343 | |
| 1344 | writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); |
| 1345 | |
| 1346 | /* Make sure hardware complete it */ |
| 1347 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| 1348 | readl, (sts & DMA_GSTS_RTPS), sts); |
| 1349 | |
| 1350 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1351 | |
| 1352 | iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); |
| 1353 | if (sm_supported(iommu)) |
| 1354 | qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0); |
| 1355 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); |
| 1356 | } |
| 1357 | |
| 1358 | void iommu_flush_write_buffer(struct intel_iommu *iommu) |
| 1359 | { |
| 1360 | u32 val; |
| 1361 | unsigned long flag; |
| 1362 | |
| 1363 | if (!rwbf_quirk && !cap_rwbf(iommu->cap)) |
| 1364 | return; |
| 1365 | |
| 1366 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1367 | writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); |
| 1368 | |
| 1369 | /* Make sure hardware complete it */ |
| 1370 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| 1371 | readl, (!(val & DMA_GSTS_WBFS)), val); |
| 1372 | |
| 1373 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1374 | } |
| 1375 | |
| 1376 | /* return value determine if we need a write buffer flush */ |
| 1377 | static void __iommu_flush_context(struct intel_iommu *iommu, |
| 1378 | u16 did, u16 source_id, u8 function_mask, |
| 1379 | u64 type) |
| 1380 | { |
| 1381 | u64 val = 0; |
| 1382 | unsigned long flag; |
| 1383 | |
| 1384 | switch (type) { |
| 1385 | case DMA_CCMD_GLOBAL_INVL: |
| 1386 | val = DMA_CCMD_GLOBAL_INVL; |
| 1387 | break; |
| 1388 | case DMA_CCMD_DOMAIN_INVL: |
| 1389 | val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); |
| 1390 | break; |
| 1391 | case DMA_CCMD_DEVICE_INVL: |
| 1392 | val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) |
| 1393 | | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); |
| 1394 | break; |
| 1395 | default: |
| 1396 | BUG(); |
| 1397 | } |
| 1398 | val |= DMA_CCMD_ICC; |
| 1399 | |
| 1400 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1401 | dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); |
| 1402 | |
| 1403 | /* Make sure hardware complete it */ |
| 1404 | IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, |
| 1405 | dmar_readq, (!(val & DMA_CCMD_ICC)), val); |
| 1406 | |
| 1407 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1408 | } |
| 1409 | |
| 1410 | /* return value determine if we need a write buffer flush */ |
| 1411 | static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, |
| 1412 | u64 addr, unsigned int size_order, u64 type) |
| 1413 | { |
| 1414 | int tlb_offset = ecap_iotlb_offset(iommu->ecap); |
| 1415 | u64 val = 0, val_iva = 0; |
| 1416 | unsigned long flag; |
| 1417 | |
| 1418 | switch (type) { |
| 1419 | case DMA_TLB_GLOBAL_FLUSH: |
| 1420 | /* global flush doesn't need set IVA_REG */ |
| 1421 | val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; |
| 1422 | break; |
| 1423 | case DMA_TLB_DSI_FLUSH: |
| 1424 | val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| 1425 | break; |
| 1426 | case DMA_TLB_PSI_FLUSH: |
| 1427 | val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| 1428 | /* IH bit is passed in as part of address */ |
| 1429 | val_iva = size_order | addr; |
| 1430 | break; |
| 1431 | default: |
| 1432 | BUG(); |
| 1433 | } |
| 1434 | /* Note: set drain read/write */ |
| 1435 | #if 0 |
| 1436 | /* |
| 1437 | * This is probably to be super secure.. Looks like we can |
| 1438 | * ignore it without any impact. |
| 1439 | */ |
| 1440 | if (cap_read_drain(iommu->cap)) |
| 1441 | val |= DMA_TLB_READ_DRAIN; |
| 1442 | #endif |
| 1443 | if (cap_write_drain(iommu->cap)) |
| 1444 | val |= DMA_TLB_WRITE_DRAIN; |
| 1445 | |
| 1446 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1447 | /* Note: Only uses first TLB reg currently */ |
| 1448 | if (val_iva) |
| 1449 | dmar_writeq(iommu->reg + tlb_offset, val_iva); |
| 1450 | dmar_writeq(iommu->reg + tlb_offset + 8, val); |
| 1451 | |
| 1452 | /* Make sure hardware complete it */ |
| 1453 | IOMMU_WAIT_OP(iommu, tlb_offset + 8, |
| 1454 | dmar_readq, (!(val & DMA_TLB_IVT)), val); |
| 1455 | |
| 1456 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1457 | |
| 1458 | /* check IOTLB invalidation granularity */ |
| 1459 | if (DMA_TLB_IAIG(val) == 0) |
| 1460 | pr_err("Flush IOTLB failed\n"); |
| 1461 | if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) |
| 1462 | pr_debug("TLB flush request %Lx, actual %Lx\n", |
| 1463 | (unsigned long long)DMA_TLB_IIRG(type), |
| 1464 | (unsigned long long)DMA_TLB_IAIG(val)); |
| 1465 | } |
| 1466 | |
| 1467 | static struct device_domain_info * |
| 1468 | iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu, |
| 1469 | u8 bus, u8 devfn) |
| 1470 | { |
| 1471 | struct device_domain_info *info; |
| 1472 | |
| 1473 | assert_spin_locked(&device_domain_lock); |
| 1474 | |
| 1475 | if (!iommu->qi) |
| 1476 | return NULL; |
| 1477 | |
| 1478 | list_for_each_entry(info, &domain->devices, link) |
| 1479 | if (info->iommu == iommu && info->bus == bus && |
| 1480 | info->devfn == devfn) { |
| 1481 | if (info->ats_supported && info->dev) |
| 1482 | return info; |
| 1483 | break; |
| 1484 | } |
| 1485 | |
| 1486 | return NULL; |
| 1487 | } |
| 1488 | |
| 1489 | static void domain_update_iotlb(struct dmar_domain *domain) |
| 1490 | { |
| 1491 | struct device_domain_info *info; |
| 1492 | bool has_iotlb_device = false; |
| 1493 | |
| 1494 | assert_spin_locked(&device_domain_lock); |
| 1495 | |
| 1496 | list_for_each_entry(info, &domain->devices, link) { |
| 1497 | struct pci_dev *pdev; |
| 1498 | |
| 1499 | if (!info->dev || !dev_is_pci(info->dev)) |
| 1500 | continue; |
| 1501 | |
| 1502 | pdev = to_pci_dev(info->dev); |
| 1503 | if (pdev->ats_enabled) { |
| 1504 | has_iotlb_device = true; |
| 1505 | break; |
| 1506 | } |
| 1507 | } |
| 1508 | |
| 1509 | domain->has_iotlb_device = has_iotlb_device; |
| 1510 | } |
| 1511 | |
| 1512 | static void iommu_enable_dev_iotlb(struct device_domain_info *info) |
| 1513 | { |
| 1514 | struct pci_dev *pdev; |
| 1515 | |
| 1516 | assert_spin_locked(&device_domain_lock); |
| 1517 | |
| 1518 | if (!info || !dev_is_pci(info->dev)) |
| 1519 | return; |
| 1520 | |
| 1521 | pdev = to_pci_dev(info->dev); |
| 1522 | /* For IOMMU that supports device IOTLB throttling (DIT), we assign |
| 1523 | * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge |
| 1524 | * queue depth at PF level. If DIT is not set, PFSID will be treated as |
| 1525 | * reserved, which should be set to 0. |
| 1526 | */ |
| 1527 | if (!ecap_dit(info->iommu->ecap)) |
| 1528 | info->pfsid = 0; |
| 1529 | else { |
| 1530 | struct pci_dev *pf_pdev; |
| 1531 | |
| 1532 | /* pdev will be returned if device is not a vf */ |
| 1533 | pf_pdev = pci_physfn(pdev); |
| 1534 | info->pfsid = pci_dev_id(pf_pdev); |
| 1535 | } |
| 1536 | |
| 1537 | #ifdef CONFIG_INTEL_IOMMU_SVM |
| 1538 | /* The PCIe spec, in its wisdom, declares that the behaviour of |
| 1539 | the device if you enable PASID support after ATS support is |
| 1540 | undefined. So always enable PASID support on devices which |
| 1541 | have it, even if we can't yet know if we're ever going to |
| 1542 | use it. */ |
| 1543 | if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1)) |
| 1544 | info->pasid_enabled = 1; |
| 1545 | |
| 1546 | if (info->pri_supported && |
| 1547 | (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) && |
| 1548 | !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) |
| 1549 | info->pri_enabled = 1; |
| 1550 | #endif |
| 1551 | if (info->ats_supported && pci_ats_page_aligned(pdev) && |
| 1552 | !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) { |
| 1553 | info->ats_enabled = 1; |
| 1554 | domain_update_iotlb(info->domain); |
| 1555 | info->ats_qdep = pci_ats_queue_depth(pdev); |
| 1556 | } |
| 1557 | } |
| 1558 | |
| 1559 | static void iommu_disable_dev_iotlb(struct device_domain_info *info) |
| 1560 | { |
| 1561 | struct pci_dev *pdev; |
| 1562 | |
| 1563 | assert_spin_locked(&device_domain_lock); |
| 1564 | |
| 1565 | if (!dev_is_pci(info->dev)) |
| 1566 | return; |
| 1567 | |
| 1568 | pdev = to_pci_dev(info->dev); |
| 1569 | |
| 1570 | if (info->ats_enabled) { |
| 1571 | pci_disable_ats(pdev); |
| 1572 | info->ats_enabled = 0; |
| 1573 | domain_update_iotlb(info->domain); |
| 1574 | } |
| 1575 | #ifdef CONFIG_INTEL_IOMMU_SVM |
| 1576 | if (info->pri_enabled) { |
| 1577 | pci_disable_pri(pdev); |
| 1578 | info->pri_enabled = 0; |
| 1579 | } |
| 1580 | if (info->pasid_enabled) { |
| 1581 | pci_disable_pasid(pdev); |
| 1582 | info->pasid_enabled = 0; |
| 1583 | } |
| 1584 | #endif |
| 1585 | } |
| 1586 | |
| 1587 | static void iommu_flush_dev_iotlb(struct dmar_domain *domain, |
| 1588 | u64 addr, unsigned mask) |
| 1589 | { |
| 1590 | u16 sid, qdep; |
| 1591 | unsigned long flags; |
| 1592 | struct device_domain_info *info; |
| 1593 | |
| 1594 | if (!domain->has_iotlb_device) |
| 1595 | return; |
| 1596 | |
| 1597 | spin_lock_irqsave(&device_domain_lock, flags); |
| 1598 | list_for_each_entry(info, &domain->devices, link) { |
| 1599 | if (!info->ats_enabled) |
| 1600 | continue; |
| 1601 | |
| 1602 | sid = info->bus << 8 | info->devfn; |
| 1603 | qdep = info->ats_qdep; |
| 1604 | qi_flush_dev_iotlb(info->iommu, sid, info->pfsid, |
| 1605 | qdep, addr, mask); |
| 1606 | } |
| 1607 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 1608 | } |
| 1609 | |
| 1610 | static void domain_flush_piotlb(struct intel_iommu *iommu, |
| 1611 | struct dmar_domain *domain, |
| 1612 | u64 addr, unsigned long npages, bool ih) |
| 1613 | { |
| 1614 | u16 did = domain->iommu_did[iommu->seq_id]; |
| 1615 | |
| 1616 | if (domain->default_pasid) |
| 1617 | qi_flush_piotlb(iommu, did, domain->default_pasid, |
| 1618 | addr, npages, ih); |
| 1619 | |
| 1620 | if (!list_empty(&domain->devices)) |
| 1621 | qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih); |
| 1622 | } |
| 1623 | |
| 1624 | static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, |
| 1625 | struct dmar_domain *domain, |
| 1626 | unsigned long pfn, unsigned int pages, |
| 1627 | int ih, int map) |
| 1628 | { |
| 1629 | unsigned int mask = ilog2(__roundup_pow_of_two(pages)); |
| 1630 | uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; |
| 1631 | u16 did = domain->iommu_did[iommu->seq_id]; |
| 1632 | |
| 1633 | BUG_ON(pages == 0); |
| 1634 | |
| 1635 | if (ih) |
| 1636 | ih = 1 << 6; |
| 1637 | |
| 1638 | if (domain_use_first_level(domain)) { |
| 1639 | domain_flush_piotlb(iommu, domain, addr, pages, ih); |
| 1640 | } else { |
| 1641 | /* |
| 1642 | * Fallback to domain selective flush if no PSI support or |
| 1643 | * the size is too big. PSI requires page size to be 2 ^ x, |
| 1644 | * and the base address is naturally aligned to the size. |
| 1645 | */ |
| 1646 | if (!cap_pgsel_inv(iommu->cap) || |
| 1647 | mask > cap_max_amask_val(iommu->cap)) |
| 1648 | iommu->flush.flush_iotlb(iommu, did, 0, 0, |
| 1649 | DMA_TLB_DSI_FLUSH); |
| 1650 | else |
| 1651 | iommu->flush.flush_iotlb(iommu, did, addr | ih, mask, |
| 1652 | DMA_TLB_PSI_FLUSH); |
| 1653 | } |
| 1654 | |
| 1655 | /* |
| 1656 | * In caching mode, changes of pages from non-present to present require |
| 1657 | * flush. However, device IOTLB doesn't need to be flushed in this case. |
| 1658 | */ |
| 1659 | if (!cap_caching_mode(iommu->cap) || !map) |
| 1660 | iommu_flush_dev_iotlb(domain, addr, mask); |
| 1661 | } |
| 1662 | |
| 1663 | /* Notification for newly created mappings */ |
| 1664 | static inline void __mapping_notify_one(struct intel_iommu *iommu, |
| 1665 | struct dmar_domain *domain, |
| 1666 | unsigned long pfn, unsigned int pages) |
| 1667 | { |
| 1668 | /* |
| 1669 | * It's a non-present to present mapping. Only flush if caching mode |
| 1670 | * and second level. |
| 1671 | */ |
| 1672 | if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain)) |
| 1673 | iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1); |
| 1674 | else |
| 1675 | iommu_flush_write_buffer(iommu); |
| 1676 | } |
| 1677 | |
| 1678 | static void iommu_flush_iova(struct iova_domain *iovad) |
| 1679 | { |
| 1680 | struct dmar_domain *domain; |
| 1681 | int idx; |
| 1682 | |
| 1683 | domain = container_of(iovad, struct dmar_domain, iovad); |
| 1684 | |
| 1685 | for_each_domain_iommu(idx, domain) { |
| 1686 | struct intel_iommu *iommu = g_iommus[idx]; |
| 1687 | u16 did = domain->iommu_did[iommu->seq_id]; |
| 1688 | |
| 1689 | if (domain_use_first_level(domain)) |
| 1690 | domain_flush_piotlb(iommu, domain, 0, -1, 0); |
| 1691 | else |
| 1692 | iommu->flush.flush_iotlb(iommu, did, 0, 0, |
| 1693 | DMA_TLB_DSI_FLUSH); |
| 1694 | |
| 1695 | if (!cap_caching_mode(iommu->cap)) |
| 1696 | iommu_flush_dev_iotlb(get_iommu_domain(iommu, did), |
| 1697 | 0, MAX_AGAW_PFN_WIDTH); |
| 1698 | } |
| 1699 | } |
| 1700 | |
| 1701 | static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) |
| 1702 | { |
| 1703 | u32 pmen; |
| 1704 | unsigned long flags; |
| 1705 | |
| 1706 | if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap)) |
| 1707 | return; |
| 1708 | |
| 1709 | raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| 1710 | pmen = readl(iommu->reg + DMAR_PMEN_REG); |
| 1711 | pmen &= ~DMA_PMEN_EPM; |
| 1712 | writel(pmen, iommu->reg + DMAR_PMEN_REG); |
| 1713 | |
| 1714 | /* wait for the protected region status bit to clear */ |
| 1715 | IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, |
| 1716 | readl, !(pmen & DMA_PMEN_PRS), pmen); |
| 1717 | |
| 1718 | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| 1719 | } |
| 1720 | |
| 1721 | static void iommu_enable_translation(struct intel_iommu *iommu) |
| 1722 | { |
| 1723 | u32 sts; |
| 1724 | unsigned long flags; |
| 1725 | |
| 1726 | raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| 1727 | iommu->gcmd |= DMA_GCMD_TE; |
| 1728 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| 1729 | |
| 1730 | /* Make sure hardware complete it */ |
| 1731 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| 1732 | readl, (sts & DMA_GSTS_TES), sts); |
| 1733 | |
| 1734 | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| 1735 | } |
| 1736 | |
| 1737 | static void iommu_disable_translation(struct intel_iommu *iommu) |
| 1738 | { |
| 1739 | u32 sts; |
| 1740 | unsigned long flag; |
| 1741 | |
| 1742 | if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated && |
| 1743 | (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap))) |
| 1744 | return; |
| 1745 | |
| 1746 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1747 | iommu->gcmd &= ~DMA_GCMD_TE; |
| 1748 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| 1749 | |
| 1750 | /* Make sure hardware complete it */ |
| 1751 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| 1752 | readl, (!(sts & DMA_GSTS_TES)), sts); |
| 1753 | |
| 1754 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1755 | } |
| 1756 | |
| 1757 | static int iommu_init_domains(struct intel_iommu *iommu) |
| 1758 | { |
| 1759 | u32 ndomains, nlongs; |
| 1760 | size_t size; |
| 1761 | |
| 1762 | ndomains = cap_ndoms(iommu->cap); |
| 1763 | pr_debug("%s: Number of Domains supported <%d>\n", |
| 1764 | iommu->name, ndomains); |
| 1765 | nlongs = BITS_TO_LONGS(ndomains); |
| 1766 | |
| 1767 | spin_lock_init(&iommu->lock); |
| 1768 | |
| 1769 | iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); |
| 1770 | if (!iommu->domain_ids) { |
| 1771 | pr_err("%s: Allocating domain id array failed\n", |
| 1772 | iommu->name); |
| 1773 | return -ENOMEM; |
| 1774 | } |
| 1775 | |
| 1776 | size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **); |
| 1777 | iommu->domains = kzalloc(size, GFP_KERNEL); |
| 1778 | |
| 1779 | if (iommu->domains) { |
| 1780 | size = 256 * sizeof(struct dmar_domain *); |
| 1781 | iommu->domains[0] = kzalloc(size, GFP_KERNEL); |
| 1782 | } |
| 1783 | |
| 1784 | if (!iommu->domains || !iommu->domains[0]) { |
| 1785 | pr_err("%s: Allocating domain array failed\n", |
| 1786 | iommu->name); |
| 1787 | kfree(iommu->domain_ids); |
| 1788 | kfree(iommu->domains); |
| 1789 | iommu->domain_ids = NULL; |
| 1790 | iommu->domains = NULL; |
| 1791 | return -ENOMEM; |
| 1792 | } |
| 1793 | |
| 1794 | /* |
| 1795 | * If Caching mode is set, then invalid translations are tagged |
| 1796 | * with domain-id 0, hence we need to pre-allocate it. We also |
| 1797 | * use domain-id 0 as a marker for non-allocated domain-id, so |
| 1798 | * make sure it is not used for a real domain. |
| 1799 | */ |
| 1800 | set_bit(0, iommu->domain_ids); |
| 1801 | |
| 1802 | /* |
| 1803 | * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid |
| 1804 | * entry for first-level or pass-through translation modes should |
| 1805 | * be programmed with a domain id different from those used for |
| 1806 | * second-level or nested translation. We reserve a domain id for |
| 1807 | * this purpose. |
| 1808 | */ |
| 1809 | if (sm_supported(iommu)) |
| 1810 | set_bit(FLPT_DEFAULT_DID, iommu->domain_ids); |
| 1811 | |
| 1812 | return 0; |
| 1813 | } |
| 1814 | |
| 1815 | static void disable_dmar_iommu(struct intel_iommu *iommu) |
| 1816 | { |
| 1817 | struct device_domain_info *info, *tmp; |
| 1818 | unsigned long flags; |
| 1819 | |
| 1820 | if (!iommu->domains || !iommu->domain_ids) |
| 1821 | return; |
| 1822 | |
| 1823 | spin_lock_irqsave(&device_domain_lock, flags); |
| 1824 | list_for_each_entry_safe(info, tmp, &device_domain_list, global) { |
| 1825 | if (info->iommu != iommu) |
| 1826 | continue; |
| 1827 | |
| 1828 | if (!info->dev || !info->domain) |
| 1829 | continue; |
| 1830 | |
| 1831 | __dmar_remove_one_dev_info(info); |
| 1832 | } |
| 1833 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 1834 | |
| 1835 | if (iommu->gcmd & DMA_GCMD_TE) |
| 1836 | iommu_disable_translation(iommu); |
| 1837 | } |
| 1838 | |
| 1839 | static void free_dmar_iommu(struct intel_iommu *iommu) |
| 1840 | { |
| 1841 | if ((iommu->domains) && (iommu->domain_ids)) { |
| 1842 | int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8; |
| 1843 | int i; |
| 1844 | |
| 1845 | for (i = 0; i < elems; i++) |
| 1846 | kfree(iommu->domains[i]); |
| 1847 | kfree(iommu->domains); |
| 1848 | kfree(iommu->domain_ids); |
| 1849 | iommu->domains = NULL; |
| 1850 | iommu->domain_ids = NULL; |
| 1851 | } |
| 1852 | |
| 1853 | g_iommus[iommu->seq_id] = NULL; |
| 1854 | |
| 1855 | /* free context mapping */ |
| 1856 | free_context_table(iommu); |
| 1857 | |
| 1858 | #ifdef CONFIG_INTEL_IOMMU_SVM |
| 1859 | if (pasid_supported(iommu)) { |
| 1860 | if (ecap_prs(iommu->ecap)) |
| 1861 | intel_svm_finish_prq(iommu); |
| 1862 | } |
| 1863 | if (vccap_pasid(iommu->vccap)) |
| 1864 | ioasid_unregister_allocator(&iommu->pasid_allocator); |
| 1865 | |
| 1866 | #endif |
| 1867 | } |
| 1868 | |
| 1869 | /* |
| 1870 | * Check and return whether first level is used by default for |
| 1871 | * DMA translation. |
| 1872 | */ |
| 1873 | static bool first_level_by_default(void) |
| 1874 | { |
| 1875 | struct dmar_drhd_unit *drhd; |
| 1876 | struct intel_iommu *iommu; |
| 1877 | static int first_level_support = -1; |
| 1878 | |
| 1879 | if (likely(first_level_support != -1)) |
| 1880 | return first_level_support; |
| 1881 | |
| 1882 | first_level_support = 1; |
| 1883 | |
| 1884 | rcu_read_lock(); |
| 1885 | for_each_active_iommu(iommu, drhd) { |
| 1886 | if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) { |
| 1887 | first_level_support = 0; |
| 1888 | break; |
| 1889 | } |
| 1890 | } |
| 1891 | rcu_read_unlock(); |
| 1892 | |
| 1893 | return first_level_support; |
| 1894 | } |
| 1895 | |
| 1896 | static struct dmar_domain *alloc_domain(int flags) |
| 1897 | { |
| 1898 | struct dmar_domain *domain; |
| 1899 | |
| 1900 | domain = alloc_domain_mem(); |
| 1901 | if (!domain) |
| 1902 | return NULL; |
| 1903 | |
| 1904 | memset(domain, 0, sizeof(*domain)); |
| 1905 | domain->nid = NUMA_NO_NODE; |
| 1906 | domain->flags = flags; |
| 1907 | if (first_level_by_default()) |
| 1908 | domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL; |
| 1909 | domain->has_iotlb_device = false; |
| 1910 | INIT_LIST_HEAD(&domain->devices); |
| 1911 | |
| 1912 | return domain; |
| 1913 | } |
| 1914 | |
| 1915 | /* Must be called with iommu->lock */ |
| 1916 | static int domain_attach_iommu(struct dmar_domain *domain, |
| 1917 | struct intel_iommu *iommu) |
| 1918 | { |
| 1919 | unsigned long ndomains; |
| 1920 | int num; |
| 1921 | |
| 1922 | assert_spin_locked(&device_domain_lock); |
| 1923 | assert_spin_locked(&iommu->lock); |
| 1924 | |
| 1925 | domain->iommu_refcnt[iommu->seq_id] += 1; |
| 1926 | domain->iommu_count += 1; |
| 1927 | if (domain->iommu_refcnt[iommu->seq_id] == 1) { |
| 1928 | ndomains = cap_ndoms(iommu->cap); |
| 1929 | num = find_first_zero_bit(iommu->domain_ids, ndomains); |
| 1930 | |
| 1931 | if (num >= ndomains) { |
| 1932 | pr_err("%s: No free domain ids\n", iommu->name); |
| 1933 | domain->iommu_refcnt[iommu->seq_id] -= 1; |
| 1934 | domain->iommu_count -= 1; |
| 1935 | return -ENOSPC; |
| 1936 | } |
| 1937 | |
| 1938 | set_bit(num, iommu->domain_ids); |
| 1939 | set_iommu_domain(iommu, num, domain); |
| 1940 | |
| 1941 | domain->iommu_did[iommu->seq_id] = num; |
| 1942 | domain->nid = iommu->node; |
| 1943 | |
| 1944 | domain_update_iommu_cap(domain); |
| 1945 | } |
| 1946 | |
| 1947 | return 0; |
| 1948 | } |
| 1949 | |
| 1950 | static int domain_detach_iommu(struct dmar_domain *domain, |
| 1951 | struct intel_iommu *iommu) |
| 1952 | { |
| 1953 | int num, count; |
| 1954 | |
| 1955 | assert_spin_locked(&device_domain_lock); |
| 1956 | assert_spin_locked(&iommu->lock); |
| 1957 | |
| 1958 | domain->iommu_refcnt[iommu->seq_id] -= 1; |
| 1959 | count = --domain->iommu_count; |
| 1960 | if (domain->iommu_refcnt[iommu->seq_id] == 0) { |
| 1961 | num = domain->iommu_did[iommu->seq_id]; |
| 1962 | clear_bit(num, iommu->domain_ids); |
| 1963 | set_iommu_domain(iommu, num, NULL); |
| 1964 | |
| 1965 | domain_update_iommu_cap(domain); |
| 1966 | domain->iommu_did[iommu->seq_id] = 0; |
| 1967 | } |
| 1968 | |
| 1969 | return count; |
| 1970 | } |
| 1971 | |
| 1972 | static struct iova_domain reserved_iova_list; |
| 1973 | static struct lock_class_key reserved_rbtree_key; |
| 1974 | |
| 1975 | static int dmar_init_reserved_ranges(void) |
| 1976 | { |
| 1977 | struct pci_dev *pdev = NULL; |
| 1978 | struct iova *iova; |
| 1979 | int i; |
| 1980 | |
| 1981 | init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN); |
| 1982 | |
| 1983 | lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, |
| 1984 | &reserved_rbtree_key); |
| 1985 | |
| 1986 | /* IOAPIC ranges shouldn't be accessed by DMA */ |
| 1987 | iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), |
| 1988 | IOVA_PFN(IOAPIC_RANGE_END)); |
| 1989 | if (!iova) { |
| 1990 | pr_err("Reserve IOAPIC range failed\n"); |
| 1991 | return -ENODEV; |
| 1992 | } |
| 1993 | |
| 1994 | /* Reserve all PCI MMIO to avoid peer-to-peer access */ |
| 1995 | for_each_pci_dev(pdev) { |
| 1996 | struct resource *r; |
| 1997 | |
| 1998 | for (i = 0; i < PCI_NUM_RESOURCES; i++) { |
| 1999 | r = &pdev->resource[i]; |
| 2000 | if (!r->flags || !(r->flags & IORESOURCE_MEM)) |
| 2001 | continue; |
| 2002 | iova = reserve_iova(&reserved_iova_list, |
| 2003 | IOVA_PFN(r->start), |
| 2004 | IOVA_PFN(r->end)); |
| 2005 | if (!iova) { |
| 2006 | pci_err(pdev, "Reserve iova for %pR failed\n", r); |
| 2007 | return -ENODEV; |
| 2008 | } |
| 2009 | } |
| 2010 | } |
| 2011 | return 0; |
| 2012 | } |
| 2013 | |
| 2014 | static inline int guestwidth_to_adjustwidth(int gaw) |
| 2015 | { |
| 2016 | int agaw; |
| 2017 | int r = (gaw - 12) % 9; |
| 2018 | |
| 2019 | if (r == 0) |
| 2020 | agaw = gaw; |
| 2021 | else |
| 2022 | agaw = gaw + 9 - r; |
| 2023 | if (agaw > 64) |
| 2024 | agaw = 64; |
| 2025 | return agaw; |
| 2026 | } |
| 2027 | |
| 2028 | static void domain_exit(struct dmar_domain *domain) |
| 2029 | { |
| 2030 | |
| 2031 | /* Remove associated devices and clear attached or cached domains */ |
| 2032 | domain_remove_dev_info(domain); |
| 2033 | |
| 2034 | /* destroy iovas */ |
| 2035 | if (domain->domain.type == IOMMU_DOMAIN_DMA) |
| 2036 | put_iova_domain(&domain->iovad); |
| 2037 | |
| 2038 | if (domain->pgd) { |
| 2039 | struct page *freelist; |
| 2040 | |
| 2041 | freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); |
| 2042 | dma_free_pagelist(freelist); |
| 2043 | } |
| 2044 | |
| 2045 | free_domain_mem(domain); |
| 2046 | } |
| 2047 | |
| 2048 | /* |
| 2049 | * Get the PASID directory size for scalable mode context entry. |
| 2050 | * Value of X in the PDTS field of a scalable mode context entry |
| 2051 | * indicates PASID directory with 2^(X + 7) entries. |
| 2052 | */ |
| 2053 | static inline unsigned long context_get_sm_pds(struct pasid_table *table) |
| 2054 | { |
| 2055 | int pds, max_pde; |
| 2056 | |
| 2057 | max_pde = table->max_pasid >> PASID_PDE_SHIFT; |
| 2058 | pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS); |
| 2059 | if (pds < 7) |
| 2060 | return 0; |
| 2061 | |
| 2062 | return pds - 7; |
| 2063 | } |
| 2064 | |
| 2065 | /* |
| 2066 | * Set the RID_PASID field of a scalable mode context entry. The |
| 2067 | * IOMMU hardware will use the PASID value set in this field for |
| 2068 | * DMA translations of DMA requests without PASID. |
| 2069 | */ |
| 2070 | static inline void |
| 2071 | context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid) |
| 2072 | { |
| 2073 | context->hi |= pasid & ((1 << 20) - 1); |
| 2074 | } |
| 2075 | |
| 2076 | /* |
| 2077 | * Set the DTE(Device-TLB Enable) field of a scalable mode context |
| 2078 | * entry. |
| 2079 | */ |
| 2080 | static inline void context_set_sm_dte(struct context_entry *context) |
| 2081 | { |
| 2082 | context->lo |= (1 << 2); |
| 2083 | } |
| 2084 | |
| 2085 | /* |
| 2086 | * Set the PRE(Page Request Enable) field of a scalable mode context |
| 2087 | * entry. |
| 2088 | */ |
| 2089 | static inline void context_set_sm_pre(struct context_entry *context) |
| 2090 | { |
| 2091 | context->lo |= (1 << 4); |
| 2092 | } |
| 2093 | |
| 2094 | /* Convert value to context PASID directory size field coding. */ |
| 2095 | #define context_pdts(pds) (((pds) & 0x7) << 9) |
| 2096 | |
| 2097 | static int domain_context_mapping_one(struct dmar_domain *domain, |
| 2098 | struct intel_iommu *iommu, |
| 2099 | struct pasid_table *table, |
| 2100 | u8 bus, u8 devfn) |
| 2101 | { |
| 2102 | u16 did = domain->iommu_did[iommu->seq_id]; |
| 2103 | int translation = CONTEXT_TT_MULTI_LEVEL; |
| 2104 | struct device_domain_info *info = NULL; |
| 2105 | struct context_entry *context; |
| 2106 | unsigned long flags; |
| 2107 | int ret; |
| 2108 | |
| 2109 | WARN_ON(did == 0); |
| 2110 | |
| 2111 | if (hw_pass_through && domain_type_is_si(domain)) |
| 2112 | translation = CONTEXT_TT_PASS_THROUGH; |
| 2113 | |
| 2114 | pr_debug("Set context mapping for %02x:%02x.%d\n", |
| 2115 | bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); |
| 2116 | |
| 2117 | BUG_ON(!domain->pgd); |
| 2118 | |
| 2119 | spin_lock_irqsave(&device_domain_lock, flags); |
| 2120 | spin_lock(&iommu->lock); |
| 2121 | |
| 2122 | ret = -ENOMEM; |
| 2123 | context = iommu_context_addr(iommu, bus, devfn, 1); |
| 2124 | if (!context) |
| 2125 | goto out_unlock; |
| 2126 | |
| 2127 | ret = 0; |
| 2128 | if (context_present(context)) |
| 2129 | goto out_unlock; |
| 2130 | |
| 2131 | /* |
| 2132 | * For kdump cases, old valid entries may be cached due to the |
| 2133 | * in-flight DMA and copied pgtable, but there is no unmapping |
| 2134 | * behaviour for them, thus we need an explicit cache flush for |
| 2135 | * the newly-mapped device. For kdump, at this point, the device |
| 2136 | * is supposed to finish reset at its driver probe stage, so no |
| 2137 | * in-flight DMA will exist, and we don't need to worry anymore |
| 2138 | * hereafter. |
| 2139 | */ |
| 2140 | if (context_copied(context)) { |
| 2141 | u16 did_old = context_domain_id(context); |
| 2142 | |
| 2143 | if (did_old < cap_ndoms(iommu->cap)) { |
| 2144 | iommu->flush.flush_context(iommu, did_old, |
| 2145 | (((u16)bus) << 8) | devfn, |
| 2146 | DMA_CCMD_MASK_NOBIT, |
| 2147 | DMA_CCMD_DEVICE_INVL); |
| 2148 | iommu->flush.flush_iotlb(iommu, did_old, 0, 0, |
| 2149 | DMA_TLB_DSI_FLUSH); |
| 2150 | } |
| 2151 | } |
| 2152 | |
| 2153 | context_clear_entry(context); |
| 2154 | |
| 2155 | if (sm_supported(iommu)) { |
| 2156 | unsigned long pds; |
| 2157 | |
| 2158 | WARN_ON(!table); |
| 2159 | |
| 2160 | /* Setup the PASID DIR pointer: */ |
| 2161 | pds = context_get_sm_pds(table); |
| 2162 | context->lo = (u64)virt_to_phys(table->table) | |
| 2163 | context_pdts(pds); |
| 2164 | |
| 2165 | /* Setup the RID_PASID field: */ |
| 2166 | context_set_sm_rid2pasid(context, PASID_RID2PASID); |
| 2167 | |
| 2168 | /* |
| 2169 | * Setup the Device-TLB enable bit and Page request |
| 2170 | * Enable bit: |
| 2171 | */ |
| 2172 | info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); |
| 2173 | if (info && info->ats_supported) |
| 2174 | context_set_sm_dte(context); |
| 2175 | if (info && info->pri_supported) |
| 2176 | context_set_sm_pre(context); |
| 2177 | } else { |
| 2178 | struct dma_pte *pgd = domain->pgd; |
| 2179 | int agaw; |
| 2180 | |
| 2181 | context_set_domain_id(context, did); |
| 2182 | |
| 2183 | if (translation != CONTEXT_TT_PASS_THROUGH) { |
| 2184 | /* |
| 2185 | * Skip top levels of page tables for iommu which has |
| 2186 | * less agaw than default. Unnecessary for PT mode. |
| 2187 | */ |
| 2188 | for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { |
| 2189 | ret = -ENOMEM; |
| 2190 | pgd = phys_to_virt(dma_pte_addr(pgd)); |
| 2191 | if (!dma_pte_present(pgd)) |
| 2192 | goto out_unlock; |
| 2193 | } |
| 2194 | |
| 2195 | info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); |
| 2196 | if (info && info->ats_supported) |
| 2197 | translation = CONTEXT_TT_DEV_IOTLB; |
| 2198 | else |
| 2199 | translation = CONTEXT_TT_MULTI_LEVEL; |
| 2200 | |
| 2201 | context_set_address_root(context, virt_to_phys(pgd)); |
| 2202 | context_set_address_width(context, agaw); |
| 2203 | } else { |
| 2204 | /* |
| 2205 | * In pass through mode, AW must be programmed to |
| 2206 | * indicate the largest AGAW value supported by |
| 2207 | * hardware. And ASR is ignored by hardware. |
| 2208 | */ |
| 2209 | context_set_address_width(context, iommu->msagaw); |
| 2210 | } |
| 2211 | |
| 2212 | context_set_translation_type(context, translation); |
| 2213 | } |
| 2214 | |
| 2215 | context_set_fault_enable(context); |
| 2216 | context_set_present(context); |
| 2217 | if (!ecap_coherent(iommu->ecap)) |
| 2218 | clflush_cache_range(context, sizeof(*context)); |
| 2219 | |
| 2220 | /* |
| 2221 | * It's a non-present to present mapping. If hardware doesn't cache |
| 2222 | * non-present entry we only need to flush the write-buffer. If the |
| 2223 | * _does_ cache non-present entries, then it does so in the special |
| 2224 | * domain #0, which we have to flush: |
| 2225 | */ |
| 2226 | if (cap_caching_mode(iommu->cap)) { |
| 2227 | iommu->flush.flush_context(iommu, 0, |
| 2228 | (((u16)bus) << 8) | devfn, |
| 2229 | DMA_CCMD_MASK_NOBIT, |
| 2230 | DMA_CCMD_DEVICE_INVL); |
| 2231 | iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); |
| 2232 | } else { |
| 2233 | iommu_flush_write_buffer(iommu); |
| 2234 | } |
| 2235 | iommu_enable_dev_iotlb(info); |
| 2236 | |
| 2237 | ret = 0; |
| 2238 | |
| 2239 | out_unlock: |
| 2240 | spin_unlock(&iommu->lock); |
| 2241 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 2242 | |
| 2243 | return ret; |
| 2244 | } |
| 2245 | |
| 2246 | struct domain_context_mapping_data { |
| 2247 | struct dmar_domain *domain; |
| 2248 | struct intel_iommu *iommu; |
| 2249 | struct pasid_table *table; |
| 2250 | }; |
| 2251 | |
| 2252 | static int domain_context_mapping_cb(struct pci_dev *pdev, |
| 2253 | u16 alias, void *opaque) |
| 2254 | { |
| 2255 | struct domain_context_mapping_data *data = opaque; |
| 2256 | |
| 2257 | return domain_context_mapping_one(data->domain, data->iommu, |
| 2258 | data->table, PCI_BUS_NUM(alias), |
| 2259 | alias & 0xff); |
| 2260 | } |
| 2261 | |
| 2262 | static int |
| 2263 | domain_context_mapping(struct dmar_domain *domain, struct device *dev) |
| 2264 | { |
| 2265 | struct domain_context_mapping_data data; |
| 2266 | struct pasid_table *table; |
| 2267 | struct intel_iommu *iommu; |
| 2268 | u8 bus, devfn; |
| 2269 | |
| 2270 | iommu = device_to_iommu(dev, &bus, &devfn); |
| 2271 | if (!iommu) |
| 2272 | return -ENODEV; |
| 2273 | |
| 2274 | table = intel_pasid_get_table(dev); |
| 2275 | |
| 2276 | if (!dev_is_pci(dev)) |
| 2277 | return domain_context_mapping_one(domain, iommu, table, |
| 2278 | bus, devfn); |
| 2279 | |
| 2280 | data.domain = domain; |
| 2281 | data.iommu = iommu; |
| 2282 | data.table = table; |
| 2283 | |
| 2284 | return pci_for_each_dma_alias(to_pci_dev(dev), |
| 2285 | &domain_context_mapping_cb, &data); |
| 2286 | } |
| 2287 | |
| 2288 | static int domain_context_mapped_cb(struct pci_dev *pdev, |
| 2289 | u16 alias, void *opaque) |
| 2290 | { |
| 2291 | struct intel_iommu *iommu = opaque; |
| 2292 | |
| 2293 | return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff); |
| 2294 | } |
| 2295 | |
| 2296 | static int domain_context_mapped(struct device *dev) |
| 2297 | { |
| 2298 | struct intel_iommu *iommu; |
| 2299 | u8 bus, devfn; |
| 2300 | |
| 2301 | iommu = device_to_iommu(dev, &bus, &devfn); |
| 2302 | if (!iommu) |
| 2303 | return -ENODEV; |
| 2304 | |
| 2305 | if (!dev_is_pci(dev)) |
| 2306 | return device_context_mapped(iommu, bus, devfn); |
| 2307 | |
| 2308 | return !pci_for_each_dma_alias(to_pci_dev(dev), |
| 2309 | domain_context_mapped_cb, iommu); |
| 2310 | } |
| 2311 | |
| 2312 | /* Returns a number of VTD pages, but aligned to MM page size */ |
| 2313 | static inline unsigned long aligned_nrpages(unsigned long host_addr, |
| 2314 | size_t size) |
| 2315 | { |
| 2316 | host_addr &= ~PAGE_MASK; |
| 2317 | return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; |
| 2318 | } |
| 2319 | |
| 2320 | /* Return largest possible superpage level for a given mapping */ |
| 2321 | static inline int hardware_largepage_caps(struct dmar_domain *domain, |
| 2322 | unsigned long iov_pfn, |
| 2323 | unsigned long phy_pfn, |
| 2324 | unsigned long pages) |
| 2325 | { |
| 2326 | int support, level = 1; |
| 2327 | unsigned long pfnmerge; |
| 2328 | |
| 2329 | support = domain->iommu_superpage; |
| 2330 | |
| 2331 | /* To use a large page, the virtual *and* physical addresses |
| 2332 | must be aligned to 2MiB/1GiB/etc. Lower bits set in either |
| 2333 | of them will mean we have to use smaller pages. So just |
| 2334 | merge them and check both at once. */ |
| 2335 | pfnmerge = iov_pfn | phy_pfn; |
| 2336 | |
| 2337 | while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { |
| 2338 | pages >>= VTD_STRIDE_SHIFT; |
| 2339 | if (!pages) |
| 2340 | break; |
| 2341 | pfnmerge >>= VTD_STRIDE_SHIFT; |
| 2342 | level++; |
| 2343 | support--; |
| 2344 | } |
| 2345 | return level; |
| 2346 | } |
| 2347 | |
| 2348 | static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| 2349 | struct scatterlist *sg, unsigned long phys_pfn, |
| 2350 | unsigned long nr_pages, int prot) |
| 2351 | { |
| 2352 | struct dma_pte *first_pte = NULL, *pte = NULL; |
| 2353 | phys_addr_t pteval; |
| 2354 | unsigned long sg_res = 0; |
| 2355 | unsigned int largepage_lvl = 0; |
| 2356 | unsigned long lvl_pages = 0; |
| 2357 | u64 attr; |
| 2358 | |
| 2359 | BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)); |
| 2360 | |
| 2361 | if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) |
| 2362 | return -EINVAL; |
| 2363 | |
| 2364 | attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP); |
| 2365 | attr |= DMA_FL_PTE_PRESENT; |
| 2366 | if (domain_use_first_level(domain)) { |
| 2367 | attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US; |
| 2368 | |
| 2369 | if (domain->domain.type == IOMMU_DOMAIN_DMA) { |
| 2370 | attr |= DMA_FL_PTE_ACCESS; |
| 2371 | if (prot & DMA_PTE_WRITE) |
| 2372 | attr |= DMA_FL_PTE_DIRTY; |
| 2373 | } |
| 2374 | } |
| 2375 | |
| 2376 | if (!sg) { |
| 2377 | sg_res = nr_pages; |
| 2378 | pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr; |
| 2379 | } |
| 2380 | |
| 2381 | while (nr_pages > 0) { |
| 2382 | uint64_t tmp; |
| 2383 | |
| 2384 | if (!sg_res) { |
| 2385 | unsigned int pgoff = sg->offset & ~PAGE_MASK; |
| 2386 | |
| 2387 | sg_res = aligned_nrpages(sg->offset, sg->length); |
| 2388 | sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff; |
| 2389 | sg->dma_length = sg->length; |
| 2390 | pteval = (sg_phys(sg) - pgoff) | attr; |
| 2391 | phys_pfn = pteval >> VTD_PAGE_SHIFT; |
| 2392 | } |
| 2393 | |
| 2394 | if (!pte) { |
| 2395 | largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res); |
| 2396 | |
| 2397 | first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl); |
| 2398 | if (!pte) |
| 2399 | return -ENOMEM; |
| 2400 | /* It is large page*/ |
| 2401 | if (largepage_lvl > 1) { |
| 2402 | unsigned long nr_superpages, end_pfn; |
| 2403 | |
| 2404 | pteval |= DMA_PTE_LARGE_PAGE; |
| 2405 | lvl_pages = lvl_to_nr_pages(largepage_lvl); |
| 2406 | |
| 2407 | nr_superpages = sg_res / lvl_pages; |
| 2408 | end_pfn = iov_pfn + nr_superpages * lvl_pages - 1; |
| 2409 | |
| 2410 | /* |
| 2411 | * Ensure that old small page tables are |
| 2412 | * removed to make room for superpage(s). |
| 2413 | * We're adding new large pages, so make sure |
| 2414 | * we don't remove their parent tables. |
| 2415 | */ |
| 2416 | dma_pte_free_pagetable(domain, iov_pfn, end_pfn, |
| 2417 | largepage_lvl + 1); |
| 2418 | } else { |
| 2419 | pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; |
| 2420 | } |
| 2421 | |
| 2422 | } |
| 2423 | /* We don't need lock here, nobody else |
| 2424 | * touches the iova range |
| 2425 | */ |
| 2426 | tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); |
| 2427 | if (tmp) { |
| 2428 | static int dumps = 5; |
| 2429 | pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", |
| 2430 | iov_pfn, tmp, (unsigned long long)pteval); |
| 2431 | if (dumps) { |
| 2432 | dumps--; |
| 2433 | debug_dma_dump_mappings(NULL); |
| 2434 | } |
| 2435 | WARN_ON(1); |
| 2436 | } |
| 2437 | |
| 2438 | lvl_pages = lvl_to_nr_pages(largepage_lvl); |
| 2439 | |
| 2440 | BUG_ON(nr_pages < lvl_pages); |
| 2441 | BUG_ON(sg_res < lvl_pages); |
| 2442 | |
| 2443 | nr_pages -= lvl_pages; |
| 2444 | iov_pfn += lvl_pages; |
| 2445 | phys_pfn += lvl_pages; |
| 2446 | pteval += lvl_pages * VTD_PAGE_SIZE; |
| 2447 | sg_res -= lvl_pages; |
| 2448 | |
| 2449 | /* If the next PTE would be the first in a new page, then we |
| 2450 | need to flush the cache on the entries we've just written. |
| 2451 | And then we'll need to recalculate 'pte', so clear it and |
| 2452 | let it get set again in the if (!pte) block above. |
| 2453 | |
| 2454 | If we're done (!nr_pages) we need to flush the cache too. |
| 2455 | |
| 2456 | Also if we've been setting superpages, we may need to |
| 2457 | recalculate 'pte' and switch back to smaller pages for the |
| 2458 | end of the mapping, if the trailing size is not enough to |
| 2459 | use another superpage (i.e. sg_res < lvl_pages). */ |
| 2460 | pte++; |
| 2461 | if (!nr_pages || first_pte_in_page(pte) || |
| 2462 | (largepage_lvl > 1 && sg_res < lvl_pages)) { |
| 2463 | domain_flush_cache(domain, first_pte, |
| 2464 | (void *)pte - (void *)first_pte); |
| 2465 | pte = NULL; |
| 2466 | } |
| 2467 | |
| 2468 | if (!sg_res && nr_pages) |
| 2469 | sg = sg_next(sg); |
| 2470 | } |
| 2471 | return 0; |
| 2472 | } |
| 2473 | |
| 2474 | static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| 2475 | struct scatterlist *sg, unsigned long phys_pfn, |
| 2476 | unsigned long nr_pages, int prot) |
| 2477 | { |
| 2478 | int iommu_id, ret; |
| 2479 | struct intel_iommu *iommu; |
| 2480 | |
| 2481 | /* Do the real mapping first */ |
| 2482 | ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot); |
| 2483 | if (ret) |
| 2484 | return ret; |
| 2485 | |
| 2486 | for_each_domain_iommu(iommu_id, domain) { |
| 2487 | iommu = g_iommus[iommu_id]; |
| 2488 | __mapping_notify_one(iommu, domain, iov_pfn, nr_pages); |
| 2489 | } |
| 2490 | |
| 2491 | return 0; |
| 2492 | } |
| 2493 | |
| 2494 | static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| 2495 | struct scatterlist *sg, unsigned long nr_pages, |
| 2496 | int prot) |
| 2497 | { |
| 2498 | return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot); |
| 2499 | } |
| 2500 | |
| 2501 | static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| 2502 | unsigned long phys_pfn, unsigned long nr_pages, |
| 2503 | int prot) |
| 2504 | { |
| 2505 | return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot); |
| 2506 | } |
| 2507 | |
| 2508 | static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| 2509 | { |
| 2510 | unsigned long flags; |
| 2511 | struct context_entry *context; |
| 2512 | u16 did_old; |
| 2513 | |
| 2514 | if (!iommu) |
| 2515 | return; |
| 2516 | |
| 2517 | spin_lock_irqsave(&iommu->lock, flags); |
| 2518 | context = iommu_context_addr(iommu, bus, devfn, 0); |
| 2519 | if (!context) { |
| 2520 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 2521 | return; |
| 2522 | } |
| 2523 | did_old = context_domain_id(context); |
| 2524 | context_clear_entry(context); |
| 2525 | __iommu_flush_cache(iommu, context, sizeof(*context)); |
| 2526 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 2527 | iommu->flush.flush_context(iommu, |
| 2528 | did_old, |
| 2529 | (((u16)bus) << 8) | devfn, |
| 2530 | DMA_CCMD_MASK_NOBIT, |
| 2531 | DMA_CCMD_DEVICE_INVL); |
| 2532 | |
| 2533 | if (sm_supported(iommu)) |
| 2534 | qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0); |
| 2535 | |
| 2536 | iommu->flush.flush_iotlb(iommu, |
| 2537 | did_old, |
| 2538 | 0, |
| 2539 | 0, |
| 2540 | DMA_TLB_DSI_FLUSH); |
| 2541 | } |
| 2542 | |
| 2543 | static inline void unlink_domain_info(struct device_domain_info *info) |
| 2544 | { |
| 2545 | assert_spin_locked(&device_domain_lock); |
| 2546 | list_del(&info->link); |
| 2547 | list_del(&info->global); |
| 2548 | if (info->dev) |
| 2549 | dev_iommu_priv_set(info->dev, NULL); |
| 2550 | } |
| 2551 | |
| 2552 | static void domain_remove_dev_info(struct dmar_domain *domain) |
| 2553 | { |
| 2554 | struct device_domain_info *info, *tmp; |
| 2555 | unsigned long flags; |
| 2556 | |
| 2557 | spin_lock_irqsave(&device_domain_lock, flags); |
| 2558 | list_for_each_entry_safe(info, tmp, &domain->devices, link) |
| 2559 | __dmar_remove_one_dev_info(info); |
| 2560 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 2561 | } |
| 2562 | |
| 2563 | struct dmar_domain *find_domain(struct device *dev) |
| 2564 | { |
| 2565 | struct device_domain_info *info; |
| 2566 | |
| 2567 | if (unlikely(!dev || !dev->iommu)) |
| 2568 | return NULL; |
| 2569 | |
| 2570 | if (unlikely(attach_deferred(dev))) |
| 2571 | return NULL; |
| 2572 | |
| 2573 | /* No lock here, assumes no domain exit in normal case */ |
| 2574 | info = get_domain_info(dev); |
| 2575 | if (likely(info)) |
| 2576 | return info->domain; |
| 2577 | |
| 2578 | return NULL; |
| 2579 | } |
| 2580 | |
| 2581 | static void do_deferred_attach(struct device *dev) |
| 2582 | { |
| 2583 | struct iommu_domain *domain; |
| 2584 | |
| 2585 | dev_iommu_priv_set(dev, NULL); |
| 2586 | domain = iommu_get_domain_for_dev(dev); |
| 2587 | if (domain) |
| 2588 | intel_iommu_attach_device(domain, dev); |
| 2589 | } |
| 2590 | |
| 2591 | static inline struct device_domain_info * |
| 2592 | dmar_search_domain_by_dev_info(int segment, int bus, int devfn) |
| 2593 | { |
| 2594 | struct device_domain_info *info; |
| 2595 | |
| 2596 | list_for_each_entry(info, &device_domain_list, global) |
| 2597 | if (info->segment == segment && info->bus == bus && |
| 2598 | info->devfn == devfn) |
| 2599 | return info; |
| 2600 | |
| 2601 | return NULL; |
| 2602 | } |
| 2603 | |
| 2604 | static int domain_setup_first_level(struct intel_iommu *iommu, |
| 2605 | struct dmar_domain *domain, |
| 2606 | struct device *dev, |
| 2607 | u32 pasid) |
| 2608 | { |
| 2609 | struct dma_pte *pgd = domain->pgd; |
| 2610 | int agaw, level; |
| 2611 | int flags = 0; |
| 2612 | |
| 2613 | /* |
| 2614 | * Skip top levels of page tables for iommu which has |
| 2615 | * less agaw than default. Unnecessary for PT mode. |
| 2616 | */ |
| 2617 | for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { |
| 2618 | pgd = phys_to_virt(dma_pte_addr(pgd)); |
| 2619 | if (!dma_pte_present(pgd)) |
| 2620 | return -ENOMEM; |
| 2621 | } |
| 2622 | |
| 2623 | level = agaw_to_level(agaw); |
| 2624 | if (level != 4 && level != 5) |
| 2625 | return -EINVAL; |
| 2626 | |
| 2627 | if (pasid != PASID_RID2PASID) |
| 2628 | flags |= PASID_FLAG_SUPERVISOR_MODE; |
| 2629 | if (level == 5) |
| 2630 | flags |= PASID_FLAG_FL5LP; |
| 2631 | |
| 2632 | if (domain->domain.type == IOMMU_DOMAIN_UNMANAGED) |
| 2633 | flags |= PASID_FLAG_PAGE_SNOOP; |
| 2634 | |
| 2635 | return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid, |
| 2636 | domain->iommu_did[iommu->seq_id], |
| 2637 | flags); |
| 2638 | } |
| 2639 | |
| 2640 | static bool dev_is_real_dma_subdevice(struct device *dev) |
| 2641 | { |
| 2642 | return dev && dev_is_pci(dev) && |
| 2643 | pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev); |
| 2644 | } |
| 2645 | |
| 2646 | static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu, |
| 2647 | int bus, int devfn, |
| 2648 | struct device *dev, |
| 2649 | struct dmar_domain *domain) |
| 2650 | { |
| 2651 | struct dmar_domain *found = NULL; |
| 2652 | struct device_domain_info *info; |
| 2653 | unsigned long flags; |
| 2654 | int ret; |
| 2655 | |
| 2656 | info = alloc_devinfo_mem(); |
| 2657 | if (!info) |
| 2658 | return NULL; |
| 2659 | |
| 2660 | if (!dev_is_real_dma_subdevice(dev)) { |
| 2661 | info->bus = bus; |
| 2662 | info->devfn = devfn; |
| 2663 | info->segment = iommu->segment; |
| 2664 | } else { |
| 2665 | struct pci_dev *pdev = to_pci_dev(dev); |
| 2666 | |
| 2667 | info->bus = pdev->bus->number; |
| 2668 | info->devfn = pdev->devfn; |
| 2669 | info->segment = pci_domain_nr(pdev->bus); |
| 2670 | } |
| 2671 | |
| 2672 | info->ats_supported = info->pasid_supported = info->pri_supported = 0; |
| 2673 | info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0; |
| 2674 | info->ats_qdep = 0; |
| 2675 | info->dev = dev; |
| 2676 | info->domain = domain; |
| 2677 | info->iommu = iommu; |
| 2678 | info->pasid_table = NULL; |
| 2679 | info->auxd_enabled = 0; |
| 2680 | INIT_LIST_HEAD(&info->auxiliary_domains); |
| 2681 | |
| 2682 | if (dev && dev_is_pci(dev)) { |
| 2683 | struct pci_dev *pdev = to_pci_dev(info->dev); |
| 2684 | |
| 2685 | if (ecap_dev_iotlb_support(iommu->ecap) && |
| 2686 | pci_ats_supported(pdev) && |
| 2687 | dmar_find_matched_atsr_unit(pdev)) |
| 2688 | info->ats_supported = 1; |
| 2689 | |
| 2690 | if (sm_supported(iommu)) { |
| 2691 | if (pasid_supported(iommu)) { |
| 2692 | int features = pci_pasid_features(pdev); |
| 2693 | if (features >= 0) |
| 2694 | info->pasid_supported = features | 1; |
| 2695 | } |
| 2696 | |
| 2697 | if (info->ats_supported && ecap_prs(iommu->ecap) && |
| 2698 | pci_pri_supported(pdev)) |
| 2699 | info->pri_supported = 1; |
| 2700 | } |
| 2701 | } |
| 2702 | |
| 2703 | spin_lock_irqsave(&device_domain_lock, flags); |
| 2704 | if (dev) |
| 2705 | found = find_domain(dev); |
| 2706 | |
| 2707 | if (!found) { |
| 2708 | struct device_domain_info *info2; |
| 2709 | info2 = dmar_search_domain_by_dev_info(info->segment, info->bus, |
| 2710 | info->devfn); |
| 2711 | if (info2) { |
| 2712 | found = info2->domain; |
| 2713 | info2->dev = dev; |
| 2714 | } |
| 2715 | } |
| 2716 | |
| 2717 | if (found) { |
| 2718 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 2719 | free_devinfo_mem(info); |
| 2720 | /* Caller must free the original domain */ |
| 2721 | return found; |
| 2722 | } |
| 2723 | |
| 2724 | spin_lock(&iommu->lock); |
| 2725 | ret = domain_attach_iommu(domain, iommu); |
| 2726 | spin_unlock(&iommu->lock); |
| 2727 | |
| 2728 | if (ret) { |
| 2729 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 2730 | free_devinfo_mem(info); |
| 2731 | return NULL; |
| 2732 | } |
| 2733 | |
| 2734 | list_add(&info->link, &domain->devices); |
| 2735 | list_add(&info->global, &device_domain_list); |
| 2736 | if (dev) |
| 2737 | dev_iommu_priv_set(dev, info); |
| 2738 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 2739 | |
| 2740 | /* PASID table is mandatory for a PCI device in scalable mode. */ |
| 2741 | if (dev && dev_is_pci(dev) && sm_supported(iommu)) { |
| 2742 | ret = intel_pasid_alloc_table(dev); |
| 2743 | if (ret) { |
| 2744 | dev_err(dev, "PASID table allocation failed\n"); |
| 2745 | dmar_remove_one_dev_info(dev); |
| 2746 | return NULL; |
| 2747 | } |
| 2748 | |
| 2749 | /* Setup the PASID entry for requests without PASID: */ |
| 2750 | spin_lock_irqsave(&iommu->lock, flags); |
| 2751 | if (hw_pass_through && domain_type_is_si(domain)) |
| 2752 | ret = intel_pasid_setup_pass_through(iommu, domain, |
| 2753 | dev, PASID_RID2PASID); |
| 2754 | else if (domain_use_first_level(domain)) |
| 2755 | ret = domain_setup_first_level(iommu, domain, dev, |
| 2756 | PASID_RID2PASID); |
| 2757 | else |
| 2758 | ret = intel_pasid_setup_second_level(iommu, domain, |
| 2759 | dev, PASID_RID2PASID); |
| 2760 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 2761 | if (ret) { |
| 2762 | dev_err(dev, "Setup RID2PASID failed\n"); |
| 2763 | dmar_remove_one_dev_info(dev); |
| 2764 | return NULL; |
| 2765 | } |
| 2766 | } |
| 2767 | |
| 2768 | if (dev && domain_context_mapping(domain, dev)) { |
| 2769 | dev_err(dev, "Domain context map failed\n"); |
| 2770 | dmar_remove_one_dev_info(dev); |
| 2771 | return NULL; |
| 2772 | } |
| 2773 | |
| 2774 | return domain; |
| 2775 | } |
| 2776 | |
| 2777 | static int iommu_domain_identity_map(struct dmar_domain *domain, |
| 2778 | unsigned long first_vpfn, |
| 2779 | unsigned long last_vpfn) |
| 2780 | { |
| 2781 | /* |
| 2782 | * RMRR range might have overlap with physical memory range, |
| 2783 | * clear it first |
| 2784 | */ |
| 2785 | dma_pte_clear_range(domain, first_vpfn, last_vpfn); |
| 2786 | |
| 2787 | return __domain_mapping(domain, first_vpfn, NULL, |
| 2788 | first_vpfn, last_vpfn - first_vpfn + 1, |
| 2789 | DMA_PTE_READ|DMA_PTE_WRITE); |
| 2790 | } |
| 2791 | |
| 2792 | static int md_domain_init(struct dmar_domain *domain, int guest_width); |
| 2793 | |
| 2794 | static int __init si_domain_init(int hw) |
| 2795 | { |
| 2796 | struct dmar_rmrr_unit *rmrr; |
| 2797 | struct device *dev; |
| 2798 | int i, nid, ret; |
| 2799 | |
| 2800 | si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY); |
| 2801 | if (!si_domain) |
| 2802 | return -EFAULT; |
| 2803 | |
| 2804 | if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
| 2805 | domain_exit(si_domain); |
| 2806 | return -EFAULT; |
| 2807 | } |
| 2808 | |
| 2809 | if (hw) |
| 2810 | return 0; |
| 2811 | |
| 2812 | for_each_online_node(nid) { |
| 2813 | unsigned long start_pfn, end_pfn; |
| 2814 | int i; |
| 2815 | |
| 2816 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
| 2817 | ret = iommu_domain_identity_map(si_domain, |
| 2818 | mm_to_dma_pfn(start_pfn), |
| 2819 | mm_to_dma_pfn(end_pfn)); |
| 2820 | if (ret) |
| 2821 | return ret; |
| 2822 | } |
| 2823 | } |
| 2824 | |
| 2825 | /* |
| 2826 | * Identity map the RMRRs so that devices with RMRRs could also use |
| 2827 | * the si_domain. |
| 2828 | */ |
| 2829 | for_each_rmrr_units(rmrr) { |
| 2830 | for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, |
| 2831 | i, dev) { |
| 2832 | unsigned long long start = rmrr->base_address; |
| 2833 | unsigned long long end = rmrr->end_address; |
| 2834 | |
| 2835 | if (WARN_ON(end < start || |
| 2836 | end >> agaw_to_width(si_domain->agaw))) |
| 2837 | continue; |
| 2838 | |
| 2839 | ret = iommu_domain_identity_map(si_domain, |
| 2840 | mm_to_dma_pfn(start >> PAGE_SHIFT), |
| 2841 | mm_to_dma_pfn(end >> PAGE_SHIFT)); |
| 2842 | if (ret) |
| 2843 | return ret; |
| 2844 | } |
| 2845 | } |
| 2846 | |
| 2847 | return 0; |
| 2848 | } |
| 2849 | |
| 2850 | static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev) |
| 2851 | { |
| 2852 | struct dmar_domain *ndomain; |
| 2853 | struct intel_iommu *iommu; |
| 2854 | u8 bus, devfn; |
| 2855 | |
| 2856 | iommu = device_to_iommu(dev, &bus, &devfn); |
| 2857 | if (!iommu) |
| 2858 | return -ENODEV; |
| 2859 | |
| 2860 | ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain); |
| 2861 | if (ndomain != domain) |
| 2862 | return -EBUSY; |
| 2863 | |
| 2864 | return 0; |
| 2865 | } |
| 2866 | |
| 2867 | static bool device_has_rmrr(struct device *dev) |
| 2868 | { |
| 2869 | struct dmar_rmrr_unit *rmrr; |
| 2870 | struct device *tmp; |
| 2871 | int i; |
| 2872 | |
| 2873 | rcu_read_lock(); |
| 2874 | for_each_rmrr_units(rmrr) { |
| 2875 | /* |
| 2876 | * Return TRUE if this RMRR contains the device that |
| 2877 | * is passed in. |
| 2878 | */ |
| 2879 | for_each_active_dev_scope(rmrr->devices, |
| 2880 | rmrr->devices_cnt, i, tmp) |
| 2881 | if (tmp == dev || |
| 2882 | is_downstream_to_pci_bridge(dev, tmp)) { |
| 2883 | rcu_read_unlock(); |
| 2884 | return true; |
| 2885 | } |
| 2886 | } |
| 2887 | rcu_read_unlock(); |
| 2888 | return false; |
| 2889 | } |
| 2890 | |
| 2891 | /** |
| 2892 | * device_rmrr_is_relaxable - Test whether the RMRR of this device |
| 2893 | * is relaxable (ie. is allowed to be not enforced under some conditions) |
| 2894 | * @dev: device handle |
| 2895 | * |
| 2896 | * We assume that PCI USB devices with RMRRs have them largely |
| 2897 | * for historical reasons and that the RMRR space is not actively used post |
| 2898 | * boot. This exclusion may change if vendors begin to abuse it. |
| 2899 | * |
| 2900 | * The same exception is made for graphics devices, with the requirement that |
| 2901 | * any use of the RMRR regions will be torn down before assigning the device |
| 2902 | * to a guest. |
| 2903 | * |
| 2904 | * Return: true if the RMRR is relaxable, false otherwise |
| 2905 | */ |
| 2906 | static bool device_rmrr_is_relaxable(struct device *dev) |
| 2907 | { |
| 2908 | struct pci_dev *pdev; |
| 2909 | |
| 2910 | if (!dev_is_pci(dev)) |
| 2911 | return false; |
| 2912 | |
| 2913 | pdev = to_pci_dev(dev); |
| 2914 | if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) |
| 2915 | return true; |
| 2916 | else |
| 2917 | return false; |
| 2918 | } |
| 2919 | |
| 2920 | /* |
| 2921 | * There are a couple cases where we need to restrict the functionality of |
| 2922 | * devices associated with RMRRs. The first is when evaluating a device for |
| 2923 | * identity mapping because problems exist when devices are moved in and out |
| 2924 | * of domains and their respective RMRR information is lost. This means that |
| 2925 | * a device with associated RMRRs will never be in a "passthrough" domain. |
| 2926 | * The second is use of the device through the IOMMU API. This interface |
| 2927 | * expects to have full control of the IOVA space for the device. We cannot |
| 2928 | * satisfy both the requirement that RMRR access is maintained and have an |
| 2929 | * unencumbered IOVA space. We also have no ability to quiesce the device's |
| 2930 | * use of the RMRR space or even inform the IOMMU API user of the restriction. |
| 2931 | * We therefore prevent devices associated with an RMRR from participating in |
| 2932 | * the IOMMU API, which eliminates them from device assignment. |
| 2933 | * |
| 2934 | * In both cases, devices which have relaxable RMRRs are not concerned by this |
| 2935 | * restriction. See device_rmrr_is_relaxable comment. |
| 2936 | */ |
| 2937 | static bool device_is_rmrr_locked(struct device *dev) |
| 2938 | { |
| 2939 | if (!device_has_rmrr(dev)) |
| 2940 | return false; |
| 2941 | |
| 2942 | if (device_rmrr_is_relaxable(dev)) |
| 2943 | return false; |
| 2944 | |
| 2945 | return true; |
| 2946 | } |
| 2947 | |
| 2948 | /* |
| 2949 | * Return the required default domain type for a specific device. |
| 2950 | * |
| 2951 | * @dev: the device in query |
| 2952 | * @startup: true if this is during early boot |
| 2953 | * |
| 2954 | * Returns: |
| 2955 | * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain |
| 2956 | * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain |
| 2957 | * - 0: both identity and dynamic domains work for this device |
| 2958 | */ |
| 2959 | static int device_def_domain_type(struct device *dev) |
| 2960 | { |
| 2961 | if (dev_is_pci(dev)) { |
| 2962 | struct pci_dev *pdev = to_pci_dev(dev); |
| 2963 | |
| 2964 | /* |
| 2965 | * Prevent any device marked as untrusted from getting |
| 2966 | * placed into the statically identity mapping domain. |
| 2967 | */ |
| 2968 | if (pdev->untrusted) |
| 2969 | return IOMMU_DOMAIN_DMA; |
| 2970 | |
| 2971 | if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) |
| 2972 | return IOMMU_DOMAIN_IDENTITY; |
| 2973 | |
| 2974 | if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) |
| 2975 | return IOMMU_DOMAIN_IDENTITY; |
| 2976 | } |
| 2977 | |
| 2978 | return 0; |
| 2979 | } |
| 2980 | |
| 2981 | static void intel_iommu_init_qi(struct intel_iommu *iommu) |
| 2982 | { |
| 2983 | /* |
| 2984 | * Start from the sane iommu hardware state. |
| 2985 | * If the queued invalidation is already initialized by us |
| 2986 | * (for example, while enabling interrupt-remapping) then |
| 2987 | * we got the things already rolling from a sane state. |
| 2988 | */ |
| 2989 | if (!iommu->qi) { |
| 2990 | /* |
| 2991 | * Clear any previous faults. |
| 2992 | */ |
| 2993 | dmar_fault(-1, iommu); |
| 2994 | /* |
| 2995 | * Disable queued invalidation if supported and already enabled |
| 2996 | * before OS handover. |
| 2997 | */ |
| 2998 | dmar_disable_qi(iommu); |
| 2999 | } |
| 3000 | |
| 3001 | if (dmar_enable_qi(iommu)) { |
| 3002 | /* |
| 3003 | * Queued Invalidate not enabled, use Register Based Invalidate |
| 3004 | */ |
| 3005 | iommu->flush.flush_context = __iommu_flush_context; |
| 3006 | iommu->flush.flush_iotlb = __iommu_flush_iotlb; |
| 3007 | pr_info("%s: Using Register based invalidation\n", |
| 3008 | iommu->name); |
| 3009 | } else { |
| 3010 | iommu->flush.flush_context = qi_flush_context; |
| 3011 | iommu->flush.flush_iotlb = qi_flush_iotlb; |
| 3012 | pr_info("%s: Using Queued invalidation\n", iommu->name); |
| 3013 | } |
| 3014 | } |
| 3015 | |
| 3016 | static int copy_context_table(struct intel_iommu *iommu, |
| 3017 | struct root_entry *old_re, |
| 3018 | struct context_entry **tbl, |
| 3019 | int bus, bool ext) |
| 3020 | { |
| 3021 | int tbl_idx, pos = 0, idx, devfn, ret = 0, did; |
| 3022 | struct context_entry *new_ce = NULL, ce; |
| 3023 | struct context_entry *old_ce = NULL; |
| 3024 | struct root_entry re; |
| 3025 | phys_addr_t old_ce_phys; |
| 3026 | |
| 3027 | tbl_idx = ext ? bus * 2 : bus; |
| 3028 | memcpy(&re, old_re, sizeof(re)); |
| 3029 | |
| 3030 | for (devfn = 0; devfn < 256; devfn++) { |
| 3031 | /* First calculate the correct index */ |
| 3032 | idx = (ext ? devfn * 2 : devfn) % 256; |
| 3033 | |
| 3034 | if (idx == 0) { |
| 3035 | /* First save what we may have and clean up */ |
| 3036 | if (new_ce) { |
| 3037 | tbl[tbl_idx] = new_ce; |
| 3038 | __iommu_flush_cache(iommu, new_ce, |
| 3039 | VTD_PAGE_SIZE); |
| 3040 | pos = 1; |
| 3041 | } |
| 3042 | |
| 3043 | if (old_ce) |
| 3044 | memunmap(old_ce); |
| 3045 | |
| 3046 | ret = 0; |
| 3047 | if (devfn < 0x80) |
| 3048 | old_ce_phys = root_entry_lctp(&re); |
| 3049 | else |
| 3050 | old_ce_phys = root_entry_uctp(&re); |
| 3051 | |
| 3052 | if (!old_ce_phys) { |
| 3053 | if (ext && devfn == 0) { |
| 3054 | /* No LCTP, try UCTP */ |
| 3055 | devfn = 0x7f; |
| 3056 | continue; |
| 3057 | } else { |
| 3058 | goto out; |
| 3059 | } |
| 3060 | } |
| 3061 | |
| 3062 | ret = -ENOMEM; |
| 3063 | old_ce = memremap(old_ce_phys, PAGE_SIZE, |
| 3064 | MEMREMAP_WB); |
| 3065 | if (!old_ce) |
| 3066 | goto out; |
| 3067 | |
| 3068 | new_ce = alloc_pgtable_page(iommu->node); |
| 3069 | if (!new_ce) |
| 3070 | goto out_unmap; |
| 3071 | |
| 3072 | ret = 0; |
| 3073 | } |
| 3074 | |
| 3075 | /* Now copy the context entry */ |
| 3076 | memcpy(&ce, old_ce + idx, sizeof(ce)); |
| 3077 | |
| 3078 | if (!__context_present(&ce)) |
| 3079 | continue; |
| 3080 | |
| 3081 | did = context_domain_id(&ce); |
| 3082 | if (did >= 0 && did < cap_ndoms(iommu->cap)) |
| 3083 | set_bit(did, iommu->domain_ids); |
| 3084 | |
| 3085 | /* |
| 3086 | * We need a marker for copied context entries. This |
| 3087 | * marker needs to work for the old format as well as |
| 3088 | * for extended context entries. |
| 3089 | * |
| 3090 | * Bit 67 of the context entry is used. In the old |
| 3091 | * format this bit is available to software, in the |
| 3092 | * extended format it is the PGE bit, but PGE is ignored |
| 3093 | * by HW if PASIDs are disabled (and thus still |
| 3094 | * available). |
| 3095 | * |
| 3096 | * So disable PASIDs first and then mark the entry |
| 3097 | * copied. This means that we don't copy PASID |
| 3098 | * translations from the old kernel, but this is fine as |
| 3099 | * faults there are not fatal. |
| 3100 | */ |
| 3101 | context_clear_pasid_enable(&ce); |
| 3102 | context_set_copied(&ce); |
| 3103 | |
| 3104 | new_ce[idx] = ce; |
| 3105 | } |
| 3106 | |
| 3107 | tbl[tbl_idx + pos] = new_ce; |
| 3108 | |
| 3109 | __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE); |
| 3110 | |
| 3111 | out_unmap: |
| 3112 | memunmap(old_ce); |
| 3113 | |
| 3114 | out: |
| 3115 | return ret; |
| 3116 | } |
| 3117 | |
| 3118 | static int copy_translation_tables(struct intel_iommu *iommu) |
| 3119 | { |
| 3120 | struct context_entry **ctxt_tbls; |
| 3121 | struct root_entry *old_rt; |
| 3122 | phys_addr_t old_rt_phys; |
| 3123 | int ctxt_table_entries; |
| 3124 | unsigned long flags; |
| 3125 | u64 rtaddr_reg; |
| 3126 | int bus, ret; |
| 3127 | bool new_ext, ext; |
| 3128 | |
| 3129 | rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG); |
| 3130 | ext = !!(rtaddr_reg & DMA_RTADDR_RTT); |
| 3131 | new_ext = !!ecap_ecs(iommu->ecap); |
| 3132 | |
| 3133 | /* |
| 3134 | * The RTT bit can only be changed when translation is disabled, |
| 3135 | * but disabling translation means to open a window for data |
| 3136 | * corruption. So bail out and don't copy anything if we would |
| 3137 | * have to change the bit. |
| 3138 | */ |
| 3139 | if (new_ext != ext) |
| 3140 | return -EINVAL; |
| 3141 | |
| 3142 | old_rt_phys = rtaddr_reg & VTD_PAGE_MASK; |
| 3143 | if (!old_rt_phys) |
| 3144 | return -EINVAL; |
| 3145 | |
| 3146 | old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB); |
| 3147 | if (!old_rt) |
| 3148 | return -ENOMEM; |
| 3149 | |
| 3150 | /* This is too big for the stack - allocate it from slab */ |
| 3151 | ctxt_table_entries = ext ? 512 : 256; |
| 3152 | ret = -ENOMEM; |
| 3153 | ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL); |
| 3154 | if (!ctxt_tbls) |
| 3155 | goto out_unmap; |
| 3156 | |
| 3157 | for (bus = 0; bus < 256; bus++) { |
| 3158 | ret = copy_context_table(iommu, &old_rt[bus], |
| 3159 | ctxt_tbls, bus, ext); |
| 3160 | if (ret) { |
| 3161 | pr_err("%s: Failed to copy context table for bus %d\n", |
| 3162 | iommu->name, bus); |
| 3163 | continue; |
| 3164 | } |
| 3165 | } |
| 3166 | |
| 3167 | spin_lock_irqsave(&iommu->lock, flags); |
| 3168 | |
| 3169 | /* Context tables are copied, now write them to the root_entry table */ |
| 3170 | for (bus = 0; bus < 256; bus++) { |
| 3171 | int idx = ext ? bus * 2 : bus; |
| 3172 | u64 val; |
| 3173 | |
| 3174 | if (ctxt_tbls[idx]) { |
| 3175 | val = virt_to_phys(ctxt_tbls[idx]) | 1; |
| 3176 | iommu->root_entry[bus].lo = val; |
| 3177 | } |
| 3178 | |
| 3179 | if (!ext || !ctxt_tbls[idx + 1]) |
| 3180 | continue; |
| 3181 | |
| 3182 | val = virt_to_phys(ctxt_tbls[idx + 1]) | 1; |
| 3183 | iommu->root_entry[bus].hi = val; |
| 3184 | } |
| 3185 | |
| 3186 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 3187 | |
| 3188 | kfree(ctxt_tbls); |
| 3189 | |
| 3190 | __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE); |
| 3191 | |
| 3192 | ret = 0; |
| 3193 | |
| 3194 | out_unmap: |
| 3195 | memunmap(old_rt); |
| 3196 | |
| 3197 | return ret; |
| 3198 | } |
| 3199 | |
| 3200 | #ifdef CONFIG_INTEL_IOMMU_SVM |
| 3201 | static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data) |
| 3202 | { |
| 3203 | struct intel_iommu *iommu = data; |
| 3204 | ioasid_t ioasid; |
| 3205 | |
| 3206 | if (!iommu) |
| 3207 | return INVALID_IOASID; |
| 3208 | /* |
| 3209 | * VT-d virtual command interface always uses the full 20 bit |
| 3210 | * PASID range. Host can partition guest PASID range based on |
| 3211 | * policies but it is out of guest's control. |
| 3212 | */ |
| 3213 | if (min < PASID_MIN || max > intel_pasid_max_id) |
| 3214 | return INVALID_IOASID; |
| 3215 | |
| 3216 | if (vcmd_alloc_pasid(iommu, &ioasid)) |
| 3217 | return INVALID_IOASID; |
| 3218 | |
| 3219 | return ioasid; |
| 3220 | } |
| 3221 | |
| 3222 | static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data) |
| 3223 | { |
| 3224 | struct intel_iommu *iommu = data; |
| 3225 | |
| 3226 | if (!iommu) |
| 3227 | return; |
| 3228 | /* |
| 3229 | * Sanity check the ioasid owner is done at upper layer, e.g. VFIO |
| 3230 | * We can only free the PASID when all the devices are unbound. |
| 3231 | */ |
| 3232 | if (ioasid_find(NULL, ioasid, NULL)) { |
| 3233 | pr_alert("Cannot free active IOASID %d\n", ioasid); |
| 3234 | return; |
| 3235 | } |
| 3236 | vcmd_free_pasid(iommu, ioasid); |
| 3237 | } |
| 3238 | |
| 3239 | static void register_pasid_allocator(struct intel_iommu *iommu) |
| 3240 | { |
| 3241 | /* |
| 3242 | * If we are running in the host, no need for custom allocator |
| 3243 | * in that PASIDs are allocated from the host system-wide. |
| 3244 | */ |
| 3245 | if (!cap_caching_mode(iommu->cap)) |
| 3246 | return; |
| 3247 | |
| 3248 | if (!sm_supported(iommu)) { |
| 3249 | pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n"); |
| 3250 | return; |
| 3251 | } |
| 3252 | |
| 3253 | /* |
| 3254 | * Register a custom PASID allocator if we are running in a guest, |
| 3255 | * guest PASID must be obtained via virtual command interface. |
| 3256 | * There can be multiple vIOMMUs in each guest but only one allocator |
| 3257 | * is active. All vIOMMU allocators will eventually be calling the same |
| 3258 | * host allocator. |
| 3259 | */ |
| 3260 | if (!vccap_pasid(iommu->vccap)) |
| 3261 | return; |
| 3262 | |
| 3263 | pr_info("Register custom PASID allocator\n"); |
| 3264 | iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc; |
| 3265 | iommu->pasid_allocator.free = intel_vcmd_ioasid_free; |
| 3266 | iommu->pasid_allocator.pdata = (void *)iommu; |
| 3267 | if (ioasid_register_allocator(&iommu->pasid_allocator)) { |
| 3268 | pr_warn("Custom PASID allocator failed, scalable mode disabled\n"); |
| 3269 | /* |
| 3270 | * Disable scalable mode on this IOMMU if there |
| 3271 | * is no custom allocator. Mixing SM capable vIOMMU |
| 3272 | * and non-SM vIOMMU are not supported. |
| 3273 | */ |
| 3274 | intel_iommu_sm = 0; |
| 3275 | } |
| 3276 | } |
| 3277 | #endif |
| 3278 | |
| 3279 | static int __init init_dmars(void) |
| 3280 | { |
| 3281 | struct dmar_drhd_unit *drhd; |
| 3282 | struct intel_iommu *iommu; |
| 3283 | int ret; |
| 3284 | |
| 3285 | /* |
| 3286 | * for each drhd |
| 3287 | * allocate root |
| 3288 | * initialize and program root entry to not present |
| 3289 | * endfor |
| 3290 | */ |
| 3291 | for_each_drhd_unit(drhd) { |
| 3292 | /* |
| 3293 | * lock not needed as this is only incremented in the single |
| 3294 | * threaded kernel __init code path all other access are read |
| 3295 | * only |
| 3296 | */ |
| 3297 | if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) { |
| 3298 | g_num_of_iommus++; |
| 3299 | continue; |
| 3300 | } |
| 3301 | pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED); |
| 3302 | } |
| 3303 | |
| 3304 | /* Preallocate enough resources for IOMMU hot-addition */ |
| 3305 | if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) |
| 3306 | g_num_of_iommus = DMAR_UNITS_SUPPORTED; |
| 3307 | |
| 3308 | g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), |
| 3309 | GFP_KERNEL); |
| 3310 | if (!g_iommus) { |
| 3311 | pr_err("Allocating global iommu array failed\n"); |
| 3312 | ret = -ENOMEM; |
| 3313 | goto error; |
| 3314 | } |
| 3315 | |
| 3316 | for_each_iommu(iommu, drhd) { |
| 3317 | if (drhd->ignored) { |
| 3318 | iommu_disable_translation(iommu); |
| 3319 | continue; |
| 3320 | } |
| 3321 | |
| 3322 | /* |
| 3323 | * Find the max pasid size of all IOMMU's in the system. |
| 3324 | * We need to ensure the system pasid table is no bigger |
| 3325 | * than the smallest supported. |
| 3326 | */ |
| 3327 | if (pasid_supported(iommu)) { |
| 3328 | u32 temp = 2 << ecap_pss(iommu->ecap); |
| 3329 | |
| 3330 | intel_pasid_max_id = min_t(u32, temp, |
| 3331 | intel_pasid_max_id); |
| 3332 | } |
| 3333 | |
| 3334 | g_iommus[iommu->seq_id] = iommu; |
| 3335 | |
| 3336 | intel_iommu_init_qi(iommu); |
| 3337 | |
| 3338 | ret = iommu_init_domains(iommu); |
| 3339 | if (ret) |
| 3340 | goto free_iommu; |
| 3341 | |
| 3342 | init_translation_status(iommu); |
| 3343 | |
| 3344 | if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { |
| 3345 | iommu_disable_translation(iommu); |
| 3346 | clear_translation_pre_enabled(iommu); |
| 3347 | pr_warn("Translation was enabled for %s but we are not in kdump mode\n", |
| 3348 | iommu->name); |
| 3349 | } |
| 3350 | |
| 3351 | /* |
| 3352 | * TBD: |
| 3353 | * we could share the same root & context tables |
| 3354 | * among all IOMMU's. Need to Split it later. |
| 3355 | */ |
| 3356 | ret = iommu_alloc_root_entry(iommu); |
| 3357 | if (ret) |
| 3358 | goto free_iommu; |
| 3359 | |
| 3360 | if (translation_pre_enabled(iommu)) { |
| 3361 | pr_info("Translation already enabled - trying to copy translation structures\n"); |
| 3362 | |
| 3363 | ret = copy_translation_tables(iommu); |
| 3364 | if (ret) { |
| 3365 | /* |
| 3366 | * We found the IOMMU with translation |
| 3367 | * enabled - but failed to copy over the |
| 3368 | * old root-entry table. Try to proceed |
| 3369 | * by disabling translation now and |
| 3370 | * allocating a clean root-entry table. |
| 3371 | * This might cause DMAR faults, but |
| 3372 | * probably the dump will still succeed. |
| 3373 | */ |
| 3374 | pr_err("Failed to copy translation tables from previous kernel for %s\n", |
| 3375 | iommu->name); |
| 3376 | iommu_disable_translation(iommu); |
| 3377 | clear_translation_pre_enabled(iommu); |
| 3378 | } else { |
| 3379 | pr_info("Copied translation tables from previous kernel for %s\n", |
| 3380 | iommu->name); |
| 3381 | } |
| 3382 | } |
| 3383 | |
| 3384 | if (!ecap_pass_through(iommu->ecap)) |
| 3385 | hw_pass_through = 0; |
| 3386 | |
| 3387 | if (!intel_iommu_strict && cap_caching_mode(iommu->cap)) { |
| 3388 | pr_warn("Disable batched IOTLB flush due to virtualization"); |
| 3389 | intel_iommu_strict = 1; |
| 3390 | } |
| 3391 | intel_svm_check(iommu); |
| 3392 | } |
| 3393 | |
| 3394 | /* |
| 3395 | * Now that qi is enabled on all iommus, set the root entry and flush |
| 3396 | * caches. This is required on some Intel X58 chipsets, otherwise the |
| 3397 | * flush_context function will loop forever and the boot hangs. |
| 3398 | */ |
| 3399 | for_each_active_iommu(iommu, drhd) { |
| 3400 | iommu_flush_write_buffer(iommu); |
| 3401 | #ifdef CONFIG_INTEL_IOMMU_SVM |
| 3402 | register_pasid_allocator(iommu); |
| 3403 | #endif |
| 3404 | iommu_set_root_entry(iommu); |
| 3405 | } |
| 3406 | |
| 3407 | #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA |
| 3408 | dmar_map_gfx = 0; |
| 3409 | #endif |
| 3410 | |
| 3411 | if (!dmar_map_gfx) |
| 3412 | iommu_identity_mapping |= IDENTMAP_GFX; |
| 3413 | |
| 3414 | check_tylersburg_isoch(); |
| 3415 | |
| 3416 | ret = si_domain_init(hw_pass_through); |
| 3417 | if (ret) |
| 3418 | goto free_iommu; |
| 3419 | |
| 3420 | /* |
| 3421 | * for each drhd |
| 3422 | * enable fault log |
| 3423 | * global invalidate context cache |
| 3424 | * global invalidate iotlb |
| 3425 | * enable translation |
| 3426 | */ |
| 3427 | for_each_iommu(iommu, drhd) { |
| 3428 | if (drhd->ignored) { |
| 3429 | /* |
| 3430 | * we always have to disable PMRs or DMA may fail on |
| 3431 | * this device |
| 3432 | */ |
| 3433 | if (force_on) |
| 3434 | iommu_disable_protect_mem_regions(iommu); |
| 3435 | continue; |
| 3436 | } |
| 3437 | |
| 3438 | iommu_flush_write_buffer(iommu); |
| 3439 | |
| 3440 | #ifdef CONFIG_INTEL_IOMMU_SVM |
| 3441 | if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { |
| 3442 | /* |
| 3443 | * Call dmar_alloc_hwirq() with dmar_global_lock held, |
| 3444 | * could cause possible lock race condition. |
| 3445 | */ |
| 3446 | up_write(&dmar_global_lock); |
| 3447 | ret = intel_svm_enable_prq(iommu); |
| 3448 | down_write(&dmar_global_lock); |
| 3449 | if (ret) |
| 3450 | goto free_iommu; |
| 3451 | } |
| 3452 | #endif |
| 3453 | ret = dmar_set_interrupt(iommu); |
| 3454 | if (ret) |
| 3455 | goto free_iommu; |
| 3456 | } |
| 3457 | |
| 3458 | return 0; |
| 3459 | |
| 3460 | free_iommu: |
| 3461 | for_each_active_iommu(iommu, drhd) { |
| 3462 | disable_dmar_iommu(iommu); |
| 3463 | free_dmar_iommu(iommu); |
| 3464 | } |
| 3465 | |
| 3466 | kfree(g_iommus); |
| 3467 | |
| 3468 | error: |
| 3469 | return ret; |
| 3470 | } |
| 3471 | |
| 3472 | /* This takes a number of _MM_ pages, not VTD pages */ |
| 3473 | static unsigned long intel_alloc_iova(struct device *dev, |
| 3474 | struct dmar_domain *domain, |
| 3475 | unsigned long nrpages, uint64_t dma_mask) |
| 3476 | { |
| 3477 | unsigned long iova_pfn; |
| 3478 | |
| 3479 | /* |
| 3480 | * Restrict dma_mask to the width that the iommu can handle. |
| 3481 | * First-level translation restricts the input-address to a |
| 3482 | * canonical address (i.e., address bits 63:N have the same |
| 3483 | * value as address bit [N-1], where N is 48-bits with 4-level |
| 3484 | * paging and 57-bits with 5-level paging). Hence, skip bit |
| 3485 | * [N-1]. |
| 3486 | */ |
| 3487 | if (domain_use_first_level(domain)) |
| 3488 | dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1), |
| 3489 | dma_mask); |
| 3490 | else |
| 3491 | dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), |
| 3492 | dma_mask); |
| 3493 | |
| 3494 | /* Ensure we reserve the whole size-aligned region */ |
| 3495 | nrpages = __roundup_pow_of_two(nrpages); |
| 3496 | |
| 3497 | if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) { |
| 3498 | /* |
| 3499 | * First try to allocate an io virtual address in |
| 3500 | * DMA_BIT_MASK(32) and if that fails then try allocating |
| 3501 | * from higher range |
| 3502 | */ |
| 3503 | iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, |
| 3504 | IOVA_PFN(DMA_BIT_MASK(32)), false); |
| 3505 | if (iova_pfn) |
| 3506 | return iova_pfn; |
| 3507 | } |
| 3508 | iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, |
| 3509 | IOVA_PFN(dma_mask), true); |
| 3510 | if (unlikely(!iova_pfn)) { |
| 3511 | dev_err_once(dev, "Allocating %ld-page iova failed\n", |
| 3512 | nrpages); |
| 3513 | return 0; |
| 3514 | } |
| 3515 | |
| 3516 | return iova_pfn; |
| 3517 | } |
| 3518 | |
| 3519 | static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr, |
| 3520 | size_t size, int dir, u64 dma_mask) |
| 3521 | { |
| 3522 | struct dmar_domain *domain; |
| 3523 | phys_addr_t start_paddr; |
| 3524 | unsigned long iova_pfn; |
| 3525 | int prot = 0; |
| 3526 | int ret; |
| 3527 | struct intel_iommu *iommu; |
| 3528 | unsigned long paddr_pfn = paddr >> PAGE_SHIFT; |
| 3529 | |
| 3530 | BUG_ON(dir == DMA_NONE); |
| 3531 | |
| 3532 | if (unlikely(attach_deferred(dev))) |
| 3533 | do_deferred_attach(dev); |
| 3534 | |
| 3535 | domain = find_domain(dev); |
| 3536 | if (!domain) |
| 3537 | return DMA_MAPPING_ERROR; |
| 3538 | |
| 3539 | iommu = domain_get_iommu(domain); |
| 3540 | size = aligned_nrpages(paddr, size); |
| 3541 | |
| 3542 | iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask); |
| 3543 | if (!iova_pfn) |
| 3544 | goto error; |
| 3545 | |
| 3546 | /* |
| 3547 | * Check if DMAR supports zero-length reads on write only |
| 3548 | * mappings.. |
| 3549 | */ |
| 3550 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ |
| 3551 | !cap_zlr(iommu->cap)) |
| 3552 | prot |= DMA_PTE_READ; |
| 3553 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| 3554 | prot |= DMA_PTE_WRITE; |
| 3555 | /* |
| 3556 | * paddr - (paddr + size) might be partial page, we should map the whole |
| 3557 | * page. Note: if two part of one page are separately mapped, we |
| 3558 | * might have two guest_addr mapping to the same host paddr, but this |
| 3559 | * is not a big problem |
| 3560 | */ |
| 3561 | ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn), |
| 3562 | mm_to_dma_pfn(paddr_pfn), size, prot); |
| 3563 | if (ret) |
| 3564 | goto error; |
| 3565 | |
| 3566 | start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT; |
| 3567 | start_paddr += paddr & ~PAGE_MASK; |
| 3568 | |
| 3569 | trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT); |
| 3570 | |
| 3571 | return start_paddr; |
| 3572 | |
| 3573 | error: |
| 3574 | if (iova_pfn) |
| 3575 | free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size)); |
| 3576 | dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n", |
| 3577 | size, (unsigned long long)paddr, dir); |
| 3578 | return DMA_MAPPING_ERROR; |
| 3579 | } |
| 3580 | |
| 3581 | static dma_addr_t intel_map_page(struct device *dev, struct page *page, |
| 3582 | unsigned long offset, size_t size, |
| 3583 | enum dma_data_direction dir, |
| 3584 | unsigned long attrs) |
| 3585 | { |
| 3586 | return __intel_map_single(dev, page_to_phys(page) + offset, |
| 3587 | size, dir, *dev->dma_mask); |
| 3588 | } |
| 3589 | |
| 3590 | static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr, |
| 3591 | size_t size, enum dma_data_direction dir, |
| 3592 | unsigned long attrs) |
| 3593 | { |
| 3594 | return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask); |
| 3595 | } |
| 3596 | |
| 3597 | static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size) |
| 3598 | { |
| 3599 | struct dmar_domain *domain; |
| 3600 | unsigned long start_pfn, last_pfn; |
| 3601 | unsigned long nrpages; |
| 3602 | unsigned long iova_pfn; |
| 3603 | struct intel_iommu *iommu; |
| 3604 | struct page *freelist; |
| 3605 | struct pci_dev *pdev = NULL; |
| 3606 | |
| 3607 | domain = find_domain(dev); |
| 3608 | BUG_ON(!domain); |
| 3609 | |
| 3610 | iommu = domain_get_iommu(domain); |
| 3611 | |
| 3612 | iova_pfn = IOVA_PFN(dev_addr); |
| 3613 | |
| 3614 | nrpages = aligned_nrpages(dev_addr, size); |
| 3615 | start_pfn = mm_to_dma_pfn(iova_pfn); |
| 3616 | last_pfn = start_pfn + nrpages - 1; |
| 3617 | |
| 3618 | if (dev_is_pci(dev)) |
| 3619 | pdev = to_pci_dev(dev); |
| 3620 | |
| 3621 | freelist = domain_unmap(domain, start_pfn, last_pfn); |
| 3622 | if (intel_iommu_strict || (pdev && pdev->untrusted) || |
| 3623 | !has_iova_flush_queue(&domain->iovad)) { |
| 3624 | iommu_flush_iotlb_psi(iommu, domain, start_pfn, |
| 3625 | nrpages, !freelist, 0); |
| 3626 | /* free iova */ |
| 3627 | free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages)); |
| 3628 | dma_free_pagelist(freelist); |
| 3629 | } else { |
| 3630 | queue_iova(&domain->iovad, iova_pfn, nrpages, |
| 3631 | (unsigned long)freelist); |
| 3632 | /* |
| 3633 | * queue up the release of the unmap to save the 1/6th of the |
| 3634 | * cpu used up by the iotlb flush operation... |
| 3635 | */ |
| 3636 | } |
| 3637 | |
| 3638 | trace_unmap_single(dev, dev_addr, size); |
| 3639 | } |
| 3640 | |
| 3641 | static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr, |
| 3642 | size_t size, enum dma_data_direction dir, |
| 3643 | unsigned long attrs) |
| 3644 | { |
| 3645 | intel_unmap(dev, dev_addr, size); |
| 3646 | } |
| 3647 | |
| 3648 | static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr, |
| 3649 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 3650 | { |
| 3651 | intel_unmap(dev, dev_addr, size); |
| 3652 | } |
| 3653 | |
| 3654 | static void *intel_alloc_coherent(struct device *dev, size_t size, |
| 3655 | dma_addr_t *dma_handle, gfp_t flags, |
| 3656 | unsigned long attrs) |
| 3657 | { |
| 3658 | struct page *page = NULL; |
| 3659 | int order; |
| 3660 | |
| 3661 | if (unlikely(attach_deferred(dev))) |
| 3662 | do_deferred_attach(dev); |
| 3663 | |
| 3664 | size = PAGE_ALIGN(size); |
| 3665 | order = get_order(size); |
| 3666 | |
| 3667 | if (gfpflags_allow_blocking(flags)) { |
| 3668 | unsigned int count = size >> PAGE_SHIFT; |
| 3669 | |
| 3670 | page = dma_alloc_from_contiguous(dev, count, order, |
| 3671 | flags & __GFP_NOWARN); |
| 3672 | } |
| 3673 | |
| 3674 | if (!page) |
| 3675 | page = alloc_pages(flags, order); |
| 3676 | if (!page) |
| 3677 | return NULL; |
| 3678 | memset(page_address(page), 0, size); |
| 3679 | |
| 3680 | *dma_handle = __intel_map_single(dev, page_to_phys(page), size, |
| 3681 | DMA_BIDIRECTIONAL, |
| 3682 | dev->coherent_dma_mask); |
| 3683 | if (*dma_handle != DMA_MAPPING_ERROR) |
| 3684 | return page_address(page); |
| 3685 | if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) |
| 3686 | __free_pages(page, order); |
| 3687 | |
| 3688 | return NULL; |
| 3689 | } |
| 3690 | |
| 3691 | static void intel_free_coherent(struct device *dev, size_t size, void *vaddr, |
| 3692 | dma_addr_t dma_handle, unsigned long attrs) |
| 3693 | { |
| 3694 | int order; |
| 3695 | struct page *page = virt_to_page(vaddr); |
| 3696 | |
| 3697 | size = PAGE_ALIGN(size); |
| 3698 | order = get_order(size); |
| 3699 | |
| 3700 | intel_unmap(dev, dma_handle, size); |
| 3701 | if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) |
| 3702 | __free_pages(page, order); |
| 3703 | } |
| 3704 | |
| 3705 | static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist, |
| 3706 | int nelems, enum dma_data_direction dir, |
| 3707 | unsigned long attrs) |
| 3708 | { |
| 3709 | dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK; |
| 3710 | unsigned long nrpages = 0; |
| 3711 | struct scatterlist *sg; |
| 3712 | int i; |
| 3713 | |
| 3714 | for_each_sg(sglist, sg, nelems, i) { |
| 3715 | nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg)); |
| 3716 | } |
| 3717 | |
| 3718 | intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT); |
| 3719 | |
| 3720 | trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT); |
| 3721 | } |
| 3722 | |
| 3723 | static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, |
| 3724 | enum dma_data_direction dir, unsigned long attrs) |
| 3725 | { |
| 3726 | int i; |
| 3727 | struct dmar_domain *domain; |
| 3728 | size_t size = 0; |
| 3729 | int prot = 0; |
| 3730 | unsigned long iova_pfn; |
| 3731 | int ret; |
| 3732 | struct scatterlist *sg; |
| 3733 | unsigned long start_vpfn; |
| 3734 | struct intel_iommu *iommu; |
| 3735 | |
| 3736 | BUG_ON(dir == DMA_NONE); |
| 3737 | |
| 3738 | if (unlikely(attach_deferred(dev))) |
| 3739 | do_deferred_attach(dev); |
| 3740 | |
| 3741 | domain = find_domain(dev); |
| 3742 | if (!domain) |
| 3743 | return 0; |
| 3744 | |
| 3745 | iommu = domain_get_iommu(domain); |
| 3746 | |
| 3747 | for_each_sg(sglist, sg, nelems, i) |
| 3748 | size += aligned_nrpages(sg->offset, sg->length); |
| 3749 | |
| 3750 | iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), |
| 3751 | *dev->dma_mask); |
| 3752 | if (!iova_pfn) { |
| 3753 | sglist->dma_length = 0; |
| 3754 | return 0; |
| 3755 | } |
| 3756 | |
| 3757 | /* |
| 3758 | * Check if DMAR supports zero-length reads on write only |
| 3759 | * mappings.. |
| 3760 | */ |
| 3761 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ |
| 3762 | !cap_zlr(iommu->cap)) |
| 3763 | prot |= DMA_PTE_READ; |
| 3764 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| 3765 | prot |= DMA_PTE_WRITE; |
| 3766 | |
| 3767 | start_vpfn = mm_to_dma_pfn(iova_pfn); |
| 3768 | |
| 3769 | ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot); |
| 3770 | if (unlikely(ret)) { |
| 3771 | dma_pte_free_pagetable(domain, start_vpfn, |
| 3772 | start_vpfn + size - 1, |
| 3773 | agaw_to_level(domain->agaw) + 1); |
| 3774 | free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size)); |
| 3775 | return 0; |
| 3776 | } |
| 3777 | |
| 3778 | for_each_sg(sglist, sg, nelems, i) |
| 3779 | trace_map_sg(dev, i + 1, nelems, sg); |
| 3780 | |
| 3781 | return nelems; |
| 3782 | } |
| 3783 | |
| 3784 | static u64 intel_get_required_mask(struct device *dev) |
| 3785 | { |
| 3786 | return DMA_BIT_MASK(32); |
| 3787 | } |
| 3788 | |
| 3789 | static const struct dma_map_ops intel_dma_ops = { |
| 3790 | .alloc = intel_alloc_coherent, |
| 3791 | .free = intel_free_coherent, |
| 3792 | .map_sg = intel_map_sg, |
| 3793 | .unmap_sg = intel_unmap_sg, |
| 3794 | .map_page = intel_map_page, |
| 3795 | .unmap_page = intel_unmap_page, |
| 3796 | .map_resource = intel_map_resource, |
| 3797 | .unmap_resource = intel_unmap_resource, |
| 3798 | .dma_supported = dma_direct_supported, |
| 3799 | .mmap = dma_common_mmap, |
| 3800 | .get_sgtable = dma_common_get_sgtable, |
| 3801 | .alloc_pages = dma_common_alloc_pages, |
| 3802 | .free_pages = dma_common_free_pages, |
| 3803 | .get_required_mask = intel_get_required_mask, |
| 3804 | }; |
| 3805 | |
| 3806 | static void |
| 3807 | bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size, |
| 3808 | enum dma_data_direction dir, enum dma_sync_target target) |
| 3809 | { |
| 3810 | struct dmar_domain *domain; |
| 3811 | phys_addr_t tlb_addr; |
| 3812 | |
| 3813 | domain = find_domain(dev); |
| 3814 | if (WARN_ON(!domain)) |
| 3815 | return; |
| 3816 | |
| 3817 | tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr); |
| 3818 | if (is_swiotlb_buffer(tlb_addr)) |
| 3819 | swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target); |
| 3820 | } |
| 3821 | |
| 3822 | static dma_addr_t |
| 3823 | bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size, |
| 3824 | enum dma_data_direction dir, unsigned long attrs, |
| 3825 | u64 dma_mask) |
| 3826 | { |
| 3827 | size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE); |
| 3828 | struct dmar_domain *domain; |
| 3829 | struct intel_iommu *iommu; |
| 3830 | unsigned long iova_pfn; |
| 3831 | unsigned long nrpages; |
| 3832 | phys_addr_t tlb_addr; |
| 3833 | int prot = 0; |
| 3834 | int ret; |
| 3835 | |
| 3836 | if (unlikely(attach_deferred(dev))) |
| 3837 | do_deferred_attach(dev); |
| 3838 | |
| 3839 | domain = find_domain(dev); |
| 3840 | |
| 3841 | if (WARN_ON(dir == DMA_NONE || !domain)) |
| 3842 | return DMA_MAPPING_ERROR; |
| 3843 | |
| 3844 | iommu = domain_get_iommu(domain); |
| 3845 | if (WARN_ON(!iommu)) |
| 3846 | return DMA_MAPPING_ERROR; |
| 3847 | |
| 3848 | nrpages = aligned_nrpages(0, size); |
| 3849 | iova_pfn = intel_alloc_iova(dev, domain, |
| 3850 | dma_to_mm_pfn(nrpages), dma_mask); |
| 3851 | if (!iova_pfn) |
| 3852 | return DMA_MAPPING_ERROR; |
| 3853 | |
| 3854 | /* |
| 3855 | * Check if DMAR supports zero-length reads on write only |
| 3856 | * mappings.. |
| 3857 | */ |
| 3858 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || |
| 3859 | !cap_zlr(iommu->cap)) |
| 3860 | prot |= DMA_PTE_READ; |
| 3861 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| 3862 | prot |= DMA_PTE_WRITE; |
| 3863 | |
| 3864 | /* |
| 3865 | * If both the physical buffer start address and size are |
| 3866 | * page aligned, we don't need to use a bounce page. |
| 3867 | */ |
| 3868 | if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) { |
| 3869 | tlb_addr = swiotlb_tbl_map_single(dev, paddr, size, |
| 3870 | aligned_size, dir, attrs); |
| 3871 | if (tlb_addr == DMA_MAPPING_ERROR) { |
| 3872 | goto swiotlb_error; |
| 3873 | } else { |
| 3874 | /* Cleanup the padding area. */ |
| 3875 | void *padding_start = phys_to_virt(tlb_addr); |
| 3876 | size_t padding_size = aligned_size; |
| 3877 | |
| 3878 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
| 3879 | (dir == DMA_TO_DEVICE || |
| 3880 | dir == DMA_BIDIRECTIONAL)) { |
| 3881 | padding_start += size; |
| 3882 | padding_size -= size; |
| 3883 | } |
| 3884 | |
| 3885 | memset(padding_start, 0, padding_size); |
| 3886 | } |
| 3887 | } else { |
| 3888 | tlb_addr = paddr; |
| 3889 | } |
| 3890 | |
| 3891 | ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn), |
| 3892 | tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot); |
| 3893 | if (ret) |
| 3894 | goto mapping_error; |
| 3895 | |
| 3896 | trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size); |
| 3897 | |
| 3898 | return (phys_addr_t)iova_pfn << PAGE_SHIFT; |
| 3899 | |
| 3900 | mapping_error: |
| 3901 | if (is_swiotlb_buffer(tlb_addr)) |
| 3902 | swiotlb_tbl_unmap_single(dev, tlb_addr, size, |
| 3903 | aligned_size, dir, attrs); |
| 3904 | swiotlb_error: |
| 3905 | free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages)); |
| 3906 | dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n", |
| 3907 | size, (unsigned long long)paddr, dir); |
| 3908 | |
| 3909 | return DMA_MAPPING_ERROR; |
| 3910 | } |
| 3911 | |
| 3912 | static void |
| 3913 | bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size, |
| 3914 | enum dma_data_direction dir, unsigned long attrs) |
| 3915 | { |
| 3916 | size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE); |
| 3917 | struct dmar_domain *domain; |
| 3918 | phys_addr_t tlb_addr; |
| 3919 | |
| 3920 | domain = find_domain(dev); |
| 3921 | if (WARN_ON(!domain)) |
| 3922 | return; |
| 3923 | |
| 3924 | tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr); |
| 3925 | if (WARN_ON(!tlb_addr)) |
| 3926 | return; |
| 3927 | |
| 3928 | intel_unmap(dev, dev_addr, size); |
| 3929 | if (is_swiotlb_buffer(tlb_addr)) |
| 3930 | swiotlb_tbl_unmap_single(dev, tlb_addr, size, |
| 3931 | aligned_size, dir, attrs); |
| 3932 | |
| 3933 | trace_bounce_unmap_single(dev, dev_addr, size); |
| 3934 | } |
| 3935 | |
| 3936 | static dma_addr_t |
| 3937 | bounce_map_page(struct device *dev, struct page *page, unsigned long offset, |
| 3938 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 3939 | { |
| 3940 | return bounce_map_single(dev, page_to_phys(page) + offset, |
| 3941 | size, dir, attrs, *dev->dma_mask); |
| 3942 | } |
| 3943 | |
| 3944 | static dma_addr_t |
| 3945 | bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size, |
| 3946 | enum dma_data_direction dir, unsigned long attrs) |
| 3947 | { |
| 3948 | return bounce_map_single(dev, phys_addr, size, |
| 3949 | dir, attrs, *dev->dma_mask); |
| 3950 | } |
| 3951 | |
| 3952 | static void |
| 3953 | bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size, |
| 3954 | enum dma_data_direction dir, unsigned long attrs) |
| 3955 | { |
| 3956 | bounce_unmap_single(dev, dev_addr, size, dir, attrs); |
| 3957 | } |
| 3958 | |
| 3959 | static void |
| 3960 | bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size, |
| 3961 | enum dma_data_direction dir, unsigned long attrs) |
| 3962 | { |
| 3963 | bounce_unmap_single(dev, dev_addr, size, dir, attrs); |
| 3964 | } |
| 3965 | |
| 3966 | static void |
| 3967 | bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems, |
| 3968 | enum dma_data_direction dir, unsigned long attrs) |
| 3969 | { |
| 3970 | struct scatterlist *sg; |
| 3971 | int i; |
| 3972 | |
| 3973 | for_each_sg(sglist, sg, nelems, i) |
| 3974 | bounce_unmap_page(dev, sg->dma_address, |
| 3975 | sg_dma_len(sg), dir, attrs); |
| 3976 | } |
| 3977 | |
| 3978 | static int |
| 3979 | bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, |
| 3980 | enum dma_data_direction dir, unsigned long attrs) |
| 3981 | { |
| 3982 | int i; |
| 3983 | struct scatterlist *sg; |
| 3984 | |
| 3985 | for_each_sg(sglist, sg, nelems, i) { |
| 3986 | sg->dma_address = bounce_map_page(dev, sg_page(sg), |
| 3987 | sg->offset, sg->length, |
| 3988 | dir, attrs); |
| 3989 | if (sg->dma_address == DMA_MAPPING_ERROR) |
| 3990 | goto out_unmap; |
| 3991 | sg_dma_len(sg) = sg->length; |
| 3992 | } |
| 3993 | |
| 3994 | for_each_sg(sglist, sg, nelems, i) |
| 3995 | trace_bounce_map_sg(dev, i + 1, nelems, sg); |
| 3996 | |
| 3997 | return nelems; |
| 3998 | |
| 3999 | out_unmap: |
| 4000 | bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); |
| 4001 | return 0; |
| 4002 | } |
| 4003 | |
| 4004 | static void |
| 4005 | bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr, |
| 4006 | size_t size, enum dma_data_direction dir) |
| 4007 | { |
| 4008 | bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU); |
| 4009 | } |
| 4010 | |
| 4011 | static void |
| 4012 | bounce_sync_single_for_device(struct device *dev, dma_addr_t addr, |
| 4013 | size_t size, enum dma_data_direction dir) |
| 4014 | { |
| 4015 | bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE); |
| 4016 | } |
| 4017 | |
| 4018 | static void |
| 4019 | bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, |
| 4020 | int nelems, enum dma_data_direction dir) |
| 4021 | { |
| 4022 | struct scatterlist *sg; |
| 4023 | int i; |
| 4024 | |
| 4025 | for_each_sg(sglist, sg, nelems, i) |
| 4026 | bounce_sync_single(dev, sg_dma_address(sg), |
| 4027 | sg_dma_len(sg), dir, SYNC_FOR_CPU); |
| 4028 | } |
| 4029 | |
| 4030 | static void |
| 4031 | bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, |
| 4032 | int nelems, enum dma_data_direction dir) |
| 4033 | { |
| 4034 | struct scatterlist *sg; |
| 4035 | int i; |
| 4036 | |
| 4037 | for_each_sg(sglist, sg, nelems, i) |
| 4038 | bounce_sync_single(dev, sg_dma_address(sg), |
| 4039 | sg_dma_len(sg), dir, SYNC_FOR_DEVICE); |
| 4040 | } |
| 4041 | |
| 4042 | static const struct dma_map_ops bounce_dma_ops = { |
| 4043 | .alloc = intel_alloc_coherent, |
| 4044 | .free = intel_free_coherent, |
| 4045 | .map_sg = bounce_map_sg, |
| 4046 | .unmap_sg = bounce_unmap_sg, |
| 4047 | .map_page = bounce_map_page, |
| 4048 | .unmap_page = bounce_unmap_page, |
| 4049 | .sync_single_for_cpu = bounce_sync_single_for_cpu, |
| 4050 | .sync_single_for_device = bounce_sync_single_for_device, |
| 4051 | .sync_sg_for_cpu = bounce_sync_sg_for_cpu, |
| 4052 | .sync_sg_for_device = bounce_sync_sg_for_device, |
| 4053 | .map_resource = bounce_map_resource, |
| 4054 | .unmap_resource = bounce_unmap_resource, |
| 4055 | .alloc_pages = dma_common_alloc_pages, |
| 4056 | .free_pages = dma_common_free_pages, |
| 4057 | .dma_supported = dma_direct_supported, |
| 4058 | }; |
| 4059 | |
| 4060 | static inline int iommu_domain_cache_init(void) |
| 4061 | { |
| 4062 | int ret = 0; |
| 4063 | |
| 4064 | iommu_domain_cache = kmem_cache_create("iommu_domain", |
| 4065 | sizeof(struct dmar_domain), |
| 4066 | 0, |
| 4067 | SLAB_HWCACHE_ALIGN, |
| 4068 | |
| 4069 | NULL); |
| 4070 | if (!iommu_domain_cache) { |
| 4071 | pr_err("Couldn't create iommu_domain cache\n"); |
| 4072 | ret = -ENOMEM; |
| 4073 | } |
| 4074 | |
| 4075 | return ret; |
| 4076 | } |
| 4077 | |
| 4078 | static inline int iommu_devinfo_cache_init(void) |
| 4079 | { |
| 4080 | int ret = 0; |
| 4081 | |
| 4082 | iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", |
| 4083 | sizeof(struct device_domain_info), |
| 4084 | 0, |
| 4085 | SLAB_HWCACHE_ALIGN, |
| 4086 | NULL); |
| 4087 | if (!iommu_devinfo_cache) { |
| 4088 | pr_err("Couldn't create devinfo cache\n"); |
| 4089 | ret = -ENOMEM; |
| 4090 | } |
| 4091 | |
| 4092 | return ret; |
| 4093 | } |
| 4094 | |
| 4095 | static int __init iommu_init_mempool(void) |
| 4096 | { |
| 4097 | int ret; |
| 4098 | ret = iova_cache_get(); |
| 4099 | if (ret) |
| 4100 | return ret; |
| 4101 | |
| 4102 | ret = iommu_domain_cache_init(); |
| 4103 | if (ret) |
| 4104 | goto domain_error; |
| 4105 | |
| 4106 | ret = iommu_devinfo_cache_init(); |
| 4107 | if (!ret) |
| 4108 | return ret; |
| 4109 | |
| 4110 | kmem_cache_destroy(iommu_domain_cache); |
| 4111 | domain_error: |
| 4112 | iova_cache_put(); |
| 4113 | |
| 4114 | return -ENOMEM; |
| 4115 | } |
| 4116 | |
| 4117 | static void __init iommu_exit_mempool(void) |
| 4118 | { |
| 4119 | kmem_cache_destroy(iommu_devinfo_cache); |
| 4120 | kmem_cache_destroy(iommu_domain_cache); |
| 4121 | iova_cache_put(); |
| 4122 | } |
| 4123 | |
| 4124 | static void __init init_no_remapping_devices(void) |
| 4125 | { |
| 4126 | struct dmar_drhd_unit *drhd; |
| 4127 | struct device *dev; |
| 4128 | int i; |
| 4129 | |
| 4130 | for_each_drhd_unit(drhd) { |
| 4131 | if (!drhd->include_all) { |
| 4132 | for_each_active_dev_scope(drhd->devices, |
| 4133 | drhd->devices_cnt, i, dev) |
| 4134 | break; |
| 4135 | /* ignore DMAR unit if no devices exist */ |
| 4136 | if (i == drhd->devices_cnt) |
| 4137 | drhd->ignored = 1; |
| 4138 | } |
| 4139 | } |
| 4140 | |
| 4141 | for_each_active_drhd_unit(drhd) { |
| 4142 | if (drhd->include_all) |
| 4143 | continue; |
| 4144 | |
| 4145 | for_each_active_dev_scope(drhd->devices, |
| 4146 | drhd->devices_cnt, i, dev) |
| 4147 | if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev))) |
| 4148 | break; |
| 4149 | if (i < drhd->devices_cnt) |
| 4150 | continue; |
| 4151 | |
| 4152 | /* This IOMMU has *only* gfx devices. Either bypass it or |
| 4153 | set the gfx_mapped flag, as appropriate */ |
| 4154 | drhd->gfx_dedicated = 1; |
| 4155 | if (!dmar_map_gfx) |
| 4156 | drhd->ignored = 1; |
| 4157 | } |
| 4158 | } |
| 4159 | |
| 4160 | #ifdef CONFIG_SUSPEND |
| 4161 | static int init_iommu_hw(void) |
| 4162 | { |
| 4163 | struct dmar_drhd_unit *drhd; |
| 4164 | struct intel_iommu *iommu = NULL; |
| 4165 | |
| 4166 | for_each_active_iommu(iommu, drhd) |
| 4167 | if (iommu->qi) |
| 4168 | dmar_reenable_qi(iommu); |
| 4169 | |
| 4170 | for_each_iommu(iommu, drhd) { |
| 4171 | if (drhd->ignored) { |
| 4172 | /* |
| 4173 | * we always have to disable PMRs or DMA may fail on |
| 4174 | * this device |
| 4175 | */ |
| 4176 | if (force_on) |
| 4177 | iommu_disable_protect_mem_regions(iommu); |
| 4178 | continue; |
| 4179 | } |
| 4180 | |
| 4181 | iommu_flush_write_buffer(iommu); |
| 4182 | iommu_set_root_entry(iommu); |
| 4183 | iommu_enable_translation(iommu); |
| 4184 | iommu_disable_protect_mem_regions(iommu); |
| 4185 | } |
| 4186 | |
| 4187 | return 0; |
| 4188 | } |
| 4189 | |
| 4190 | static void iommu_flush_all(void) |
| 4191 | { |
| 4192 | struct dmar_drhd_unit *drhd; |
| 4193 | struct intel_iommu *iommu; |
| 4194 | |
| 4195 | for_each_active_iommu(iommu, drhd) { |
| 4196 | iommu->flush.flush_context(iommu, 0, 0, 0, |
| 4197 | DMA_CCMD_GLOBAL_INVL); |
| 4198 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, |
| 4199 | DMA_TLB_GLOBAL_FLUSH); |
| 4200 | } |
| 4201 | } |
| 4202 | |
| 4203 | static int iommu_suspend(void) |
| 4204 | { |
| 4205 | struct dmar_drhd_unit *drhd; |
| 4206 | struct intel_iommu *iommu = NULL; |
| 4207 | unsigned long flag; |
| 4208 | |
| 4209 | for_each_active_iommu(iommu, drhd) { |
| 4210 | iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32), |
| 4211 | GFP_ATOMIC); |
| 4212 | if (!iommu->iommu_state) |
| 4213 | goto nomem; |
| 4214 | } |
| 4215 | |
| 4216 | iommu_flush_all(); |
| 4217 | |
| 4218 | for_each_active_iommu(iommu, drhd) { |
| 4219 | iommu_disable_translation(iommu); |
| 4220 | |
| 4221 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 4222 | |
| 4223 | iommu->iommu_state[SR_DMAR_FECTL_REG] = |
| 4224 | readl(iommu->reg + DMAR_FECTL_REG); |
| 4225 | iommu->iommu_state[SR_DMAR_FEDATA_REG] = |
| 4226 | readl(iommu->reg + DMAR_FEDATA_REG); |
| 4227 | iommu->iommu_state[SR_DMAR_FEADDR_REG] = |
| 4228 | readl(iommu->reg + DMAR_FEADDR_REG); |
| 4229 | iommu->iommu_state[SR_DMAR_FEUADDR_REG] = |
| 4230 | readl(iommu->reg + DMAR_FEUADDR_REG); |
| 4231 | |
| 4232 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 4233 | } |
| 4234 | return 0; |
| 4235 | |
| 4236 | nomem: |
| 4237 | for_each_active_iommu(iommu, drhd) |
| 4238 | kfree(iommu->iommu_state); |
| 4239 | |
| 4240 | return -ENOMEM; |
| 4241 | } |
| 4242 | |
| 4243 | static void iommu_resume(void) |
| 4244 | { |
| 4245 | struct dmar_drhd_unit *drhd; |
| 4246 | struct intel_iommu *iommu = NULL; |
| 4247 | unsigned long flag; |
| 4248 | |
| 4249 | if (init_iommu_hw()) { |
| 4250 | if (force_on) |
| 4251 | panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); |
| 4252 | else |
| 4253 | WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); |
| 4254 | return; |
| 4255 | } |
| 4256 | |
| 4257 | for_each_active_iommu(iommu, drhd) { |
| 4258 | |
| 4259 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 4260 | |
| 4261 | writel(iommu->iommu_state[SR_DMAR_FECTL_REG], |
| 4262 | iommu->reg + DMAR_FECTL_REG); |
| 4263 | writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], |
| 4264 | iommu->reg + DMAR_FEDATA_REG); |
| 4265 | writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], |
| 4266 | iommu->reg + DMAR_FEADDR_REG); |
| 4267 | writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], |
| 4268 | iommu->reg + DMAR_FEUADDR_REG); |
| 4269 | |
| 4270 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 4271 | } |
| 4272 | |
| 4273 | for_each_active_iommu(iommu, drhd) |
| 4274 | kfree(iommu->iommu_state); |
| 4275 | } |
| 4276 | |
| 4277 | static struct syscore_ops iommu_syscore_ops = { |
| 4278 | .resume = iommu_resume, |
| 4279 | .suspend = iommu_suspend, |
| 4280 | }; |
| 4281 | |
| 4282 | static void __init init_iommu_pm_ops(void) |
| 4283 | { |
| 4284 | register_syscore_ops(&iommu_syscore_ops); |
| 4285 | } |
| 4286 | |
| 4287 | #else |
| 4288 | static inline void init_iommu_pm_ops(void) {} |
| 4289 | #endif /* CONFIG_PM */ |
| 4290 | |
| 4291 | static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr) |
| 4292 | { |
| 4293 | if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) || |
| 4294 | !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) || |
| 4295 | rmrr->end_address <= rmrr->base_address || |
| 4296 | arch_rmrr_sanity_check(rmrr)) |
| 4297 | return -EINVAL; |
| 4298 | |
| 4299 | return 0; |
| 4300 | } |
| 4301 | |
| 4302 | int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg) |
| 4303 | { |
| 4304 | struct acpi_dmar_reserved_memory *rmrr; |
| 4305 | struct dmar_rmrr_unit *rmrru; |
| 4306 | |
| 4307 | rmrr = (struct acpi_dmar_reserved_memory *)header; |
| 4308 | if (rmrr_sanity_check(rmrr)) { |
| 4309 | pr_warn(FW_BUG |
| 4310 | "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n" |
| 4311 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| 4312 | rmrr->base_address, rmrr->end_address, |
| 4313 | dmi_get_system_info(DMI_BIOS_VENDOR), |
| 4314 | dmi_get_system_info(DMI_BIOS_VERSION), |
| 4315 | dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| 4316 | add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| 4317 | } |
| 4318 | |
| 4319 | rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); |
| 4320 | if (!rmrru) |
| 4321 | goto out; |
| 4322 | |
| 4323 | rmrru->hdr = header; |
| 4324 | |
| 4325 | rmrru->base_address = rmrr->base_address; |
| 4326 | rmrru->end_address = rmrr->end_address; |
| 4327 | |
| 4328 | rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1), |
| 4329 | ((void *)rmrr) + rmrr->header.length, |
| 4330 | &rmrru->devices_cnt); |
| 4331 | if (rmrru->devices_cnt && rmrru->devices == NULL) |
| 4332 | goto free_rmrru; |
| 4333 | |
| 4334 | list_add(&rmrru->list, &dmar_rmrr_units); |
| 4335 | |
| 4336 | return 0; |
| 4337 | free_rmrru: |
| 4338 | kfree(rmrru); |
| 4339 | out: |
| 4340 | return -ENOMEM; |
| 4341 | } |
| 4342 | |
| 4343 | static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr) |
| 4344 | { |
| 4345 | struct dmar_atsr_unit *atsru; |
| 4346 | struct acpi_dmar_atsr *tmp; |
| 4347 | |
| 4348 | list_for_each_entry_rcu(atsru, &dmar_atsr_units, list, |
| 4349 | dmar_rcu_check()) { |
| 4350 | tmp = (struct acpi_dmar_atsr *)atsru->hdr; |
| 4351 | if (atsr->segment != tmp->segment) |
| 4352 | continue; |
| 4353 | if (atsr->header.length != tmp->header.length) |
| 4354 | continue; |
| 4355 | if (memcmp(atsr, tmp, atsr->header.length) == 0) |
| 4356 | return atsru; |
| 4357 | } |
| 4358 | |
| 4359 | return NULL; |
| 4360 | } |
| 4361 | |
| 4362 | int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg) |
| 4363 | { |
| 4364 | struct acpi_dmar_atsr *atsr; |
| 4365 | struct dmar_atsr_unit *atsru; |
| 4366 | |
| 4367 | if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) |
| 4368 | return 0; |
| 4369 | |
| 4370 | atsr = container_of(hdr, struct acpi_dmar_atsr, header); |
| 4371 | atsru = dmar_find_atsr(atsr); |
| 4372 | if (atsru) |
| 4373 | return 0; |
| 4374 | |
| 4375 | atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL); |
| 4376 | if (!atsru) |
| 4377 | return -ENOMEM; |
| 4378 | |
| 4379 | /* |
| 4380 | * If memory is allocated from slab by ACPI _DSM method, we need to |
| 4381 | * copy the memory content because the memory buffer will be freed |
| 4382 | * on return. |
| 4383 | */ |
| 4384 | atsru->hdr = (void *)(atsru + 1); |
| 4385 | memcpy(atsru->hdr, hdr, hdr->length); |
| 4386 | atsru->include_all = atsr->flags & 0x1; |
| 4387 | if (!atsru->include_all) { |
| 4388 | atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1), |
| 4389 | (void *)atsr + atsr->header.length, |
| 4390 | &atsru->devices_cnt); |
| 4391 | if (atsru->devices_cnt && atsru->devices == NULL) { |
| 4392 | kfree(atsru); |
| 4393 | return -ENOMEM; |
| 4394 | } |
| 4395 | } |
| 4396 | |
| 4397 | list_add_rcu(&atsru->list, &dmar_atsr_units); |
| 4398 | |
| 4399 | return 0; |
| 4400 | } |
| 4401 | |
| 4402 | static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru) |
| 4403 | { |
| 4404 | dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt); |
| 4405 | kfree(atsru); |
| 4406 | } |
| 4407 | |
| 4408 | int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg) |
| 4409 | { |
| 4410 | struct acpi_dmar_atsr *atsr; |
| 4411 | struct dmar_atsr_unit *atsru; |
| 4412 | |
| 4413 | atsr = container_of(hdr, struct acpi_dmar_atsr, header); |
| 4414 | atsru = dmar_find_atsr(atsr); |
| 4415 | if (atsru) { |
| 4416 | list_del_rcu(&atsru->list); |
| 4417 | synchronize_rcu(); |
| 4418 | intel_iommu_free_atsr(atsru); |
| 4419 | } |
| 4420 | |
| 4421 | return 0; |
| 4422 | } |
| 4423 | |
| 4424 | int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg) |
| 4425 | { |
| 4426 | int i; |
| 4427 | struct device *dev; |
| 4428 | struct acpi_dmar_atsr *atsr; |
| 4429 | struct dmar_atsr_unit *atsru; |
| 4430 | |
| 4431 | atsr = container_of(hdr, struct acpi_dmar_atsr, header); |
| 4432 | atsru = dmar_find_atsr(atsr); |
| 4433 | if (!atsru) |
| 4434 | return 0; |
| 4435 | |
| 4436 | if (!atsru->include_all && atsru->devices && atsru->devices_cnt) { |
| 4437 | for_each_active_dev_scope(atsru->devices, atsru->devices_cnt, |
| 4438 | i, dev) |
| 4439 | return -EBUSY; |
| 4440 | } |
| 4441 | |
| 4442 | return 0; |
| 4443 | } |
| 4444 | |
| 4445 | static int intel_iommu_add(struct dmar_drhd_unit *dmaru) |
| 4446 | { |
| 4447 | int sp, ret; |
| 4448 | struct intel_iommu *iommu = dmaru->iommu; |
| 4449 | |
| 4450 | if (g_iommus[iommu->seq_id]) |
| 4451 | return 0; |
| 4452 | |
| 4453 | if (hw_pass_through && !ecap_pass_through(iommu->ecap)) { |
| 4454 | pr_warn("%s: Doesn't support hardware pass through.\n", |
| 4455 | iommu->name); |
| 4456 | return -ENXIO; |
| 4457 | } |
| 4458 | if (!ecap_sc_support(iommu->ecap) && |
| 4459 | domain_update_iommu_snooping(iommu)) { |
| 4460 | pr_warn("%s: Doesn't support snooping.\n", |
| 4461 | iommu->name); |
| 4462 | return -ENXIO; |
| 4463 | } |
| 4464 | sp = domain_update_iommu_superpage(NULL, iommu) - 1; |
| 4465 | if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) { |
| 4466 | pr_warn("%s: Doesn't support large page.\n", |
| 4467 | iommu->name); |
| 4468 | return -ENXIO; |
| 4469 | } |
| 4470 | |
| 4471 | /* |
| 4472 | * Disable translation if already enabled prior to OS handover. |
| 4473 | */ |
| 4474 | if (iommu->gcmd & DMA_GCMD_TE) |
| 4475 | iommu_disable_translation(iommu); |
| 4476 | |
| 4477 | g_iommus[iommu->seq_id] = iommu; |
| 4478 | ret = iommu_init_domains(iommu); |
| 4479 | if (ret == 0) |
| 4480 | ret = iommu_alloc_root_entry(iommu); |
| 4481 | if (ret) |
| 4482 | goto out; |
| 4483 | |
| 4484 | intel_svm_check(iommu); |
| 4485 | |
| 4486 | if (dmaru->ignored) { |
| 4487 | /* |
| 4488 | * we always have to disable PMRs or DMA may fail on this device |
| 4489 | */ |
| 4490 | if (force_on) |
| 4491 | iommu_disable_protect_mem_regions(iommu); |
| 4492 | return 0; |
| 4493 | } |
| 4494 | |
| 4495 | intel_iommu_init_qi(iommu); |
| 4496 | iommu_flush_write_buffer(iommu); |
| 4497 | |
| 4498 | #ifdef CONFIG_INTEL_IOMMU_SVM |
| 4499 | if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { |
| 4500 | ret = intel_svm_enable_prq(iommu); |
| 4501 | if (ret) |
| 4502 | goto disable_iommu; |
| 4503 | } |
| 4504 | #endif |
| 4505 | ret = dmar_set_interrupt(iommu); |
| 4506 | if (ret) |
| 4507 | goto disable_iommu; |
| 4508 | |
| 4509 | iommu_set_root_entry(iommu); |
| 4510 | iommu_enable_translation(iommu); |
| 4511 | |
| 4512 | iommu_disable_protect_mem_regions(iommu); |
| 4513 | return 0; |
| 4514 | |
| 4515 | disable_iommu: |
| 4516 | disable_dmar_iommu(iommu); |
| 4517 | out: |
| 4518 | free_dmar_iommu(iommu); |
| 4519 | return ret; |
| 4520 | } |
| 4521 | |
| 4522 | int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert) |
| 4523 | { |
| 4524 | int ret = 0; |
| 4525 | struct intel_iommu *iommu = dmaru->iommu; |
| 4526 | |
| 4527 | if (!intel_iommu_enabled) |
| 4528 | return 0; |
| 4529 | if (iommu == NULL) |
| 4530 | return -EINVAL; |
| 4531 | |
| 4532 | if (insert) { |
| 4533 | ret = intel_iommu_add(dmaru); |
| 4534 | } else { |
| 4535 | disable_dmar_iommu(iommu); |
| 4536 | free_dmar_iommu(iommu); |
| 4537 | } |
| 4538 | |
| 4539 | return ret; |
| 4540 | } |
| 4541 | |
| 4542 | static void intel_iommu_free_dmars(void) |
| 4543 | { |
| 4544 | struct dmar_rmrr_unit *rmrru, *rmrr_n; |
| 4545 | struct dmar_atsr_unit *atsru, *atsr_n; |
| 4546 | |
| 4547 | list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) { |
| 4548 | list_del(&rmrru->list); |
| 4549 | dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt); |
| 4550 | kfree(rmrru); |
| 4551 | } |
| 4552 | |
| 4553 | list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) { |
| 4554 | list_del(&atsru->list); |
| 4555 | intel_iommu_free_atsr(atsru); |
| 4556 | } |
| 4557 | } |
| 4558 | |
| 4559 | int dmar_find_matched_atsr_unit(struct pci_dev *dev) |
| 4560 | { |
| 4561 | int i, ret = 1; |
| 4562 | struct pci_bus *bus; |
| 4563 | struct pci_dev *bridge = NULL; |
| 4564 | struct device *tmp; |
| 4565 | struct acpi_dmar_atsr *atsr; |
| 4566 | struct dmar_atsr_unit *atsru; |
| 4567 | |
| 4568 | dev = pci_physfn(dev); |
| 4569 | for (bus = dev->bus; bus; bus = bus->parent) { |
| 4570 | bridge = bus->self; |
| 4571 | /* If it's an integrated device, allow ATS */ |
| 4572 | if (!bridge) |
| 4573 | return 1; |
| 4574 | /* Connected via non-PCIe: no ATS */ |
| 4575 | if (!pci_is_pcie(bridge) || |
| 4576 | pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) |
| 4577 | return 0; |
| 4578 | /* If we found the root port, look it up in the ATSR */ |
| 4579 | if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) |
| 4580 | break; |
| 4581 | } |
| 4582 | |
| 4583 | rcu_read_lock(); |
| 4584 | list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { |
| 4585 | atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); |
| 4586 | if (atsr->segment != pci_domain_nr(dev->bus)) |
| 4587 | continue; |
| 4588 | |
| 4589 | for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp) |
| 4590 | if (tmp == &bridge->dev) |
| 4591 | goto out; |
| 4592 | |
| 4593 | if (atsru->include_all) |
| 4594 | goto out; |
| 4595 | } |
| 4596 | ret = 0; |
| 4597 | out: |
| 4598 | rcu_read_unlock(); |
| 4599 | |
| 4600 | return ret; |
| 4601 | } |
| 4602 | |
| 4603 | int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info) |
| 4604 | { |
| 4605 | int ret; |
| 4606 | struct dmar_rmrr_unit *rmrru; |
| 4607 | struct dmar_atsr_unit *atsru; |
| 4608 | struct acpi_dmar_atsr *atsr; |
| 4609 | struct acpi_dmar_reserved_memory *rmrr; |
| 4610 | |
| 4611 | if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING) |
| 4612 | return 0; |
| 4613 | |
| 4614 | list_for_each_entry(rmrru, &dmar_rmrr_units, list) { |
| 4615 | rmrr = container_of(rmrru->hdr, |
| 4616 | struct acpi_dmar_reserved_memory, header); |
| 4617 | if (info->event == BUS_NOTIFY_ADD_DEVICE) { |
| 4618 | ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1), |
| 4619 | ((void *)rmrr) + rmrr->header.length, |
| 4620 | rmrr->segment, rmrru->devices, |
| 4621 | rmrru->devices_cnt); |
| 4622 | if (ret < 0) |
| 4623 | return ret; |
| 4624 | } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { |
| 4625 | dmar_remove_dev_scope(info, rmrr->segment, |
| 4626 | rmrru->devices, rmrru->devices_cnt); |
| 4627 | } |
| 4628 | } |
| 4629 | |
| 4630 | list_for_each_entry(atsru, &dmar_atsr_units, list) { |
| 4631 | if (atsru->include_all) |
| 4632 | continue; |
| 4633 | |
| 4634 | atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); |
| 4635 | if (info->event == BUS_NOTIFY_ADD_DEVICE) { |
| 4636 | ret = dmar_insert_dev_scope(info, (void *)(atsr + 1), |
| 4637 | (void *)atsr + atsr->header.length, |
| 4638 | atsr->segment, atsru->devices, |
| 4639 | atsru->devices_cnt); |
| 4640 | if (ret > 0) |
| 4641 | break; |
| 4642 | else if (ret < 0) |
| 4643 | return ret; |
| 4644 | } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { |
| 4645 | if (dmar_remove_dev_scope(info, atsr->segment, |
| 4646 | atsru->devices, atsru->devices_cnt)) |
| 4647 | break; |
| 4648 | } |
| 4649 | } |
| 4650 | |
| 4651 | return 0; |
| 4652 | } |
| 4653 | |
| 4654 | static int intel_iommu_memory_notifier(struct notifier_block *nb, |
| 4655 | unsigned long val, void *v) |
| 4656 | { |
| 4657 | struct memory_notify *mhp = v; |
| 4658 | unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn); |
| 4659 | unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn + |
| 4660 | mhp->nr_pages - 1); |
| 4661 | |
| 4662 | switch (val) { |
| 4663 | case MEM_GOING_ONLINE: |
| 4664 | if (iommu_domain_identity_map(si_domain, |
| 4665 | start_vpfn, last_vpfn)) { |
| 4666 | pr_warn("Failed to build identity map for [%lx-%lx]\n", |
| 4667 | start_vpfn, last_vpfn); |
| 4668 | return NOTIFY_BAD; |
| 4669 | } |
| 4670 | break; |
| 4671 | |
| 4672 | case MEM_OFFLINE: |
| 4673 | case MEM_CANCEL_ONLINE: |
| 4674 | { |
| 4675 | struct dmar_drhd_unit *drhd; |
| 4676 | struct intel_iommu *iommu; |
| 4677 | struct page *freelist; |
| 4678 | |
| 4679 | freelist = domain_unmap(si_domain, |
| 4680 | start_vpfn, last_vpfn); |
| 4681 | |
| 4682 | rcu_read_lock(); |
| 4683 | for_each_active_iommu(iommu, drhd) |
| 4684 | iommu_flush_iotlb_psi(iommu, si_domain, |
| 4685 | start_vpfn, mhp->nr_pages, |
| 4686 | !freelist, 0); |
| 4687 | rcu_read_unlock(); |
| 4688 | dma_free_pagelist(freelist); |
| 4689 | } |
| 4690 | break; |
| 4691 | } |
| 4692 | |
| 4693 | return NOTIFY_OK; |
| 4694 | } |
| 4695 | |
| 4696 | static struct notifier_block intel_iommu_memory_nb = { |
| 4697 | .notifier_call = intel_iommu_memory_notifier, |
| 4698 | .priority = 0 |
| 4699 | }; |
| 4700 | |
| 4701 | static void free_all_cpu_cached_iovas(unsigned int cpu) |
| 4702 | { |
| 4703 | int i; |
| 4704 | |
| 4705 | for (i = 0; i < g_num_of_iommus; i++) { |
| 4706 | struct intel_iommu *iommu = g_iommus[i]; |
| 4707 | struct dmar_domain *domain; |
| 4708 | int did; |
| 4709 | |
| 4710 | if (!iommu) |
| 4711 | continue; |
| 4712 | |
| 4713 | for (did = 0; did < cap_ndoms(iommu->cap); did++) { |
| 4714 | domain = get_iommu_domain(iommu, (u16)did); |
| 4715 | |
| 4716 | if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA) |
| 4717 | continue; |
| 4718 | |
| 4719 | free_cpu_cached_iovas(cpu, &domain->iovad); |
| 4720 | } |
| 4721 | } |
| 4722 | } |
| 4723 | |
| 4724 | static int intel_iommu_cpu_dead(unsigned int cpu) |
| 4725 | { |
| 4726 | free_all_cpu_cached_iovas(cpu); |
| 4727 | return 0; |
| 4728 | } |
| 4729 | |
| 4730 | static void intel_disable_iommus(void) |
| 4731 | { |
| 4732 | struct intel_iommu *iommu = NULL; |
| 4733 | struct dmar_drhd_unit *drhd; |
| 4734 | |
| 4735 | for_each_iommu(iommu, drhd) |
| 4736 | iommu_disable_translation(iommu); |
| 4737 | } |
| 4738 | |
| 4739 | void intel_iommu_shutdown(void) |
| 4740 | { |
| 4741 | struct dmar_drhd_unit *drhd; |
| 4742 | struct intel_iommu *iommu = NULL; |
| 4743 | |
| 4744 | if (no_iommu || dmar_disabled) |
| 4745 | return; |
| 4746 | |
| 4747 | down_write(&dmar_global_lock); |
| 4748 | |
| 4749 | /* Disable PMRs explicitly here. */ |
| 4750 | for_each_iommu(iommu, drhd) |
| 4751 | iommu_disable_protect_mem_regions(iommu); |
| 4752 | |
| 4753 | /* Make sure the IOMMUs are switched off */ |
| 4754 | intel_disable_iommus(); |
| 4755 | |
| 4756 | up_write(&dmar_global_lock); |
| 4757 | } |
| 4758 | |
| 4759 | static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev) |
| 4760 | { |
| 4761 | struct iommu_device *iommu_dev = dev_to_iommu_device(dev); |
| 4762 | |
| 4763 | return container_of(iommu_dev, struct intel_iommu, iommu); |
| 4764 | } |
| 4765 | |
| 4766 | static ssize_t intel_iommu_show_version(struct device *dev, |
| 4767 | struct device_attribute *attr, |
| 4768 | char *buf) |
| 4769 | { |
| 4770 | struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| 4771 | u32 ver = readl(iommu->reg + DMAR_VER_REG); |
| 4772 | return sprintf(buf, "%d:%d\n", |
| 4773 | DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver)); |
| 4774 | } |
| 4775 | static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL); |
| 4776 | |
| 4777 | static ssize_t intel_iommu_show_address(struct device *dev, |
| 4778 | struct device_attribute *attr, |
| 4779 | char *buf) |
| 4780 | { |
| 4781 | struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| 4782 | return sprintf(buf, "%llx\n", iommu->reg_phys); |
| 4783 | } |
| 4784 | static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL); |
| 4785 | |
| 4786 | static ssize_t intel_iommu_show_cap(struct device *dev, |
| 4787 | struct device_attribute *attr, |
| 4788 | char *buf) |
| 4789 | { |
| 4790 | struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| 4791 | return sprintf(buf, "%llx\n", iommu->cap); |
| 4792 | } |
| 4793 | static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL); |
| 4794 | |
| 4795 | static ssize_t intel_iommu_show_ecap(struct device *dev, |
| 4796 | struct device_attribute *attr, |
| 4797 | char *buf) |
| 4798 | { |
| 4799 | struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| 4800 | return sprintf(buf, "%llx\n", iommu->ecap); |
| 4801 | } |
| 4802 | static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL); |
| 4803 | |
| 4804 | static ssize_t intel_iommu_show_ndoms(struct device *dev, |
| 4805 | struct device_attribute *attr, |
| 4806 | char *buf) |
| 4807 | { |
| 4808 | struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| 4809 | return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap)); |
| 4810 | } |
| 4811 | static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL); |
| 4812 | |
| 4813 | static ssize_t intel_iommu_show_ndoms_used(struct device *dev, |
| 4814 | struct device_attribute *attr, |
| 4815 | char *buf) |
| 4816 | { |
| 4817 | struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| 4818 | return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids, |
| 4819 | cap_ndoms(iommu->cap))); |
| 4820 | } |
| 4821 | static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL); |
| 4822 | |
| 4823 | static struct attribute *intel_iommu_attrs[] = { |
| 4824 | &dev_attr_version.attr, |
| 4825 | &dev_attr_address.attr, |
| 4826 | &dev_attr_cap.attr, |
| 4827 | &dev_attr_ecap.attr, |
| 4828 | &dev_attr_domains_supported.attr, |
| 4829 | &dev_attr_domains_used.attr, |
| 4830 | NULL, |
| 4831 | }; |
| 4832 | |
| 4833 | static struct attribute_group intel_iommu_group = { |
| 4834 | .name = "intel-iommu", |
| 4835 | .attrs = intel_iommu_attrs, |
| 4836 | }; |
| 4837 | |
| 4838 | const struct attribute_group *intel_iommu_groups[] = { |
| 4839 | &intel_iommu_group, |
| 4840 | NULL, |
| 4841 | }; |
| 4842 | |
| 4843 | static inline bool has_external_pci(void) |
| 4844 | { |
| 4845 | struct pci_dev *pdev = NULL; |
| 4846 | |
| 4847 | for_each_pci_dev(pdev) |
| 4848 | if (pdev->external_facing) |
| 4849 | return true; |
| 4850 | |
| 4851 | return false; |
| 4852 | } |
| 4853 | |
| 4854 | static int __init platform_optin_force_iommu(void) |
| 4855 | { |
| 4856 | if (!dmar_platform_optin() || no_platform_optin || !has_external_pci()) |
| 4857 | return 0; |
| 4858 | |
| 4859 | if (no_iommu || dmar_disabled) |
| 4860 | pr_info("Intel-IOMMU force enabled due to platform opt in\n"); |
| 4861 | |
| 4862 | /* |
| 4863 | * If Intel-IOMMU is disabled by default, we will apply identity |
| 4864 | * map for all devices except those marked as being untrusted. |
| 4865 | */ |
| 4866 | if (dmar_disabled) |
| 4867 | iommu_set_default_passthrough(false); |
| 4868 | |
| 4869 | dmar_disabled = 0; |
| 4870 | no_iommu = 0; |
| 4871 | |
| 4872 | return 1; |
| 4873 | } |
| 4874 | |
| 4875 | static int __init probe_acpi_namespace_devices(void) |
| 4876 | { |
| 4877 | struct dmar_drhd_unit *drhd; |
| 4878 | /* To avoid a -Wunused-but-set-variable warning. */ |
| 4879 | struct intel_iommu *iommu __maybe_unused; |
| 4880 | struct device *dev; |
| 4881 | int i, ret = 0; |
| 4882 | |
| 4883 | for_each_active_iommu(iommu, drhd) { |
| 4884 | for_each_active_dev_scope(drhd->devices, |
| 4885 | drhd->devices_cnt, i, dev) { |
| 4886 | struct acpi_device_physical_node *pn; |
| 4887 | struct iommu_group *group; |
| 4888 | struct acpi_device *adev; |
| 4889 | |
| 4890 | if (dev->bus != &acpi_bus_type) |
| 4891 | continue; |
| 4892 | |
| 4893 | adev = to_acpi_device(dev); |
| 4894 | mutex_lock(&adev->physical_node_lock); |
| 4895 | list_for_each_entry(pn, |
| 4896 | &adev->physical_node_list, node) { |
| 4897 | group = iommu_group_get(pn->dev); |
| 4898 | if (group) { |
| 4899 | iommu_group_put(group); |
| 4900 | continue; |
| 4901 | } |
| 4902 | |
| 4903 | pn->dev->bus->iommu_ops = &intel_iommu_ops; |
| 4904 | ret = iommu_probe_device(pn->dev); |
| 4905 | if (ret) |
| 4906 | break; |
| 4907 | } |
| 4908 | mutex_unlock(&adev->physical_node_lock); |
| 4909 | |
| 4910 | if (ret) |
| 4911 | return ret; |
| 4912 | } |
| 4913 | } |
| 4914 | |
| 4915 | return 0; |
| 4916 | } |
| 4917 | |
| 4918 | int __init intel_iommu_init(void) |
| 4919 | { |
| 4920 | int ret = -ENODEV; |
| 4921 | struct dmar_drhd_unit *drhd; |
| 4922 | struct intel_iommu *iommu; |
| 4923 | |
| 4924 | /* |
| 4925 | * Intel IOMMU is required for a TXT/tboot launch or platform |
| 4926 | * opt in, so enforce that. |
| 4927 | */ |
| 4928 | force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) || |
| 4929 | platform_optin_force_iommu(); |
| 4930 | |
| 4931 | if (iommu_init_mempool()) { |
| 4932 | if (force_on) |
| 4933 | panic("tboot: Failed to initialize iommu memory\n"); |
| 4934 | return -ENOMEM; |
| 4935 | } |
| 4936 | |
| 4937 | down_write(&dmar_global_lock); |
| 4938 | if (dmar_table_init()) { |
| 4939 | if (force_on) |
| 4940 | panic("tboot: Failed to initialize DMAR table\n"); |
| 4941 | goto out_free_dmar; |
| 4942 | } |
| 4943 | |
| 4944 | if (dmar_dev_scope_init() < 0) { |
| 4945 | if (force_on) |
| 4946 | panic("tboot: Failed to initialize DMAR device scope\n"); |
| 4947 | goto out_free_dmar; |
| 4948 | } |
| 4949 | |
| 4950 | up_write(&dmar_global_lock); |
| 4951 | |
| 4952 | /* |
| 4953 | * The bus notifier takes the dmar_global_lock, so lockdep will |
| 4954 | * complain later when we register it under the lock. |
| 4955 | */ |
| 4956 | dmar_register_bus_notifier(); |
| 4957 | |
| 4958 | down_write(&dmar_global_lock); |
| 4959 | |
| 4960 | if (!no_iommu) |
| 4961 | intel_iommu_debugfs_init(); |
| 4962 | |
| 4963 | if (no_iommu || dmar_disabled) { |
| 4964 | /* |
| 4965 | * We exit the function here to ensure IOMMU's remapping and |
| 4966 | * mempool aren't setup, which means that the IOMMU's PMRs |
| 4967 | * won't be disabled via the call to init_dmars(). So disable |
| 4968 | * it explicitly here. The PMRs were setup by tboot prior to |
| 4969 | * calling SENTER, but the kernel is expected to reset/tear |
| 4970 | * down the PMRs. |
| 4971 | */ |
| 4972 | if (intel_iommu_tboot_noforce) { |
| 4973 | for_each_iommu(iommu, drhd) |
| 4974 | iommu_disable_protect_mem_regions(iommu); |
| 4975 | } |
| 4976 | |
| 4977 | /* |
| 4978 | * Make sure the IOMMUs are switched off, even when we |
| 4979 | * boot into a kexec kernel and the previous kernel left |
| 4980 | * them enabled |
| 4981 | */ |
| 4982 | intel_disable_iommus(); |
| 4983 | goto out_free_dmar; |
| 4984 | } |
| 4985 | |
| 4986 | if (list_empty(&dmar_rmrr_units)) |
| 4987 | pr_info("No RMRR found\n"); |
| 4988 | |
| 4989 | if (list_empty(&dmar_atsr_units)) |
| 4990 | pr_info("No ATSR found\n"); |
| 4991 | |
| 4992 | if (dmar_init_reserved_ranges()) { |
| 4993 | if (force_on) |
| 4994 | panic("tboot: Failed to reserve iommu ranges\n"); |
| 4995 | goto out_free_reserved_range; |
| 4996 | } |
| 4997 | |
| 4998 | if (dmar_map_gfx) |
| 4999 | intel_iommu_gfx_mapped = 1; |
| 5000 | |
| 5001 | init_no_remapping_devices(); |
| 5002 | |
| 5003 | ret = init_dmars(); |
| 5004 | if (ret) { |
| 5005 | if (force_on) |
| 5006 | panic("tboot: Failed to initialize DMARs\n"); |
| 5007 | pr_err("Initialization failed\n"); |
| 5008 | goto out_free_reserved_range; |
| 5009 | } |
| 5010 | up_write(&dmar_global_lock); |
| 5011 | |
| 5012 | init_iommu_pm_ops(); |
| 5013 | |
| 5014 | down_read(&dmar_global_lock); |
| 5015 | for_each_active_iommu(iommu, drhd) { |
| 5016 | iommu_device_sysfs_add(&iommu->iommu, NULL, |
| 5017 | intel_iommu_groups, |
| 5018 | "%s", iommu->name); |
| 5019 | iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops); |
| 5020 | iommu_device_register(&iommu->iommu); |
| 5021 | } |
| 5022 | up_read(&dmar_global_lock); |
| 5023 | |
| 5024 | bus_set_iommu(&pci_bus_type, &intel_iommu_ops); |
| 5025 | if (si_domain && !hw_pass_through) |
| 5026 | register_memory_notifier(&intel_iommu_memory_nb); |
| 5027 | cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL, |
| 5028 | intel_iommu_cpu_dead); |
| 5029 | |
| 5030 | down_read(&dmar_global_lock); |
| 5031 | if (probe_acpi_namespace_devices()) |
| 5032 | pr_warn("ACPI name space devices didn't probe correctly\n"); |
| 5033 | |
| 5034 | /* Finally, we enable the DMA remapping hardware. */ |
| 5035 | for_each_iommu(iommu, drhd) { |
| 5036 | if (!drhd->ignored && !translation_pre_enabled(iommu)) |
| 5037 | iommu_enable_translation(iommu); |
| 5038 | |
| 5039 | iommu_disable_protect_mem_regions(iommu); |
| 5040 | } |
| 5041 | up_read(&dmar_global_lock); |
| 5042 | |
| 5043 | pr_info("Intel(R) Virtualization Technology for Directed I/O\n"); |
| 5044 | |
| 5045 | intel_iommu_enabled = 1; |
| 5046 | |
| 5047 | return 0; |
| 5048 | |
| 5049 | out_free_reserved_range: |
| 5050 | put_iova_domain(&reserved_iova_list); |
| 5051 | out_free_dmar: |
| 5052 | intel_iommu_free_dmars(); |
| 5053 | up_write(&dmar_global_lock); |
| 5054 | iommu_exit_mempool(); |
| 5055 | return ret; |
| 5056 | } |
| 5057 | |
| 5058 | static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque) |
| 5059 | { |
| 5060 | struct intel_iommu *iommu = opaque; |
| 5061 | |
| 5062 | domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff); |
| 5063 | return 0; |
| 5064 | } |
| 5065 | |
| 5066 | /* |
| 5067 | * NB - intel-iommu lacks any sort of reference counting for the users of |
| 5068 | * dependent devices. If multiple endpoints have intersecting dependent |
| 5069 | * devices, unbinding the driver from any one of them will possibly leave |
| 5070 | * the others unable to operate. |
| 5071 | */ |
| 5072 | static void domain_context_clear(struct intel_iommu *iommu, struct device *dev) |
| 5073 | { |
| 5074 | if (!iommu || !dev || !dev_is_pci(dev)) |
| 5075 | return; |
| 5076 | |
| 5077 | pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu); |
| 5078 | } |
| 5079 | |
| 5080 | static void __dmar_remove_one_dev_info(struct device_domain_info *info) |
| 5081 | { |
| 5082 | struct dmar_domain *domain; |
| 5083 | struct intel_iommu *iommu; |
| 5084 | unsigned long flags; |
| 5085 | |
| 5086 | assert_spin_locked(&device_domain_lock); |
| 5087 | |
| 5088 | if (WARN_ON(!info)) |
| 5089 | return; |
| 5090 | |
| 5091 | iommu = info->iommu; |
| 5092 | domain = info->domain; |
| 5093 | |
| 5094 | if (info->dev) { |
| 5095 | if (dev_is_pci(info->dev) && sm_supported(iommu)) |
| 5096 | intel_pasid_tear_down_entry(iommu, info->dev, |
| 5097 | PASID_RID2PASID, false); |
| 5098 | |
| 5099 | iommu_disable_dev_iotlb(info); |
| 5100 | if (!dev_is_real_dma_subdevice(info->dev)) |
| 5101 | domain_context_clear(iommu, info->dev); |
| 5102 | intel_pasid_free_table(info->dev); |
| 5103 | } |
| 5104 | |
| 5105 | unlink_domain_info(info); |
| 5106 | |
| 5107 | spin_lock_irqsave(&iommu->lock, flags); |
| 5108 | domain_detach_iommu(domain, iommu); |
| 5109 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 5110 | |
| 5111 | free_devinfo_mem(info); |
| 5112 | } |
| 5113 | |
| 5114 | static void dmar_remove_one_dev_info(struct device *dev) |
| 5115 | { |
| 5116 | struct device_domain_info *info; |
| 5117 | unsigned long flags; |
| 5118 | |
| 5119 | spin_lock_irqsave(&device_domain_lock, flags); |
| 5120 | info = get_domain_info(dev); |
| 5121 | if (info) |
| 5122 | __dmar_remove_one_dev_info(info); |
| 5123 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 5124 | } |
| 5125 | |
| 5126 | static int md_domain_init(struct dmar_domain *domain, int guest_width) |
| 5127 | { |
| 5128 | int adjust_width; |
| 5129 | |
| 5130 | /* calculate AGAW */ |
| 5131 | domain->gaw = guest_width; |
| 5132 | adjust_width = guestwidth_to_adjustwidth(guest_width); |
| 5133 | domain->agaw = width_to_agaw(adjust_width); |
| 5134 | |
| 5135 | domain->iommu_coherency = 0; |
| 5136 | domain->iommu_snooping = 0; |
| 5137 | domain->iommu_superpage = 0; |
| 5138 | domain->max_addr = 0; |
| 5139 | |
| 5140 | /* always allocate the top pgd */ |
| 5141 | domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); |
| 5142 | if (!domain->pgd) |
| 5143 | return -ENOMEM; |
| 5144 | domain_flush_cache(domain, domain->pgd, PAGE_SIZE); |
| 5145 | return 0; |
| 5146 | } |
| 5147 | |
| 5148 | static void intel_init_iova_domain(struct dmar_domain *dmar_domain) |
| 5149 | { |
| 5150 | init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN); |
| 5151 | copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad); |
| 5152 | |
| 5153 | if (!intel_iommu_strict && |
| 5154 | init_iova_flush_queue(&dmar_domain->iovad, |
| 5155 | iommu_flush_iova, iova_entry_free)) |
| 5156 | pr_info("iova flush queue initialization failed\n"); |
| 5157 | } |
| 5158 | |
| 5159 | static struct iommu_domain *intel_iommu_domain_alloc(unsigned type) |
| 5160 | { |
| 5161 | struct dmar_domain *dmar_domain; |
| 5162 | struct iommu_domain *domain; |
| 5163 | |
| 5164 | switch (type) { |
| 5165 | case IOMMU_DOMAIN_DMA: |
| 5166 | case IOMMU_DOMAIN_UNMANAGED: |
| 5167 | dmar_domain = alloc_domain(0); |
| 5168 | if (!dmar_domain) { |
| 5169 | pr_err("Can't allocate dmar_domain\n"); |
| 5170 | return NULL; |
| 5171 | } |
| 5172 | if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
| 5173 | pr_err("Domain initialization failed\n"); |
| 5174 | domain_exit(dmar_domain); |
| 5175 | return NULL; |
| 5176 | } |
| 5177 | |
| 5178 | if (type == IOMMU_DOMAIN_DMA) |
| 5179 | intel_init_iova_domain(dmar_domain); |
| 5180 | |
| 5181 | domain = &dmar_domain->domain; |
| 5182 | domain->geometry.aperture_start = 0; |
| 5183 | domain->geometry.aperture_end = |
| 5184 | __DOMAIN_MAX_ADDR(dmar_domain->gaw); |
| 5185 | domain->geometry.force_aperture = true; |
| 5186 | |
| 5187 | return domain; |
| 5188 | case IOMMU_DOMAIN_IDENTITY: |
| 5189 | return &si_domain->domain; |
| 5190 | default: |
| 5191 | return NULL; |
| 5192 | } |
| 5193 | |
| 5194 | return NULL; |
| 5195 | } |
| 5196 | |
| 5197 | static void intel_iommu_domain_free(struct iommu_domain *domain) |
| 5198 | { |
| 5199 | if (domain != &si_domain->domain) |
| 5200 | domain_exit(to_dmar_domain(domain)); |
| 5201 | } |
| 5202 | |
| 5203 | /* |
| 5204 | * Check whether a @domain could be attached to the @dev through the |
| 5205 | * aux-domain attach/detach APIs. |
| 5206 | */ |
| 5207 | static inline bool |
| 5208 | is_aux_domain(struct device *dev, struct iommu_domain *domain) |
| 5209 | { |
| 5210 | struct device_domain_info *info = get_domain_info(dev); |
| 5211 | |
| 5212 | return info && info->auxd_enabled && |
| 5213 | domain->type == IOMMU_DOMAIN_UNMANAGED; |
| 5214 | } |
| 5215 | |
| 5216 | static void auxiliary_link_device(struct dmar_domain *domain, |
| 5217 | struct device *dev) |
| 5218 | { |
| 5219 | struct device_domain_info *info = get_domain_info(dev); |
| 5220 | |
| 5221 | assert_spin_locked(&device_domain_lock); |
| 5222 | if (WARN_ON(!info)) |
| 5223 | return; |
| 5224 | |
| 5225 | domain->auxd_refcnt++; |
| 5226 | list_add(&domain->auxd, &info->auxiliary_domains); |
| 5227 | } |
| 5228 | |
| 5229 | static void auxiliary_unlink_device(struct dmar_domain *domain, |
| 5230 | struct device *dev) |
| 5231 | { |
| 5232 | struct device_domain_info *info = get_domain_info(dev); |
| 5233 | |
| 5234 | assert_spin_locked(&device_domain_lock); |
| 5235 | if (WARN_ON(!info)) |
| 5236 | return; |
| 5237 | |
| 5238 | list_del(&domain->auxd); |
| 5239 | domain->auxd_refcnt--; |
| 5240 | |
| 5241 | if (!domain->auxd_refcnt && domain->default_pasid > 0) |
| 5242 | ioasid_free(domain->default_pasid); |
| 5243 | } |
| 5244 | |
| 5245 | static int aux_domain_add_dev(struct dmar_domain *domain, |
| 5246 | struct device *dev) |
| 5247 | { |
| 5248 | int ret; |
| 5249 | unsigned long flags; |
| 5250 | struct intel_iommu *iommu; |
| 5251 | |
| 5252 | iommu = device_to_iommu(dev, NULL, NULL); |
| 5253 | if (!iommu) |
| 5254 | return -ENODEV; |
| 5255 | |
| 5256 | if (domain->default_pasid <= 0) { |
| 5257 | u32 pasid; |
| 5258 | |
| 5259 | /* No private data needed for the default pasid */ |
| 5260 | pasid = ioasid_alloc(NULL, PASID_MIN, |
| 5261 | pci_max_pasids(to_pci_dev(dev)) - 1, |
| 5262 | NULL); |
| 5263 | if (pasid == INVALID_IOASID) { |
| 5264 | pr_err("Can't allocate default pasid\n"); |
| 5265 | return -ENODEV; |
| 5266 | } |
| 5267 | domain->default_pasid = pasid; |
| 5268 | } |
| 5269 | |
| 5270 | spin_lock_irqsave(&device_domain_lock, flags); |
| 5271 | /* |
| 5272 | * iommu->lock must be held to attach domain to iommu and setup the |
| 5273 | * pasid entry for second level translation. |
| 5274 | */ |
| 5275 | spin_lock(&iommu->lock); |
| 5276 | ret = domain_attach_iommu(domain, iommu); |
| 5277 | if (ret) |
| 5278 | goto attach_failed; |
| 5279 | |
| 5280 | /* Setup the PASID entry for mediated devices: */ |
| 5281 | if (domain_use_first_level(domain)) |
| 5282 | ret = domain_setup_first_level(iommu, domain, dev, |
| 5283 | domain->default_pasid); |
| 5284 | else |
| 5285 | ret = intel_pasid_setup_second_level(iommu, domain, dev, |
| 5286 | domain->default_pasid); |
| 5287 | if (ret) |
| 5288 | goto table_failed; |
| 5289 | spin_unlock(&iommu->lock); |
| 5290 | |
| 5291 | auxiliary_link_device(domain, dev); |
| 5292 | |
| 5293 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 5294 | |
| 5295 | return 0; |
| 5296 | |
| 5297 | table_failed: |
| 5298 | domain_detach_iommu(domain, iommu); |
| 5299 | attach_failed: |
| 5300 | spin_unlock(&iommu->lock); |
| 5301 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 5302 | if (!domain->auxd_refcnt && domain->default_pasid > 0) |
| 5303 | ioasid_free(domain->default_pasid); |
| 5304 | |
| 5305 | return ret; |
| 5306 | } |
| 5307 | |
| 5308 | static void aux_domain_remove_dev(struct dmar_domain *domain, |
| 5309 | struct device *dev) |
| 5310 | { |
| 5311 | struct device_domain_info *info; |
| 5312 | struct intel_iommu *iommu; |
| 5313 | unsigned long flags; |
| 5314 | |
| 5315 | if (!is_aux_domain(dev, &domain->domain)) |
| 5316 | return; |
| 5317 | |
| 5318 | spin_lock_irqsave(&device_domain_lock, flags); |
| 5319 | info = get_domain_info(dev); |
| 5320 | iommu = info->iommu; |
| 5321 | |
| 5322 | auxiliary_unlink_device(domain, dev); |
| 5323 | |
| 5324 | spin_lock(&iommu->lock); |
| 5325 | intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false); |
| 5326 | domain_detach_iommu(domain, iommu); |
| 5327 | spin_unlock(&iommu->lock); |
| 5328 | |
| 5329 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 5330 | } |
| 5331 | |
| 5332 | static int prepare_domain_attach_device(struct iommu_domain *domain, |
| 5333 | struct device *dev) |
| 5334 | { |
| 5335 | struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| 5336 | struct intel_iommu *iommu; |
| 5337 | int addr_width; |
| 5338 | |
| 5339 | iommu = device_to_iommu(dev, NULL, NULL); |
| 5340 | if (!iommu) |
| 5341 | return -ENODEV; |
| 5342 | |
| 5343 | /* check if this iommu agaw is sufficient for max mapped address */ |
| 5344 | addr_width = agaw_to_width(iommu->agaw); |
| 5345 | if (addr_width > cap_mgaw(iommu->cap)) |
| 5346 | addr_width = cap_mgaw(iommu->cap); |
| 5347 | |
| 5348 | if (dmar_domain->max_addr > (1LL << addr_width)) { |
| 5349 | dev_err(dev, "%s: iommu width (%d) is not " |
| 5350 | "sufficient for the mapped address (%llx)\n", |
| 5351 | __func__, addr_width, dmar_domain->max_addr); |
| 5352 | return -EFAULT; |
| 5353 | } |
| 5354 | dmar_domain->gaw = addr_width; |
| 5355 | |
| 5356 | /* |
| 5357 | * Knock out extra levels of page tables if necessary |
| 5358 | */ |
| 5359 | while (iommu->agaw < dmar_domain->agaw) { |
| 5360 | struct dma_pte *pte; |
| 5361 | |
| 5362 | pte = dmar_domain->pgd; |
| 5363 | if (dma_pte_present(pte)) { |
| 5364 | dmar_domain->pgd = (struct dma_pte *) |
| 5365 | phys_to_virt(dma_pte_addr(pte)); |
| 5366 | free_pgtable_page(pte); |
| 5367 | } |
| 5368 | dmar_domain->agaw--; |
| 5369 | } |
| 5370 | |
| 5371 | return 0; |
| 5372 | } |
| 5373 | |
| 5374 | static int intel_iommu_attach_device(struct iommu_domain *domain, |
| 5375 | struct device *dev) |
| 5376 | { |
| 5377 | int ret; |
| 5378 | |
| 5379 | if (domain->type == IOMMU_DOMAIN_UNMANAGED && |
| 5380 | device_is_rmrr_locked(dev)) { |
| 5381 | dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n"); |
| 5382 | return -EPERM; |
| 5383 | } |
| 5384 | |
| 5385 | if (is_aux_domain(dev, domain)) |
| 5386 | return -EPERM; |
| 5387 | |
| 5388 | /* normally dev is not mapped */ |
| 5389 | if (unlikely(domain_context_mapped(dev))) { |
| 5390 | struct dmar_domain *old_domain; |
| 5391 | |
| 5392 | old_domain = find_domain(dev); |
| 5393 | if (old_domain) |
| 5394 | dmar_remove_one_dev_info(dev); |
| 5395 | } |
| 5396 | |
| 5397 | ret = prepare_domain_attach_device(domain, dev); |
| 5398 | if (ret) |
| 5399 | return ret; |
| 5400 | |
| 5401 | return domain_add_dev_info(to_dmar_domain(domain), dev); |
| 5402 | } |
| 5403 | |
| 5404 | static int intel_iommu_aux_attach_device(struct iommu_domain *domain, |
| 5405 | struct device *dev) |
| 5406 | { |
| 5407 | int ret; |
| 5408 | |
| 5409 | if (!is_aux_domain(dev, domain)) |
| 5410 | return -EPERM; |
| 5411 | |
| 5412 | ret = prepare_domain_attach_device(domain, dev); |
| 5413 | if (ret) |
| 5414 | return ret; |
| 5415 | |
| 5416 | return aux_domain_add_dev(to_dmar_domain(domain), dev); |
| 5417 | } |
| 5418 | |
| 5419 | static void intel_iommu_detach_device(struct iommu_domain *domain, |
| 5420 | struct device *dev) |
| 5421 | { |
| 5422 | dmar_remove_one_dev_info(dev); |
| 5423 | } |
| 5424 | |
| 5425 | static void intel_iommu_aux_detach_device(struct iommu_domain *domain, |
| 5426 | struct device *dev) |
| 5427 | { |
| 5428 | aux_domain_remove_dev(to_dmar_domain(domain), dev); |
| 5429 | } |
| 5430 | |
| 5431 | #ifdef CONFIG_INTEL_IOMMU_SVM |
| 5432 | /* |
| 5433 | * 2D array for converting and sanitizing IOMMU generic TLB granularity to |
| 5434 | * VT-d granularity. Invalidation is typically included in the unmap operation |
| 5435 | * as a result of DMA or VFIO unmap. However, for assigned devices guest |
| 5436 | * owns the first level page tables. Invalidations of translation caches in the |
| 5437 | * guest are trapped and passed down to the host. |
| 5438 | * |
| 5439 | * vIOMMU in the guest will only expose first level page tables, therefore |
| 5440 | * we do not support IOTLB granularity for request without PASID (second level). |
| 5441 | * |
| 5442 | * For example, to find the VT-d granularity encoding for IOTLB |
| 5443 | * type and page selective granularity within PASID: |
| 5444 | * X: indexed by iommu cache type |
| 5445 | * Y: indexed by enum iommu_inv_granularity |
| 5446 | * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR] |
| 5447 | */ |
| 5448 | |
| 5449 | static const int |
| 5450 | inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = { |
| 5451 | /* |
| 5452 | * PASID based IOTLB invalidation: PASID selective (per PASID), |
| 5453 | * page selective (address granularity) |
| 5454 | */ |
| 5455 | {-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID}, |
| 5456 | /* PASID based dev TLBs */ |
| 5457 | {-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL}, |
| 5458 | /* PASID cache */ |
| 5459 | {-EINVAL, -EINVAL, -EINVAL} |
| 5460 | }; |
| 5461 | |
| 5462 | static inline int to_vtd_granularity(int type, int granu) |
| 5463 | { |
| 5464 | return inv_type_granu_table[type][granu]; |
| 5465 | } |
| 5466 | |
| 5467 | static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules) |
| 5468 | { |
| 5469 | u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT; |
| 5470 | |
| 5471 | /* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc. |
| 5472 | * IOMMU cache invalidate API passes granu_size in bytes, and number of |
| 5473 | * granu size in contiguous memory. |
| 5474 | */ |
| 5475 | return order_base_2(nr_pages); |
| 5476 | } |
| 5477 | |
| 5478 | static int |
| 5479 | intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev, |
| 5480 | struct iommu_cache_invalidate_info *inv_info) |
| 5481 | { |
| 5482 | struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| 5483 | struct device_domain_info *info; |
| 5484 | struct intel_iommu *iommu; |
| 5485 | unsigned long flags; |
| 5486 | int cache_type; |
| 5487 | u8 bus, devfn; |
| 5488 | u16 did, sid; |
| 5489 | int ret = 0; |
| 5490 | u64 size = 0; |
| 5491 | |
| 5492 | if (!inv_info || !dmar_domain) |
| 5493 | return -EINVAL; |
| 5494 | |
| 5495 | if (!dev || !dev_is_pci(dev)) |
| 5496 | return -ENODEV; |
| 5497 | |
| 5498 | iommu = device_to_iommu(dev, &bus, &devfn); |
| 5499 | if (!iommu) |
| 5500 | return -ENODEV; |
| 5501 | |
| 5502 | if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE)) |
| 5503 | return -EINVAL; |
| 5504 | |
| 5505 | spin_lock_irqsave(&device_domain_lock, flags); |
| 5506 | spin_lock(&iommu->lock); |
| 5507 | info = get_domain_info(dev); |
| 5508 | if (!info) { |
| 5509 | ret = -EINVAL; |
| 5510 | goto out_unlock; |
| 5511 | } |
| 5512 | did = dmar_domain->iommu_did[iommu->seq_id]; |
| 5513 | sid = PCI_DEVID(bus, devfn); |
| 5514 | |
| 5515 | /* Size is only valid in address selective invalidation */ |
| 5516 | if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) |
| 5517 | size = to_vtd_size(inv_info->granu.addr_info.granule_size, |
| 5518 | inv_info->granu.addr_info.nb_granules); |
| 5519 | |
| 5520 | for_each_set_bit(cache_type, |
| 5521 | (unsigned long *)&inv_info->cache, |
| 5522 | IOMMU_CACHE_INV_TYPE_NR) { |
| 5523 | int granu = 0; |
| 5524 | u64 pasid = 0; |
| 5525 | u64 addr = 0; |
| 5526 | |
| 5527 | granu = to_vtd_granularity(cache_type, inv_info->granularity); |
| 5528 | if (granu == -EINVAL) { |
| 5529 | pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n", |
| 5530 | cache_type, inv_info->granularity); |
| 5531 | break; |
| 5532 | } |
| 5533 | |
| 5534 | /* |
| 5535 | * PASID is stored in different locations based on the |
| 5536 | * granularity. |
| 5537 | */ |
| 5538 | if (inv_info->granularity == IOMMU_INV_GRANU_PASID && |
| 5539 | (inv_info->granu.pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID)) |
| 5540 | pasid = inv_info->granu.pasid_info.pasid; |
| 5541 | else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR && |
| 5542 | (inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID)) |
| 5543 | pasid = inv_info->granu.addr_info.pasid; |
| 5544 | |
| 5545 | switch (BIT(cache_type)) { |
| 5546 | case IOMMU_CACHE_INV_TYPE_IOTLB: |
| 5547 | /* HW will ignore LSB bits based on address mask */ |
| 5548 | if (inv_info->granularity == IOMMU_INV_GRANU_ADDR && |
| 5549 | size && |
| 5550 | (inv_info->granu.addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) { |
| 5551 | pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n", |
| 5552 | inv_info->granu.addr_info.addr, size); |
| 5553 | } |
| 5554 | |
| 5555 | /* |
| 5556 | * If granu is PASID-selective, address is ignored. |
| 5557 | * We use npages = -1 to indicate that. |
| 5558 | */ |
| 5559 | qi_flush_piotlb(iommu, did, pasid, |
| 5560 | mm_to_dma_pfn(inv_info->granu.addr_info.addr), |
| 5561 | (granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size, |
| 5562 | inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF); |
| 5563 | |
| 5564 | if (!info->ats_enabled) |
| 5565 | break; |
| 5566 | /* |
| 5567 | * Always flush device IOTLB if ATS is enabled. vIOMMU |
| 5568 | * in the guest may assume IOTLB flush is inclusive, |
| 5569 | * which is more efficient. |
| 5570 | */ |
| 5571 | fallthrough; |
| 5572 | case IOMMU_CACHE_INV_TYPE_DEV_IOTLB: |
| 5573 | /* |
| 5574 | * PASID based device TLB invalidation does not support |
| 5575 | * IOMMU_INV_GRANU_PASID granularity but only supports |
| 5576 | * IOMMU_INV_GRANU_ADDR. |
| 5577 | * The equivalent of that is we set the size to be the |
| 5578 | * entire range of 64 bit. User only provides PASID info |
| 5579 | * without address info. So we set addr to 0. |
| 5580 | */ |
| 5581 | if (inv_info->granularity == IOMMU_INV_GRANU_PASID) { |
| 5582 | size = 64 - VTD_PAGE_SHIFT; |
| 5583 | addr = 0; |
| 5584 | } else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) { |
| 5585 | addr = inv_info->granu.addr_info.addr; |
| 5586 | } |
| 5587 | |
| 5588 | if (info->ats_enabled) |
| 5589 | qi_flush_dev_iotlb_pasid(iommu, sid, |
| 5590 | info->pfsid, pasid, |
| 5591 | info->ats_qdep, addr, |
| 5592 | size); |
| 5593 | else |
| 5594 | pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n"); |
| 5595 | break; |
| 5596 | default: |
| 5597 | dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n", |
| 5598 | cache_type); |
| 5599 | ret = -EINVAL; |
| 5600 | } |
| 5601 | } |
| 5602 | out_unlock: |
| 5603 | spin_unlock(&iommu->lock); |
| 5604 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 5605 | |
| 5606 | return ret; |
| 5607 | } |
| 5608 | #endif |
| 5609 | |
| 5610 | static int intel_iommu_map(struct iommu_domain *domain, |
| 5611 | unsigned long iova, phys_addr_t hpa, |
| 5612 | size_t size, int iommu_prot, gfp_t gfp) |
| 5613 | { |
| 5614 | struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| 5615 | u64 max_addr; |
| 5616 | int prot = 0; |
| 5617 | int ret; |
| 5618 | |
| 5619 | if (iommu_prot & IOMMU_READ) |
| 5620 | prot |= DMA_PTE_READ; |
| 5621 | if (iommu_prot & IOMMU_WRITE) |
| 5622 | prot |= DMA_PTE_WRITE; |
| 5623 | if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) |
| 5624 | prot |= DMA_PTE_SNP; |
| 5625 | |
| 5626 | max_addr = iova + size; |
| 5627 | if (dmar_domain->max_addr < max_addr) { |
| 5628 | u64 end; |
| 5629 | |
| 5630 | /* check if minimum agaw is sufficient for mapped address */ |
| 5631 | end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; |
| 5632 | if (end < max_addr) { |
| 5633 | pr_err("%s: iommu width (%d) is not " |
| 5634 | "sufficient for the mapped address (%llx)\n", |
| 5635 | __func__, dmar_domain->gaw, max_addr); |
| 5636 | return -EFAULT; |
| 5637 | } |
| 5638 | dmar_domain->max_addr = max_addr; |
| 5639 | } |
| 5640 | /* Round up size to next multiple of PAGE_SIZE, if it and |
| 5641 | the low bits of hpa would take us onto the next page */ |
| 5642 | size = aligned_nrpages(hpa, size); |
| 5643 | ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, |
| 5644 | hpa >> VTD_PAGE_SHIFT, size, prot); |
| 5645 | return ret; |
| 5646 | } |
| 5647 | |
| 5648 | static size_t intel_iommu_unmap(struct iommu_domain *domain, |
| 5649 | unsigned long iova, size_t size, |
| 5650 | struct iommu_iotlb_gather *gather) |
| 5651 | { |
| 5652 | struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| 5653 | struct page *freelist = NULL; |
| 5654 | unsigned long start_pfn, last_pfn; |
| 5655 | unsigned int npages; |
| 5656 | int iommu_id, level = 0; |
| 5657 | |
| 5658 | /* Cope with horrid API which requires us to unmap more than the |
| 5659 | size argument if it happens to be a large-page mapping. */ |
| 5660 | BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level)); |
| 5661 | |
| 5662 | if (size < VTD_PAGE_SIZE << level_to_offset_bits(level)) |
| 5663 | size = VTD_PAGE_SIZE << level_to_offset_bits(level); |
| 5664 | |
| 5665 | start_pfn = iova >> VTD_PAGE_SHIFT; |
| 5666 | last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT; |
| 5667 | |
| 5668 | freelist = domain_unmap(dmar_domain, start_pfn, last_pfn); |
| 5669 | |
| 5670 | npages = last_pfn - start_pfn + 1; |
| 5671 | |
| 5672 | for_each_domain_iommu(iommu_id, dmar_domain) |
| 5673 | iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain, |
| 5674 | start_pfn, npages, !freelist, 0); |
| 5675 | |
| 5676 | dma_free_pagelist(freelist); |
| 5677 | |
| 5678 | if (dmar_domain->max_addr == iova + size) |
| 5679 | dmar_domain->max_addr = iova; |
| 5680 | |
| 5681 | return size; |
| 5682 | } |
| 5683 | |
| 5684 | static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, |
| 5685 | dma_addr_t iova) |
| 5686 | { |
| 5687 | struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| 5688 | struct dma_pte *pte; |
| 5689 | int level = 0; |
| 5690 | u64 phys = 0; |
| 5691 | |
| 5692 | pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level); |
| 5693 | if (pte && dma_pte_present(pte)) |
| 5694 | phys = dma_pte_addr(pte) + |
| 5695 | (iova & (BIT_MASK(level_to_offset_bits(level) + |
| 5696 | VTD_PAGE_SHIFT) - 1)); |
| 5697 | |
| 5698 | return phys; |
| 5699 | } |
| 5700 | |
| 5701 | static inline bool scalable_mode_support(void) |
| 5702 | { |
| 5703 | struct dmar_drhd_unit *drhd; |
| 5704 | struct intel_iommu *iommu; |
| 5705 | bool ret = true; |
| 5706 | |
| 5707 | rcu_read_lock(); |
| 5708 | for_each_active_iommu(iommu, drhd) { |
| 5709 | if (!sm_supported(iommu)) { |
| 5710 | ret = false; |
| 5711 | break; |
| 5712 | } |
| 5713 | } |
| 5714 | rcu_read_unlock(); |
| 5715 | |
| 5716 | return ret; |
| 5717 | } |
| 5718 | |
| 5719 | static inline bool iommu_pasid_support(void) |
| 5720 | { |
| 5721 | struct dmar_drhd_unit *drhd; |
| 5722 | struct intel_iommu *iommu; |
| 5723 | bool ret = true; |
| 5724 | |
| 5725 | rcu_read_lock(); |
| 5726 | for_each_active_iommu(iommu, drhd) { |
| 5727 | if (!pasid_supported(iommu)) { |
| 5728 | ret = false; |
| 5729 | break; |
| 5730 | } |
| 5731 | } |
| 5732 | rcu_read_unlock(); |
| 5733 | |
| 5734 | return ret; |
| 5735 | } |
| 5736 | |
| 5737 | static inline bool nested_mode_support(void) |
| 5738 | { |
| 5739 | struct dmar_drhd_unit *drhd; |
| 5740 | struct intel_iommu *iommu; |
| 5741 | bool ret = true; |
| 5742 | |
| 5743 | rcu_read_lock(); |
| 5744 | for_each_active_iommu(iommu, drhd) { |
| 5745 | if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) { |
| 5746 | ret = false; |
| 5747 | break; |
| 5748 | } |
| 5749 | } |
| 5750 | rcu_read_unlock(); |
| 5751 | |
| 5752 | return ret; |
| 5753 | } |
| 5754 | |
| 5755 | static bool intel_iommu_capable(enum iommu_cap cap) |
| 5756 | { |
| 5757 | if (cap == IOMMU_CAP_CACHE_COHERENCY) |
| 5758 | return domain_update_iommu_snooping(NULL) == 1; |
| 5759 | if (cap == IOMMU_CAP_INTR_REMAP) |
| 5760 | return irq_remapping_enabled == 1; |
| 5761 | |
| 5762 | return false; |
| 5763 | } |
| 5764 | |
| 5765 | static struct iommu_device *intel_iommu_probe_device(struct device *dev) |
| 5766 | { |
| 5767 | struct intel_iommu *iommu; |
| 5768 | |
| 5769 | iommu = device_to_iommu(dev, NULL, NULL); |
| 5770 | if (!iommu) |
| 5771 | return ERR_PTR(-ENODEV); |
| 5772 | |
| 5773 | if (translation_pre_enabled(iommu)) |
| 5774 | dev_iommu_priv_set(dev, DEFER_DEVICE_DOMAIN_INFO); |
| 5775 | |
| 5776 | return &iommu->iommu; |
| 5777 | } |
| 5778 | |
| 5779 | static void intel_iommu_release_device(struct device *dev) |
| 5780 | { |
| 5781 | struct intel_iommu *iommu; |
| 5782 | |
| 5783 | iommu = device_to_iommu(dev, NULL, NULL); |
| 5784 | if (!iommu) |
| 5785 | return; |
| 5786 | |
| 5787 | dmar_remove_one_dev_info(dev); |
| 5788 | |
| 5789 | set_dma_ops(dev, NULL); |
| 5790 | } |
| 5791 | |
| 5792 | static void intel_iommu_probe_finalize(struct device *dev) |
| 5793 | { |
| 5794 | struct iommu_domain *domain; |
| 5795 | |
| 5796 | domain = iommu_get_domain_for_dev(dev); |
| 5797 | if (device_needs_bounce(dev)) |
| 5798 | set_dma_ops(dev, &bounce_dma_ops); |
| 5799 | else if (domain && domain->type == IOMMU_DOMAIN_DMA) |
| 5800 | set_dma_ops(dev, &intel_dma_ops); |
| 5801 | else |
| 5802 | set_dma_ops(dev, NULL); |
| 5803 | } |
| 5804 | |
| 5805 | static void intel_iommu_get_resv_regions(struct device *device, |
| 5806 | struct list_head *head) |
| 5807 | { |
| 5808 | int prot = DMA_PTE_READ | DMA_PTE_WRITE; |
| 5809 | struct iommu_resv_region *reg; |
| 5810 | struct dmar_rmrr_unit *rmrr; |
| 5811 | struct device *i_dev; |
| 5812 | int i; |
| 5813 | |
| 5814 | down_read(&dmar_global_lock); |
| 5815 | for_each_rmrr_units(rmrr) { |
| 5816 | for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, |
| 5817 | i, i_dev) { |
| 5818 | struct iommu_resv_region *resv; |
| 5819 | enum iommu_resv_type type; |
| 5820 | size_t length; |
| 5821 | |
| 5822 | if (i_dev != device && |
| 5823 | !is_downstream_to_pci_bridge(device, i_dev)) |
| 5824 | continue; |
| 5825 | |
| 5826 | length = rmrr->end_address - rmrr->base_address + 1; |
| 5827 | |
| 5828 | type = device_rmrr_is_relaxable(device) ? |
| 5829 | IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT; |
| 5830 | |
| 5831 | resv = iommu_alloc_resv_region(rmrr->base_address, |
| 5832 | length, prot, type); |
| 5833 | if (!resv) |
| 5834 | break; |
| 5835 | |
| 5836 | list_add_tail(&resv->list, head); |
| 5837 | } |
| 5838 | } |
| 5839 | up_read(&dmar_global_lock); |
| 5840 | |
| 5841 | #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA |
| 5842 | if (dev_is_pci(device)) { |
| 5843 | struct pci_dev *pdev = to_pci_dev(device); |
| 5844 | |
| 5845 | if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) { |
| 5846 | reg = iommu_alloc_resv_region(0, 1UL << 24, prot, |
| 5847 | IOMMU_RESV_DIRECT_RELAXABLE); |
| 5848 | if (reg) |
| 5849 | list_add_tail(®->list, head); |
| 5850 | } |
| 5851 | } |
| 5852 | #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */ |
| 5853 | |
| 5854 | reg = iommu_alloc_resv_region(IOAPIC_RANGE_START, |
| 5855 | IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1, |
| 5856 | 0, IOMMU_RESV_MSI); |
| 5857 | if (!reg) |
| 5858 | return; |
| 5859 | list_add_tail(®->list, head); |
| 5860 | } |
| 5861 | |
| 5862 | int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev) |
| 5863 | { |
| 5864 | struct device_domain_info *info; |
| 5865 | struct context_entry *context; |
| 5866 | struct dmar_domain *domain; |
| 5867 | unsigned long flags; |
| 5868 | u64 ctx_lo; |
| 5869 | int ret; |
| 5870 | |
| 5871 | domain = find_domain(dev); |
| 5872 | if (!domain) |
| 5873 | return -EINVAL; |
| 5874 | |
| 5875 | spin_lock_irqsave(&device_domain_lock, flags); |
| 5876 | spin_lock(&iommu->lock); |
| 5877 | |
| 5878 | ret = -EINVAL; |
| 5879 | info = get_domain_info(dev); |
| 5880 | if (!info || !info->pasid_supported) |
| 5881 | goto out; |
| 5882 | |
| 5883 | context = iommu_context_addr(iommu, info->bus, info->devfn, 0); |
| 5884 | if (WARN_ON(!context)) |
| 5885 | goto out; |
| 5886 | |
| 5887 | ctx_lo = context[0].lo; |
| 5888 | |
| 5889 | if (!(ctx_lo & CONTEXT_PASIDE)) { |
| 5890 | ctx_lo |= CONTEXT_PASIDE; |
| 5891 | context[0].lo = ctx_lo; |
| 5892 | wmb(); |
| 5893 | iommu->flush.flush_context(iommu, |
| 5894 | domain->iommu_did[iommu->seq_id], |
| 5895 | PCI_DEVID(info->bus, info->devfn), |
| 5896 | DMA_CCMD_MASK_NOBIT, |
| 5897 | DMA_CCMD_DEVICE_INVL); |
| 5898 | } |
| 5899 | |
| 5900 | /* Enable PASID support in the device, if it wasn't already */ |
| 5901 | if (!info->pasid_enabled) |
| 5902 | iommu_enable_dev_iotlb(info); |
| 5903 | |
| 5904 | ret = 0; |
| 5905 | |
| 5906 | out: |
| 5907 | spin_unlock(&iommu->lock); |
| 5908 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 5909 | |
| 5910 | return ret; |
| 5911 | } |
| 5912 | |
| 5913 | static void intel_iommu_apply_resv_region(struct device *dev, |
| 5914 | struct iommu_domain *domain, |
| 5915 | struct iommu_resv_region *region) |
| 5916 | { |
| 5917 | struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| 5918 | unsigned long start, end; |
| 5919 | |
| 5920 | start = IOVA_PFN(region->start); |
| 5921 | end = IOVA_PFN(region->start + region->length - 1); |
| 5922 | |
| 5923 | WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end)); |
| 5924 | } |
| 5925 | |
| 5926 | static struct iommu_group *intel_iommu_device_group(struct device *dev) |
| 5927 | { |
| 5928 | if (dev_is_pci(dev)) |
| 5929 | return pci_device_group(dev); |
| 5930 | return generic_device_group(dev); |
| 5931 | } |
| 5932 | |
| 5933 | static int intel_iommu_enable_auxd(struct device *dev) |
| 5934 | { |
| 5935 | struct device_domain_info *info; |
| 5936 | struct intel_iommu *iommu; |
| 5937 | unsigned long flags; |
| 5938 | int ret; |
| 5939 | |
| 5940 | iommu = device_to_iommu(dev, NULL, NULL); |
| 5941 | if (!iommu || dmar_disabled) |
| 5942 | return -EINVAL; |
| 5943 | |
| 5944 | if (!sm_supported(iommu) || !pasid_supported(iommu)) |
| 5945 | return -EINVAL; |
| 5946 | |
| 5947 | ret = intel_iommu_enable_pasid(iommu, dev); |
| 5948 | if (ret) |
| 5949 | return -ENODEV; |
| 5950 | |
| 5951 | spin_lock_irqsave(&device_domain_lock, flags); |
| 5952 | info = get_domain_info(dev); |
| 5953 | info->auxd_enabled = 1; |
| 5954 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 5955 | |
| 5956 | return 0; |
| 5957 | } |
| 5958 | |
| 5959 | static int intel_iommu_disable_auxd(struct device *dev) |
| 5960 | { |
| 5961 | struct device_domain_info *info; |
| 5962 | unsigned long flags; |
| 5963 | |
| 5964 | spin_lock_irqsave(&device_domain_lock, flags); |
| 5965 | info = get_domain_info(dev); |
| 5966 | if (!WARN_ON(!info)) |
| 5967 | info->auxd_enabled = 0; |
| 5968 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 5969 | |
| 5970 | return 0; |
| 5971 | } |
| 5972 | |
| 5973 | /* |
| 5974 | * A PCI express designated vendor specific extended capability is defined |
| 5975 | * in the section 3.7 of Intel scalable I/O virtualization technical spec |
| 5976 | * for system software and tools to detect endpoint devices supporting the |
| 5977 | * Intel scalable IO virtualization without host driver dependency. |
| 5978 | * |
| 5979 | * Returns the address of the matching extended capability structure within |
| 5980 | * the device's PCI configuration space or 0 if the device does not support |
| 5981 | * it. |
| 5982 | */ |
| 5983 | static int siov_find_pci_dvsec(struct pci_dev *pdev) |
| 5984 | { |
| 5985 | int pos; |
| 5986 | u16 vendor, id; |
| 5987 | |
| 5988 | pos = pci_find_next_ext_capability(pdev, 0, 0x23); |
| 5989 | while (pos) { |
| 5990 | pci_read_config_word(pdev, pos + 4, &vendor); |
| 5991 | pci_read_config_word(pdev, pos + 8, &id); |
| 5992 | if (vendor == PCI_VENDOR_ID_INTEL && id == 5) |
| 5993 | return pos; |
| 5994 | |
| 5995 | pos = pci_find_next_ext_capability(pdev, pos, 0x23); |
| 5996 | } |
| 5997 | |
| 5998 | return 0; |
| 5999 | } |
| 6000 | |
| 6001 | static bool |
| 6002 | intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat) |
| 6003 | { |
| 6004 | if (feat == IOMMU_DEV_FEAT_AUX) { |
| 6005 | int ret; |
| 6006 | |
| 6007 | if (!dev_is_pci(dev) || dmar_disabled || |
| 6008 | !scalable_mode_support() || !iommu_pasid_support()) |
| 6009 | return false; |
| 6010 | |
| 6011 | ret = pci_pasid_features(to_pci_dev(dev)); |
| 6012 | if (ret < 0) |
| 6013 | return false; |
| 6014 | |
| 6015 | return !!siov_find_pci_dvsec(to_pci_dev(dev)); |
| 6016 | } |
| 6017 | |
| 6018 | if (feat == IOMMU_DEV_FEAT_SVA) { |
| 6019 | struct device_domain_info *info = get_domain_info(dev); |
| 6020 | |
| 6021 | return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) && |
| 6022 | info->pasid_supported && info->pri_supported && |
| 6023 | info->ats_supported; |
| 6024 | } |
| 6025 | |
| 6026 | return false; |
| 6027 | } |
| 6028 | |
| 6029 | static int |
| 6030 | intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat) |
| 6031 | { |
| 6032 | if (feat == IOMMU_DEV_FEAT_AUX) |
| 6033 | return intel_iommu_enable_auxd(dev); |
| 6034 | |
| 6035 | if (feat == IOMMU_DEV_FEAT_SVA) { |
| 6036 | struct device_domain_info *info = get_domain_info(dev); |
| 6037 | |
| 6038 | if (!info) |
| 6039 | return -EINVAL; |
| 6040 | |
| 6041 | if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) |
| 6042 | return 0; |
| 6043 | } |
| 6044 | |
| 6045 | return -ENODEV; |
| 6046 | } |
| 6047 | |
| 6048 | static int |
| 6049 | intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat) |
| 6050 | { |
| 6051 | if (feat == IOMMU_DEV_FEAT_AUX) |
| 6052 | return intel_iommu_disable_auxd(dev); |
| 6053 | |
| 6054 | return -ENODEV; |
| 6055 | } |
| 6056 | |
| 6057 | static bool |
| 6058 | intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat) |
| 6059 | { |
| 6060 | struct device_domain_info *info = get_domain_info(dev); |
| 6061 | |
| 6062 | if (feat == IOMMU_DEV_FEAT_AUX) |
| 6063 | return scalable_mode_support() && info && info->auxd_enabled; |
| 6064 | |
| 6065 | return false; |
| 6066 | } |
| 6067 | |
| 6068 | static int |
| 6069 | intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) |
| 6070 | { |
| 6071 | struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| 6072 | |
| 6073 | return dmar_domain->default_pasid > 0 ? |
| 6074 | dmar_domain->default_pasid : -EINVAL; |
| 6075 | } |
| 6076 | |
| 6077 | static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain, |
| 6078 | struct device *dev) |
| 6079 | { |
| 6080 | return attach_deferred(dev); |
| 6081 | } |
| 6082 | |
| 6083 | static int |
| 6084 | intel_iommu_domain_set_attr(struct iommu_domain *domain, |
| 6085 | enum iommu_attr attr, void *data) |
| 6086 | { |
| 6087 | struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| 6088 | unsigned long flags; |
| 6089 | int ret = 0; |
| 6090 | |
| 6091 | if (domain->type != IOMMU_DOMAIN_UNMANAGED) |
| 6092 | return -EINVAL; |
| 6093 | |
| 6094 | switch (attr) { |
| 6095 | case DOMAIN_ATTR_NESTING: |
| 6096 | spin_lock_irqsave(&device_domain_lock, flags); |
| 6097 | if (nested_mode_support() && |
| 6098 | list_empty(&dmar_domain->devices)) { |
| 6099 | dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE; |
| 6100 | dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL; |
| 6101 | } else { |
| 6102 | ret = -ENODEV; |
| 6103 | } |
| 6104 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 6105 | break; |
| 6106 | default: |
| 6107 | ret = -EINVAL; |
| 6108 | break; |
| 6109 | } |
| 6110 | |
| 6111 | return ret; |
| 6112 | } |
| 6113 | |
| 6114 | /* |
| 6115 | * Check that the device does not live on an external facing PCI port that is |
| 6116 | * marked as untrusted. Such devices should not be able to apply quirks and |
| 6117 | * thus not be able to bypass the IOMMU restrictions. |
| 6118 | */ |
| 6119 | static bool risky_device(struct pci_dev *pdev) |
| 6120 | { |
| 6121 | if (pdev->untrusted) { |
| 6122 | pci_info(pdev, |
| 6123 | "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n", |
| 6124 | pdev->vendor, pdev->device); |
| 6125 | pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n"); |
| 6126 | return true; |
| 6127 | } |
| 6128 | return false; |
| 6129 | } |
| 6130 | |
| 6131 | const struct iommu_ops intel_iommu_ops = { |
| 6132 | .capable = intel_iommu_capable, |
| 6133 | .domain_alloc = intel_iommu_domain_alloc, |
| 6134 | .domain_free = intel_iommu_domain_free, |
| 6135 | .domain_set_attr = intel_iommu_domain_set_attr, |
| 6136 | .attach_dev = intel_iommu_attach_device, |
| 6137 | .detach_dev = intel_iommu_detach_device, |
| 6138 | .aux_attach_dev = intel_iommu_aux_attach_device, |
| 6139 | .aux_detach_dev = intel_iommu_aux_detach_device, |
| 6140 | .aux_get_pasid = intel_iommu_aux_get_pasid, |
| 6141 | .map = intel_iommu_map, |
| 6142 | .unmap = intel_iommu_unmap, |
| 6143 | .iova_to_phys = intel_iommu_iova_to_phys, |
| 6144 | .probe_device = intel_iommu_probe_device, |
| 6145 | .probe_finalize = intel_iommu_probe_finalize, |
| 6146 | .release_device = intel_iommu_release_device, |
| 6147 | .get_resv_regions = intel_iommu_get_resv_regions, |
| 6148 | .put_resv_regions = generic_iommu_put_resv_regions, |
| 6149 | .apply_resv_region = intel_iommu_apply_resv_region, |
| 6150 | .device_group = intel_iommu_device_group, |
| 6151 | .dev_has_feat = intel_iommu_dev_has_feat, |
| 6152 | .dev_feat_enabled = intel_iommu_dev_feat_enabled, |
| 6153 | .dev_enable_feat = intel_iommu_dev_enable_feat, |
| 6154 | .dev_disable_feat = intel_iommu_dev_disable_feat, |
| 6155 | .is_attach_deferred = intel_iommu_is_attach_deferred, |
| 6156 | .def_domain_type = device_def_domain_type, |
| 6157 | .pgsize_bitmap = INTEL_IOMMU_PGSIZES, |
| 6158 | #ifdef CONFIG_INTEL_IOMMU_SVM |
| 6159 | .cache_invalidate = intel_iommu_sva_invalidate, |
| 6160 | .sva_bind_gpasid = intel_svm_bind_gpasid, |
| 6161 | .sva_unbind_gpasid = intel_svm_unbind_gpasid, |
| 6162 | .sva_bind = intel_svm_bind, |
| 6163 | .sva_unbind = intel_svm_unbind, |
| 6164 | .sva_get_pasid = intel_svm_get_pasid, |
| 6165 | .page_response = intel_svm_page_response, |
| 6166 | #endif |
| 6167 | }; |
| 6168 | |
| 6169 | static void quirk_iommu_igfx(struct pci_dev *dev) |
| 6170 | { |
| 6171 | if (risky_device(dev)) |
| 6172 | return; |
| 6173 | |
| 6174 | pci_info(dev, "Disabling IOMMU for graphics on this chipset\n"); |
| 6175 | dmar_map_gfx = 0; |
| 6176 | } |
| 6177 | |
| 6178 | /* G4x/GM45 integrated gfx dmar support is totally busted. */ |
| 6179 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx); |
| 6180 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx); |
| 6181 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx); |
| 6182 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx); |
| 6183 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx); |
| 6184 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx); |
| 6185 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx); |
| 6186 | |
| 6187 | /* Broadwell igfx malfunctions with dmar */ |
| 6188 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx); |
| 6189 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx); |
| 6190 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx); |
| 6191 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx); |
| 6192 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx); |
| 6193 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx); |
| 6194 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx); |
| 6195 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx); |
| 6196 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx); |
| 6197 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx); |
| 6198 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx); |
| 6199 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx); |
| 6200 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx); |
| 6201 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx); |
| 6202 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx); |
| 6203 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx); |
| 6204 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx); |
| 6205 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx); |
| 6206 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx); |
| 6207 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx); |
| 6208 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx); |
| 6209 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx); |
| 6210 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx); |
| 6211 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx); |
| 6212 | |
| 6213 | static void quirk_iommu_rwbf(struct pci_dev *dev) |
| 6214 | { |
| 6215 | if (risky_device(dev)) |
| 6216 | return; |
| 6217 | |
| 6218 | /* |
| 6219 | * Mobile 4 Series Chipset neglects to set RWBF capability, |
| 6220 | * but needs it. Same seems to hold for the desktop versions. |
| 6221 | */ |
| 6222 | pci_info(dev, "Forcing write-buffer flush capability\n"); |
| 6223 | rwbf_quirk = 1; |
| 6224 | } |
| 6225 | |
| 6226 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); |
| 6227 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf); |
| 6228 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf); |
| 6229 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf); |
| 6230 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf); |
| 6231 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf); |
| 6232 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf); |
| 6233 | |
| 6234 | #define GGC 0x52 |
| 6235 | #define GGC_MEMORY_SIZE_MASK (0xf << 8) |
| 6236 | #define GGC_MEMORY_SIZE_NONE (0x0 << 8) |
| 6237 | #define GGC_MEMORY_SIZE_1M (0x1 << 8) |
| 6238 | #define GGC_MEMORY_SIZE_2M (0x3 << 8) |
| 6239 | #define GGC_MEMORY_VT_ENABLED (0x8 << 8) |
| 6240 | #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) |
| 6241 | #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) |
| 6242 | #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) |
| 6243 | |
| 6244 | static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) |
| 6245 | { |
| 6246 | unsigned short ggc; |
| 6247 | |
| 6248 | if (risky_device(dev)) |
| 6249 | return; |
| 6250 | |
| 6251 | if (pci_read_config_word(dev, GGC, &ggc)) |
| 6252 | return; |
| 6253 | |
| 6254 | if (!(ggc & GGC_MEMORY_VT_ENABLED)) { |
| 6255 | pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); |
| 6256 | dmar_map_gfx = 0; |
| 6257 | } else if (dmar_map_gfx) { |
| 6258 | /* we have to ensure the gfx device is idle before we flush */ |
| 6259 | pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n"); |
| 6260 | intel_iommu_strict = 1; |
| 6261 | } |
| 6262 | } |
| 6263 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); |
| 6264 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); |
| 6265 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); |
| 6266 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); |
| 6267 | |
| 6268 | static void quirk_igfx_skip_te_disable(struct pci_dev *dev) |
| 6269 | { |
| 6270 | unsigned short ver; |
| 6271 | |
| 6272 | if (!IS_GFX_DEVICE(dev)) |
| 6273 | return; |
| 6274 | |
| 6275 | ver = (dev->device >> 8) & 0xff; |
| 6276 | if (ver != 0x45 && ver != 0x46 && ver != 0x4c && |
| 6277 | ver != 0x4e && ver != 0x8a && ver != 0x98 && |
| 6278 | ver != 0x9a) |
| 6279 | return; |
| 6280 | |
| 6281 | if (risky_device(dev)) |
| 6282 | return; |
| 6283 | |
| 6284 | pci_info(dev, "Skip IOMMU disabling for graphics\n"); |
| 6285 | iommu_skip_te_disable = 1; |
| 6286 | } |
| 6287 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable); |
| 6288 | |
| 6289 | /* On Tylersburg chipsets, some BIOSes have been known to enable the |
| 6290 | ISOCH DMAR unit for the Azalia sound device, but not give it any |
| 6291 | TLB entries, which causes it to deadlock. Check for that. We do |
| 6292 | this in a function called from init_dmars(), instead of in a PCI |
| 6293 | quirk, because we don't want to print the obnoxious "BIOS broken" |
| 6294 | message if VT-d is actually disabled. |
| 6295 | */ |
| 6296 | static void __init check_tylersburg_isoch(void) |
| 6297 | { |
| 6298 | struct pci_dev *pdev; |
| 6299 | uint32_t vtisochctrl; |
| 6300 | |
| 6301 | /* If there's no Azalia in the system anyway, forget it. */ |
| 6302 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); |
| 6303 | if (!pdev) |
| 6304 | return; |
| 6305 | |
| 6306 | if (risky_device(pdev)) { |
| 6307 | pci_dev_put(pdev); |
| 6308 | return; |
| 6309 | } |
| 6310 | |
| 6311 | pci_dev_put(pdev); |
| 6312 | |
| 6313 | /* System Management Registers. Might be hidden, in which case |
| 6314 | we can't do the sanity check. But that's OK, because the |
| 6315 | known-broken BIOSes _don't_ actually hide it, so far. */ |
| 6316 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); |
| 6317 | if (!pdev) |
| 6318 | return; |
| 6319 | |
| 6320 | if (risky_device(pdev)) { |
| 6321 | pci_dev_put(pdev); |
| 6322 | return; |
| 6323 | } |
| 6324 | |
| 6325 | if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { |
| 6326 | pci_dev_put(pdev); |
| 6327 | return; |
| 6328 | } |
| 6329 | |
| 6330 | pci_dev_put(pdev); |
| 6331 | |
| 6332 | /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ |
| 6333 | if (vtisochctrl & 1) |
| 6334 | return; |
| 6335 | |
| 6336 | /* Drop all bits other than the number of TLB entries */ |
| 6337 | vtisochctrl &= 0x1c; |
| 6338 | |
| 6339 | /* If we have the recommended number of TLB entries (16), fine. */ |
| 6340 | if (vtisochctrl == 0x10) |
| 6341 | return; |
| 6342 | |
| 6343 | /* Zero TLB entries? You get to ride the short bus to school. */ |
| 6344 | if (!vtisochctrl) { |
| 6345 | WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" |
| 6346 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| 6347 | dmi_get_system_info(DMI_BIOS_VENDOR), |
| 6348 | dmi_get_system_info(DMI_BIOS_VERSION), |
| 6349 | dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| 6350 | iommu_identity_mapping |= IDENTMAP_AZALIA; |
| 6351 | return; |
| 6352 | } |
| 6353 | |
| 6354 | pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", |
| 6355 | vtisochctrl); |
| 6356 | } |