blob: 0a2da06e9d8bf67de5a02146da59bd399ed44c0b [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34#define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36#include <linux/cpufreq.h>
37#include <linux/delay.h>
38#include <linux/iopoll.h>
39#include <linux/ktime.h>
40#include <linux/rwsem.h>
41#include <linux/wait.h>
42
43#include <acpi/cppc_acpi.h>
44
45struct cppc_pcc_data {
46 struct mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
55
56 /*
57 * Lock to provide controlled access to the PCC channel.
58 *
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
66 *
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
69 */
70 struct rw_semaphore pcc_lock;
71
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
76 int mpar_count;
77 int refcount;
78};
79
David Brazdil0f672f62019-12-10 10:32:29 +000080/* Array to represent the PCC channel per subspace ID */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000081static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
David Brazdil0f672f62019-12-10 10:32:29 +000082/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000083static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85/*
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
91 */
92static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94/* pcc mapped address + header size + offset within PCC subspace */
95#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 0x8 + (offs))
97
98/* Check if a CPC register is in PCC */
99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103/* Evalutes to True if reg is a NULL register descriptor */
104#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
109
110/* Evalutes to True if an optional cpc field is supported */
111#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114/*
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
118 */
119#define NUM_RETRIES 500ULL
120
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000121#define define_one_cppc_ro(_name) \
Olivier Deprez0e641232021-09-23 10:07:05 +0200122static struct kobj_attribute _name = \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000123__ATTR(_name, 0444, show_##_name, NULL)
124
125#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
126
127#define show_cppc_data(access_fn, struct_name, member_name) \
128 static ssize_t show_##member_name(struct kobject *kobj, \
Olivier Deprez0e641232021-09-23 10:07:05 +0200129 struct kobj_attribute *attr, char *buf) \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000130 { \
131 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
132 struct struct_name st_name = {0}; \
133 int ret; \
134 \
135 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
136 if (ret) \
137 return ret; \
138 \
139 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
140 (u64)st_name.member_name); \
141 } \
142 define_one_cppc_ro(member_name)
143
144show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
145show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
146show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
147show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
148show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
149show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
150
151show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
152show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
153
154static ssize_t show_feedback_ctrs(struct kobject *kobj,
Olivier Deprez0e641232021-09-23 10:07:05 +0200155 struct kobj_attribute *attr, char *buf)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000156{
157 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
158 struct cppc_perf_fb_ctrs fb_ctrs = {0};
159 int ret;
160
161 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
162 if (ret)
163 return ret;
164
165 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
166 fb_ctrs.reference, fb_ctrs.delivered);
167}
168define_one_cppc_ro(feedback_ctrs);
169
170static struct attribute *cppc_attrs[] = {
171 &feedback_ctrs.attr,
172 &reference_perf.attr,
173 &wraparound_time.attr,
174 &highest_perf.attr,
175 &lowest_perf.attr,
176 &lowest_nonlinear_perf.attr,
177 &nominal_perf.attr,
178 &nominal_freq.attr,
179 &lowest_freq.attr,
180 NULL
181};
182
183static struct kobj_type cppc_ktype = {
184 .sysfs_ops = &kobj_sysfs_ops,
185 .default_attrs = cppc_attrs,
186};
187
188static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
189{
190 int ret, status;
191 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
192 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
193 pcc_ss_data->pcc_comm_addr;
194
195 if (!pcc_ss_data->platform_owns_pcc)
196 return 0;
197
198 /*
199 * Poll PCC status register every 3us(delay_us) for maximum of
200 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
201 */
202 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
203 status & PCC_CMD_COMPLETE_MASK, 3,
204 pcc_ss_data->deadline_us);
205
206 if (likely(!ret)) {
207 pcc_ss_data->platform_owns_pcc = false;
208 if (chk_err_bit && (status & PCC_ERROR_MASK))
209 ret = -EIO;
210 }
211
212 if (unlikely(ret))
213 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
214 pcc_ss_id, ret);
215
216 return ret;
217}
218
219/*
220 * This function transfers the ownership of the PCC to the platform
221 * So it must be called while holding write_lock(pcc_lock)
222 */
223static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
224{
225 int ret = -EIO, i;
226 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
227 struct acpi_pcct_shared_memory *generic_comm_base =
228 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
229 unsigned int time_delta;
230
231 /*
232 * For CMD_WRITE we know for a fact the caller should have checked
233 * the channel before writing to PCC space
234 */
235 if (cmd == CMD_READ) {
236 /*
237 * If there are pending cpc_writes, then we stole the channel
238 * before write completion, so first send a WRITE command to
239 * platform
240 */
241 if (pcc_ss_data->pending_pcc_write_cmd)
242 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
243
244 ret = check_pcc_chan(pcc_ss_id, false);
245 if (ret)
246 goto end;
247 } else /* CMD_WRITE */
248 pcc_ss_data->pending_pcc_write_cmd = FALSE;
249
250 /*
251 * Handle the Minimum Request Turnaround Time(MRTT)
252 * "The minimum amount of time that OSPM must wait after the completion
253 * of a command before issuing the next command, in microseconds"
254 */
255 if (pcc_ss_data->pcc_mrtt) {
256 time_delta = ktime_us_delta(ktime_get(),
257 pcc_ss_data->last_cmd_cmpl_time);
258 if (pcc_ss_data->pcc_mrtt > time_delta)
259 udelay(pcc_ss_data->pcc_mrtt - time_delta);
260 }
261
262 /*
263 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
264 * "The maximum number of periodic requests that the subspace channel can
265 * support, reported in commands per minute. 0 indicates no limitation."
266 *
267 * This parameter should be ideally zero or large enough so that it can
268 * handle maximum number of requests that all the cores in the system can
269 * collectively generate. If it is not, we will follow the spec and just
270 * not send the request to the platform after hitting the MPAR limit in
271 * any 60s window
272 */
273 if (pcc_ss_data->pcc_mpar) {
274 if (pcc_ss_data->mpar_count == 0) {
275 time_delta = ktime_ms_delta(ktime_get(),
276 pcc_ss_data->last_mpar_reset);
277 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
278 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
279 pcc_ss_id);
280 ret = -EIO;
281 goto end;
282 }
283 pcc_ss_data->last_mpar_reset = ktime_get();
284 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
285 }
286 pcc_ss_data->mpar_count--;
287 }
288
289 /* Write to the shared comm region. */
290 writew_relaxed(cmd, &generic_comm_base->command);
291
292 /* Flip CMD COMPLETE bit */
293 writew_relaxed(0, &generic_comm_base->status);
294
295 pcc_ss_data->platform_owns_pcc = true;
296
297 /* Ring doorbell */
298 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
299 if (ret < 0) {
300 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
301 pcc_ss_id, cmd, ret);
302 goto end;
303 }
304
305 /* wait for completion and check for PCC errro bit */
306 ret = check_pcc_chan(pcc_ss_id, true);
307
308 if (pcc_ss_data->pcc_mrtt)
309 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
310
311 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
312 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
313 else
314 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
315
316end:
317 if (cmd == CMD_WRITE) {
318 if (unlikely(ret)) {
319 for_each_possible_cpu(i) {
320 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
321 if (!desc)
322 continue;
323
324 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
325 desc->write_cmd_status = ret;
326 }
327 }
328 pcc_ss_data->pcc_write_cnt++;
329 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
330 }
331
332 return ret;
333}
334
335static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
336{
337 if (ret < 0)
338 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
339 *(u16 *)msg, ret);
340 else
341 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
342 *(u16 *)msg, ret);
343}
344
Olivier Deprez157378f2022-04-04 15:47:50 +0200345static struct mbox_client cppc_mbox_cl = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000346 .tx_done = cppc_chan_tx_done,
347 .knows_txdone = true,
348};
349
350static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
351{
352 int result = -EFAULT;
353 acpi_status status = AE_OK;
354 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
355 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
356 struct acpi_buffer state = {0, NULL};
357 union acpi_object *psd = NULL;
358 struct acpi_psd_package *pdomain;
359
David Brazdil0f672f62019-12-10 10:32:29 +0000360 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
361 &buffer, ACPI_TYPE_PACKAGE);
362 if (status == AE_NOT_FOUND) /* _PSD is optional */
363 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000364 if (ACPI_FAILURE(status))
365 return -ENODEV;
366
367 psd = buffer.pointer;
368 if (!psd || psd->package.count != 1) {
369 pr_debug("Invalid _PSD data\n");
370 goto end;
371 }
372
373 pdomain = &(cpc_ptr->domain_info);
374
375 state.length = sizeof(struct acpi_psd_package);
376 state.pointer = pdomain;
377
378 status = acpi_extract_package(&(psd->package.elements[0]),
379 &format, &state);
380 if (ACPI_FAILURE(status)) {
381 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
382 goto end;
383 }
384
385 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
386 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
387 goto end;
388 }
389
390 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
391 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
392 goto end;
393 }
394
395 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
396 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
397 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
398 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
399 goto end;
400 }
401
402 result = 0;
403end:
404 kfree(buffer.pointer);
405 return result;
406}
407
408/**
409 * acpi_get_psd_map - Map the CPUs in a common freq domain.
410 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
411 *
412 * Return: 0 for success or negative value for err.
413 */
414int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
415{
416 int count_target;
417 int retval = 0;
418 unsigned int i, j;
419 cpumask_var_t covered_cpus;
420 struct cppc_cpudata *pr, *match_pr;
421 struct acpi_psd_package *pdomain;
422 struct acpi_psd_package *match_pdomain;
423 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
424
425 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
426 return -ENOMEM;
427
428 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000429 * Now that we have _PSD data from all CPUs, let's setup P-state
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000430 * domain info.
431 */
432 for_each_possible_cpu(i) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000433 if (cpumask_test_cpu(i, covered_cpus))
434 continue;
435
Olivier Deprez157378f2022-04-04 15:47:50 +0200436 pr = all_cpu_data[i];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000437 cpc_ptr = per_cpu(cpc_desc_ptr, i);
438 if (!cpc_ptr) {
439 retval = -EFAULT;
440 goto err_ret;
441 }
442
443 pdomain = &(cpc_ptr->domain_info);
444 cpumask_set_cpu(i, pr->shared_cpu_map);
445 cpumask_set_cpu(i, covered_cpus);
446 if (pdomain->num_processors <= 1)
447 continue;
448
449 /* Validate the Domain info */
450 count_target = pdomain->num_processors;
451 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
452 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
453 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
454 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
455 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
456 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
457
458 for_each_possible_cpu(j) {
459 if (i == j)
460 continue;
461
462 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
463 if (!match_cpc_ptr) {
464 retval = -EFAULT;
465 goto err_ret;
466 }
467
468 match_pdomain = &(match_cpc_ptr->domain_info);
469 if (match_pdomain->domain != pdomain->domain)
470 continue;
471
472 /* Here i and j are in the same domain */
473 if (match_pdomain->num_processors != count_target) {
474 retval = -EFAULT;
475 goto err_ret;
476 }
477
478 if (pdomain->coord_type != match_pdomain->coord_type) {
479 retval = -EFAULT;
480 goto err_ret;
481 }
482
483 cpumask_set_cpu(j, covered_cpus);
484 cpumask_set_cpu(j, pr->shared_cpu_map);
485 }
486
Olivier Deprez157378f2022-04-04 15:47:50 +0200487 for_each_cpu(j, pr->shared_cpu_map) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000488 if (i == j)
489 continue;
490
491 match_pr = all_cpu_data[j];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000492 match_pr->shared_type = pr->shared_type;
493 cpumask_copy(match_pr->shared_cpu_map,
494 pr->shared_cpu_map);
495 }
496 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200497 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000498
499err_ret:
500 for_each_possible_cpu(i) {
501 pr = all_cpu_data[i];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000502
503 /* Assume no coordination on any error parsing domain info */
Olivier Deprez157378f2022-04-04 15:47:50 +0200504 cpumask_clear(pr->shared_cpu_map);
505 cpumask_set_cpu(i, pr->shared_cpu_map);
506 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000507 }
Olivier Deprez157378f2022-04-04 15:47:50 +0200508out:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000509 free_cpumask_var(covered_cpus);
510 return retval;
511}
512EXPORT_SYMBOL_GPL(acpi_get_psd_map);
513
514static int register_pcc_channel(int pcc_ss_idx)
515{
516 struct acpi_pcct_hw_reduced *cppc_ss;
517 u64 usecs_lat;
518
519 if (pcc_ss_idx >= 0) {
520 pcc_data[pcc_ss_idx]->pcc_channel =
521 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
522
523 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
524 pr_err("Failed to find PCC channel for subspace %d\n",
525 pcc_ss_idx);
526 return -ENODEV;
527 }
528
529 /*
530 * The PCC mailbox controller driver should
531 * have parsed the PCCT (global table of all
532 * PCC channels) and stored pointers to the
533 * subspace communication region in con_priv.
534 */
535 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
536
537 if (!cppc_ss) {
538 pr_err("No PCC subspace found for %d CPPC\n",
539 pcc_ss_idx);
540 return -ENODEV;
541 }
542
543 /*
544 * cppc_ss->latency is just a Nominal value. In reality
545 * the remote processor could be much slower to reply.
546 * So add an arbitrary amount of wait on top of Nominal.
547 */
548 usecs_lat = NUM_RETRIES * cppc_ss->latency;
549 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
550 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
551 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
552 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
553
554 pcc_data[pcc_ss_idx]->pcc_comm_addr =
555 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
556 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
557 pr_err("Failed to ioremap PCC comm region mem for %d\n",
558 pcc_ss_idx);
559 return -ENOMEM;
560 }
561
David Brazdil0f672f62019-12-10 10:32:29 +0000562 /* Set flag so that we don't come here for each CPU. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000563 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
564 }
565
566 return 0;
567}
568
569/**
570 * cpc_ffh_supported() - check if FFH reading supported
571 *
572 * Check if the architecture has support for functional fixed hardware
573 * read/write capability.
574 *
575 * Return: true for supported, false for not supported
576 */
577bool __weak cpc_ffh_supported(void)
578{
579 return false;
580}
581
582/**
583 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
584 *
585 * Check and allocate the cppc_pcc_data memory.
586 * In some processor configurations it is possible that same subspace
David Brazdil0f672f62019-12-10 10:32:29 +0000587 * is shared between multiple CPUs. This is seen especially in CPUs
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000588 * with hardware multi-threading support.
589 *
590 * Return: 0 for success, errno for failure
591 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200592static int pcc_data_alloc(int pcc_ss_id)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000593{
594 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
595 return -EINVAL;
596
597 if (pcc_data[pcc_ss_id]) {
598 pcc_data[pcc_ss_id]->refcount++;
599 } else {
600 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
601 GFP_KERNEL);
602 if (!pcc_data[pcc_ss_id])
603 return -ENOMEM;
604 pcc_data[pcc_ss_id]->refcount++;
605 }
606
607 return 0;
608}
609
610/* Check if CPPC revision + num_ent combination is supported */
611static bool is_cppc_supported(int revision, int num_ent)
612{
613 int expected_num_ent;
614
615 switch (revision) {
616 case CPPC_V2_REV:
617 expected_num_ent = CPPC_V2_NUM_ENT;
618 break;
619 case CPPC_V3_REV:
620 expected_num_ent = CPPC_V3_NUM_ENT;
621 break;
622 default:
623 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
624 revision);
625 return false;
626 }
627
628 if (expected_num_ent != num_ent) {
629 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
630 num_ent, expected_num_ent, revision);
631 return false;
632 }
633
634 return true;
635}
636
637/*
638 * An example CPC table looks like the following.
639 *
640 * Name(_CPC, Package()
641 * {
642 * 17,
643 * NumEntries
644 * 1,
645 * // Revision
646 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
647 * // Highest Performance
648 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
649 * // Nominal Performance
650 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
651 * // Lowest Nonlinear Performance
652 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
653 * // Lowest Performance
654 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
655 * // Guaranteed Performance Register
656 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
657 * // Desired Performance Register
658 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
659 * ..
660 * ..
661 * ..
662 *
663 * }
664 * Each Register() encodes how to access that specific register.
665 * e.g. a sample PCC entry has the following encoding:
666 *
667 * Register (
668 * PCC,
669 * AddressSpaceKeyword
670 * 8,
671 * //RegisterBitWidth
672 * 8,
673 * //RegisterBitOffset
674 * 0x30,
675 * //RegisterAddress
676 * 9
677 * //AccessSize (subspace ID)
678 * 0
679 * )
680 * }
681 */
682
683/**
684 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
David Brazdil0f672f62019-12-10 10:32:29 +0000685 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000686 *
687 * Return: 0 for success or negative value for err.
688 */
689int acpi_cppc_processor_probe(struct acpi_processor *pr)
690{
691 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
692 union acpi_object *out_obj, *cpc_obj;
693 struct cpc_desc *cpc_ptr;
694 struct cpc_reg *gas_t;
695 struct device *cpu_dev;
696 acpi_handle handle = pr->handle;
697 unsigned int num_ent, i, cpc_rev;
698 int pcc_subspace_id = -1;
699 acpi_status status;
700 int ret = -EFAULT;
701
David Brazdil0f672f62019-12-10 10:32:29 +0000702 /* Parse the ACPI _CPC table for this CPU. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000703 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
704 ACPI_TYPE_PACKAGE);
705 if (ACPI_FAILURE(status)) {
706 ret = -ENODEV;
707 goto out_buf_free;
708 }
709
710 out_obj = (union acpi_object *) output.pointer;
711
712 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
713 if (!cpc_ptr) {
714 ret = -ENOMEM;
715 goto out_buf_free;
716 }
717
718 /* First entry is NumEntries. */
719 cpc_obj = &out_obj->package.elements[0];
720 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
721 num_ent = cpc_obj->integer.value;
722 } else {
723 pr_debug("Unexpected entry type(%d) for NumEntries\n",
724 cpc_obj->type);
725 goto out_free;
726 }
727 cpc_ptr->num_entries = num_ent;
728
729 /* Second entry should be revision. */
730 cpc_obj = &out_obj->package.elements[1];
731 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
732 cpc_rev = cpc_obj->integer.value;
733 } else {
734 pr_debug("Unexpected entry type(%d) for Revision\n",
735 cpc_obj->type);
736 goto out_free;
737 }
738 cpc_ptr->version = cpc_rev;
739
740 if (!is_cppc_supported(cpc_rev, num_ent))
741 goto out_free;
742
743 /* Iterate through remaining entries in _CPC */
744 for (i = 2; i < num_ent; i++) {
745 cpc_obj = &out_obj->package.elements[i];
746
747 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
748 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
749 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
750 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
751 gas_t = (struct cpc_reg *)
752 cpc_obj->buffer.pointer;
753
754 /*
755 * The PCC Subspace index is encoded inside
756 * the CPC table entries. The same PCC index
757 * will be used for all the PCC entries,
758 * so extract it only once.
759 */
760 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
761 if (pcc_subspace_id < 0) {
762 pcc_subspace_id = gas_t->access_width;
763 if (pcc_data_alloc(pcc_subspace_id))
764 goto out_free;
765 } else if (pcc_subspace_id != gas_t->access_width) {
766 pr_debug("Mismatched PCC ids.\n");
767 goto out_free;
768 }
769 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
770 if (gas_t->address) {
771 void __iomem *addr;
772
773 addr = ioremap(gas_t->address, gas_t->bit_width/8);
774 if (!addr)
775 goto out_free;
776 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
777 }
778 } else {
779 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
780 /* Support only PCC ,SYS MEM and FFH type regs */
781 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
782 goto out_free;
783 }
784 }
785
786 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
787 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
788 } else {
789 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
790 goto out_free;
791 }
792 }
793 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
794
795 /*
796 * Initialize the remaining cpc_regs as unsupported.
797 * Example: In case FW exposes CPPC v2, the below loop will initialize
798 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
799 */
800 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
801 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
802 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
803 }
804
805
806 /* Store CPU Logical ID */
807 cpc_ptr->cpu_id = pr->id;
808
809 /* Parse PSD data for this CPU */
810 ret = acpi_get_psd(cpc_ptr, handle);
811 if (ret)
812 goto out_free;
813
David Brazdil0f672f62019-12-10 10:32:29 +0000814 /* Register PCC channel once for all PCC subspace ID. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000815 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
816 ret = register_pcc_channel(pcc_subspace_id);
817 if (ret)
818 goto out_free;
819
820 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
821 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
822 }
823
824 /* Everything looks okay */
825 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
826
827 /* Add per logical CPU nodes for reading its feedback counters. */
828 cpu_dev = get_cpu_device(pr->id);
829 if (!cpu_dev) {
830 ret = -EINVAL;
831 goto out_free;
832 }
833
David Brazdil0f672f62019-12-10 10:32:29 +0000834 /* Plug PSD data into this CPU's CPC descriptor. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000835 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
836
837 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
838 "acpi_cppc");
839 if (ret) {
840 per_cpu(cpc_desc_ptr, pr->id) = NULL;
Olivier Deprez0e641232021-09-23 10:07:05 +0200841 kobject_put(&cpc_ptr->kobj);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000842 goto out_free;
843 }
844
845 kfree(output.pointer);
846 return 0;
847
848out_free:
849 /* Free all the mapped sys mem areas for this CPU */
850 for (i = 2; i < cpc_ptr->num_entries; i++) {
851 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
852
853 if (addr)
854 iounmap(addr);
855 }
856 kfree(cpc_ptr);
857
858out_buf_free:
859 kfree(output.pointer);
860 return ret;
861}
862EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
863
864/**
865 * acpi_cppc_processor_exit - Cleanup CPC structs.
David Brazdil0f672f62019-12-10 10:32:29 +0000866 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000867 *
868 * Return: Void
869 */
870void acpi_cppc_processor_exit(struct acpi_processor *pr)
871{
872 struct cpc_desc *cpc_ptr;
873 unsigned int i;
874 void __iomem *addr;
875 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
876
877 if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
878 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
879 pcc_data[pcc_ss_id]->refcount--;
880 if (!pcc_data[pcc_ss_id]->refcount) {
881 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000882 kfree(pcc_data[pcc_ss_id]);
David Brazdil0f672f62019-12-10 10:32:29 +0000883 pcc_data[pcc_ss_id] = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000884 }
885 }
886 }
887
888 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
889 if (!cpc_ptr)
890 return;
891
892 /* Free all the mapped sys mem areas for this CPU */
893 for (i = 2; i < cpc_ptr->num_entries; i++) {
894 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
895 if (addr)
896 iounmap(addr);
897 }
898
899 kobject_put(&cpc_ptr->kobj);
900 kfree(cpc_ptr);
901}
902EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
903
904/**
905 * cpc_read_ffh() - Read FFH register
David Brazdil0f672f62019-12-10 10:32:29 +0000906 * @cpunum: CPU number to read
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000907 * @reg: cppc register information
908 * @val: place holder for return value
909 *
910 * Read bit_width bits from a specified address and bit_offset
911 *
912 * Return: 0 for success and error code
913 */
914int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
915{
916 return -ENOTSUPP;
917}
918
919/**
920 * cpc_write_ffh() - Write FFH register
David Brazdil0f672f62019-12-10 10:32:29 +0000921 * @cpunum: CPU number to write
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000922 * @reg: cppc register information
923 * @val: value to write
924 *
925 * Write value of bit_width bits to a specified address and bit_offset
926 *
927 * Return: 0 for success and error code
928 */
929int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
930{
931 return -ENOTSUPP;
932}
933
934/*
935 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
936 * as fast as possible. We have already mapped the PCC subspace during init, so
937 * we can directly write to it.
938 */
939
940static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
941{
942 int ret_val = 0;
943 void __iomem *vaddr = 0;
944 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
945 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
946
947 if (reg_res->type == ACPI_TYPE_INTEGER) {
948 *val = reg_res->cpc_entry.int_value;
949 return ret_val;
950 }
951
952 *val = 0;
953 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
954 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
955 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
956 vaddr = reg_res->sys_mem_vaddr;
957 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
958 return cpc_read_ffh(cpu, reg, val);
959 else
960 return acpi_os_read_memory((acpi_physical_address)reg->address,
961 val, reg->bit_width);
962
963 switch (reg->bit_width) {
964 case 8:
965 *val = readb_relaxed(vaddr);
966 break;
967 case 16:
968 *val = readw_relaxed(vaddr);
969 break;
970 case 32:
971 *val = readl_relaxed(vaddr);
972 break;
973 case 64:
974 *val = readq_relaxed(vaddr);
975 break;
976 default:
977 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
978 reg->bit_width, pcc_ss_id);
979 ret_val = -EFAULT;
980 }
981
982 return ret_val;
983}
984
985static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
986{
987 int ret_val = 0;
988 void __iomem *vaddr = 0;
989 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
990 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
991
992 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
993 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
994 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
995 vaddr = reg_res->sys_mem_vaddr;
996 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
997 return cpc_write_ffh(cpu, reg, val);
998 else
999 return acpi_os_write_memory((acpi_physical_address)reg->address,
1000 val, reg->bit_width);
1001
1002 switch (reg->bit_width) {
1003 case 8:
1004 writeb_relaxed(val, vaddr);
1005 break;
1006 case 16:
1007 writew_relaxed(val, vaddr);
1008 break;
1009 case 32:
1010 writel_relaxed(val, vaddr);
1011 break;
1012 case 64:
1013 writeq_relaxed(val, vaddr);
1014 break;
1015 default:
1016 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1017 reg->bit_width, pcc_ss_id);
1018 ret_val = -EFAULT;
1019 break;
1020 }
1021
1022 return ret_val;
1023}
1024
1025/**
David Brazdil0f672f62019-12-10 10:32:29 +00001026 * cppc_get_desired_perf - Get the value of desired performance register.
1027 * @cpunum: CPU from which to get desired performance.
1028 * @desired_perf: address of a variable to store the returned desired performance
1029 *
1030 * Return: 0 for success, -EIO otherwise.
1031 */
1032int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1033{
1034 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1035 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1036 struct cpc_register_resource *desired_reg;
1037 struct cppc_pcc_data *pcc_ss_data = NULL;
1038
1039 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1040
1041 if (CPC_IN_PCC(desired_reg)) {
1042 int ret = 0;
1043
1044 if (pcc_ss_id < 0)
1045 return -EIO;
1046
1047 pcc_ss_data = pcc_data[pcc_ss_id];
1048
1049 down_write(&pcc_ss_data->pcc_lock);
1050
1051 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1052 cpc_read(cpunum, desired_reg, desired_perf);
1053 else
1054 ret = -EIO;
1055
1056 up_write(&pcc_ss_data->pcc_lock);
1057
1058 return ret;
1059 }
1060
1061 cpc_read(cpunum, desired_reg, desired_perf);
1062
1063 return 0;
1064}
1065EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1066
1067/**
1068 * cppc_get_perf_caps - Get a CPU's performance capabilities.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001069 * @cpunum: CPU from which to get capabilities info.
1070 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1071 *
1072 * Return: 0 for success with perf_caps populated else -ERRNO.
1073 */
1074int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1075{
1076 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1077 struct cpc_register_resource *highest_reg, *lowest_reg,
David Brazdil0f672f62019-12-10 10:32:29 +00001078 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001079 *low_freq_reg = NULL, *nom_freq_reg = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00001080 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001081 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1082 struct cppc_pcc_data *pcc_ss_data = NULL;
1083 int ret = 0, regs_in_pcc = 0;
1084
1085 if (!cpc_desc) {
1086 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1087 return -ENODEV;
1088 }
1089
1090 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1091 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1092 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1093 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1094 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1095 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
David Brazdil0f672f62019-12-10 10:32:29 +00001096 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001097
1098 /* Are any of the regs PCC ?*/
1099 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1100 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1101 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1102 if (pcc_ss_id < 0) {
1103 pr_debug("Invalid pcc_ss_id\n");
1104 return -ENODEV;
1105 }
1106 pcc_ss_data = pcc_data[pcc_ss_id];
1107 regs_in_pcc = 1;
1108 down_write(&pcc_ss_data->pcc_lock);
1109 /* Ring doorbell once to update PCC subspace */
1110 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1111 ret = -EIO;
1112 goto out_err;
1113 }
1114 }
1115
1116 cpc_read(cpunum, highest_reg, &high);
1117 perf_caps->highest_perf = high;
1118
1119 cpc_read(cpunum, lowest_reg, &low);
1120 perf_caps->lowest_perf = low;
1121
1122 cpc_read(cpunum, nominal_reg, &nom);
1123 perf_caps->nominal_perf = nom;
1124
David Brazdil0f672f62019-12-10 10:32:29 +00001125 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1126 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1127 perf_caps->guaranteed_perf = 0;
1128 } else {
1129 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1130 perf_caps->guaranteed_perf = guaranteed;
1131 }
1132
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001133 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1134 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1135
1136 if (!high || !low || !nom || !min_nonlinear)
1137 ret = -EFAULT;
1138
1139 /* Read optional lowest and nominal frequencies if present */
1140 if (CPC_SUPPORTED(low_freq_reg))
1141 cpc_read(cpunum, low_freq_reg, &low_f);
1142
1143 if (CPC_SUPPORTED(nom_freq_reg))
1144 cpc_read(cpunum, nom_freq_reg, &nom_f);
1145
1146 perf_caps->lowest_freq = low_f;
1147 perf_caps->nominal_freq = nom_f;
1148
1149
1150out_err:
1151 if (regs_in_pcc)
1152 up_write(&pcc_ss_data->pcc_lock);
1153 return ret;
1154}
1155EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1156
1157/**
David Brazdil0f672f62019-12-10 10:32:29 +00001158 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001159 * @cpunum: CPU from which to read counters.
1160 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1161 *
1162 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1163 */
1164int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1165{
1166 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1167 struct cpc_register_resource *delivered_reg, *reference_reg,
1168 *ref_perf_reg, *ctr_wrap_reg;
1169 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1170 struct cppc_pcc_data *pcc_ss_data = NULL;
1171 u64 delivered, reference, ref_perf, ctr_wrap_time;
1172 int ret = 0, regs_in_pcc = 0;
1173
1174 if (!cpc_desc) {
1175 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1176 return -ENODEV;
1177 }
1178
1179 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1180 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1181 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1182 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1183
1184 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001185 * If reference perf register is not supported then we should
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001186 * use the nominal perf value
1187 */
1188 if (!CPC_SUPPORTED(ref_perf_reg))
1189 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1190
1191 /* Are any of the regs PCC ?*/
1192 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1193 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1194 if (pcc_ss_id < 0) {
1195 pr_debug("Invalid pcc_ss_id\n");
1196 return -ENODEV;
1197 }
1198 pcc_ss_data = pcc_data[pcc_ss_id];
1199 down_write(&pcc_ss_data->pcc_lock);
1200 regs_in_pcc = 1;
1201 /* Ring doorbell once to update PCC subspace */
1202 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1203 ret = -EIO;
1204 goto out_err;
1205 }
1206 }
1207
1208 cpc_read(cpunum, delivered_reg, &delivered);
1209 cpc_read(cpunum, reference_reg, &reference);
1210 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1211
1212 /*
1213 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1214 * performance counters are assumed to never wrap during the lifetime of
1215 * platform
1216 */
1217 ctr_wrap_time = (u64)(~((u64)0));
1218 if (CPC_SUPPORTED(ctr_wrap_reg))
1219 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1220
1221 if (!delivered || !reference || !ref_perf) {
1222 ret = -EFAULT;
1223 goto out_err;
1224 }
1225
1226 perf_fb_ctrs->delivered = delivered;
1227 perf_fb_ctrs->reference = reference;
1228 perf_fb_ctrs->reference_perf = ref_perf;
1229 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1230out_err:
1231 if (regs_in_pcc)
1232 up_write(&pcc_ss_data->pcc_lock);
1233 return ret;
1234}
1235EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1236
1237/**
David Brazdil0f672f62019-12-10 10:32:29 +00001238 * cppc_set_perf - Set a CPU's performance controls.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001239 * @cpu: CPU for which to set performance controls.
1240 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1241 *
1242 * Return: 0 for success, -ERRNO otherwise.
1243 */
1244int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1245{
1246 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1247 struct cpc_register_resource *desired_reg;
1248 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1249 struct cppc_pcc_data *pcc_ss_data = NULL;
1250 int ret = 0;
1251
1252 if (!cpc_desc) {
1253 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1254 return -ENODEV;
1255 }
1256
1257 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1258
1259 /*
1260 * This is Phase-I where we want to write to CPC registers
1261 * -> We want all CPUs to be able to execute this phase in parallel
1262 *
1263 * Since read_lock can be acquired by multiple CPUs simultaneously we
1264 * achieve that goal here
1265 */
1266 if (CPC_IN_PCC(desired_reg)) {
1267 if (pcc_ss_id < 0) {
1268 pr_debug("Invalid pcc_ss_id\n");
1269 return -ENODEV;
1270 }
1271 pcc_ss_data = pcc_data[pcc_ss_id];
1272 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1273 if (pcc_ss_data->platform_owns_pcc) {
1274 ret = check_pcc_chan(pcc_ss_id, false);
1275 if (ret) {
1276 up_read(&pcc_ss_data->pcc_lock);
1277 return ret;
1278 }
1279 }
1280 /*
1281 * Update the pending_write to make sure a PCC CMD_READ will not
1282 * arrive and steal the channel during the switch to write lock
1283 */
1284 pcc_ss_data->pending_pcc_write_cmd = true;
1285 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1286 cpc_desc->write_cmd_status = 0;
1287 }
1288
1289 /*
1290 * Skip writing MIN/MAX until Linux knows how to come up with
1291 * useful values.
1292 */
1293 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1294
1295 if (CPC_IN_PCC(desired_reg))
1296 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1297 /*
1298 * This is Phase-II where we transfer the ownership of PCC to Platform
1299 *
1300 * Short Summary: Basically if we think of a group of cppc_set_perf
1301 * requests that happened in short overlapping interval. The last CPU to
1302 * come out of Phase-I will enter Phase-II and ring the doorbell.
1303 *
1304 * We have the following requirements for Phase-II:
1305 * 1. We want to execute Phase-II only when there are no CPUs
1306 * currently executing in Phase-I
1307 * 2. Once we start Phase-II we want to avoid all other CPUs from
1308 * entering Phase-I.
1309 * 3. We want only one CPU among all those who went through Phase-I
1310 * to run phase-II
1311 *
1312 * If write_trylock fails to get the lock and doesn't transfer the
1313 * PCC ownership to the platform, then one of the following will be TRUE
1314 * 1. There is at-least one CPU in Phase-I which will later execute
1315 * write_trylock, so the CPUs in Phase-I will be responsible for
1316 * executing the Phase-II.
1317 * 2. Some other CPU has beaten this CPU to successfully execute the
1318 * write_trylock and has already acquired the write_lock. We know for a
David Brazdil0f672f62019-12-10 10:32:29 +00001319 * fact it (other CPU acquiring the write_lock) couldn't have happened
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001320 * before this CPU's Phase-I as we held the read_lock.
1321 * 3. Some other CPU executing pcc CMD_READ has stolen the
1322 * down_write, in which case, send_pcc_cmd will check for pending
1323 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1324 * So this CPU can be certain that its request will be delivered
1325 * So in all cases, this CPU knows that its request will be delivered
1326 * by another CPU and can return
1327 *
1328 * After getting the down_write we still need to check for
1329 * pending_pcc_write_cmd to take care of the following scenario
1330 * The thread running this code could be scheduled out between
1331 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1332 * could have delivered the request to Platform by triggering the
1333 * doorbell and transferred the ownership of PCC to platform. So this
1334 * avoids triggering an unnecessary doorbell and more importantly before
1335 * triggering the doorbell it makes sure that the PCC channel ownership
1336 * is still with OSPM.
1337 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1338 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1339 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1340 * case during a CMD_READ and if there are pending writes it delivers
1341 * the write command before servicing the read command
1342 */
1343 if (CPC_IN_PCC(desired_reg)) {
1344 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1345 /* Update only if there are pending write commands */
1346 if (pcc_ss_data->pending_pcc_write_cmd)
1347 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1348 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1349 } else
1350 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1351 wait_event(pcc_ss_data->pcc_write_wait_q,
1352 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1353
1354 /* send_pcc_cmd updates the status in case of failure */
1355 ret = cpc_desc->write_cmd_status;
1356 }
1357 return ret;
1358}
1359EXPORT_SYMBOL_GPL(cppc_set_perf);
1360
1361/**
1362 * cppc_get_transition_latency - returns frequency transition latency in ns
1363 *
1364 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1365 * transition latency for perfromance change requests. The closest we have
1366 * is the timing information from the PCCT tables which provides the info
1367 * on the number and frequency of PCC commands the platform can handle.
1368 */
1369unsigned int cppc_get_transition_latency(int cpu_num)
1370{
1371 /*
1372 * Expected transition latency is based on the PCCT timing values
1373 * Below are definition from ACPI spec:
1374 * pcc_nominal- Expected latency to process a command, in microseconds
1375 * pcc_mpar - The maximum number of periodic requests that the subspace
1376 * channel can support, reported in commands per minute. 0
1377 * indicates no limitation.
1378 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1379 * completion of a command before issuing the next command,
1380 * in microseconds.
1381 */
1382 unsigned int latency_ns = 0;
1383 struct cpc_desc *cpc_desc;
1384 struct cpc_register_resource *desired_reg;
1385 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1386 struct cppc_pcc_data *pcc_ss_data;
1387
1388 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1389 if (!cpc_desc)
1390 return CPUFREQ_ETERNAL;
1391
1392 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1393 if (!CPC_IN_PCC(desired_reg))
1394 return CPUFREQ_ETERNAL;
1395
1396 if (pcc_ss_id < 0)
1397 return CPUFREQ_ETERNAL;
1398
1399 pcc_ss_data = pcc_data[pcc_ss_id];
1400 if (pcc_ss_data->pcc_mpar)
1401 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1402
1403 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1404 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1405
1406 return latency_ns;
1407}
1408EXPORT_SYMBOL_GPL(cppc_get_transition_latency);