Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (c) 2006, Intel Corporation. |
| 4 | * |
| 5 | * Copyright (C) 2006-2008 Intel Corporation |
| 6 | * Author: Ashok Raj <ashok.raj@intel.com> |
| 7 | * Author: Shaohua Li <shaohua.li@intel.com> |
| 8 | * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
| 9 | * |
| 10 | * This file implements early detection/parsing of Remapping Devices |
| 11 | * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI |
| 12 | * tables. |
| 13 | * |
| 14 | * These routines are used by both DMA-remapping and Interrupt-remapping |
| 15 | */ |
| 16 | |
| 17 | #define pr_fmt(fmt) "DMAR: " fmt |
| 18 | |
| 19 | #include <linux/pci.h> |
| 20 | #include <linux/dmar.h> |
| 21 | #include <linux/iova.h> |
| 22 | #include <linux/intel-iommu.h> |
| 23 | #include <linux/timer.h> |
| 24 | #include <linux/irq.h> |
| 25 | #include <linux/interrupt.h> |
| 26 | #include <linux/tboot.h> |
| 27 | #include <linux/dmi.h> |
| 28 | #include <linux/slab.h> |
| 29 | #include <linux/iommu.h> |
| 30 | #include <linux/numa.h> |
| 31 | #include <linux/limits.h> |
| 32 | #include <asm/irq_remapping.h> |
| 33 | #include <asm/iommu_table.h> |
| 34 | |
| 35 | #include "../irq_remapping.h" |
| 36 | |
| 37 | typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); |
| 38 | struct dmar_res_callback { |
| 39 | dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; |
| 40 | void *arg[ACPI_DMAR_TYPE_RESERVED]; |
| 41 | bool ignore_unhandled; |
| 42 | bool print_entry; |
| 43 | }; |
| 44 | |
| 45 | /* |
| 46 | * Assumptions: |
| 47 | * 1) The hotplug framework guarentees that DMAR unit will be hot-added |
| 48 | * before IO devices managed by that unit. |
| 49 | * 2) The hotplug framework guarantees that DMAR unit will be hot-removed |
| 50 | * after IO devices managed by that unit. |
| 51 | * 3) Hotplug events are rare. |
| 52 | * |
| 53 | * Locking rules for DMA and interrupt remapping related global data structures: |
| 54 | * 1) Use dmar_global_lock in process context |
| 55 | * 2) Use RCU in interrupt context |
| 56 | */ |
| 57 | DECLARE_RWSEM(dmar_global_lock); |
| 58 | LIST_HEAD(dmar_drhd_units); |
| 59 | |
| 60 | struct acpi_table_header * __initdata dmar_tbl; |
| 61 | static int dmar_dev_scope_status = 1; |
| 62 | static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)]; |
| 63 | |
| 64 | static int alloc_iommu(struct dmar_drhd_unit *drhd); |
| 65 | static void free_iommu(struct intel_iommu *iommu); |
| 66 | |
| 67 | extern const struct iommu_ops intel_iommu_ops; |
| 68 | |
| 69 | static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) |
| 70 | { |
| 71 | /* |
| 72 | * add INCLUDE_ALL at the tail, so scan the list will find it at |
| 73 | * the very end. |
| 74 | */ |
| 75 | if (drhd->include_all) |
| 76 | list_add_tail_rcu(&drhd->list, &dmar_drhd_units); |
| 77 | else |
| 78 | list_add_rcu(&drhd->list, &dmar_drhd_units); |
| 79 | } |
| 80 | |
| 81 | void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) |
| 82 | { |
| 83 | struct acpi_dmar_device_scope *scope; |
| 84 | |
| 85 | *cnt = 0; |
| 86 | while (start < end) { |
| 87 | scope = start; |
| 88 | if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || |
| 89 | scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || |
| 90 | scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) |
| 91 | (*cnt)++; |
| 92 | else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && |
| 93 | scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { |
| 94 | pr_warn("Unsupported device scope\n"); |
| 95 | } |
| 96 | start += scope->length; |
| 97 | } |
| 98 | if (*cnt == 0) |
| 99 | return NULL; |
| 100 | |
| 101 | return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); |
| 102 | } |
| 103 | |
| 104 | void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) |
| 105 | { |
| 106 | int i; |
| 107 | struct device *tmp_dev; |
| 108 | |
| 109 | if (*devices && *cnt) { |
| 110 | for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) |
| 111 | put_device(tmp_dev); |
| 112 | kfree(*devices); |
| 113 | } |
| 114 | |
| 115 | *devices = NULL; |
| 116 | *cnt = 0; |
| 117 | } |
| 118 | |
| 119 | /* Optimize out kzalloc()/kfree() for normal cases */ |
| 120 | static char dmar_pci_notify_info_buf[64]; |
| 121 | |
| 122 | static struct dmar_pci_notify_info * |
| 123 | dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) |
| 124 | { |
| 125 | int level = 0; |
| 126 | size_t size; |
| 127 | struct pci_dev *tmp; |
| 128 | struct dmar_pci_notify_info *info; |
| 129 | |
| 130 | BUG_ON(dev->is_virtfn); |
| 131 | |
| 132 | /* |
| 133 | * Ignore devices that have a domain number higher than what can |
| 134 | * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 |
| 135 | */ |
| 136 | if (pci_domain_nr(dev->bus) > U16_MAX) |
| 137 | return NULL; |
| 138 | |
| 139 | /* Only generate path[] for device addition event */ |
| 140 | if (event == BUS_NOTIFY_ADD_DEVICE) |
| 141 | for (tmp = dev; tmp; tmp = tmp->bus->self) |
| 142 | level++; |
| 143 | |
| 144 | size = struct_size(info, path, level); |
| 145 | if (size <= sizeof(dmar_pci_notify_info_buf)) { |
| 146 | info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; |
| 147 | } else { |
| 148 | info = kzalloc(size, GFP_KERNEL); |
| 149 | if (!info) { |
| 150 | pr_warn("Out of memory when allocating notify_info " |
| 151 | "for %s.\n", pci_name(dev)); |
| 152 | if (dmar_dev_scope_status == 0) |
| 153 | dmar_dev_scope_status = -ENOMEM; |
| 154 | return NULL; |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | info->event = event; |
| 159 | info->dev = dev; |
| 160 | info->seg = pci_domain_nr(dev->bus); |
| 161 | info->level = level; |
| 162 | if (event == BUS_NOTIFY_ADD_DEVICE) { |
| 163 | for (tmp = dev; tmp; tmp = tmp->bus->self) { |
| 164 | level--; |
| 165 | info->path[level].bus = tmp->bus->number; |
| 166 | info->path[level].device = PCI_SLOT(tmp->devfn); |
| 167 | info->path[level].function = PCI_FUNC(tmp->devfn); |
| 168 | if (pci_is_root_bus(tmp->bus)) |
| 169 | info->bus = tmp->bus->number; |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | return info; |
| 174 | } |
| 175 | |
| 176 | static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) |
| 177 | { |
| 178 | if ((void *)info != dmar_pci_notify_info_buf) |
| 179 | kfree(info); |
| 180 | } |
| 181 | |
| 182 | static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, |
| 183 | struct acpi_dmar_pci_path *path, int count) |
| 184 | { |
| 185 | int i; |
| 186 | |
| 187 | if (info->bus != bus) |
| 188 | goto fallback; |
| 189 | if (info->level != count) |
| 190 | goto fallback; |
| 191 | |
| 192 | for (i = 0; i < count; i++) { |
| 193 | if (path[i].device != info->path[i].device || |
| 194 | path[i].function != info->path[i].function) |
| 195 | goto fallback; |
| 196 | } |
| 197 | |
| 198 | return true; |
| 199 | |
| 200 | fallback: |
| 201 | |
| 202 | if (count != 1) |
| 203 | return false; |
| 204 | |
| 205 | i = info->level - 1; |
| 206 | if (bus == info->path[i].bus && |
| 207 | path[0].device == info->path[i].device && |
| 208 | path[0].function == info->path[i].function) { |
| 209 | pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", |
| 210 | bus, path[0].device, path[0].function); |
| 211 | return true; |
| 212 | } |
| 213 | |
| 214 | return false; |
| 215 | } |
| 216 | |
| 217 | /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ |
| 218 | int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, |
| 219 | void *start, void*end, u16 segment, |
| 220 | struct dmar_dev_scope *devices, |
| 221 | int devices_cnt) |
| 222 | { |
| 223 | int i, level; |
| 224 | struct device *tmp, *dev = &info->dev->dev; |
| 225 | struct acpi_dmar_device_scope *scope; |
| 226 | struct acpi_dmar_pci_path *path; |
| 227 | |
| 228 | if (segment != info->seg) |
| 229 | return 0; |
| 230 | |
| 231 | for (; start < end; start += scope->length) { |
| 232 | scope = start; |
| 233 | if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && |
| 234 | scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) |
| 235 | continue; |
| 236 | |
| 237 | path = (struct acpi_dmar_pci_path *)(scope + 1); |
| 238 | level = (scope->length - sizeof(*scope)) / sizeof(*path); |
| 239 | if (!dmar_match_pci_path(info, scope->bus, path, level)) |
| 240 | continue; |
| 241 | |
| 242 | /* |
| 243 | * We expect devices with endpoint scope to have normal PCI |
| 244 | * headers, and devices with bridge scope to have bridge PCI |
| 245 | * headers. However PCI NTB devices may be listed in the |
| 246 | * DMAR table with bridge scope, even though they have a |
| 247 | * normal PCI header. NTB devices are identified by class |
| 248 | * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch |
| 249 | * for this special case. |
| 250 | */ |
| 251 | if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && |
| 252 | info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || |
| 253 | (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && |
| 254 | (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && |
| 255 | info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { |
| 256 | pr_warn("Device scope type does not match for %s\n", |
| 257 | pci_name(info->dev)); |
| 258 | return -EINVAL; |
| 259 | } |
| 260 | |
| 261 | for_each_dev_scope(devices, devices_cnt, i, tmp) |
| 262 | if (tmp == NULL) { |
| 263 | devices[i].bus = info->dev->bus->number; |
| 264 | devices[i].devfn = info->dev->devfn; |
| 265 | rcu_assign_pointer(devices[i].dev, |
| 266 | get_device(dev)); |
| 267 | return 1; |
| 268 | } |
| 269 | BUG_ON(i >= devices_cnt); |
| 270 | } |
| 271 | |
| 272 | return 0; |
| 273 | } |
| 274 | |
| 275 | int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, |
| 276 | struct dmar_dev_scope *devices, int count) |
| 277 | { |
| 278 | int index; |
| 279 | struct device *tmp; |
| 280 | |
| 281 | if (info->seg != segment) |
| 282 | return 0; |
| 283 | |
| 284 | for_each_active_dev_scope(devices, count, index, tmp) |
| 285 | if (tmp == &info->dev->dev) { |
| 286 | RCU_INIT_POINTER(devices[index].dev, NULL); |
| 287 | synchronize_rcu(); |
| 288 | put_device(tmp); |
| 289 | return 1; |
| 290 | } |
| 291 | |
| 292 | return 0; |
| 293 | } |
| 294 | |
| 295 | static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) |
| 296 | { |
| 297 | int ret = 0; |
| 298 | struct dmar_drhd_unit *dmaru; |
| 299 | struct acpi_dmar_hardware_unit *drhd; |
| 300 | |
| 301 | for_each_drhd_unit(dmaru) { |
| 302 | if (dmaru->include_all) |
| 303 | continue; |
| 304 | |
| 305 | drhd = container_of(dmaru->hdr, |
| 306 | struct acpi_dmar_hardware_unit, header); |
| 307 | ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), |
| 308 | ((void *)drhd) + drhd->header.length, |
| 309 | dmaru->segment, |
| 310 | dmaru->devices, dmaru->devices_cnt); |
| 311 | if (ret) |
| 312 | break; |
| 313 | } |
| 314 | if (ret >= 0) |
| 315 | ret = dmar_iommu_notify_scope_dev(info); |
| 316 | if (ret < 0 && dmar_dev_scope_status == 0) |
| 317 | dmar_dev_scope_status = ret; |
| 318 | |
| 319 | if (ret >= 0) |
| 320 | intel_irq_remap_add_device(info); |
| 321 | |
| 322 | return ret; |
| 323 | } |
| 324 | |
| 325 | static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) |
| 326 | { |
| 327 | struct dmar_drhd_unit *dmaru; |
| 328 | |
| 329 | for_each_drhd_unit(dmaru) |
| 330 | if (dmar_remove_dev_scope(info, dmaru->segment, |
| 331 | dmaru->devices, dmaru->devices_cnt)) |
| 332 | break; |
| 333 | dmar_iommu_notify_scope_dev(info); |
| 334 | } |
| 335 | |
| 336 | static inline void vf_inherit_msi_domain(struct pci_dev *pdev) |
| 337 | { |
| 338 | struct pci_dev *physfn = pci_physfn(pdev); |
| 339 | |
| 340 | dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); |
| 341 | } |
| 342 | |
| 343 | static int dmar_pci_bus_notifier(struct notifier_block *nb, |
| 344 | unsigned long action, void *data) |
| 345 | { |
| 346 | struct pci_dev *pdev = to_pci_dev(data); |
| 347 | struct dmar_pci_notify_info *info; |
| 348 | |
| 349 | /* Only care about add/remove events for physical functions. |
| 350 | * For VFs we actually do the lookup based on the corresponding |
| 351 | * PF in device_to_iommu() anyway. */ |
| 352 | if (pdev->is_virtfn) { |
| 353 | /* |
| 354 | * Ensure that the VF device inherits the irq domain of the |
| 355 | * PF device. Ideally the device would inherit the domain |
| 356 | * from the bus, but DMAR can have multiple units per bus |
| 357 | * which makes this impossible. The VF 'bus' could inherit |
| 358 | * from the PF device, but that's yet another x86'sism to |
| 359 | * inflict on everybody else. |
| 360 | */ |
| 361 | if (action == BUS_NOTIFY_ADD_DEVICE) |
| 362 | vf_inherit_msi_domain(pdev); |
| 363 | return NOTIFY_DONE; |
| 364 | } |
| 365 | |
| 366 | if (action != BUS_NOTIFY_ADD_DEVICE && |
| 367 | action != BUS_NOTIFY_REMOVED_DEVICE) |
| 368 | return NOTIFY_DONE; |
| 369 | |
| 370 | info = dmar_alloc_pci_notify_info(pdev, action); |
| 371 | if (!info) |
| 372 | return NOTIFY_DONE; |
| 373 | |
| 374 | down_write(&dmar_global_lock); |
| 375 | if (action == BUS_NOTIFY_ADD_DEVICE) |
| 376 | dmar_pci_bus_add_dev(info); |
| 377 | else if (action == BUS_NOTIFY_REMOVED_DEVICE) |
| 378 | dmar_pci_bus_del_dev(info); |
| 379 | up_write(&dmar_global_lock); |
| 380 | |
| 381 | dmar_free_pci_notify_info(info); |
| 382 | |
| 383 | return NOTIFY_OK; |
| 384 | } |
| 385 | |
| 386 | static struct notifier_block dmar_pci_bus_nb = { |
| 387 | .notifier_call = dmar_pci_bus_notifier, |
| 388 | .priority = INT_MIN, |
| 389 | }; |
| 390 | |
| 391 | static struct dmar_drhd_unit * |
| 392 | dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) |
| 393 | { |
| 394 | struct dmar_drhd_unit *dmaru; |
| 395 | |
| 396 | list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, |
| 397 | dmar_rcu_check()) |
| 398 | if (dmaru->segment == drhd->segment && |
| 399 | dmaru->reg_base_addr == drhd->address) |
| 400 | return dmaru; |
| 401 | |
| 402 | return NULL; |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition |
| 407 | * structure which uniquely represent one DMA remapping hardware unit |
| 408 | * present in the platform |
| 409 | */ |
| 410 | static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) |
| 411 | { |
| 412 | struct acpi_dmar_hardware_unit *drhd; |
| 413 | struct dmar_drhd_unit *dmaru; |
| 414 | int ret; |
| 415 | |
| 416 | drhd = (struct acpi_dmar_hardware_unit *)header; |
| 417 | dmaru = dmar_find_dmaru(drhd); |
| 418 | if (dmaru) |
| 419 | goto out; |
| 420 | |
| 421 | dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); |
| 422 | if (!dmaru) |
| 423 | return -ENOMEM; |
| 424 | |
| 425 | /* |
| 426 | * If header is allocated from slab by ACPI _DSM method, we need to |
| 427 | * copy the content because the memory buffer will be freed on return. |
| 428 | */ |
| 429 | dmaru->hdr = (void *)(dmaru + 1); |
| 430 | memcpy(dmaru->hdr, header, header->length); |
| 431 | dmaru->reg_base_addr = drhd->address; |
| 432 | dmaru->segment = drhd->segment; |
| 433 | dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ |
| 434 | dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), |
| 435 | ((void *)drhd) + drhd->header.length, |
| 436 | &dmaru->devices_cnt); |
| 437 | if (dmaru->devices_cnt && dmaru->devices == NULL) { |
| 438 | kfree(dmaru); |
| 439 | return -ENOMEM; |
| 440 | } |
| 441 | |
| 442 | ret = alloc_iommu(dmaru); |
| 443 | if (ret) { |
| 444 | dmar_free_dev_scope(&dmaru->devices, |
| 445 | &dmaru->devices_cnt); |
| 446 | kfree(dmaru); |
| 447 | return ret; |
| 448 | } |
| 449 | dmar_register_drhd_unit(dmaru); |
| 450 | |
| 451 | out: |
| 452 | if (arg) |
| 453 | (*(int *)arg)++; |
| 454 | |
| 455 | return 0; |
| 456 | } |
| 457 | |
| 458 | static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) |
| 459 | { |
| 460 | if (dmaru->devices && dmaru->devices_cnt) |
| 461 | dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); |
| 462 | if (dmaru->iommu) |
| 463 | free_iommu(dmaru->iommu); |
| 464 | kfree(dmaru); |
| 465 | } |
| 466 | |
| 467 | static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, |
| 468 | void *arg) |
| 469 | { |
| 470 | struct acpi_dmar_andd *andd = (void *)header; |
| 471 | |
| 472 | /* Check for NUL termination within the designated length */ |
| 473 | if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { |
| 474 | pr_warn(FW_BUG |
| 475 | "Your BIOS is broken; ANDD object name is not NUL-terminated\n" |
| 476 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| 477 | dmi_get_system_info(DMI_BIOS_VENDOR), |
| 478 | dmi_get_system_info(DMI_BIOS_VERSION), |
| 479 | dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| 480 | add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| 481 | return -EINVAL; |
| 482 | } |
| 483 | pr_info("ANDD device: %x name: %s\n", andd->device_number, |
| 484 | andd->device_name); |
| 485 | |
| 486 | return 0; |
| 487 | } |
| 488 | |
| 489 | #ifdef CONFIG_ACPI_NUMA |
| 490 | static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) |
| 491 | { |
| 492 | struct acpi_dmar_rhsa *rhsa; |
| 493 | struct dmar_drhd_unit *drhd; |
| 494 | |
| 495 | rhsa = (struct acpi_dmar_rhsa *)header; |
| 496 | for_each_drhd_unit(drhd) { |
| 497 | if (drhd->reg_base_addr == rhsa->base_address) { |
| 498 | int node = pxm_to_node(rhsa->proximity_domain); |
| 499 | |
| 500 | if (!node_online(node)) |
| 501 | node = NUMA_NO_NODE; |
| 502 | drhd->iommu->node = node; |
| 503 | return 0; |
| 504 | } |
| 505 | } |
| 506 | pr_warn(FW_BUG |
| 507 | "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" |
| 508 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| 509 | rhsa->base_address, |
| 510 | dmi_get_system_info(DMI_BIOS_VENDOR), |
| 511 | dmi_get_system_info(DMI_BIOS_VERSION), |
| 512 | dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| 513 | add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| 514 | |
| 515 | return 0; |
| 516 | } |
| 517 | #else |
| 518 | #define dmar_parse_one_rhsa dmar_res_noop |
| 519 | #endif |
| 520 | |
| 521 | static void |
| 522 | dmar_table_print_dmar_entry(struct acpi_dmar_header *header) |
| 523 | { |
| 524 | struct acpi_dmar_hardware_unit *drhd; |
| 525 | struct acpi_dmar_reserved_memory *rmrr; |
| 526 | struct acpi_dmar_atsr *atsr; |
| 527 | struct acpi_dmar_rhsa *rhsa; |
| 528 | |
| 529 | switch (header->type) { |
| 530 | case ACPI_DMAR_TYPE_HARDWARE_UNIT: |
| 531 | drhd = container_of(header, struct acpi_dmar_hardware_unit, |
| 532 | header); |
| 533 | pr_info("DRHD base: %#016Lx flags: %#x\n", |
| 534 | (unsigned long long)drhd->address, drhd->flags); |
| 535 | break; |
| 536 | case ACPI_DMAR_TYPE_RESERVED_MEMORY: |
| 537 | rmrr = container_of(header, struct acpi_dmar_reserved_memory, |
| 538 | header); |
| 539 | pr_info("RMRR base: %#016Lx end: %#016Lx\n", |
| 540 | (unsigned long long)rmrr->base_address, |
| 541 | (unsigned long long)rmrr->end_address); |
| 542 | break; |
| 543 | case ACPI_DMAR_TYPE_ROOT_ATS: |
| 544 | atsr = container_of(header, struct acpi_dmar_atsr, header); |
| 545 | pr_info("ATSR flags: %#x\n", atsr->flags); |
| 546 | break; |
| 547 | case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: |
| 548 | rhsa = container_of(header, struct acpi_dmar_rhsa, header); |
| 549 | pr_info("RHSA base: %#016Lx proximity domain: %#x\n", |
| 550 | (unsigned long long)rhsa->base_address, |
| 551 | rhsa->proximity_domain); |
| 552 | break; |
| 553 | case ACPI_DMAR_TYPE_NAMESPACE: |
| 554 | /* We don't print this here because we need to sanity-check |
| 555 | it first. So print it in dmar_parse_one_andd() instead. */ |
| 556 | break; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | /** |
| 561 | * dmar_table_detect - checks to see if the platform supports DMAR devices |
| 562 | */ |
| 563 | static int __init dmar_table_detect(void) |
| 564 | { |
| 565 | acpi_status status = AE_OK; |
| 566 | |
| 567 | /* if we could find DMAR table, then there are DMAR devices */ |
| 568 | status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); |
| 569 | |
| 570 | if (ACPI_SUCCESS(status) && !dmar_tbl) { |
| 571 | pr_warn("Unable to map DMAR\n"); |
| 572 | status = AE_NOT_FOUND; |
| 573 | } |
| 574 | |
| 575 | return ACPI_SUCCESS(status) ? 0 : -ENOENT; |
| 576 | } |
| 577 | |
| 578 | static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, |
| 579 | size_t len, struct dmar_res_callback *cb) |
| 580 | { |
| 581 | struct acpi_dmar_header *iter, *next; |
| 582 | struct acpi_dmar_header *end = ((void *)start) + len; |
| 583 | |
| 584 | for (iter = start; iter < end; iter = next) { |
| 585 | next = (void *)iter + iter->length; |
| 586 | if (iter->length == 0) { |
| 587 | /* Avoid looping forever on bad ACPI tables */ |
| 588 | pr_debug(FW_BUG "Invalid 0-length structure\n"); |
| 589 | break; |
| 590 | } else if (next > end) { |
| 591 | /* Avoid passing table end */ |
| 592 | pr_warn(FW_BUG "Record passes table end\n"); |
| 593 | return -EINVAL; |
| 594 | } |
| 595 | |
| 596 | if (cb->print_entry) |
| 597 | dmar_table_print_dmar_entry(iter); |
| 598 | |
| 599 | if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { |
| 600 | /* continue for forward compatibility */ |
| 601 | pr_debug("Unknown DMAR structure type %d\n", |
| 602 | iter->type); |
| 603 | } else if (cb->cb[iter->type]) { |
| 604 | int ret; |
| 605 | |
| 606 | ret = cb->cb[iter->type](iter, cb->arg[iter->type]); |
| 607 | if (ret) |
| 608 | return ret; |
| 609 | } else if (!cb->ignore_unhandled) { |
| 610 | pr_warn("No handler for DMAR structure type %d\n", |
| 611 | iter->type); |
| 612 | return -EINVAL; |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | return 0; |
| 617 | } |
| 618 | |
| 619 | static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, |
| 620 | struct dmar_res_callback *cb) |
| 621 | { |
| 622 | return dmar_walk_remapping_entries((void *)(dmar + 1), |
| 623 | dmar->header.length - sizeof(*dmar), cb); |
| 624 | } |
| 625 | |
| 626 | /** |
| 627 | * parse_dmar_table - parses the DMA reporting table |
| 628 | */ |
| 629 | static int __init |
| 630 | parse_dmar_table(void) |
| 631 | { |
| 632 | struct acpi_table_dmar *dmar; |
| 633 | int drhd_count = 0; |
| 634 | int ret; |
| 635 | struct dmar_res_callback cb = { |
| 636 | .print_entry = true, |
| 637 | .ignore_unhandled = true, |
| 638 | .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, |
| 639 | .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, |
| 640 | .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, |
| 641 | .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, |
| 642 | .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, |
| 643 | .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, |
| 644 | }; |
| 645 | |
| 646 | /* |
| 647 | * Do it again, earlier dmar_tbl mapping could be mapped with |
| 648 | * fixed map. |
| 649 | */ |
| 650 | dmar_table_detect(); |
| 651 | |
| 652 | /* |
| 653 | * ACPI tables may not be DMA protected by tboot, so use DMAR copy |
| 654 | * SINIT saved in SinitMleData in TXT heap (which is DMA protected) |
| 655 | */ |
| 656 | dmar_tbl = tboot_get_dmar_table(dmar_tbl); |
| 657 | |
| 658 | dmar = (struct acpi_table_dmar *)dmar_tbl; |
| 659 | if (!dmar) |
| 660 | return -ENODEV; |
| 661 | |
| 662 | if (dmar->width < PAGE_SHIFT - 1) { |
| 663 | pr_warn("Invalid DMAR haw\n"); |
| 664 | return -EINVAL; |
| 665 | } |
| 666 | |
| 667 | pr_info("Host address width %d\n", dmar->width + 1); |
| 668 | ret = dmar_walk_dmar_table(dmar, &cb); |
| 669 | if (ret == 0 && drhd_count == 0) |
| 670 | pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); |
| 671 | |
| 672 | return ret; |
| 673 | } |
| 674 | |
| 675 | static int dmar_pci_device_match(struct dmar_dev_scope devices[], |
| 676 | int cnt, struct pci_dev *dev) |
| 677 | { |
| 678 | int index; |
| 679 | struct device *tmp; |
| 680 | |
| 681 | while (dev) { |
| 682 | for_each_active_dev_scope(devices, cnt, index, tmp) |
| 683 | if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) |
| 684 | return 1; |
| 685 | |
| 686 | /* Check our parent */ |
| 687 | dev = dev->bus->self; |
| 688 | } |
| 689 | |
| 690 | return 0; |
| 691 | } |
| 692 | |
| 693 | struct dmar_drhd_unit * |
| 694 | dmar_find_matched_drhd_unit(struct pci_dev *dev) |
| 695 | { |
| 696 | struct dmar_drhd_unit *dmaru; |
| 697 | struct acpi_dmar_hardware_unit *drhd; |
| 698 | |
| 699 | dev = pci_physfn(dev); |
| 700 | |
| 701 | rcu_read_lock(); |
| 702 | for_each_drhd_unit(dmaru) { |
| 703 | drhd = container_of(dmaru->hdr, |
| 704 | struct acpi_dmar_hardware_unit, |
| 705 | header); |
| 706 | |
| 707 | if (dmaru->include_all && |
| 708 | drhd->segment == pci_domain_nr(dev->bus)) |
| 709 | goto out; |
| 710 | |
| 711 | if (dmar_pci_device_match(dmaru->devices, |
| 712 | dmaru->devices_cnt, dev)) |
| 713 | goto out; |
| 714 | } |
| 715 | dmaru = NULL; |
| 716 | out: |
| 717 | rcu_read_unlock(); |
| 718 | |
| 719 | return dmaru; |
| 720 | } |
| 721 | |
| 722 | static void __init dmar_acpi_insert_dev_scope(u8 device_number, |
| 723 | struct acpi_device *adev) |
| 724 | { |
| 725 | struct dmar_drhd_unit *dmaru; |
| 726 | struct acpi_dmar_hardware_unit *drhd; |
| 727 | struct acpi_dmar_device_scope *scope; |
| 728 | struct device *tmp; |
| 729 | int i; |
| 730 | struct acpi_dmar_pci_path *path; |
| 731 | |
| 732 | for_each_drhd_unit(dmaru) { |
| 733 | drhd = container_of(dmaru->hdr, |
| 734 | struct acpi_dmar_hardware_unit, |
| 735 | header); |
| 736 | |
| 737 | for (scope = (void *)(drhd + 1); |
| 738 | (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; |
| 739 | scope = ((void *)scope) + scope->length) { |
| 740 | if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) |
| 741 | continue; |
| 742 | if (scope->enumeration_id != device_number) |
| 743 | continue; |
| 744 | |
| 745 | path = (void *)(scope + 1); |
| 746 | pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", |
| 747 | dev_name(&adev->dev), dmaru->reg_base_addr, |
| 748 | scope->bus, path->device, path->function); |
| 749 | for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) |
| 750 | if (tmp == NULL) { |
| 751 | dmaru->devices[i].bus = scope->bus; |
| 752 | dmaru->devices[i].devfn = PCI_DEVFN(path->device, |
| 753 | path->function); |
| 754 | rcu_assign_pointer(dmaru->devices[i].dev, |
| 755 | get_device(&adev->dev)); |
| 756 | return; |
| 757 | } |
| 758 | BUG_ON(i >= dmaru->devices_cnt); |
| 759 | } |
| 760 | } |
| 761 | pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", |
| 762 | device_number, dev_name(&adev->dev)); |
| 763 | } |
| 764 | |
| 765 | static int __init dmar_acpi_dev_scope_init(void) |
| 766 | { |
| 767 | struct acpi_dmar_andd *andd; |
| 768 | |
| 769 | if (dmar_tbl == NULL) |
| 770 | return -ENODEV; |
| 771 | |
| 772 | for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); |
| 773 | ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; |
| 774 | andd = ((void *)andd) + andd->header.length) { |
| 775 | if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { |
| 776 | acpi_handle h; |
| 777 | struct acpi_device *adev; |
| 778 | |
| 779 | if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, |
| 780 | andd->device_name, |
| 781 | &h))) { |
| 782 | pr_err("Failed to find handle for ACPI object %s\n", |
| 783 | andd->device_name); |
| 784 | continue; |
| 785 | } |
| 786 | if (acpi_bus_get_device(h, &adev)) { |
| 787 | pr_err("Failed to get device for ACPI object %s\n", |
| 788 | andd->device_name); |
| 789 | continue; |
| 790 | } |
| 791 | dmar_acpi_insert_dev_scope(andd->device_number, adev); |
| 792 | } |
| 793 | } |
| 794 | return 0; |
| 795 | } |
| 796 | |
| 797 | int __init dmar_dev_scope_init(void) |
| 798 | { |
| 799 | struct pci_dev *dev = NULL; |
| 800 | struct dmar_pci_notify_info *info; |
| 801 | |
| 802 | if (dmar_dev_scope_status != 1) |
| 803 | return dmar_dev_scope_status; |
| 804 | |
| 805 | if (list_empty(&dmar_drhd_units)) { |
| 806 | dmar_dev_scope_status = -ENODEV; |
| 807 | } else { |
| 808 | dmar_dev_scope_status = 0; |
| 809 | |
| 810 | dmar_acpi_dev_scope_init(); |
| 811 | |
| 812 | for_each_pci_dev(dev) { |
| 813 | if (dev->is_virtfn) |
| 814 | continue; |
| 815 | |
| 816 | info = dmar_alloc_pci_notify_info(dev, |
| 817 | BUS_NOTIFY_ADD_DEVICE); |
| 818 | if (!info) { |
| 819 | return dmar_dev_scope_status; |
| 820 | } else { |
| 821 | dmar_pci_bus_add_dev(info); |
| 822 | dmar_free_pci_notify_info(info); |
| 823 | } |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | return dmar_dev_scope_status; |
| 828 | } |
| 829 | |
| 830 | void __init dmar_register_bus_notifier(void) |
| 831 | { |
| 832 | bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); |
| 833 | } |
| 834 | |
| 835 | |
| 836 | int __init dmar_table_init(void) |
| 837 | { |
| 838 | static int dmar_table_initialized; |
| 839 | int ret; |
| 840 | |
| 841 | if (dmar_table_initialized == 0) { |
| 842 | ret = parse_dmar_table(); |
| 843 | if (ret < 0) { |
| 844 | if (ret != -ENODEV) |
| 845 | pr_info("Parse DMAR table failure.\n"); |
| 846 | } else if (list_empty(&dmar_drhd_units)) { |
| 847 | pr_info("No DMAR devices found\n"); |
| 848 | ret = -ENODEV; |
| 849 | } |
| 850 | |
| 851 | if (ret < 0) |
| 852 | dmar_table_initialized = ret; |
| 853 | else |
| 854 | dmar_table_initialized = 1; |
| 855 | } |
| 856 | |
| 857 | return dmar_table_initialized < 0 ? dmar_table_initialized : 0; |
| 858 | } |
| 859 | |
| 860 | static void warn_invalid_dmar(u64 addr, const char *message) |
| 861 | { |
| 862 | pr_warn_once(FW_BUG |
| 863 | "Your BIOS is broken; DMAR reported at address %llx%s!\n" |
| 864 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| 865 | addr, message, |
| 866 | dmi_get_system_info(DMI_BIOS_VENDOR), |
| 867 | dmi_get_system_info(DMI_BIOS_VERSION), |
| 868 | dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| 869 | add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| 870 | } |
| 871 | |
| 872 | static int __ref |
| 873 | dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) |
| 874 | { |
| 875 | struct acpi_dmar_hardware_unit *drhd; |
| 876 | void __iomem *addr; |
| 877 | u64 cap, ecap; |
| 878 | |
| 879 | drhd = (void *)entry; |
| 880 | if (!drhd->address) { |
| 881 | warn_invalid_dmar(0, ""); |
| 882 | return -EINVAL; |
| 883 | } |
| 884 | |
| 885 | if (arg) |
| 886 | addr = ioremap(drhd->address, VTD_PAGE_SIZE); |
| 887 | else |
| 888 | addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); |
| 889 | if (!addr) { |
| 890 | pr_warn("Can't validate DRHD address: %llx\n", drhd->address); |
| 891 | return -EINVAL; |
| 892 | } |
| 893 | |
| 894 | cap = dmar_readq(addr + DMAR_CAP_REG); |
| 895 | ecap = dmar_readq(addr + DMAR_ECAP_REG); |
| 896 | |
| 897 | if (arg) |
| 898 | iounmap(addr); |
| 899 | else |
| 900 | early_iounmap(addr, VTD_PAGE_SIZE); |
| 901 | |
| 902 | if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { |
| 903 | warn_invalid_dmar(drhd->address, " returns all ones"); |
| 904 | return -EINVAL; |
| 905 | } |
| 906 | |
| 907 | return 0; |
| 908 | } |
| 909 | |
| 910 | int __init detect_intel_iommu(void) |
| 911 | { |
| 912 | int ret; |
| 913 | struct dmar_res_callback validate_drhd_cb = { |
| 914 | .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, |
| 915 | .ignore_unhandled = true, |
| 916 | }; |
| 917 | |
| 918 | down_write(&dmar_global_lock); |
| 919 | ret = dmar_table_detect(); |
| 920 | if (!ret) |
| 921 | ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, |
| 922 | &validate_drhd_cb); |
| 923 | if (!ret && !no_iommu && !iommu_detected && |
| 924 | (!dmar_disabled || dmar_platform_optin())) { |
| 925 | iommu_detected = 1; |
| 926 | /* Make sure ACS will be enabled */ |
| 927 | pci_request_acs(); |
| 928 | } |
| 929 | |
| 930 | #ifdef CONFIG_X86 |
| 931 | if (!ret) { |
| 932 | x86_init.iommu.iommu_init = intel_iommu_init; |
| 933 | x86_platform.iommu_shutdown = intel_iommu_shutdown; |
| 934 | } |
| 935 | |
| 936 | #endif |
| 937 | |
| 938 | if (dmar_tbl) { |
| 939 | acpi_put_table(dmar_tbl); |
| 940 | dmar_tbl = NULL; |
| 941 | } |
| 942 | up_write(&dmar_global_lock); |
| 943 | |
| 944 | return ret ? ret : 1; |
| 945 | } |
| 946 | |
| 947 | static void unmap_iommu(struct intel_iommu *iommu) |
| 948 | { |
| 949 | iounmap(iommu->reg); |
| 950 | release_mem_region(iommu->reg_phys, iommu->reg_size); |
| 951 | } |
| 952 | |
| 953 | /** |
| 954 | * map_iommu: map the iommu's registers |
| 955 | * @iommu: the iommu to map |
| 956 | * @phys_addr: the physical address of the base resgister |
| 957 | * |
| 958 | * Memory map the iommu's registers. Start w/ a single page, and |
| 959 | * possibly expand if that turns out to be insufficent. |
| 960 | */ |
| 961 | static int map_iommu(struct intel_iommu *iommu, u64 phys_addr) |
| 962 | { |
| 963 | int map_size, err=0; |
| 964 | |
| 965 | iommu->reg_phys = phys_addr; |
| 966 | iommu->reg_size = VTD_PAGE_SIZE; |
| 967 | |
| 968 | if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { |
| 969 | pr_err("Can't reserve memory\n"); |
| 970 | err = -EBUSY; |
| 971 | goto out; |
| 972 | } |
| 973 | |
| 974 | iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); |
| 975 | if (!iommu->reg) { |
| 976 | pr_err("Can't map the region\n"); |
| 977 | err = -ENOMEM; |
| 978 | goto release; |
| 979 | } |
| 980 | |
| 981 | iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); |
| 982 | iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); |
| 983 | |
| 984 | if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { |
| 985 | err = -EINVAL; |
| 986 | warn_invalid_dmar(phys_addr, " returns all ones"); |
| 987 | goto unmap; |
| 988 | } |
| 989 | if (ecap_vcs(iommu->ecap)) |
| 990 | iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG); |
| 991 | |
| 992 | /* the registers might be more than one page */ |
| 993 | map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), |
| 994 | cap_max_fault_reg_offset(iommu->cap)); |
| 995 | map_size = VTD_PAGE_ALIGN(map_size); |
| 996 | if (map_size > iommu->reg_size) { |
| 997 | iounmap(iommu->reg); |
| 998 | release_mem_region(iommu->reg_phys, iommu->reg_size); |
| 999 | iommu->reg_size = map_size; |
| 1000 | if (!request_mem_region(iommu->reg_phys, iommu->reg_size, |
| 1001 | iommu->name)) { |
| 1002 | pr_err("Can't reserve memory\n"); |
| 1003 | err = -EBUSY; |
| 1004 | goto out; |
| 1005 | } |
| 1006 | iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); |
| 1007 | if (!iommu->reg) { |
| 1008 | pr_err("Can't map the region\n"); |
| 1009 | err = -ENOMEM; |
| 1010 | goto release; |
| 1011 | } |
| 1012 | } |
| 1013 | err = 0; |
| 1014 | goto out; |
| 1015 | |
| 1016 | unmap: |
| 1017 | iounmap(iommu->reg); |
| 1018 | release: |
| 1019 | release_mem_region(iommu->reg_phys, iommu->reg_size); |
| 1020 | out: |
| 1021 | return err; |
| 1022 | } |
| 1023 | |
| 1024 | static int dmar_alloc_seq_id(struct intel_iommu *iommu) |
| 1025 | { |
| 1026 | iommu->seq_id = find_first_zero_bit(dmar_seq_ids, |
| 1027 | DMAR_UNITS_SUPPORTED); |
| 1028 | if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) { |
| 1029 | iommu->seq_id = -1; |
| 1030 | } else { |
| 1031 | set_bit(iommu->seq_id, dmar_seq_ids); |
| 1032 | sprintf(iommu->name, "dmar%d", iommu->seq_id); |
| 1033 | } |
| 1034 | |
| 1035 | return iommu->seq_id; |
| 1036 | } |
| 1037 | |
| 1038 | static void dmar_free_seq_id(struct intel_iommu *iommu) |
| 1039 | { |
| 1040 | if (iommu->seq_id >= 0) { |
| 1041 | clear_bit(iommu->seq_id, dmar_seq_ids); |
| 1042 | iommu->seq_id = -1; |
| 1043 | } |
| 1044 | } |
| 1045 | |
| 1046 | static int alloc_iommu(struct dmar_drhd_unit *drhd) |
| 1047 | { |
| 1048 | struct intel_iommu *iommu; |
| 1049 | u32 ver, sts; |
| 1050 | int agaw = -1; |
| 1051 | int msagaw = -1; |
| 1052 | int err; |
| 1053 | |
| 1054 | if (!drhd->reg_base_addr) { |
| 1055 | warn_invalid_dmar(0, ""); |
| 1056 | return -EINVAL; |
| 1057 | } |
| 1058 | |
| 1059 | iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); |
| 1060 | if (!iommu) |
| 1061 | return -ENOMEM; |
| 1062 | |
| 1063 | if (dmar_alloc_seq_id(iommu) < 0) { |
| 1064 | pr_err("Failed to allocate seq_id\n"); |
| 1065 | err = -ENOSPC; |
| 1066 | goto error; |
| 1067 | } |
| 1068 | |
| 1069 | err = map_iommu(iommu, drhd->reg_base_addr); |
| 1070 | if (err) { |
| 1071 | pr_err("Failed to map %s\n", iommu->name); |
| 1072 | goto error_free_seq_id; |
| 1073 | } |
| 1074 | |
| 1075 | err = -EINVAL; |
| 1076 | if (cap_sagaw(iommu->cap) == 0) { |
| 1077 | pr_info("%s: No supported address widths. Not attempting DMA translation.\n", |
| 1078 | iommu->name); |
| 1079 | drhd->ignored = 1; |
| 1080 | } |
| 1081 | |
| 1082 | if (!drhd->ignored) { |
| 1083 | agaw = iommu_calculate_agaw(iommu); |
| 1084 | if (agaw < 0) { |
| 1085 | pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", |
| 1086 | iommu->seq_id); |
| 1087 | drhd->ignored = 1; |
| 1088 | } |
| 1089 | } |
| 1090 | if (!drhd->ignored) { |
| 1091 | msagaw = iommu_calculate_max_sagaw(iommu); |
| 1092 | if (msagaw < 0) { |
| 1093 | pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", |
| 1094 | iommu->seq_id); |
| 1095 | drhd->ignored = 1; |
| 1096 | agaw = -1; |
| 1097 | } |
| 1098 | } |
| 1099 | iommu->agaw = agaw; |
| 1100 | iommu->msagaw = msagaw; |
| 1101 | iommu->segment = drhd->segment; |
| 1102 | |
| 1103 | iommu->node = NUMA_NO_NODE; |
| 1104 | |
| 1105 | ver = readl(iommu->reg + DMAR_VER_REG); |
| 1106 | pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", |
| 1107 | iommu->name, |
| 1108 | (unsigned long long)drhd->reg_base_addr, |
| 1109 | DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), |
| 1110 | (unsigned long long)iommu->cap, |
| 1111 | (unsigned long long)iommu->ecap); |
| 1112 | |
| 1113 | /* Reflect status in gcmd */ |
| 1114 | sts = readl(iommu->reg + DMAR_GSTS_REG); |
| 1115 | if (sts & DMA_GSTS_IRES) |
| 1116 | iommu->gcmd |= DMA_GCMD_IRE; |
| 1117 | if (sts & DMA_GSTS_TES) |
| 1118 | iommu->gcmd |= DMA_GCMD_TE; |
| 1119 | if (sts & DMA_GSTS_QIES) |
| 1120 | iommu->gcmd |= DMA_GCMD_QIE; |
| 1121 | |
| 1122 | raw_spin_lock_init(&iommu->register_lock); |
| 1123 | |
| 1124 | /* |
| 1125 | * This is only for hotplug; at boot time intel_iommu_enabled won't |
| 1126 | * be set yet. When intel_iommu_init() runs, it registers the units |
| 1127 | * present at boot time, then sets intel_iommu_enabled. |
| 1128 | */ |
| 1129 | if (intel_iommu_enabled && !drhd->ignored) { |
| 1130 | err = iommu_device_sysfs_add(&iommu->iommu, NULL, |
| 1131 | intel_iommu_groups, |
| 1132 | "%s", iommu->name); |
| 1133 | if (err) |
| 1134 | goto err_unmap; |
| 1135 | |
| 1136 | iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops); |
| 1137 | |
| 1138 | err = iommu_device_register(&iommu->iommu); |
| 1139 | if (err) |
| 1140 | goto err_sysfs; |
| 1141 | } |
| 1142 | |
| 1143 | drhd->iommu = iommu; |
| 1144 | iommu->drhd = drhd; |
| 1145 | |
| 1146 | return 0; |
| 1147 | |
| 1148 | err_sysfs: |
| 1149 | iommu_device_sysfs_remove(&iommu->iommu); |
| 1150 | err_unmap: |
| 1151 | unmap_iommu(iommu); |
| 1152 | error_free_seq_id: |
| 1153 | dmar_free_seq_id(iommu); |
| 1154 | error: |
| 1155 | kfree(iommu); |
| 1156 | return err; |
| 1157 | } |
| 1158 | |
| 1159 | static void free_iommu(struct intel_iommu *iommu) |
| 1160 | { |
| 1161 | if (intel_iommu_enabled && !iommu->drhd->ignored) { |
| 1162 | iommu_device_unregister(&iommu->iommu); |
| 1163 | iommu_device_sysfs_remove(&iommu->iommu); |
| 1164 | } |
| 1165 | |
| 1166 | if (iommu->irq) { |
| 1167 | if (iommu->pr_irq) { |
| 1168 | free_irq(iommu->pr_irq, iommu); |
| 1169 | dmar_free_hwirq(iommu->pr_irq); |
| 1170 | iommu->pr_irq = 0; |
| 1171 | } |
| 1172 | free_irq(iommu->irq, iommu); |
| 1173 | dmar_free_hwirq(iommu->irq); |
| 1174 | iommu->irq = 0; |
| 1175 | } |
| 1176 | |
| 1177 | if (iommu->qi) { |
| 1178 | free_page((unsigned long)iommu->qi->desc); |
| 1179 | kfree(iommu->qi->desc_status); |
| 1180 | kfree(iommu->qi); |
| 1181 | } |
| 1182 | |
| 1183 | if (iommu->reg) |
| 1184 | unmap_iommu(iommu); |
| 1185 | |
| 1186 | dmar_free_seq_id(iommu); |
| 1187 | kfree(iommu); |
| 1188 | } |
| 1189 | |
| 1190 | /* |
| 1191 | * Reclaim all the submitted descriptors which have completed its work. |
| 1192 | */ |
| 1193 | static inline void reclaim_free_desc(struct q_inval *qi) |
| 1194 | { |
| 1195 | while (qi->desc_status[qi->free_tail] == QI_DONE || |
| 1196 | qi->desc_status[qi->free_tail] == QI_ABORT) { |
| 1197 | qi->desc_status[qi->free_tail] = QI_FREE; |
| 1198 | qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; |
| 1199 | qi->free_cnt++; |
| 1200 | } |
| 1201 | } |
| 1202 | |
| 1203 | static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) |
| 1204 | { |
| 1205 | u32 fault; |
| 1206 | int head, tail; |
| 1207 | struct q_inval *qi = iommu->qi; |
| 1208 | int shift = qi_shift(iommu); |
| 1209 | |
| 1210 | if (qi->desc_status[wait_index] == QI_ABORT) |
| 1211 | return -EAGAIN; |
| 1212 | |
| 1213 | fault = readl(iommu->reg + DMAR_FSTS_REG); |
| 1214 | |
| 1215 | /* |
| 1216 | * If IQE happens, the head points to the descriptor associated |
| 1217 | * with the error. No new descriptors are fetched until the IQE |
| 1218 | * is cleared. |
| 1219 | */ |
| 1220 | if (fault & DMA_FSTS_IQE) { |
| 1221 | head = readl(iommu->reg + DMAR_IQH_REG); |
| 1222 | if ((head >> shift) == index) { |
| 1223 | struct qi_desc *desc = qi->desc + head; |
| 1224 | |
| 1225 | /* |
| 1226 | * desc->qw2 and desc->qw3 are either reserved or |
| 1227 | * used by software as private data. We won't print |
| 1228 | * out these two qw's for security consideration. |
| 1229 | */ |
| 1230 | pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n", |
| 1231 | (unsigned long long)desc->qw0, |
| 1232 | (unsigned long long)desc->qw1); |
| 1233 | memcpy(desc, qi->desc + (wait_index << shift), |
| 1234 | 1 << shift); |
| 1235 | writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); |
| 1236 | return -EINVAL; |
| 1237 | } |
| 1238 | } |
| 1239 | |
| 1240 | /* |
| 1241 | * If ITE happens, all pending wait_desc commands are aborted. |
| 1242 | * No new descriptors are fetched until the ITE is cleared. |
| 1243 | */ |
| 1244 | if (fault & DMA_FSTS_ITE) { |
| 1245 | head = readl(iommu->reg + DMAR_IQH_REG); |
| 1246 | head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; |
| 1247 | head |= 1; |
| 1248 | tail = readl(iommu->reg + DMAR_IQT_REG); |
| 1249 | tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; |
| 1250 | |
| 1251 | writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); |
| 1252 | |
| 1253 | do { |
| 1254 | if (qi->desc_status[head] == QI_IN_USE) |
| 1255 | qi->desc_status[head] = QI_ABORT; |
| 1256 | head = (head - 2 + QI_LENGTH) % QI_LENGTH; |
| 1257 | } while (head != tail); |
| 1258 | |
| 1259 | if (qi->desc_status[wait_index] == QI_ABORT) |
| 1260 | return -EAGAIN; |
| 1261 | } |
| 1262 | |
| 1263 | if (fault & DMA_FSTS_ICE) |
| 1264 | writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); |
| 1265 | |
| 1266 | return 0; |
| 1267 | } |
| 1268 | |
| 1269 | /* |
| 1270 | * Function to submit invalidation descriptors of all types to the queued |
| 1271 | * invalidation interface(QI). Multiple descriptors can be submitted at a |
| 1272 | * time, a wait descriptor will be appended to each submission to ensure |
| 1273 | * hardware has completed the invalidation before return. Wait descriptors |
| 1274 | * can be part of the submission but it will not be polled for completion. |
| 1275 | */ |
| 1276 | int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, |
| 1277 | unsigned int count, unsigned long options) |
| 1278 | { |
| 1279 | struct q_inval *qi = iommu->qi; |
| 1280 | struct qi_desc wait_desc; |
| 1281 | int wait_index, index; |
| 1282 | unsigned long flags; |
| 1283 | int offset, shift; |
| 1284 | int rc, i; |
| 1285 | |
| 1286 | if (!qi) |
| 1287 | return 0; |
| 1288 | |
| 1289 | restart: |
| 1290 | rc = 0; |
| 1291 | |
| 1292 | raw_spin_lock_irqsave(&qi->q_lock, flags); |
| 1293 | /* |
| 1294 | * Check if we have enough empty slots in the queue to submit, |
| 1295 | * the calculation is based on: |
| 1296 | * # of desc + 1 wait desc + 1 space between head and tail |
| 1297 | */ |
| 1298 | while (qi->free_cnt < count + 2) { |
| 1299 | raw_spin_unlock_irqrestore(&qi->q_lock, flags); |
| 1300 | cpu_relax(); |
| 1301 | raw_spin_lock_irqsave(&qi->q_lock, flags); |
| 1302 | } |
| 1303 | |
| 1304 | index = qi->free_head; |
| 1305 | wait_index = (index + count) % QI_LENGTH; |
| 1306 | shift = qi_shift(iommu); |
| 1307 | |
| 1308 | for (i = 0; i < count; i++) { |
| 1309 | offset = ((index + i) % QI_LENGTH) << shift; |
| 1310 | memcpy(qi->desc + offset, &desc[i], 1 << shift); |
| 1311 | qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; |
| 1312 | } |
| 1313 | qi->desc_status[wait_index] = QI_IN_USE; |
| 1314 | |
| 1315 | wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | |
| 1316 | QI_IWD_STATUS_WRITE | QI_IWD_TYPE; |
| 1317 | if (options & QI_OPT_WAIT_DRAIN) |
| 1318 | wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; |
| 1319 | wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); |
| 1320 | wait_desc.qw2 = 0; |
| 1321 | wait_desc.qw3 = 0; |
| 1322 | |
| 1323 | offset = wait_index << shift; |
| 1324 | memcpy(qi->desc + offset, &wait_desc, 1 << shift); |
| 1325 | |
| 1326 | qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; |
| 1327 | qi->free_cnt -= count + 1; |
| 1328 | |
| 1329 | /* |
| 1330 | * update the HW tail register indicating the presence of |
| 1331 | * new descriptors. |
| 1332 | */ |
| 1333 | writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); |
| 1334 | |
| 1335 | while (qi->desc_status[wait_index] != QI_DONE) { |
| 1336 | /* |
| 1337 | * We will leave the interrupts disabled, to prevent interrupt |
| 1338 | * context to queue another cmd while a cmd is already submitted |
| 1339 | * and waiting for completion on this cpu. This is to avoid |
| 1340 | * a deadlock where the interrupt context can wait indefinitely |
| 1341 | * for free slots in the queue. |
| 1342 | */ |
| 1343 | rc = qi_check_fault(iommu, index, wait_index); |
| 1344 | if (rc) |
| 1345 | break; |
| 1346 | |
| 1347 | raw_spin_unlock(&qi->q_lock); |
| 1348 | cpu_relax(); |
| 1349 | raw_spin_lock(&qi->q_lock); |
| 1350 | } |
| 1351 | |
| 1352 | for (i = 0; i < count; i++) |
| 1353 | qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; |
| 1354 | |
| 1355 | reclaim_free_desc(qi); |
| 1356 | raw_spin_unlock_irqrestore(&qi->q_lock, flags); |
| 1357 | |
| 1358 | if (rc == -EAGAIN) |
| 1359 | goto restart; |
| 1360 | |
| 1361 | return rc; |
| 1362 | } |
| 1363 | |
| 1364 | /* |
| 1365 | * Flush the global interrupt entry cache. |
| 1366 | */ |
| 1367 | void qi_global_iec(struct intel_iommu *iommu) |
| 1368 | { |
| 1369 | struct qi_desc desc; |
| 1370 | |
| 1371 | desc.qw0 = QI_IEC_TYPE; |
| 1372 | desc.qw1 = 0; |
| 1373 | desc.qw2 = 0; |
| 1374 | desc.qw3 = 0; |
| 1375 | |
| 1376 | /* should never fail */ |
| 1377 | qi_submit_sync(iommu, &desc, 1, 0); |
| 1378 | } |
| 1379 | |
| 1380 | void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, |
| 1381 | u64 type) |
| 1382 | { |
| 1383 | struct qi_desc desc; |
| 1384 | |
| 1385 | desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) |
| 1386 | | QI_CC_GRAN(type) | QI_CC_TYPE; |
| 1387 | desc.qw1 = 0; |
| 1388 | desc.qw2 = 0; |
| 1389 | desc.qw3 = 0; |
| 1390 | |
| 1391 | qi_submit_sync(iommu, &desc, 1, 0); |
| 1392 | } |
| 1393 | |
| 1394 | void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, |
| 1395 | unsigned int size_order, u64 type) |
| 1396 | { |
| 1397 | u8 dw = 0, dr = 0; |
| 1398 | |
| 1399 | struct qi_desc desc; |
| 1400 | int ih = 0; |
| 1401 | |
| 1402 | if (cap_write_drain(iommu->cap)) |
| 1403 | dw = 1; |
| 1404 | |
| 1405 | if (cap_read_drain(iommu->cap)) |
| 1406 | dr = 1; |
| 1407 | |
| 1408 | desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) |
| 1409 | | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; |
| 1410 | desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) |
| 1411 | | QI_IOTLB_AM(size_order); |
| 1412 | desc.qw2 = 0; |
| 1413 | desc.qw3 = 0; |
| 1414 | |
| 1415 | qi_submit_sync(iommu, &desc, 1, 0); |
| 1416 | } |
| 1417 | |
| 1418 | void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, |
| 1419 | u16 qdep, u64 addr, unsigned mask) |
| 1420 | { |
| 1421 | struct qi_desc desc; |
| 1422 | |
| 1423 | if (mask) { |
| 1424 | addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; |
| 1425 | desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; |
| 1426 | } else |
| 1427 | desc.qw1 = QI_DEV_IOTLB_ADDR(addr); |
| 1428 | |
| 1429 | if (qdep >= QI_DEV_IOTLB_MAX_INVS) |
| 1430 | qdep = 0; |
| 1431 | |
| 1432 | desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | |
| 1433 | QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); |
| 1434 | desc.qw2 = 0; |
| 1435 | desc.qw3 = 0; |
| 1436 | |
| 1437 | qi_submit_sync(iommu, &desc, 1, 0); |
| 1438 | } |
| 1439 | |
| 1440 | /* PASID-based IOTLB invalidation */ |
| 1441 | void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, |
| 1442 | unsigned long npages, bool ih) |
| 1443 | { |
| 1444 | struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; |
| 1445 | |
| 1446 | /* |
| 1447 | * npages == -1 means a PASID-selective invalidation, otherwise, |
| 1448 | * a positive value for Page-selective-within-PASID invalidation. |
| 1449 | * 0 is not a valid input. |
| 1450 | */ |
| 1451 | if (WARN_ON(!npages)) { |
| 1452 | pr_err("Invalid input npages = %ld\n", npages); |
| 1453 | return; |
| 1454 | } |
| 1455 | |
| 1456 | if (npages == -1) { |
| 1457 | desc.qw0 = QI_EIOTLB_PASID(pasid) | |
| 1458 | QI_EIOTLB_DID(did) | |
| 1459 | QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | |
| 1460 | QI_EIOTLB_TYPE; |
| 1461 | desc.qw1 = 0; |
| 1462 | } else { |
| 1463 | int mask = ilog2(__roundup_pow_of_two(npages)); |
| 1464 | unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); |
| 1465 | |
| 1466 | if (WARN_ON_ONCE(!IS_ALIGNED(addr, align))) |
| 1467 | addr = ALIGN_DOWN(addr, align); |
| 1468 | |
| 1469 | desc.qw0 = QI_EIOTLB_PASID(pasid) | |
| 1470 | QI_EIOTLB_DID(did) | |
| 1471 | QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | |
| 1472 | QI_EIOTLB_TYPE; |
| 1473 | desc.qw1 = QI_EIOTLB_ADDR(addr) | |
| 1474 | QI_EIOTLB_IH(ih) | |
| 1475 | QI_EIOTLB_AM(mask); |
| 1476 | } |
| 1477 | |
| 1478 | qi_submit_sync(iommu, &desc, 1, 0); |
| 1479 | } |
| 1480 | |
| 1481 | /* PASID-based device IOTLB Invalidate */ |
| 1482 | void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, |
| 1483 | u32 pasid, u16 qdep, u64 addr, unsigned int size_order) |
| 1484 | { |
| 1485 | unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); |
| 1486 | struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; |
| 1487 | |
| 1488 | desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | |
| 1489 | QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | |
| 1490 | QI_DEV_IOTLB_PFSID(pfsid); |
| 1491 | |
| 1492 | /* |
| 1493 | * If S bit is 0, we only flush a single page. If S bit is set, |
| 1494 | * The least significant zero bit indicates the invalidation address |
| 1495 | * range. VT-d spec 6.5.2.6. |
| 1496 | * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. |
| 1497 | * size order = 0 is PAGE_SIZE 4KB |
| 1498 | * Max Invs Pending (MIP) is set to 0 for now until we have DIT in |
| 1499 | * ECAP. |
| 1500 | */ |
| 1501 | if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order)) |
| 1502 | pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", |
| 1503 | addr, size_order); |
| 1504 | |
| 1505 | /* Take page address */ |
| 1506 | desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); |
| 1507 | |
| 1508 | if (size_order) { |
| 1509 | /* |
| 1510 | * Existing 0s in address below size_order may be the least |
| 1511 | * significant bit, we must set them to 1s to avoid having |
| 1512 | * smaller size than desired. |
| 1513 | */ |
| 1514 | desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, |
| 1515 | VTD_PAGE_SHIFT); |
| 1516 | /* Clear size_order bit to indicate size */ |
| 1517 | desc.qw1 &= ~mask; |
| 1518 | /* Set the S bit to indicate flushing more than 1 page */ |
| 1519 | desc.qw1 |= QI_DEV_EIOTLB_SIZE; |
| 1520 | } |
| 1521 | |
| 1522 | qi_submit_sync(iommu, &desc, 1, 0); |
| 1523 | } |
| 1524 | |
| 1525 | void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, |
| 1526 | u64 granu, u32 pasid) |
| 1527 | { |
| 1528 | struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; |
| 1529 | |
| 1530 | desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | |
| 1531 | QI_PC_GRAN(granu) | QI_PC_TYPE; |
| 1532 | qi_submit_sync(iommu, &desc, 1, 0); |
| 1533 | } |
| 1534 | |
| 1535 | /* |
| 1536 | * Disable Queued Invalidation interface. |
| 1537 | */ |
| 1538 | void dmar_disable_qi(struct intel_iommu *iommu) |
| 1539 | { |
| 1540 | unsigned long flags; |
| 1541 | u32 sts; |
| 1542 | cycles_t start_time = get_cycles(); |
| 1543 | |
| 1544 | if (!ecap_qis(iommu->ecap)) |
| 1545 | return; |
| 1546 | |
| 1547 | raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| 1548 | |
| 1549 | sts = readl(iommu->reg + DMAR_GSTS_REG); |
| 1550 | if (!(sts & DMA_GSTS_QIES)) |
| 1551 | goto end; |
| 1552 | |
| 1553 | /* |
| 1554 | * Give a chance to HW to complete the pending invalidation requests. |
| 1555 | */ |
| 1556 | while ((readl(iommu->reg + DMAR_IQT_REG) != |
| 1557 | readl(iommu->reg + DMAR_IQH_REG)) && |
| 1558 | (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) |
| 1559 | cpu_relax(); |
| 1560 | |
| 1561 | iommu->gcmd &= ~DMA_GCMD_QIE; |
| 1562 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| 1563 | |
| 1564 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, |
| 1565 | !(sts & DMA_GSTS_QIES), sts); |
| 1566 | end: |
| 1567 | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| 1568 | } |
| 1569 | |
| 1570 | /* |
| 1571 | * Enable queued invalidation. |
| 1572 | */ |
| 1573 | static void __dmar_enable_qi(struct intel_iommu *iommu) |
| 1574 | { |
| 1575 | u32 sts; |
| 1576 | unsigned long flags; |
| 1577 | struct q_inval *qi = iommu->qi; |
| 1578 | u64 val = virt_to_phys(qi->desc); |
| 1579 | |
| 1580 | qi->free_head = qi->free_tail = 0; |
| 1581 | qi->free_cnt = QI_LENGTH; |
| 1582 | |
| 1583 | /* |
| 1584 | * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability |
| 1585 | * is present. |
| 1586 | */ |
| 1587 | if (ecap_smts(iommu->ecap)) |
| 1588 | val |= (1 << 11) | 1; |
| 1589 | |
| 1590 | raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| 1591 | |
| 1592 | /* write zero to the tail reg */ |
| 1593 | writel(0, iommu->reg + DMAR_IQT_REG); |
| 1594 | |
| 1595 | dmar_writeq(iommu->reg + DMAR_IQA_REG, val); |
| 1596 | |
| 1597 | iommu->gcmd |= DMA_GCMD_QIE; |
| 1598 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| 1599 | |
| 1600 | /* Make sure hardware complete it */ |
| 1601 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); |
| 1602 | |
| 1603 | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| 1604 | } |
| 1605 | |
| 1606 | /* |
| 1607 | * Enable Queued Invalidation interface. This is a must to support |
| 1608 | * interrupt-remapping. Also used by DMA-remapping, which replaces |
| 1609 | * register based IOTLB invalidation. |
| 1610 | */ |
| 1611 | int dmar_enable_qi(struct intel_iommu *iommu) |
| 1612 | { |
| 1613 | struct q_inval *qi; |
| 1614 | struct page *desc_page; |
| 1615 | |
| 1616 | if (!ecap_qis(iommu->ecap)) |
| 1617 | return -ENOENT; |
| 1618 | |
| 1619 | /* |
| 1620 | * queued invalidation is already setup and enabled. |
| 1621 | */ |
| 1622 | if (iommu->qi) |
| 1623 | return 0; |
| 1624 | |
| 1625 | iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); |
| 1626 | if (!iommu->qi) |
| 1627 | return -ENOMEM; |
| 1628 | |
| 1629 | qi = iommu->qi; |
| 1630 | |
| 1631 | /* |
| 1632 | * Need two pages to accommodate 256 descriptors of 256 bits each |
| 1633 | * if the remapping hardware supports scalable mode translation. |
| 1634 | */ |
| 1635 | desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, |
| 1636 | !!ecap_smts(iommu->ecap)); |
| 1637 | if (!desc_page) { |
| 1638 | kfree(qi); |
| 1639 | iommu->qi = NULL; |
| 1640 | return -ENOMEM; |
| 1641 | } |
| 1642 | |
| 1643 | qi->desc = page_address(desc_page); |
| 1644 | |
| 1645 | qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); |
| 1646 | if (!qi->desc_status) { |
| 1647 | free_page((unsigned long) qi->desc); |
| 1648 | kfree(qi); |
| 1649 | iommu->qi = NULL; |
| 1650 | return -ENOMEM; |
| 1651 | } |
| 1652 | |
| 1653 | raw_spin_lock_init(&qi->q_lock); |
| 1654 | |
| 1655 | __dmar_enable_qi(iommu); |
| 1656 | |
| 1657 | return 0; |
| 1658 | } |
| 1659 | |
| 1660 | /* iommu interrupt handling. Most stuff are MSI-like. */ |
| 1661 | |
| 1662 | enum faulttype { |
| 1663 | DMA_REMAP, |
| 1664 | INTR_REMAP, |
| 1665 | UNKNOWN, |
| 1666 | }; |
| 1667 | |
| 1668 | static const char *dma_remap_fault_reasons[] = |
| 1669 | { |
| 1670 | "Software", |
| 1671 | "Present bit in root entry is clear", |
| 1672 | "Present bit in context entry is clear", |
| 1673 | "Invalid context entry", |
| 1674 | "Access beyond MGAW", |
| 1675 | "PTE Write access is not set", |
| 1676 | "PTE Read access is not set", |
| 1677 | "Next page table ptr is invalid", |
| 1678 | "Root table address invalid", |
| 1679 | "Context table ptr is invalid", |
| 1680 | "non-zero reserved fields in RTP", |
| 1681 | "non-zero reserved fields in CTP", |
| 1682 | "non-zero reserved fields in PTE", |
| 1683 | "PCE for translation request specifies blocking", |
| 1684 | }; |
| 1685 | |
| 1686 | static const char * const dma_remap_sm_fault_reasons[] = { |
| 1687 | "SM: Invalid Root Table Address", |
| 1688 | "SM: TTM 0 for request with PASID", |
| 1689 | "SM: TTM 0 for page group request", |
| 1690 | "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ |
| 1691 | "SM: Error attempting to access Root Entry", |
| 1692 | "SM: Present bit in Root Entry is clear", |
| 1693 | "SM: Non-zero reserved field set in Root Entry", |
| 1694 | "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ |
| 1695 | "SM: Error attempting to access Context Entry", |
| 1696 | "SM: Present bit in Context Entry is clear", |
| 1697 | "SM: Non-zero reserved field set in the Context Entry", |
| 1698 | "SM: Invalid Context Entry", |
| 1699 | "SM: DTE field in Context Entry is clear", |
| 1700 | "SM: PASID Enable field in Context Entry is clear", |
| 1701 | "SM: PASID is larger than the max in Context Entry", |
| 1702 | "SM: PRE field in Context-Entry is clear", |
| 1703 | "SM: RID_PASID field error in Context-Entry", |
| 1704 | "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ |
| 1705 | "SM: Error attempting to access the PASID Directory Entry", |
| 1706 | "SM: Present bit in Directory Entry is clear", |
| 1707 | "SM: Non-zero reserved field set in PASID Directory Entry", |
| 1708 | "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ |
| 1709 | "SM: Error attempting to access PASID Table Entry", |
| 1710 | "SM: Present bit in PASID Table Entry is clear", |
| 1711 | "SM: Non-zero reserved field set in PASID Table Entry", |
| 1712 | "SM: Invalid Scalable-Mode PASID Table Entry", |
| 1713 | "SM: ERE field is clear in PASID Table Entry", |
| 1714 | "SM: SRE field is clear in PASID Table Entry", |
| 1715 | "Unknown", "Unknown",/* 0x5E-0x5F */ |
| 1716 | "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ |
| 1717 | "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ |
| 1718 | "SM: Error attempting to access first-level paging entry", |
| 1719 | "SM: Present bit in first-level paging entry is clear", |
| 1720 | "SM: Non-zero reserved field set in first-level paging entry", |
| 1721 | "SM: Error attempting to access FL-PML4 entry", |
| 1722 | "SM: First-level entry address beyond MGAW in Nested translation", |
| 1723 | "SM: Read permission error in FL-PML4 entry in Nested translation", |
| 1724 | "SM: Read permission error in first-level paging entry in Nested translation", |
| 1725 | "SM: Write permission error in first-level paging entry in Nested translation", |
| 1726 | "SM: Error attempting to access second-level paging entry", |
| 1727 | "SM: Read/Write permission error in second-level paging entry", |
| 1728 | "SM: Non-zero reserved field set in second-level paging entry", |
| 1729 | "SM: Invalid second-level page table pointer", |
| 1730 | "SM: A/D bit update needed in second-level entry when set up in no snoop", |
| 1731 | "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ |
| 1732 | "SM: Address in first-level translation is not canonical", |
| 1733 | "SM: U/S set 0 for first-level translation with user privilege", |
| 1734 | "SM: No execute permission for request with PASID and ER=1", |
| 1735 | "SM: Address beyond the DMA hardware max", |
| 1736 | "SM: Second-level entry address beyond the max", |
| 1737 | "SM: No write permission for Write/AtomicOp request", |
| 1738 | "SM: No read permission for Read/AtomicOp request", |
| 1739 | "SM: Invalid address-interrupt address", |
| 1740 | "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ |
| 1741 | "SM: A/D bit update needed in first-level entry when set up in no snoop", |
| 1742 | }; |
| 1743 | |
| 1744 | static const char *irq_remap_fault_reasons[] = |
| 1745 | { |
| 1746 | "Detected reserved fields in the decoded interrupt-remapped request", |
| 1747 | "Interrupt index exceeded the interrupt-remapping table size", |
| 1748 | "Present field in the IRTE entry is clear", |
| 1749 | "Error accessing interrupt-remapping table pointed by IRTA_REG", |
| 1750 | "Detected reserved fields in the IRTE entry", |
| 1751 | "Blocked a compatibility format interrupt request", |
| 1752 | "Blocked an interrupt request due to source-id verification failure", |
| 1753 | }; |
| 1754 | |
| 1755 | static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) |
| 1756 | { |
| 1757 | if (fault_reason >= 0x20 && (fault_reason - 0x20 < |
| 1758 | ARRAY_SIZE(irq_remap_fault_reasons))) { |
| 1759 | *fault_type = INTR_REMAP; |
| 1760 | return irq_remap_fault_reasons[fault_reason - 0x20]; |
| 1761 | } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < |
| 1762 | ARRAY_SIZE(dma_remap_sm_fault_reasons))) { |
| 1763 | *fault_type = DMA_REMAP; |
| 1764 | return dma_remap_sm_fault_reasons[fault_reason - 0x30]; |
| 1765 | } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { |
| 1766 | *fault_type = DMA_REMAP; |
| 1767 | return dma_remap_fault_reasons[fault_reason]; |
| 1768 | } else { |
| 1769 | *fault_type = UNKNOWN; |
| 1770 | return "Unknown"; |
| 1771 | } |
| 1772 | } |
| 1773 | |
| 1774 | |
| 1775 | static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) |
| 1776 | { |
| 1777 | if (iommu->irq == irq) |
| 1778 | return DMAR_FECTL_REG; |
| 1779 | else if (iommu->pr_irq == irq) |
| 1780 | return DMAR_PECTL_REG; |
| 1781 | else |
| 1782 | BUG(); |
| 1783 | } |
| 1784 | |
| 1785 | void dmar_msi_unmask(struct irq_data *data) |
| 1786 | { |
| 1787 | struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); |
| 1788 | int reg = dmar_msi_reg(iommu, data->irq); |
| 1789 | unsigned long flag; |
| 1790 | |
| 1791 | /* unmask it */ |
| 1792 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1793 | writel(0, iommu->reg + reg); |
| 1794 | /* Read a reg to force flush the post write */ |
| 1795 | readl(iommu->reg + reg); |
| 1796 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1797 | } |
| 1798 | |
| 1799 | void dmar_msi_mask(struct irq_data *data) |
| 1800 | { |
| 1801 | struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); |
| 1802 | int reg = dmar_msi_reg(iommu, data->irq); |
| 1803 | unsigned long flag; |
| 1804 | |
| 1805 | /* mask it */ |
| 1806 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1807 | writel(DMA_FECTL_IM, iommu->reg + reg); |
| 1808 | /* Read a reg to force flush the post write */ |
| 1809 | readl(iommu->reg + reg); |
| 1810 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1811 | } |
| 1812 | |
| 1813 | void dmar_msi_write(int irq, struct msi_msg *msg) |
| 1814 | { |
| 1815 | struct intel_iommu *iommu = irq_get_handler_data(irq); |
| 1816 | int reg = dmar_msi_reg(iommu, irq); |
| 1817 | unsigned long flag; |
| 1818 | |
| 1819 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1820 | writel(msg->data, iommu->reg + reg + 4); |
| 1821 | writel(msg->address_lo, iommu->reg + reg + 8); |
| 1822 | writel(msg->address_hi, iommu->reg + reg + 12); |
| 1823 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1824 | } |
| 1825 | |
| 1826 | void dmar_msi_read(int irq, struct msi_msg *msg) |
| 1827 | { |
| 1828 | struct intel_iommu *iommu = irq_get_handler_data(irq); |
| 1829 | int reg = dmar_msi_reg(iommu, irq); |
| 1830 | unsigned long flag; |
| 1831 | |
| 1832 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1833 | msg->data = readl(iommu->reg + reg + 4); |
| 1834 | msg->address_lo = readl(iommu->reg + reg + 8); |
| 1835 | msg->address_hi = readl(iommu->reg + reg + 12); |
| 1836 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1837 | } |
| 1838 | |
| 1839 | static int dmar_fault_do_one(struct intel_iommu *iommu, int type, |
| 1840 | u8 fault_reason, u32 pasid, u16 source_id, |
| 1841 | unsigned long long addr) |
| 1842 | { |
| 1843 | const char *reason; |
| 1844 | int fault_type; |
| 1845 | |
| 1846 | reason = dmar_get_fault_reason(fault_reason, &fault_type); |
| 1847 | |
| 1848 | if (fault_type == INTR_REMAP) |
| 1849 | pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n", |
| 1850 | source_id >> 8, PCI_SLOT(source_id & 0xFF), |
| 1851 | PCI_FUNC(source_id & 0xFF), addr >> 48, |
| 1852 | fault_reason, reason); |
| 1853 | else |
| 1854 | pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n", |
| 1855 | type ? "DMA Read" : "DMA Write", |
| 1856 | source_id >> 8, PCI_SLOT(source_id & 0xFF), |
| 1857 | PCI_FUNC(source_id & 0xFF), pasid, addr, |
| 1858 | fault_reason, reason); |
| 1859 | return 0; |
| 1860 | } |
| 1861 | |
| 1862 | #define PRIMARY_FAULT_REG_LEN (16) |
| 1863 | irqreturn_t dmar_fault(int irq, void *dev_id) |
| 1864 | { |
| 1865 | struct intel_iommu *iommu = dev_id; |
| 1866 | int reg, fault_index; |
| 1867 | u32 fault_status; |
| 1868 | unsigned long flag; |
| 1869 | static DEFINE_RATELIMIT_STATE(rs, |
| 1870 | DEFAULT_RATELIMIT_INTERVAL, |
| 1871 | DEFAULT_RATELIMIT_BURST); |
| 1872 | |
| 1873 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1874 | fault_status = readl(iommu->reg + DMAR_FSTS_REG); |
| 1875 | if (fault_status && __ratelimit(&rs)) |
| 1876 | pr_err("DRHD: handling fault status reg %x\n", fault_status); |
| 1877 | |
| 1878 | /* TBD: ignore advanced fault log currently */ |
| 1879 | if (!(fault_status & DMA_FSTS_PPF)) |
| 1880 | goto unlock_exit; |
| 1881 | |
| 1882 | fault_index = dma_fsts_fault_record_index(fault_status); |
| 1883 | reg = cap_fault_reg_offset(iommu->cap); |
| 1884 | while (1) { |
| 1885 | /* Disable printing, simply clear the fault when ratelimited */ |
| 1886 | bool ratelimited = !__ratelimit(&rs); |
| 1887 | u8 fault_reason; |
| 1888 | u16 source_id; |
| 1889 | u64 guest_addr; |
| 1890 | u32 pasid; |
| 1891 | int type; |
| 1892 | u32 data; |
| 1893 | bool pasid_present; |
| 1894 | |
| 1895 | /* highest 32 bits */ |
| 1896 | data = readl(iommu->reg + reg + |
| 1897 | fault_index * PRIMARY_FAULT_REG_LEN + 12); |
| 1898 | if (!(data & DMA_FRCD_F)) |
| 1899 | break; |
| 1900 | |
| 1901 | if (!ratelimited) { |
| 1902 | fault_reason = dma_frcd_fault_reason(data); |
| 1903 | type = dma_frcd_type(data); |
| 1904 | |
| 1905 | pasid = dma_frcd_pasid_value(data); |
| 1906 | data = readl(iommu->reg + reg + |
| 1907 | fault_index * PRIMARY_FAULT_REG_LEN + 8); |
| 1908 | source_id = dma_frcd_source_id(data); |
| 1909 | |
| 1910 | pasid_present = dma_frcd_pasid_present(data); |
| 1911 | guest_addr = dmar_readq(iommu->reg + reg + |
| 1912 | fault_index * PRIMARY_FAULT_REG_LEN); |
| 1913 | guest_addr = dma_frcd_page_addr(guest_addr); |
| 1914 | } |
| 1915 | |
| 1916 | /* clear the fault */ |
| 1917 | writel(DMA_FRCD_F, iommu->reg + reg + |
| 1918 | fault_index * PRIMARY_FAULT_REG_LEN + 12); |
| 1919 | |
| 1920 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1921 | |
| 1922 | if (!ratelimited) |
| 1923 | /* Using pasid -1 if pasid is not present */ |
| 1924 | dmar_fault_do_one(iommu, type, fault_reason, |
| 1925 | pasid_present ? pasid : -1, |
| 1926 | source_id, guest_addr); |
| 1927 | |
| 1928 | fault_index++; |
| 1929 | if (fault_index >= cap_num_fault_regs(iommu->cap)) |
| 1930 | fault_index = 0; |
| 1931 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| 1932 | } |
| 1933 | |
| 1934 | writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, |
| 1935 | iommu->reg + DMAR_FSTS_REG); |
| 1936 | |
| 1937 | unlock_exit: |
| 1938 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 1939 | return IRQ_HANDLED; |
| 1940 | } |
| 1941 | |
| 1942 | int dmar_set_interrupt(struct intel_iommu *iommu) |
| 1943 | { |
| 1944 | int irq, ret; |
| 1945 | |
| 1946 | /* |
| 1947 | * Check if the fault interrupt is already initialized. |
| 1948 | */ |
| 1949 | if (iommu->irq) |
| 1950 | return 0; |
| 1951 | |
| 1952 | irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); |
| 1953 | if (irq > 0) { |
| 1954 | iommu->irq = irq; |
| 1955 | } else { |
| 1956 | pr_err("No free IRQ vectors\n"); |
| 1957 | return -EINVAL; |
| 1958 | } |
| 1959 | |
| 1960 | ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); |
| 1961 | if (ret) |
| 1962 | pr_err("Can't request irq\n"); |
| 1963 | return ret; |
| 1964 | } |
| 1965 | |
| 1966 | int __init enable_drhd_fault_handling(void) |
| 1967 | { |
| 1968 | struct dmar_drhd_unit *drhd; |
| 1969 | struct intel_iommu *iommu; |
| 1970 | |
| 1971 | /* |
| 1972 | * Enable fault control interrupt. |
| 1973 | */ |
| 1974 | for_each_iommu(iommu, drhd) { |
| 1975 | u32 fault_status; |
| 1976 | int ret = dmar_set_interrupt(iommu); |
| 1977 | |
| 1978 | if (ret) { |
| 1979 | pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", |
| 1980 | (unsigned long long)drhd->reg_base_addr, ret); |
| 1981 | return -1; |
| 1982 | } |
| 1983 | |
| 1984 | /* |
| 1985 | * Clear any previous faults. |
| 1986 | */ |
| 1987 | dmar_fault(iommu->irq, iommu); |
| 1988 | fault_status = readl(iommu->reg + DMAR_FSTS_REG); |
| 1989 | writel(fault_status, iommu->reg + DMAR_FSTS_REG); |
| 1990 | } |
| 1991 | |
| 1992 | return 0; |
| 1993 | } |
| 1994 | |
| 1995 | /* |
| 1996 | * Re-enable Queued Invalidation interface. |
| 1997 | */ |
| 1998 | int dmar_reenable_qi(struct intel_iommu *iommu) |
| 1999 | { |
| 2000 | if (!ecap_qis(iommu->ecap)) |
| 2001 | return -ENOENT; |
| 2002 | |
| 2003 | if (!iommu->qi) |
| 2004 | return -ENOENT; |
| 2005 | |
| 2006 | /* |
| 2007 | * First disable queued invalidation. |
| 2008 | */ |
| 2009 | dmar_disable_qi(iommu); |
| 2010 | /* |
| 2011 | * Then enable queued invalidation again. Since there is no pending |
| 2012 | * invalidation requests now, it's safe to re-enable queued |
| 2013 | * invalidation. |
| 2014 | */ |
| 2015 | __dmar_enable_qi(iommu); |
| 2016 | |
| 2017 | return 0; |
| 2018 | } |
| 2019 | |
| 2020 | /* |
| 2021 | * Check interrupt remapping support in DMAR table description. |
| 2022 | */ |
| 2023 | int __init dmar_ir_support(void) |
| 2024 | { |
| 2025 | struct acpi_table_dmar *dmar; |
| 2026 | dmar = (struct acpi_table_dmar *)dmar_tbl; |
| 2027 | if (!dmar) |
| 2028 | return 0; |
| 2029 | return dmar->flags & 0x1; |
| 2030 | } |
| 2031 | |
| 2032 | /* Check whether DMAR units are in use */ |
| 2033 | static inline bool dmar_in_use(void) |
| 2034 | { |
| 2035 | return irq_remapping_enabled || intel_iommu_enabled; |
| 2036 | } |
| 2037 | |
| 2038 | static int __init dmar_free_unused_resources(void) |
| 2039 | { |
| 2040 | struct dmar_drhd_unit *dmaru, *dmaru_n; |
| 2041 | |
| 2042 | if (dmar_in_use()) |
| 2043 | return 0; |
| 2044 | |
| 2045 | if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) |
| 2046 | bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); |
| 2047 | |
| 2048 | down_write(&dmar_global_lock); |
| 2049 | list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { |
| 2050 | list_del(&dmaru->list); |
| 2051 | dmar_free_drhd(dmaru); |
| 2052 | } |
| 2053 | up_write(&dmar_global_lock); |
| 2054 | |
| 2055 | return 0; |
| 2056 | } |
| 2057 | |
| 2058 | late_initcall(dmar_free_unused_resources); |
| 2059 | IOMMU_INIT_POST(detect_intel_iommu); |
| 2060 | |
| 2061 | /* |
| 2062 | * DMAR Hotplug Support |
| 2063 | * For more details, please refer to Intel(R) Virtualization Technology |
| 2064 | * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 |
| 2065 | * "Remapping Hardware Unit Hot Plug". |
| 2066 | */ |
| 2067 | static guid_t dmar_hp_guid = |
| 2068 | GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, |
| 2069 | 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); |
| 2070 | |
| 2071 | /* |
| 2072 | * Currently there's only one revision and BIOS will not check the revision id, |
| 2073 | * so use 0 for safety. |
| 2074 | */ |
| 2075 | #define DMAR_DSM_REV_ID 0 |
| 2076 | #define DMAR_DSM_FUNC_DRHD 1 |
| 2077 | #define DMAR_DSM_FUNC_ATSR 2 |
| 2078 | #define DMAR_DSM_FUNC_RHSA 3 |
| 2079 | |
| 2080 | static inline bool dmar_detect_dsm(acpi_handle handle, int func) |
| 2081 | { |
| 2082 | return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); |
| 2083 | } |
| 2084 | |
| 2085 | static int dmar_walk_dsm_resource(acpi_handle handle, int func, |
| 2086 | dmar_res_handler_t handler, void *arg) |
| 2087 | { |
| 2088 | int ret = -ENODEV; |
| 2089 | union acpi_object *obj; |
| 2090 | struct acpi_dmar_header *start; |
| 2091 | struct dmar_res_callback callback; |
| 2092 | static int res_type[] = { |
| 2093 | [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, |
| 2094 | [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, |
| 2095 | [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, |
| 2096 | }; |
| 2097 | |
| 2098 | if (!dmar_detect_dsm(handle, func)) |
| 2099 | return 0; |
| 2100 | |
| 2101 | obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, |
| 2102 | func, NULL, ACPI_TYPE_BUFFER); |
| 2103 | if (!obj) |
| 2104 | return -ENODEV; |
| 2105 | |
| 2106 | memset(&callback, 0, sizeof(callback)); |
| 2107 | callback.cb[res_type[func]] = handler; |
| 2108 | callback.arg[res_type[func]] = arg; |
| 2109 | start = (struct acpi_dmar_header *)obj->buffer.pointer; |
| 2110 | ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); |
| 2111 | |
| 2112 | ACPI_FREE(obj); |
| 2113 | |
| 2114 | return ret; |
| 2115 | } |
| 2116 | |
| 2117 | static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) |
| 2118 | { |
| 2119 | int ret; |
| 2120 | struct dmar_drhd_unit *dmaru; |
| 2121 | |
| 2122 | dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); |
| 2123 | if (!dmaru) |
| 2124 | return -ENODEV; |
| 2125 | |
| 2126 | ret = dmar_ir_hotplug(dmaru, true); |
| 2127 | if (ret == 0) |
| 2128 | ret = dmar_iommu_hotplug(dmaru, true); |
| 2129 | |
| 2130 | return ret; |
| 2131 | } |
| 2132 | |
| 2133 | static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) |
| 2134 | { |
| 2135 | int i, ret; |
| 2136 | struct device *dev; |
| 2137 | struct dmar_drhd_unit *dmaru; |
| 2138 | |
| 2139 | dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); |
| 2140 | if (!dmaru) |
| 2141 | return 0; |
| 2142 | |
| 2143 | /* |
| 2144 | * All PCI devices managed by this unit should have been destroyed. |
| 2145 | */ |
| 2146 | if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { |
| 2147 | for_each_active_dev_scope(dmaru->devices, |
| 2148 | dmaru->devices_cnt, i, dev) |
| 2149 | return -EBUSY; |
| 2150 | } |
| 2151 | |
| 2152 | ret = dmar_ir_hotplug(dmaru, false); |
| 2153 | if (ret == 0) |
| 2154 | ret = dmar_iommu_hotplug(dmaru, false); |
| 2155 | |
| 2156 | return ret; |
| 2157 | } |
| 2158 | |
| 2159 | static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) |
| 2160 | { |
| 2161 | struct dmar_drhd_unit *dmaru; |
| 2162 | |
| 2163 | dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); |
| 2164 | if (dmaru) { |
| 2165 | list_del_rcu(&dmaru->list); |
| 2166 | synchronize_rcu(); |
| 2167 | dmar_free_drhd(dmaru); |
| 2168 | } |
| 2169 | |
| 2170 | return 0; |
| 2171 | } |
| 2172 | |
| 2173 | static int dmar_hotplug_insert(acpi_handle handle) |
| 2174 | { |
| 2175 | int ret; |
| 2176 | int drhd_count = 0; |
| 2177 | |
| 2178 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2179 | &dmar_validate_one_drhd, (void *)1); |
| 2180 | if (ret) |
| 2181 | goto out; |
| 2182 | |
| 2183 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2184 | &dmar_parse_one_drhd, (void *)&drhd_count); |
| 2185 | if (ret == 0 && drhd_count == 0) { |
| 2186 | pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); |
| 2187 | goto out; |
| 2188 | } else if (ret) { |
| 2189 | goto release_drhd; |
| 2190 | } |
| 2191 | |
| 2192 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, |
| 2193 | &dmar_parse_one_rhsa, NULL); |
| 2194 | if (ret) |
| 2195 | goto release_drhd; |
| 2196 | |
| 2197 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| 2198 | &dmar_parse_one_atsr, NULL); |
| 2199 | if (ret) |
| 2200 | goto release_atsr; |
| 2201 | |
| 2202 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2203 | &dmar_hp_add_drhd, NULL); |
| 2204 | if (!ret) |
| 2205 | return 0; |
| 2206 | |
| 2207 | dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2208 | &dmar_hp_remove_drhd, NULL); |
| 2209 | release_atsr: |
| 2210 | dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| 2211 | &dmar_release_one_atsr, NULL); |
| 2212 | release_drhd: |
| 2213 | dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2214 | &dmar_hp_release_drhd, NULL); |
| 2215 | out: |
| 2216 | return ret; |
| 2217 | } |
| 2218 | |
| 2219 | static int dmar_hotplug_remove(acpi_handle handle) |
| 2220 | { |
| 2221 | int ret; |
| 2222 | |
| 2223 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| 2224 | &dmar_check_one_atsr, NULL); |
| 2225 | if (ret) |
| 2226 | return ret; |
| 2227 | |
| 2228 | ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2229 | &dmar_hp_remove_drhd, NULL); |
| 2230 | if (ret == 0) { |
| 2231 | WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, |
| 2232 | &dmar_release_one_atsr, NULL)); |
| 2233 | WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2234 | &dmar_hp_release_drhd, NULL)); |
| 2235 | } else { |
| 2236 | dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, |
| 2237 | &dmar_hp_add_drhd, NULL); |
| 2238 | } |
| 2239 | |
| 2240 | return ret; |
| 2241 | } |
| 2242 | |
| 2243 | static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, |
| 2244 | void *context, void **retval) |
| 2245 | { |
| 2246 | acpi_handle *phdl = retval; |
| 2247 | |
| 2248 | if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { |
| 2249 | *phdl = handle; |
| 2250 | return AE_CTRL_TERMINATE; |
| 2251 | } |
| 2252 | |
| 2253 | return AE_OK; |
| 2254 | } |
| 2255 | |
| 2256 | static int dmar_device_hotplug(acpi_handle handle, bool insert) |
| 2257 | { |
| 2258 | int ret; |
| 2259 | acpi_handle tmp = NULL; |
| 2260 | acpi_status status; |
| 2261 | |
| 2262 | if (!dmar_in_use()) |
| 2263 | return 0; |
| 2264 | |
| 2265 | if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { |
| 2266 | tmp = handle; |
| 2267 | } else { |
| 2268 | status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, |
| 2269 | ACPI_UINT32_MAX, |
| 2270 | dmar_get_dsm_handle, |
| 2271 | NULL, NULL, &tmp); |
| 2272 | if (ACPI_FAILURE(status)) { |
| 2273 | pr_warn("Failed to locate _DSM method.\n"); |
| 2274 | return -ENXIO; |
| 2275 | } |
| 2276 | } |
| 2277 | if (tmp == NULL) |
| 2278 | return 0; |
| 2279 | |
| 2280 | down_write(&dmar_global_lock); |
| 2281 | if (insert) |
| 2282 | ret = dmar_hotplug_insert(tmp); |
| 2283 | else |
| 2284 | ret = dmar_hotplug_remove(tmp); |
| 2285 | up_write(&dmar_global_lock); |
| 2286 | |
| 2287 | return ret; |
| 2288 | } |
| 2289 | |
| 2290 | int dmar_device_add(acpi_handle handle) |
| 2291 | { |
| 2292 | return dmar_device_hotplug(handle, true); |
| 2293 | } |
| 2294 | |
| 2295 | int dmar_device_remove(acpi_handle handle) |
| 2296 | { |
| 2297 | return dmar_device_hotplug(handle, false); |
| 2298 | } |
| 2299 | |
| 2300 | /* |
| 2301 | * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table |
| 2302 | * |
| 2303 | * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in |
| 2304 | * the ACPI DMAR table. This means that the platform boot firmware has made |
| 2305 | * sure no device can issue DMA outside of RMRR regions. |
| 2306 | */ |
| 2307 | bool dmar_platform_optin(void) |
| 2308 | { |
| 2309 | struct acpi_table_dmar *dmar; |
| 2310 | acpi_status status; |
| 2311 | bool ret; |
| 2312 | |
| 2313 | status = acpi_get_table(ACPI_SIG_DMAR, 0, |
| 2314 | (struct acpi_table_header **)&dmar); |
| 2315 | if (ACPI_FAILURE(status)) |
| 2316 | return false; |
| 2317 | |
| 2318 | ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); |
| 2319 | acpi_put_table((struct acpi_table_header *)dmar); |
| 2320 | |
| 2321 | return ret; |
| 2322 | } |
| 2323 | EXPORT_SYMBOL_GPL(dmar_platform_optin); |