David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3 | /* |
| 4 | * Xen mmu operations |
| 5 | * |
| 6 | * This file contains the various mmu fetch and update operations. |
| 7 | * The most important job they must perform is the mapping between the |
| 8 | * domain's pfn and the overall machine mfns. |
| 9 | * |
| 10 | * Xen allows guests to directly update the pagetable, in a controlled |
| 11 | * fashion. In other words, the guest modifies the same pagetable |
| 12 | * that the CPU actually uses, which eliminates the overhead of having |
| 13 | * a separate shadow pagetable. |
| 14 | * |
| 15 | * In order to allow this, it falls on the guest domain to map its |
| 16 | * notion of a "physical" pfn - which is just a domain-local linear |
| 17 | * address - into a real "machine address" which the CPU's MMU can |
| 18 | * use. |
| 19 | * |
| 20 | * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be |
| 21 | * inserted directly into the pagetable. When creating a new |
| 22 | * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, |
| 23 | * when reading the content back with __(pgd|pmd|pte)_val, it converts |
| 24 | * the mfn back into a pfn. |
| 25 | * |
| 26 | * The other constraint is that all pages which make up a pagetable |
| 27 | * must be mapped read-only in the guest. This prevents uncontrolled |
| 28 | * guest updates to the pagetable. Xen strictly enforces this, and |
| 29 | * will disallow any pagetable update which will end up mapping a |
| 30 | * pagetable page RW, and will disallow using any writable page as a |
| 31 | * pagetable. |
| 32 | * |
| 33 | * Naively, when loading %cr3 with the base of a new pagetable, Xen |
| 34 | * would need to validate the whole pagetable before going on. |
| 35 | * Naturally, this is quite slow. The solution is to "pin" a |
| 36 | * pagetable, which enforces all the constraints on the pagetable even |
| 37 | * when it is not actively in use. This menas that Xen can be assured |
| 38 | * that it is still valid when you do load it into %cr3, and doesn't |
| 39 | * need to revalidate it. |
| 40 | * |
| 41 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| 42 | */ |
| 43 | #include <linux/sched/mm.h> |
| 44 | #include <linux/highmem.h> |
| 45 | #include <linux/debugfs.h> |
| 46 | #include <linux/bug.h> |
| 47 | #include <linux/vmalloc.h> |
| 48 | #include <linux/export.h> |
| 49 | #include <linux/init.h> |
| 50 | #include <linux/gfp.h> |
| 51 | #include <linux/memblock.h> |
| 52 | #include <linux/seq_file.h> |
| 53 | #include <linux/crash_dump.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 54 | #include <linux/pgtable.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 55 | #ifdef CONFIG_KEXEC_CORE |
| 56 | #include <linux/kexec.h> |
| 57 | #endif |
| 58 | |
| 59 | #include <trace/events/xen.h> |
| 60 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 61 | #include <asm/tlbflush.h> |
| 62 | #include <asm/fixmap.h> |
| 63 | #include <asm/mmu_context.h> |
| 64 | #include <asm/setup.h> |
| 65 | #include <asm/paravirt.h> |
| 66 | #include <asm/e820/api.h> |
| 67 | #include <asm/linkage.h> |
| 68 | #include <asm/page.h> |
| 69 | #include <asm/init.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 70 | #include <asm/memtype.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 71 | #include <asm/smp.h> |
| 72 | #include <asm/tlb.h> |
| 73 | |
| 74 | #include <asm/xen/hypercall.h> |
| 75 | #include <asm/xen/hypervisor.h> |
| 76 | |
| 77 | #include <xen/xen.h> |
| 78 | #include <xen/page.h> |
| 79 | #include <xen/interface/xen.h> |
| 80 | #include <xen/interface/hvm/hvm_op.h> |
| 81 | #include <xen/interface/version.h> |
| 82 | #include <xen/interface/memory.h> |
| 83 | #include <xen/hvc-console.h> |
| 84 | |
| 85 | #include "multicalls.h" |
| 86 | #include "mmu.h" |
| 87 | #include "debugfs.h" |
| 88 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 89 | /* l3 pud for userspace vsyscall mapping */ |
| 90 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 91 | |
| 92 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 93 | * Protects atomic reservation decrease/increase against concurrent increases. |
| 94 | * Also protects non-atomic updates of current_pages and balloon lists. |
| 95 | */ |
| 96 | static DEFINE_SPINLOCK(xen_reservation_lock); |
| 97 | |
| 98 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 99 | * Note about cr3 (pagetable base) values: |
| 100 | * |
| 101 | * xen_cr3 contains the current logical cr3 value; it contains the |
| 102 | * last set cr3. This may not be the current effective cr3, because |
| 103 | * its update may be being lazily deferred. However, a vcpu looking |
| 104 | * at its own cr3 can use this value knowing that it everything will |
| 105 | * be self-consistent. |
| 106 | * |
| 107 | * xen_current_cr3 contains the actual vcpu cr3; it is set once the |
| 108 | * hypercall to set the vcpu cr3 is complete (so it may be a little |
| 109 | * out of date, but it will never be set early). If one vcpu is |
| 110 | * looking at another vcpu's cr3 value, it should use this variable. |
| 111 | */ |
| 112 | DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ |
| 113 | DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ |
| 114 | |
| 115 | static phys_addr_t xen_pt_base, xen_pt_size __initdata; |
| 116 | |
| 117 | static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready); |
| 118 | |
| 119 | /* |
| 120 | * Just beyond the highest usermode address. STACK_TOP_MAX has a |
| 121 | * redzone above it, so round it up to a PGD boundary. |
| 122 | */ |
| 123 | #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) |
| 124 | |
| 125 | void make_lowmem_page_readonly(void *vaddr) |
| 126 | { |
| 127 | pte_t *pte, ptev; |
| 128 | unsigned long address = (unsigned long)vaddr; |
| 129 | unsigned int level; |
| 130 | |
| 131 | pte = lookup_address(address, &level); |
| 132 | if (pte == NULL) |
| 133 | return; /* vaddr missing */ |
| 134 | |
| 135 | ptev = pte_wrprotect(*pte); |
| 136 | |
| 137 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
| 138 | BUG(); |
| 139 | } |
| 140 | |
| 141 | void make_lowmem_page_readwrite(void *vaddr) |
| 142 | { |
| 143 | pte_t *pte, ptev; |
| 144 | unsigned long address = (unsigned long)vaddr; |
| 145 | unsigned int level; |
| 146 | |
| 147 | pte = lookup_address(address, &level); |
| 148 | if (pte == NULL) |
| 149 | return; /* vaddr missing */ |
| 150 | |
| 151 | ptev = pte_mkwrite(*pte); |
| 152 | |
| 153 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
| 154 | BUG(); |
| 155 | } |
| 156 | |
| 157 | |
| 158 | /* |
| 159 | * During early boot all page table pages are pinned, but we do not have struct |
| 160 | * pages, so return true until struct pages are ready. |
| 161 | */ |
| 162 | static bool xen_page_pinned(void *ptr) |
| 163 | { |
| 164 | if (static_branch_likely(&xen_struct_pages_ready)) { |
| 165 | struct page *page = virt_to_page(ptr); |
| 166 | |
| 167 | return PagePinned(page); |
| 168 | } |
| 169 | return true; |
| 170 | } |
| 171 | |
| 172 | static void xen_extend_mmu_update(const struct mmu_update *update) |
| 173 | { |
| 174 | struct multicall_space mcs; |
| 175 | struct mmu_update *u; |
| 176 | |
| 177 | mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); |
| 178 | |
| 179 | if (mcs.mc != NULL) { |
| 180 | mcs.mc->args[1]++; |
| 181 | } else { |
| 182 | mcs = __xen_mc_entry(sizeof(*u)); |
| 183 | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 184 | } |
| 185 | |
| 186 | u = mcs.args; |
| 187 | *u = *update; |
| 188 | } |
| 189 | |
| 190 | static void xen_extend_mmuext_op(const struct mmuext_op *op) |
| 191 | { |
| 192 | struct multicall_space mcs; |
| 193 | struct mmuext_op *u; |
| 194 | |
| 195 | mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); |
| 196 | |
| 197 | if (mcs.mc != NULL) { |
| 198 | mcs.mc->args[1]++; |
| 199 | } else { |
| 200 | mcs = __xen_mc_entry(sizeof(*u)); |
| 201 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 202 | } |
| 203 | |
| 204 | u = mcs.args; |
| 205 | *u = *op; |
| 206 | } |
| 207 | |
| 208 | static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) |
| 209 | { |
| 210 | struct mmu_update u; |
| 211 | |
| 212 | preempt_disable(); |
| 213 | |
| 214 | xen_mc_batch(); |
| 215 | |
| 216 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
| 217 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
| 218 | u.val = pmd_val_ma(val); |
| 219 | xen_extend_mmu_update(&u); |
| 220 | |
| 221 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 222 | |
| 223 | preempt_enable(); |
| 224 | } |
| 225 | |
| 226 | static void xen_set_pmd(pmd_t *ptr, pmd_t val) |
| 227 | { |
| 228 | trace_xen_mmu_set_pmd(ptr, val); |
| 229 | |
| 230 | /* If page is not pinned, we can just update the entry |
| 231 | directly */ |
| 232 | if (!xen_page_pinned(ptr)) { |
| 233 | *ptr = val; |
| 234 | return; |
| 235 | } |
| 236 | |
| 237 | xen_set_pmd_hyper(ptr, val); |
| 238 | } |
| 239 | |
| 240 | /* |
| 241 | * Associate a virtual page frame with a given physical page frame |
| 242 | * and protection flags for that frame. |
| 243 | */ |
| 244 | void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) |
| 245 | { |
| 246 | set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); |
| 247 | } |
| 248 | |
| 249 | static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) |
| 250 | { |
| 251 | struct mmu_update u; |
| 252 | |
| 253 | if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) |
| 254 | return false; |
| 255 | |
| 256 | xen_mc_batch(); |
| 257 | |
| 258 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; |
| 259 | u.val = pte_val_ma(pteval); |
| 260 | xen_extend_mmu_update(&u); |
| 261 | |
| 262 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 263 | |
| 264 | return true; |
| 265 | } |
| 266 | |
| 267 | static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) |
| 268 | { |
| 269 | if (!xen_batched_set_pte(ptep, pteval)) { |
| 270 | /* |
| 271 | * Could call native_set_pte() here and trap and |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 272 | * emulate the PTE write, but a hypercall is much cheaper. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 273 | */ |
| 274 | struct mmu_update u; |
| 275 | |
| 276 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; |
| 277 | u.val = pte_val_ma(pteval); |
| 278 | HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | static void xen_set_pte(pte_t *ptep, pte_t pteval) |
| 283 | { |
| 284 | trace_xen_mmu_set_pte(ptep, pteval); |
| 285 | __xen_set_pte(ptep, pteval); |
| 286 | } |
| 287 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 288 | pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 289 | unsigned long addr, pte_t *ptep) |
| 290 | { |
| 291 | /* Just return the pte as-is. We preserve the bits on commit */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 292 | trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 293 | return *ptep; |
| 294 | } |
| 295 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 296 | void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 297 | pte_t *ptep, pte_t pte) |
| 298 | { |
| 299 | struct mmu_update u; |
| 300 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 301 | trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 302 | xen_mc_batch(); |
| 303 | |
| 304 | u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; |
| 305 | u.val = pte_val_ma(pte); |
| 306 | xen_extend_mmu_update(&u); |
| 307 | |
| 308 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 309 | } |
| 310 | |
| 311 | /* Assume pteval_t is equivalent to all the other *val_t types. */ |
| 312 | static pteval_t pte_mfn_to_pfn(pteval_t val) |
| 313 | { |
| 314 | if (val & _PAGE_PRESENT) { |
| 315 | unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT; |
| 316 | unsigned long pfn = mfn_to_pfn(mfn); |
| 317 | |
| 318 | pteval_t flags = val & PTE_FLAGS_MASK; |
| 319 | if (unlikely(pfn == ~0)) |
| 320 | val = flags & ~_PAGE_PRESENT; |
| 321 | else |
| 322 | val = ((pteval_t)pfn << PAGE_SHIFT) | flags; |
| 323 | } |
| 324 | |
| 325 | return val; |
| 326 | } |
| 327 | |
| 328 | static pteval_t pte_pfn_to_mfn(pteval_t val) |
| 329 | { |
| 330 | if (val & _PAGE_PRESENT) { |
| 331 | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
| 332 | pteval_t flags = val & PTE_FLAGS_MASK; |
| 333 | unsigned long mfn; |
| 334 | |
| 335 | mfn = __pfn_to_mfn(pfn); |
| 336 | |
| 337 | /* |
| 338 | * If there's no mfn for the pfn, then just create an |
| 339 | * empty non-present pte. Unfortunately this loses |
| 340 | * information about the original pfn, so |
| 341 | * pte_mfn_to_pfn is asymmetric. |
| 342 | */ |
| 343 | if (unlikely(mfn == INVALID_P2M_ENTRY)) { |
| 344 | mfn = 0; |
| 345 | flags = 0; |
| 346 | } else |
| 347 | mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); |
| 348 | val = ((pteval_t)mfn << PAGE_SHIFT) | flags; |
| 349 | } |
| 350 | |
| 351 | return val; |
| 352 | } |
| 353 | |
| 354 | __visible pteval_t xen_pte_val(pte_t pte) |
| 355 | { |
| 356 | pteval_t pteval = pte.pte; |
| 357 | |
| 358 | return pte_mfn_to_pfn(pteval); |
| 359 | } |
| 360 | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); |
| 361 | |
| 362 | __visible pgdval_t xen_pgd_val(pgd_t pgd) |
| 363 | { |
| 364 | return pte_mfn_to_pfn(pgd.pgd); |
| 365 | } |
| 366 | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); |
| 367 | |
| 368 | __visible pte_t xen_make_pte(pteval_t pte) |
| 369 | { |
| 370 | pte = pte_pfn_to_mfn(pte); |
| 371 | |
| 372 | return native_make_pte(pte); |
| 373 | } |
| 374 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); |
| 375 | |
| 376 | __visible pgd_t xen_make_pgd(pgdval_t pgd) |
| 377 | { |
| 378 | pgd = pte_pfn_to_mfn(pgd); |
| 379 | return native_make_pgd(pgd); |
| 380 | } |
| 381 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); |
| 382 | |
| 383 | __visible pmdval_t xen_pmd_val(pmd_t pmd) |
| 384 | { |
| 385 | return pte_mfn_to_pfn(pmd.pmd); |
| 386 | } |
| 387 | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); |
| 388 | |
| 389 | static void xen_set_pud_hyper(pud_t *ptr, pud_t val) |
| 390 | { |
| 391 | struct mmu_update u; |
| 392 | |
| 393 | preempt_disable(); |
| 394 | |
| 395 | xen_mc_batch(); |
| 396 | |
| 397 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
| 398 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
| 399 | u.val = pud_val_ma(val); |
| 400 | xen_extend_mmu_update(&u); |
| 401 | |
| 402 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 403 | |
| 404 | preempt_enable(); |
| 405 | } |
| 406 | |
| 407 | static void xen_set_pud(pud_t *ptr, pud_t val) |
| 408 | { |
| 409 | trace_xen_mmu_set_pud(ptr, val); |
| 410 | |
| 411 | /* If page is not pinned, we can just update the entry |
| 412 | directly */ |
| 413 | if (!xen_page_pinned(ptr)) { |
| 414 | *ptr = val; |
| 415 | return; |
| 416 | } |
| 417 | |
| 418 | xen_set_pud_hyper(ptr, val); |
| 419 | } |
| 420 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 421 | __visible pmd_t xen_make_pmd(pmdval_t pmd) |
| 422 | { |
| 423 | pmd = pte_pfn_to_mfn(pmd); |
| 424 | return native_make_pmd(pmd); |
| 425 | } |
| 426 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); |
| 427 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 428 | __visible pudval_t xen_pud_val(pud_t pud) |
| 429 | { |
| 430 | return pte_mfn_to_pfn(pud.pud); |
| 431 | } |
| 432 | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); |
| 433 | |
| 434 | __visible pud_t xen_make_pud(pudval_t pud) |
| 435 | { |
| 436 | pud = pte_pfn_to_mfn(pud); |
| 437 | |
| 438 | return native_make_pud(pud); |
| 439 | } |
| 440 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); |
| 441 | |
| 442 | static pgd_t *xen_get_user_pgd(pgd_t *pgd) |
| 443 | { |
| 444 | pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); |
| 445 | unsigned offset = pgd - pgd_page; |
| 446 | pgd_t *user_ptr = NULL; |
| 447 | |
| 448 | if (offset < pgd_index(USER_LIMIT)) { |
| 449 | struct page *page = virt_to_page(pgd_page); |
| 450 | user_ptr = (pgd_t *)page->private; |
| 451 | if (user_ptr) |
| 452 | user_ptr += offset; |
| 453 | } |
| 454 | |
| 455 | return user_ptr; |
| 456 | } |
| 457 | |
| 458 | static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) |
| 459 | { |
| 460 | struct mmu_update u; |
| 461 | |
| 462 | u.ptr = virt_to_machine(ptr).maddr; |
| 463 | u.val = p4d_val_ma(val); |
| 464 | xen_extend_mmu_update(&u); |
| 465 | } |
| 466 | |
| 467 | /* |
| 468 | * Raw hypercall-based set_p4d, intended for in early boot before |
| 469 | * there's a page structure. This implies: |
| 470 | * 1. The only existing pagetable is the kernel's |
| 471 | * 2. It is always pinned |
| 472 | * 3. It has no user pagetable attached to it |
| 473 | */ |
| 474 | static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) |
| 475 | { |
| 476 | preempt_disable(); |
| 477 | |
| 478 | xen_mc_batch(); |
| 479 | |
| 480 | __xen_set_p4d_hyper(ptr, val); |
| 481 | |
| 482 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 483 | |
| 484 | preempt_enable(); |
| 485 | } |
| 486 | |
| 487 | static void xen_set_p4d(p4d_t *ptr, p4d_t val) |
| 488 | { |
| 489 | pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); |
| 490 | pgd_t pgd_val; |
| 491 | |
| 492 | trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); |
| 493 | |
| 494 | /* If page is not pinned, we can just update the entry |
| 495 | directly */ |
| 496 | if (!xen_page_pinned(ptr)) { |
| 497 | *ptr = val; |
| 498 | if (user_ptr) { |
| 499 | WARN_ON(xen_page_pinned(user_ptr)); |
| 500 | pgd_val.pgd = p4d_val_ma(val); |
| 501 | *user_ptr = pgd_val; |
| 502 | } |
| 503 | return; |
| 504 | } |
| 505 | |
| 506 | /* If it's pinned, then we can at least batch the kernel and |
| 507 | user updates together. */ |
| 508 | xen_mc_batch(); |
| 509 | |
| 510 | __xen_set_p4d_hyper(ptr, val); |
| 511 | if (user_ptr) |
| 512 | __xen_set_p4d_hyper((p4d_t *)user_ptr, val); |
| 513 | |
| 514 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 515 | } |
| 516 | |
| 517 | #if CONFIG_PGTABLE_LEVELS >= 5 |
| 518 | __visible p4dval_t xen_p4d_val(p4d_t p4d) |
| 519 | { |
| 520 | return pte_mfn_to_pfn(p4d.p4d); |
| 521 | } |
| 522 | PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val); |
| 523 | |
| 524 | __visible p4d_t xen_make_p4d(p4dval_t p4d) |
| 525 | { |
| 526 | p4d = pte_pfn_to_mfn(p4d); |
| 527 | |
| 528 | return native_make_p4d(p4d); |
| 529 | } |
| 530 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d); |
| 531 | #endif /* CONFIG_PGTABLE_LEVELS >= 5 */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 532 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 533 | static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, |
| 534 | void (*func)(struct mm_struct *mm, struct page *, |
| 535 | enum pt_level), |
| 536 | bool last, unsigned long limit) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 537 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 538 | int i, nr; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 539 | |
| 540 | nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; |
| 541 | for (i = 0; i < nr; i++) { |
| 542 | if (!pmd_none(pmd[i])) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 543 | (*func)(mm, pmd_page(pmd[i]), PT_PTE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 544 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 545 | } |
| 546 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 547 | static void xen_pud_walk(struct mm_struct *mm, pud_t *pud, |
| 548 | void (*func)(struct mm_struct *mm, struct page *, |
| 549 | enum pt_level), |
| 550 | bool last, unsigned long limit) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 551 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 552 | int i, nr; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 553 | |
| 554 | nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; |
| 555 | for (i = 0; i < nr; i++) { |
| 556 | pmd_t *pmd; |
| 557 | |
| 558 | if (pud_none(pud[i])) |
| 559 | continue; |
| 560 | |
| 561 | pmd = pmd_offset(&pud[i], 0); |
| 562 | if (PTRS_PER_PMD > 1) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 563 | (*func)(mm, virt_to_page(pmd), PT_PMD); |
| 564 | xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 565 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 566 | } |
| 567 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 568 | static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, |
| 569 | void (*func)(struct mm_struct *mm, struct page *, |
| 570 | enum pt_level), |
| 571 | bool last, unsigned long limit) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 572 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 573 | pud_t *pud; |
| 574 | |
| 575 | |
| 576 | if (p4d_none(*p4d)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 577 | return; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 578 | |
| 579 | pud = pud_offset(p4d, 0); |
| 580 | if (PTRS_PER_PUD > 1) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 581 | (*func)(mm, virt_to_page(pud), PT_PUD); |
| 582 | xen_pud_walk(mm, pud, func, last, limit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 583 | } |
| 584 | |
| 585 | /* |
| 586 | * (Yet another) pagetable walker. This one is intended for pinning a |
| 587 | * pagetable. This means that it walks a pagetable and calls the |
| 588 | * callback function on each page it finds making up the page table, |
| 589 | * at every level. It walks the entire pagetable, but it only bothers |
| 590 | * pinning pte pages which are below limit. In the normal case this |
| 591 | * will be STACK_TOP_MAX, but at boot we need to pin up to |
| 592 | * FIXADDR_TOP. |
| 593 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 594 | * We must skip the Xen hole in the middle of the address space, just after |
| 595 | * the big x86-64 virtual hole. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 596 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 597 | static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, |
| 598 | void (*func)(struct mm_struct *mm, struct page *, |
| 599 | enum pt_level), |
| 600 | unsigned long limit) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 601 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 602 | int i, nr; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 603 | unsigned hole_low = 0, hole_high = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 604 | |
| 605 | /* The limit is the last byte to be touched */ |
| 606 | limit--; |
| 607 | BUG_ON(limit >= FIXADDR_TOP); |
| 608 | |
| 609 | /* |
| 610 | * 64-bit has a great big hole in the middle of the address |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 611 | * space, which contains the Xen mappings. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 612 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 613 | hole_low = pgd_index(GUARD_HOLE_BASE_ADDR); |
| 614 | hole_high = pgd_index(GUARD_HOLE_END_ADDR); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 615 | |
| 616 | nr = pgd_index(limit) + 1; |
| 617 | for (i = 0; i < nr; i++) { |
| 618 | p4d_t *p4d; |
| 619 | |
| 620 | if (i >= hole_low && i < hole_high) |
| 621 | continue; |
| 622 | |
| 623 | if (pgd_none(pgd[i])) |
| 624 | continue; |
| 625 | |
| 626 | p4d = p4d_offset(&pgd[i], 0); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 627 | xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 628 | } |
| 629 | |
| 630 | /* Do the top level last, so that the callbacks can use it as |
| 631 | a cue to do final things like tlb flushes. */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 632 | (*func)(mm, virt_to_page(pgd), PT_PGD); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 633 | } |
| 634 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 635 | static void xen_pgd_walk(struct mm_struct *mm, |
| 636 | void (*func)(struct mm_struct *mm, struct page *, |
| 637 | enum pt_level), |
| 638 | unsigned long limit) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 639 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 640 | __xen_pgd_walk(mm, mm->pgd, func, limit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 641 | } |
| 642 | |
| 643 | /* If we're using split pte locks, then take the page's lock and |
| 644 | return a pointer to it. Otherwise return NULL. */ |
| 645 | static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) |
| 646 | { |
| 647 | spinlock_t *ptl = NULL; |
| 648 | |
| 649 | #if USE_SPLIT_PTE_PTLOCKS |
| 650 | ptl = ptlock_ptr(page); |
| 651 | spin_lock_nest_lock(ptl, &mm->page_table_lock); |
| 652 | #endif |
| 653 | |
| 654 | return ptl; |
| 655 | } |
| 656 | |
| 657 | static void xen_pte_unlock(void *v) |
| 658 | { |
| 659 | spinlock_t *ptl = v; |
| 660 | spin_unlock(ptl); |
| 661 | } |
| 662 | |
| 663 | static void xen_do_pin(unsigned level, unsigned long pfn) |
| 664 | { |
| 665 | struct mmuext_op op; |
| 666 | |
| 667 | op.cmd = level; |
| 668 | op.arg1.mfn = pfn_to_mfn(pfn); |
| 669 | |
| 670 | xen_extend_mmuext_op(&op); |
| 671 | } |
| 672 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 673 | static void xen_pin_page(struct mm_struct *mm, struct page *page, |
| 674 | enum pt_level level) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 675 | { |
| 676 | unsigned pgfl = TestSetPagePinned(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 677 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 678 | if (!pgfl) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 679 | void *pt = lowmem_page_address(page); |
| 680 | unsigned long pfn = page_to_pfn(page); |
| 681 | struct multicall_space mcs = __xen_mc_entry(0); |
| 682 | spinlock_t *ptl; |
| 683 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 684 | /* |
| 685 | * We need to hold the pagetable lock between the time |
| 686 | * we make the pagetable RO and when we actually pin |
| 687 | * it. If we don't, then other users may come in and |
| 688 | * attempt to update the pagetable by writing it, |
| 689 | * which will fail because the memory is RO but not |
| 690 | * pinned, so Xen won't do the trap'n'emulate. |
| 691 | * |
| 692 | * If we're using split pte locks, we can't hold the |
| 693 | * entire pagetable's worth of locks during the |
| 694 | * traverse, because we may wrap the preempt count (8 |
| 695 | * bits). The solution is to mark RO and pin each PTE |
| 696 | * page while holding the lock. This means the number |
| 697 | * of locks we end up holding is never more than a |
| 698 | * batch size (~32 entries, at present). |
| 699 | * |
| 700 | * If we're not using split pte locks, we needn't pin |
| 701 | * the PTE pages independently, because we're |
| 702 | * protected by the overall pagetable lock. |
| 703 | */ |
| 704 | ptl = NULL; |
| 705 | if (level == PT_PTE) |
| 706 | ptl = xen_pte_lock(page, mm); |
| 707 | |
| 708 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
| 709 | pfn_pte(pfn, PAGE_KERNEL_RO), |
| 710 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
| 711 | |
| 712 | if (ptl) { |
| 713 | xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); |
| 714 | |
| 715 | /* Queue a deferred unlock for when this batch |
| 716 | is completed. */ |
| 717 | xen_mc_callback(xen_pte_unlock, ptl); |
| 718 | } |
| 719 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 720 | } |
| 721 | |
| 722 | /* This is called just after a mm has been created, but it has not |
| 723 | been used yet. We need to make sure that its pagetable is all |
| 724 | read-only, and can be pinned. */ |
| 725 | static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) |
| 726 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 727 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 728 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 729 | trace_xen_mmu_pgd_pin(mm, pgd); |
| 730 | |
| 731 | xen_mc_batch(); |
| 732 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 733 | __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 734 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 735 | xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 736 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 737 | if (user_pgd) { |
| 738 | xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); |
| 739 | xen_do_pin(MMUEXT_PIN_L4_TABLE, |
| 740 | PFN_DOWN(__pa(user_pgd))); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 741 | } |
| 742 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 743 | xen_mc_issue(0); |
| 744 | } |
| 745 | |
| 746 | static void xen_pgd_pin(struct mm_struct *mm) |
| 747 | { |
| 748 | __xen_pgd_pin(mm, mm->pgd); |
| 749 | } |
| 750 | |
| 751 | /* |
| 752 | * On save, we need to pin all pagetables to make sure they get their |
| 753 | * mfns turned into pfns. Search the list for any unpinned pgds and pin |
| 754 | * them (unpinned pgds are not currently in use, probably because the |
| 755 | * process is under construction or destruction). |
| 756 | * |
| 757 | * Expected to be called in stop_machine() ("equivalent to taking |
| 758 | * every spinlock in the system"), so the locking doesn't really |
| 759 | * matter all that much. |
| 760 | */ |
| 761 | void xen_mm_pin_all(void) |
| 762 | { |
| 763 | struct page *page; |
| 764 | |
| 765 | spin_lock(&pgd_lock); |
| 766 | |
| 767 | list_for_each_entry(page, &pgd_list, lru) { |
| 768 | if (!PagePinned(page)) { |
| 769 | __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); |
| 770 | SetPageSavePinned(page); |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | spin_unlock(&pgd_lock); |
| 775 | } |
| 776 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 777 | static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page, |
| 778 | enum pt_level level) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 779 | { |
| 780 | SetPagePinned(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 781 | } |
| 782 | |
| 783 | /* |
| 784 | * The init_mm pagetable is really pinned as soon as its created, but |
| 785 | * that's before we have page structures to store the bits. So do all |
| 786 | * the book-keeping now once struct pages for allocated pages are |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 787 | * initialized. This happens only after memblock_free_all() is called. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 788 | */ |
| 789 | static void __init xen_after_bootmem(void) |
| 790 | { |
| 791 | static_branch_enable(&xen_struct_pages_ready); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 792 | SetPagePinned(virt_to_page(level3_user_vsyscall)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 793 | xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); |
| 794 | } |
| 795 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 796 | static void xen_unpin_page(struct mm_struct *mm, struct page *page, |
| 797 | enum pt_level level) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 798 | { |
| 799 | unsigned pgfl = TestClearPagePinned(page); |
| 800 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 801 | if (pgfl) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 802 | void *pt = lowmem_page_address(page); |
| 803 | unsigned long pfn = page_to_pfn(page); |
| 804 | spinlock_t *ptl = NULL; |
| 805 | struct multicall_space mcs; |
| 806 | |
| 807 | /* |
| 808 | * Do the converse to pin_page. If we're using split |
| 809 | * pte locks, we must be holding the lock for while |
| 810 | * the pte page is unpinned but still RO to prevent |
| 811 | * concurrent updates from seeing it in this |
| 812 | * partially-pinned state. |
| 813 | */ |
| 814 | if (level == PT_PTE) { |
| 815 | ptl = xen_pte_lock(page, mm); |
| 816 | |
| 817 | if (ptl) |
| 818 | xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); |
| 819 | } |
| 820 | |
| 821 | mcs = __xen_mc_entry(0); |
| 822 | |
| 823 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
| 824 | pfn_pte(pfn, PAGE_KERNEL), |
| 825 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
| 826 | |
| 827 | if (ptl) { |
| 828 | /* unlock when batch completed */ |
| 829 | xen_mc_callback(xen_pte_unlock, ptl); |
| 830 | } |
| 831 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 832 | } |
| 833 | |
| 834 | /* Release a pagetables pages back as normal RW */ |
| 835 | static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) |
| 836 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 837 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 838 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 839 | trace_xen_mmu_pgd_unpin(mm, pgd); |
| 840 | |
| 841 | xen_mc_batch(); |
| 842 | |
| 843 | xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
| 844 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 845 | if (user_pgd) { |
| 846 | xen_do_pin(MMUEXT_UNPIN_TABLE, |
| 847 | PFN_DOWN(__pa(user_pgd))); |
| 848 | xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 849 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 850 | |
| 851 | __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); |
| 852 | |
| 853 | xen_mc_issue(0); |
| 854 | } |
| 855 | |
| 856 | static void xen_pgd_unpin(struct mm_struct *mm) |
| 857 | { |
| 858 | __xen_pgd_unpin(mm, mm->pgd); |
| 859 | } |
| 860 | |
| 861 | /* |
| 862 | * On resume, undo any pinning done at save, so that the rest of the |
| 863 | * kernel doesn't see any unexpected pinned pagetables. |
| 864 | */ |
| 865 | void xen_mm_unpin_all(void) |
| 866 | { |
| 867 | struct page *page; |
| 868 | |
| 869 | spin_lock(&pgd_lock); |
| 870 | |
| 871 | list_for_each_entry(page, &pgd_list, lru) { |
| 872 | if (PageSavePinned(page)) { |
| 873 | BUG_ON(!PagePinned(page)); |
| 874 | __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); |
| 875 | ClearPageSavePinned(page); |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | spin_unlock(&pgd_lock); |
| 880 | } |
| 881 | |
| 882 | static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) |
| 883 | { |
| 884 | spin_lock(&next->page_table_lock); |
| 885 | xen_pgd_pin(next); |
| 886 | spin_unlock(&next->page_table_lock); |
| 887 | } |
| 888 | |
| 889 | static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) |
| 890 | { |
| 891 | spin_lock(&mm->page_table_lock); |
| 892 | xen_pgd_pin(mm); |
| 893 | spin_unlock(&mm->page_table_lock); |
| 894 | } |
| 895 | |
| 896 | static void drop_mm_ref_this_cpu(void *info) |
| 897 | { |
| 898 | struct mm_struct *mm = info; |
| 899 | |
| 900 | if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) |
| 901 | leave_mm(smp_processor_id()); |
| 902 | |
| 903 | /* |
| 904 | * If this cpu still has a stale cr3 reference, then make sure |
| 905 | * it has been flushed. |
| 906 | */ |
| 907 | if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) |
| 908 | xen_mc_flush(); |
| 909 | } |
| 910 | |
| 911 | #ifdef CONFIG_SMP |
| 912 | /* |
| 913 | * Another cpu may still have their %cr3 pointing at the pagetable, so |
| 914 | * we need to repoint it somewhere else before we can unpin it. |
| 915 | */ |
| 916 | static void xen_drop_mm_ref(struct mm_struct *mm) |
| 917 | { |
| 918 | cpumask_var_t mask; |
| 919 | unsigned cpu; |
| 920 | |
| 921 | drop_mm_ref_this_cpu(mm); |
| 922 | |
| 923 | /* Get the "official" set of cpus referring to our pagetable. */ |
| 924 | if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { |
| 925 | for_each_online_cpu(cpu) { |
| 926 | if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) |
| 927 | continue; |
| 928 | smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1); |
| 929 | } |
| 930 | return; |
| 931 | } |
| 932 | |
| 933 | /* |
| 934 | * It's possible that a vcpu may have a stale reference to our |
| 935 | * cr3, because its in lazy mode, and it hasn't yet flushed |
| 936 | * its set of pending hypercalls yet. In this case, we can |
| 937 | * look at its actual current cr3 value, and force it to flush |
| 938 | * if needed. |
| 939 | */ |
| 940 | cpumask_clear(mask); |
| 941 | for_each_online_cpu(cpu) { |
| 942 | if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) |
| 943 | cpumask_set_cpu(cpu, mask); |
| 944 | } |
| 945 | |
| 946 | smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1); |
| 947 | free_cpumask_var(mask); |
| 948 | } |
| 949 | #else |
| 950 | static void xen_drop_mm_ref(struct mm_struct *mm) |
| 951 | { |
| 952 | drop_mm_ref_this_cpu(mm); |
| 953 | } |
| 954 | #endif |
| 955 | |
| 956 | /* |
| 957 | * While a process runs, Xen pins its pagetables, which means that the |
| 958 | * hypervisor forces it to be read-only, and it controls all updates |
| 959 | * to it. This means that all pagetable updates have to go via the |
| 960 | * hypervisor, which is moderately expensive. |
| 961 | * |
| 962 | * Since we're pulling the pagetable down, we switch to use init_mm, |
| 963 | * unpin old process pagetable and mark it all read-write, which |
| 964 | * allows further operations on it to be simple memory accesses. |
| 965 | * |
| 966 | * The only subtle point is that another CPU may be still using the |
| 967 | * pagetable because of lazy tlb flushing. This means we need need to |
| 968 | * switch all CPUs off this pagetable before we can unpin it. |
| 969 | */ |
| 970 | static void xen_exit_mmap(struct mm_struct *mm) |
| 971 | { |
| 972 | get_cpu(); /* make sure we don't move around */ |
| 973 | xen_drop_mm_ref(mm); |
| 974 | put_cpu(); |
| 975 | |
| 976 | spin_lock(&mm->page_table_lock); |
| 977 | |
| 978 | /* pgd may not be pinned in the error exit path of execve */ |
| 979 | if (xen_page_pinned(mm->pgd)) |
| 980 | xen_pgd_unpin(mm); |
| 981 | |
| 982 | spin_unlock(&mm->page_table_lock); |
| 983 | } |
| 984 | |
| 985 | static void xen_post_allocator_init(void); |
| 986 | |
| 987 | static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
| 988 | { |
| 989 | struct mmuext_op op; |
| 990 | |
| 991 | op.cmd = cmd; |
| 992 | op.arg1.mfn = pfn_to_mfn(pfn); |
| 993 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) |
| 994 | BUG(); |
| 995 | } |
| 996 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 997 | static void __init xen_cleanhighmap(unsigned long vaddr, |
| 998 | unsigned long vaddr_end) |
| 999 | { |
| 1000 | unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; |
| 1001 | pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); |
| 1002 | |
| 1003 | /* NOTE: The loop is more greedy than the cleanup_highmap variant. |
| 1004 | * We include the PMD passed in on _both_ boundaries. */ |
| 1005 | for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); |
| 1006 | pmd++, vaddr += PMD_SIZE) { |
| 1007 | if (pmd_none(*pmd)) |
| 1008 | continue; |
| 1009 | if (vaddr < (unsigned long) _text || vaddr > kernel_end) |
| 1010 | set_pmd(pmd, __pmd(0)); |
| 1011 | } |
| 1012 | /* In case we did something silly, we should crash in this function |
| 1013 | * instead of somewhere later and be confusing. */ |
| 1014 | xen_mc_flush(); |
| 1015 | } |
| 1016 | |
| 1017 | /* |
| 1018 | * Make a page range writeable and free it. |
| 1019 | */ |
| 1020 | static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) |
| 1021 | { |
| 1022 | void *vaddr = __va(paddr); |
| 1023 | void *vaddr_end = vaddr + size; |
| 1024 | |
| 1025 | for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) |
| 1026 | make_lowmem_page_readwrite(vaddr); |
| 1027 | |
| 1028 | memblock_free(paddr, size); |
| 1029 | } |
| 1030 | |
| 1031 | static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) |
| 1032 | { |
| 1033 | unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; |
| 1034 | |
| 1035 | if (unpin) |
| 1036 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); |
| 1037 | ClearPagePinned(virt_to_page(__va(pa))); |
| 1038 | xen_free_ro_pages(pa, PAGE_SIZE); |
| 1039 | } |
| 1040 | |
| 1041 | static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) |
| 1042 | { |
| 1043 | unsigned long pa; |
| 1044 | pte_t *pte_tbl; |
| 1045 | int i; |
| 1046 | |
| 1047 | if (pmd_large(*pmd)) { |
| 1048 | pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; |
| 1049 | xen_free_ro_pages(pa, PMD_SIZE); |
| 1050 | return; |
| 1051 | } |
| 1052 | |
| 1053 | pte_tbl = pte_offset_kernel(pmd, 0); |
| 1054 | for (i = 0; i < PTRS_PER_PTE; i++) { |
| 1055 | if (pte_none(pte_tbl[i])) |
| 1056 | continue; |
| 1057 | pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; |
| 1058 | xen_free_ro_pages(pa, PAGE_SIZE); |
| 1059 | } |
| 1060 | set_pmd(pmd, __pmd(0)); |
| 1061 | xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); |
| 1062 | } |
| 1063 | |
| 1064 | static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) |
| 1065 | { |
| 1066 | unsigned long pa; |
| 1067 | pmd_t *pmd_tbl; |
| 1068 | int i; |
| 1069 | |
| 1070 | if (pud_large(*pud)) { |
| 1071 | pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; |
| 1072 | xen_free_ro_pages(pa, PUD_SIZE); |
| 1073 | return; |
| 1074 | } |
| 1075 | |
| 1076 | pmd_tbl = pmd_offset(pud, 0); |
| 1077 | for (i = 0; i < PTRS_PER_PMD; i++) { |
| 1078 | if (pmd_none(pmd_tbl[i])) |
| 1079 | continue; |
| 1080 | xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); |
| 1081 | } |
| 1082 | set_pud(pud, __pud(0)); |
| 1083 | xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); |
| 1084 | } |
| 1085 | |
| 1086 | static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) |
| 1087 | { |
| 1088 | unsigned long pa; |
| 1089 | pud_t *pud_tbl; |
| 1090 | int i; |
| 1091 | |
| 1092 | if (p4d_large(*p4d)) { |
| 1093 | pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; |
| 1094 | xen_free_ro_pages(pa, P4D_SIZE); |
| 1095 | return; |
| 1096 | } |
| 1097 | |
| 1098 | pud_tbl = pud_offset(p4d, 0); |
| 1099 | for (i = 0; i < PTRS_PER_PUD; i++) { |
| 1100 | if (pud_none(pud_tbl[i])) |
| 1101 | continue; |
| 1102 | xen_cleanmfnmap_pud(pud_tbl + i, unpin); |
| 1103 | } |
| 1104 | set_p4d(p4d, __p4d(0)); |
| 1105 | xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); |
| 1106 | } |
| 1107 | |
| 1108 | /* |
| 1109 | * Since it is well isolated we can (and since it is perhaps large we should) |
| 1110 | * also free the page tables mapping the initial P->M table. |
| 1111 | */ |
| 1112 | static void __init xen_cleanmfnmap(unsigned long vaddr) |
| 1113 | { |
| 1114 | pgd_t *pgd; |
| 1115 | p4d_t *p4d; |
| 1116 | bool unpin; |
| 1117 | |
| 1118 | unpin = (vaddr == 2 * PGDIR_SIZE); |
| 1119 | vaddr &= PMD_MASK; |
| 1120 | pgd = pgd_offset_k(vaddr); |
| 1121 | p4d = p4d_offset(pgd, 0); |
| 1122 | if (!p4d_none(*p4d)) |
| 1123 | xen_cleanmfnmap_p4d(p4d, unpin); |
| 1124 | } |
| 1125 | |
| 1126 | static void __init xen_pagetable_p2m_free(void) |
| 1127 | { |
| 1128 | unsigned long size; |
| 1129 | unsigned long addr; |
| 1130 | |
| 1131 | size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); |
| 1132 | |
| 1133 | /* No memory or already called. */ |
| 1134 | if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) |
| 1135 | return; |
| 1136 | |
| 1137 | /* using __ka address and sticking INVALID_P2M_ENTRY! */ |
| 1138 | memset((void *)xen_start_info->mfn_list, 0xff, size); |
| 1139 | |
| 1140 | addr = xen_start_info->mfn_list; |
| 1141 | /* |
| 1142 | * We could be in __ka space. |
| 1143 | * We roundup to the PMD, which means that if anybody at this stage is |
| 1144 | * using the __ka address of xen_start_info or |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1145 | * xen_start_info->shared_info they are in going to crash. Fortunately |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1146 | * we have already revectored in xen_setup_kernel_pagetable. |
| 1147 | */ |
| 1148 | size = roundup(size, PMD_SIZE); |
| 1149 | |
| 1150 | if (addr >= __START_KERNEL_map) { |
| 1151 | xen_cleanhighmap(addr, addr + size); |
| 1152 | size = PAGE_ALIGN(xen_start_info->nr_pages * |
| 1153 | sizeof(unsigned long)); |
| 1154 | memblock_free(__pa(addr), size); |
| 1155 | } else { |
| 1156 | xen_cleanmfnmap(addr); |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | static void __init xen_pagetable_cleanhighmap(void) |
| 1161 | { |
| 1162 | unsigned long size; |
| 1163 | unsigned long addr; |
| 1164 | |
| 1165 | /* At this stage, cleanup_highmap has already cleaned __ka space |
| 1166 | * from _brk_limit way up to the max_pfn_mapped (which is the end of |
| 1167 | * the ramdisk). We continue on, erasing PMD entries that point to page |
| 1168 | * tables - do note that they are accessible at this stage via __va. |
| 1169 | * As Xen is aligning the memory end to a 4MB boundary, for good |
| 1170 | * measure we also round up to PMD_SIZE * 2 - which means that if |
| 1171 | * anybody is using __ka address to the initial boot-stack - and try |
| 1172 | * to use it - they are going to crash. The xen_start_info has been |
| 1173 | * taken care of already in xen_setup_kernel_pagetable. */ |
| 1174 | addr = xen_start_info->pt_base; |
| 1175 | size = xen_start_info->nr_pt_frames * PAGE_SIZE; |
| 1176 | |
| 1177 | xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2)); |
| 1178 | xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); |
| 1179 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1180 | |
| 1181 | static void __init xen_pagetable_p2m_setup(void) |
| 1182 | { |
| 1183 | xen_vmalloc_p2m_tree(); |
| 1184 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1185 | xen_pagetable_p2m_free(); |
| 1186 | |
| 1187 | xen_pagetable_cleanhighmap(); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1188 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1189 | /* And revector! Bye bye old array */ |
| 1190 | xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; |
| 1191 | } |
| 1192 | |
| 1193 | static void __init xen_pagetable_init(void) |
| 1194 | { |
| 1195 | paging_init(); |
| 1196 | xen_post_allocator_init(); |
| 1197 | |
| 1198 | xen_pagetable_p2m_setup(); |
| 1199 | |
| 1200 | /* Allocate and initialize top and mid mfn levels for p2m structure */ |
| 1201 | xen_build_mfn_list_list(); |
| 1202 | |
| 1203 | /* Remap memory freed due to conflicts with E820 map */ |
| 1204 | xen_remap_memory(); |
| 1205 | xen_setup_mfn_list_list(); |
| 1206 | } |
| 1207 | static void xen_write_cr2(unsigned long cr2) |
| 1208 | { |
| 1209 | this_cpu_read(xen_vcpu)->arch.cr2 = cr2; |
| 1210 | } |
| 1211 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1212 | static noinline void xen_flush_tlb(void) |
| 1213 | { |
| 1214 | struct mmuext_op *op; |
| 1215 | struct multicall_space mcs; |
| 1216 | |
| 1217 | preempt_disable(); |
| 1218 | |
| 1219 | mcs = xen_mc_entry(sizeof(*op)); |
| 1220 | |
| 1221 | op = mcs.args; |
| 1222 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; |
| 1223 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| 1224 | |
| 1225 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1226 | |
| 1227 | preempt_enable(); |
| 1228 | } |
| 1229 | |
| 1230 | static void xen_flush_tlb_one_user(unsigned long addr) |
| 1231 | { |
| 1232 | struct mmuext_op *op; |
| 1233 | struct multicall_space mcs; |
| 1234 | |
| 1235 | trace_xen_mmu_flush_tlb_one_user(addr); |
| 1236 | |
| 1237 | preempt_disable(); |
| 1238 | |
| 1239 | mcs = xen_mc_entry(sizeof(*op)); |
| 1240 | op = mcs.args; |
| 1241 | op->cmd = MMUEXT_INVLPG_LOCAL; |
| 1242 | op->arg1.linear_addr = addr & PAGE_MASK; |
| 1243 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| 1244 | |
| 1245 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1246 | |
| 1247 | preempt_enable(); |
| 1248 | } |
| 1249 | |
| 1250 | static void xen_flush_tlb_others(const struct cpumask *cpus, |
| 1251 | const struct flush_tlb_info *info) |
| 1252 | { |
| 1253 | struct { |
| 1254 | struct mmuext_op op; |
| 1255 | DECLARE_BITMAP(mask, NR_CPUS); |
| 1256 | } *args; |
| 1257 | struct multicall_space mcs; |
| 1258 | const size_t mc_entry_size = sizeof(args->op) + |
| 1259 | sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus()); |
| 1260 | |
| 1261 | trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end); |
| 1262 | |
| 1263 | if (cpumask_empty(cpus)) |
| 1264 | return; /* nothing to do */ |
| 1265 | |
| 1266 | mcs = xen_mc_entry(mc_entry_size); |
| 1267 | args = mcs.args; |
| 1268 | args->op.arg2.vcpumask = to_cpumask(args->mask); |
| 1269 | |
| 1270 | /* Remove us, and any offline CPUS. */ |
| 1271 | cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); |
| 1272 | cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); |
| 1273 | |
| 1274 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; |
| 1275 | if (info->end != TLB_FLUSH_ALL && |
| 1276 | (info->end - info->start) <= PAGE_SIZE) { |
| 1277 | args->op.cmd = MMUEXT_INVLPG_MULTI; |
| 1278 | args->op.arg1.linear_addr = info->start; |
| 1279 | } |
| 1280 | |
| 1281 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); |
| 1282 | |
| 1283 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1284 | } |
| 1285 | |
| 1286 | static unsigned long xen_read_cr3(void) |
| 1287 | { |
| 1288 | return this_cpu_read(xen_cr3); |
| 1289 | } |
| 1290 | |
| 1291 | static void set_current_cr3(void *v) |
| 1292 | { |
| 1293 | this_cpu_write(xen_current_cr3, (unsigned long)v); |
| 1294 | } |
| 1295 | |
| 1296 | static void __xen_write_cr3(bool kernel, unsigned long cr3) |
| 1297 | { |
| 1298 | struct mmuext_op op; |
| 1299 | unsigned long mfn; |
| 1300 | |
| 1301 | trace_xen_mmu_write_cr3(kernel, cr3); |
| 1302 | |
| 1303 | if (cr3) |
| 1304 | mfn = pfn_to_mfn(PFN_DOWN(cr3)); |
| 1305 | else |
| 1306 | mfn = 0; |
| 1307 | |
| 1308 | WARN_ON(mfn == 0 && kernel); |
| 1309 | |
| 1310 | op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; |
| 1311 | op.arg1.mfn = mfn; |
| 1312 | |
| 1313 | xen_extend_mmuext_op(&op); |
| 1314 | |
| 1315 | if (kernel) { |
| 1316 | this_cpu_write(xen_cr3, cr3); |
| 1317 | |
| 1318 | /* Update xen_current_cr3 once the batch has actually |
| 1319 | been submitted. */ |
| 1320 | xen_mc_callback(set_current_cr3, (void *)cr3); |
| 1321 | } |
| 1322 | } |
| 1323 | static void xen_write_cr3(unsigned long cr3) |
| 1324 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1325 | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); |
| 1326 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1327 | BUG_ON(preemptible()); |
| 1328 | |
| 1329 | xen_mc_batch(); /* disables interrupts */ |
| 1330 | |
| 1331 | /* Update while interrupts are disabled, so its atomic with |
| 1332 | respect to ipis */ |
| 1333 | this_cpu_write(xen_cr3, cr3); |
| 1334 | |
| 1335 | __xen_write_cr3(true, cr3); |
| 1336 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1337 | if (user_pgd) |
| 1338 | __xen_write_cr3(false, __pa(user_pgd)); |
| 1339 | else |
| 1340 | __xen_write_cr3(false, 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1341 | |
| 1342 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ |
| 1343 | } |
| 1344 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1345 | /* |
| 1346 | * At the start of the day - when Xen launches a guest, it has already |
| 1347 | * built pagetables for the guest. We diligently look over them |
| 1348 | * in xen_setup_kernel_pagetable and graft as appropriate them in the |
| 1349 | * init_top_pgt and its friends. Then when we are happy we load |
| 1350 | * the new init_top_pgt - and continue on. |
| 1351 | * |
| 1352 | * The generic code starts (start_kernel) and 'init_mem_mapping' sets |
| 1353 | * up the rest of the pagetables. When it has completed it loads the cr3. |
| 1354 | * N.B. that baremetal would start at 'start_kernel' (and the early |
| 1355 | * #PF handler would create bootstrap pagetables) - so we are running |
| 1356 | * with the same assumptions as what to do when write_cr3 is executed |
| 1357 | * at this point. |
| 1358 | * |
| 1359 | * Since there are no user-page tables at all, we have two variants |
| 1360 | * of xen_write_cr3 - the early bootup (this one), and the late one |
| 1361 | * (xen_write_cr3). The reason we have to do that is that in 64-bit |
| 1362 | * the Linux kernel and user-space are both in ring 3 while the |
| 1363 | * hypervisor is in ring 0. |
| 1364 | */ |
| 1365 | static void __init xen_write_cr3_init(unsigned long cr3) |
| 1366 | { |
| 1367 | BUG_ON(preemptible()); |
| 1368 | |
| 1369 | xen_mc_batch(); /* disables interrupts */ |
| 1370 | |
| 1371 | /* Update while interrupts are disabled, so its atomic with |
| 1372 | respect to ipis */ |
| 1373 | this_cpu_write(xen_cr3, cr3); |
| 1374 | |
| 1375 | __xen_write_cr3(true, cr3); |
| 1376 | |
| 1377 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ |
| 1378 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1379 | |
| 1380 | static int xen_pgd_alloc(struct mm_struct *mm) |
| 1381 | { |
| 1382 | pgd_t *pgd = mm->pgd; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1383 | struct page *page = virt_to_page(pgd); |
| 1384 | pgd_t *user_pgd; |
| 1385 | int ret = -ENOMEM; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1386 | |
| 1387 | BUG_ON(PagePinned(virt_to_page(pgd))); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1388 | BUG_ON(page->private != 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1389 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1390 | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); |
| 1391 | page->private = (unsigned long)user_pgd; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1392 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1393 | if (user_pgd != NULL) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1394 | #ifdef CONFIG_X86_VSYSCALL_EMULATION |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1395 | user_pgd[pgd_index(VSYSCALL_ADDR)] = |
| 1396 | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1397 | #endif |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1398 | ret = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1399 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1400 | |
| 1401 | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); |
| 1402 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1403 | return ret; |
| 1404 | } |
| 1405 | |
| 1406 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) |
| 1407 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1408 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 1409 | |
| 1410 | if (user_pgd) |
| 1411 | free_page((unsigned long)user_pgd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1412 | } |
| 1413 | |
| 1414 | /* |
| 1415 | * Init-time set_pte while constructing initial pagetables, which |
| 1416 | * doesn't allow RO page table pages to be remapped RW. |
| 1417 | * |
| 1418 | * If there is no MFN for this PFN then this page is initially |
| 1419 | * ballooned out so clear the PTE (as in decrease_reservation() in |
| 1420 | * drivers/xen/balloon.c). |
| 1421 | * |
| 1422 | * Many of these PTE updates are done on unpinned and writable pages |
| 1423 | * and doing a hypercall for these is unnecessary and expensive. At |
| 1424 | * this point it is not possible to tell if a page is pinned or not, |
| 1425 | * so always write the PTE directly and rely on Xen trapping and |
| 1426 | * emulating any updates as necessary. |
| 1427 | */ |
| 1428 | __visible pte_t xen_make_pte_init(pteval_t pte) |
| 1429 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1430 | unsigned long pfn; |
| 1431 | |
| 1432 | /* |
| 1433 | * Pages belonging to the initial p2m list mapped outside the default |
| 1434 | * address range must be mapped read-only. This region contains the |
| 1435 | * page tables for mapping the p2m list, too, and page tables MUST be |
| 1436 | * mapped read-only. |
| 1437 | */ |
| 1438 | pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; |
| 1439 | if (xen_start_info->mfn_list < __START_KERNEL_map && |
| 1440 | pfn >= xen_start_info->first_p2m_pfn && |
| 1441 | pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) |
| 1442 | pte &= ~_PAGE_RW; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1443 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1444 | pte = pte_pfn_to_mfn(pte); |
| 1445 | return native_make_pte(pte); |
| 1446 | } |
| 1447 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); |
| 1448 | |
| 1449 | static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) |
| 1450 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1451 | __xen_set_pte(ptep, pte); |
| 1452 | } |
| 1453 | |
| 1454 | /* Early in boot, while setting up the initial pagetable, assume |
| 1455 | everything is pinned. */ |
| 1456 | static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) |
| 1457 | { |
| 1458 | #ifdef CONFIG_FLATMEM |
| 1459 | BUG_ON(mem_map); /* should only be used early */ |
| 1460 | #endif |
| 1461 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); |
| 1462 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); |
| 1463 | } |
| 1464 | |
| 1465 | /* Used for pmd and pud */ |
| 1466 | static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) |
| 1467 | { |
| 1468 | #ifdef CONFIG_FLATMEM |
| 1469 | BUG_ON(mem_map); /* should only be used early */ |
| 1470 | #endif |
| 1471 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); |
| 1472 | } |
| 1473 | |
| 1474 | /* Early release_pte assumes that all pts are pinned, since there's |
| 1475 | only init_mm and anything attached to that is pinned. */ |
| 1476 | static void __init xen_release_pte_init(unsigned long pfn) |
| 1477 | { |
| 1478 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
| 1479 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 1480 | } |
| 1481 | |
| 1482 | static void __init xen_release_pmd_init(unsigned long pfn) |
| 1483 | { |
| 1484 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 1485 | } |
| 1486 | |
| 1487 | static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
| 1488 | { |
| 1489 | struct multicall_space mcs; |
| 1490 | struct mmuext_op *op; |
| 1491 | |
| 1492 | mcs = __xen_mc_entry(sizeof(*op)); |
| 1493 | op = mcs.args; |
| 1494 | op->cmd = cmd; |
| 1495 | op->arg1.mfn = pfn_to_mfn(pfn); |
| 1496 | |
| 1497 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 1498 | } |
| 1499 | |
| 1500 | static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) |
| 1501 | { |
| 1502 | struct multicall_space mcs; |
| 1503 | unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); |
| 1504 | |
| 1505 | mcs = __xen_mc_entry(0); |
| 1506 | MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, |
| 1507 | pfn_pte(pfn, prot), 0); |
| 1508 | } |
| 1509 | |
| 1510 | /* This needs to make sure the new pte page is pinned iff its being |
| 1511 | attached to a pinned pagetable. */ |
| 1512 | static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, |
| 1513 | unsigned level) |
| 1514 | { |
| 1515 | bool pinned = xen_page_pinned(mm->pgd); |
| 1516 | |
| 1517 | trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); |
| 1518 | |
| 1519 | if (pinned) { |
| 1520 | struct page *page = pfn_to_page(pfn); |
| 1521 | |
| 1522 | if (static_branch_likely(&xen_struct_pages_ready)) |
| 1523 | SetPagePinned(page); |
| 1524 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1525 | xen_mc_batch(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1526 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1527 | __set_pfn_prot(pfn, PAGE_KERNEL_RO); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1528 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1529 | if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) |
| 1530 | __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1531 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1532 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1533 | } |
| 1534 | } |
| 1535 | |
| 1536 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) |
| 1537 | { |
| 1538 | xen_alloc_ptpage(mm, pfn, PT_PTE); |
| 1539 | } |
| 1540 | |
| 1541 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) |
| 1542 | { |
| 1543 | xen_alloc_ptpage(mm, pfn, PT_PMD); |
| 1544 | } |
| 1545 | |
| 1546 | /* This should never happen until we're OK to use struct page */ |
| 1547 | static inline void xen_release_ptpage(unsigned long pfn, unsigned level) |
| 1548 | { |
| 1549 | struct page *page = pfn_to_page(pfn); |
| 1550 | bool pinned = PagePinned(page); |
| 1551 | |
| 1552 | trace_xen_mmu_release_ptpage(pfn, level, pinned); |
| 1553 | |
| 1554 | if (pinned) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1555 | xen_mc_batch(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1556 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1557 | if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) |
| 1558 | __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1559 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1560 | __set_pfn_prot(pfn, PAGE_KERNEL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1561 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1562 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1563 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1564 | ClearPagePinned(page); |
| 1565 | } |
| 1566 | } |
| 1567 | |
| 1568 | static void xen_release_pte(unsigned long pfn) |
| 1569 | { |
| 1570 | xen_release_ptpage(pfn, PT_PTE); |
| 1571 | } |
| 1572 | |
| 1573 | static void xen_release_pmd(unsigned long pfn) |
| 1574 | { |
| 1575 | xen_release_ptpage(pfn, PT_PMD); |
| 1576 | } |
| 1577 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1578 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) |
| 1579 | { |
| 1580 | xen_alloc_ptpage(mm, pfn, PT_PUD); |
| 1581 | } |
| 1582 | |
| 1583 | static void xen_release_pud(unsigned long pfn) |
| 1584 | { |
| 1585 | xen_release_ptpage(pfn, PT_PUD); |
| 1586 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1587 | |
| 1588 | /* |
| 1589 | * Like __va(), but returns address in the kernel mapping (which is |
| 1590 | * all we have until the physical memory mapping has been set up. |
| 1591 | */ |
| 1592 | static void * __init __ka(phys_addr_t paddr) |
| 1593 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1594 | return (void *)(paddr + __START_KERNEL_map); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1595 | } |
| 1596 | |
| 1597 | /* Convert a machine address to physical address */ |
| 1598 | static unsigned long __init m2p(phys_addr_t maddr) |
| 1599 | { |
| 1600 | phys_addr_t paddr; |
| 1601 | |
| 1602 | maddr &= XEN_PTE_MFN_MASK; |
| 1603 | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; |
| 1604 | |
| 1605 | return paddr; |
| 1606 | } |
| 1607 | |
| 1608 | /* Convert a machine address to kernel virtual */ |
| 1609 | static void * __init m2v(phys_addr_t maddr) |
| 1610 | { |
| 1611 | return __ka(m2p(maddr)); |
| 1612 | } |
| 1613 | |
| 1614 | /* Set the page permissions on an identity-mapped pages */ |
| 1615 | static void __init set_page_prot_flags(void *addr, pgprot_t prot, |
| 1616 | unsigned long flags) |
| 1617 | { |
| 1618 | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; |
| 1619 | pte_t pte = pfn_pte(pfn, prot); |
| 1620 | |
| 1621 | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) |
| 1622 | BUG(); |
| 1623 | } |
| 1624 | static void __init set_page_prot(void *addr, pgprot_t prot) |
| 1625 | { |
| 1626 | return set_page_prot_flags(addr, prot, UVMF_NONE); |
| 1627 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1628 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1629 | void __init xen_setup_machphys_mapping(void) |
| 1630 | { |
| 1631 | struct xen_machphys_mapping mapping; |
| 1632 | |
| 1633 | if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { |
| 1634 | machine_to_phys_mapping = (unsigned long *)mapping.v_start; |
| 1635 | machine_to_phys_nr = mapping.max_mfn + 1; |
| 1636 | } else { |
| 1637 | machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; |
| 1638 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1639 | } |
| 1640 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1641 | static void __init convert_pfn_mfn(void *v) |
| 1642 | { |
| 1643 | pte_t *pte = v; |
| 1644 | int i; |
| 1645 | |
| 1646 | /* All levels are converted the same way, so just treat them |
| 1647 | as ptes. */ |
| 1648 | for (i = 0; i < PTRS_PER_PTE; i++) |
| 1649 | pte[i] = xen_make_pte(pte[i].pte); |
| 1650 | } |
| 1651 | static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, |
| 1652 | unsigned long addr) |
| 1653 | { |
| 1654 | if (*pt_base == PFN_DOWN(__pa(addr))) { |
| 1655 | set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); |
| 1656 | clear_page((void *)addr); |
| 1657 | (*pt_base)++; |
| 1658 | } |
| 1659 | if (*pt_end == PFN_DOWN(__pa(addr))) { |
| 1660 | set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); |
| 1661 | clear_page((void *)addr); |
| 1662 | (*pt_end)--; |
| 1663 | } |
| 1664 | } |
| 1665 | /* |
| 1666 | * Set up the initial kernel pagetable. |
| 1667 | * |
| 1668 | * We can construct this by grafting the Xen provided pagetable into |
| 1669 | * head_64.S's preconstructed pagetables. We copy the Xen L2's into |
| 1670 | * level2_ident_pgt, and level2_kernel_pgt. This means that only the |
| 1671 | * kernel has a physical mapping to start with - but that's enough to |
| 1672 | * get __va working. We need to fill in the rest of the physical |
| 1673 | * mapping once some sort of allocator has been set up. |
| 1674 | */ |
| 1675 | void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) |
| 1676 | { |
| 1677 | pud_t *l3; |
| 1678 | pmd_t *l2; |
| 1679 | unsigned long addr[3]; |
| 1680 | unsigned long pt_base, pt_end; |
| 1681 | unsigned i; |
| 1682 | |
| 1683 | /* max_pfn_mapped is the last pfn mapped in the initial memory |
| 1684 | * mappings. Considering that on Xen after the kernel mappings we |
| 1685 | * have the mappings of some pages that don't exist in pfn space, we |
| 1686 | * set max_pfn_mapped to the last real pfn mapped. */ |
| 1687 | if (xen_start_info->mfn_list < __START_KERNEL_map) |
| 1688 | max_pfn_mapped = xen_start_info->first_p2m_pfn; |
| 1689 | else |
| 1690 | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); |
| 1691 | |
| 1692 | pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); |
| 1693 | pt_end = pt_base + xen_start_info->nr_pt_frames; |
| 1694 | |
| 1695 | /* Zap identity mapping */ |
| 1696 | init_top_pgt[0] = __pgd(0); |
| 1697 | |
| 1698 | /* Pre-constructed entries are in pfn, so convert to mfn */ |
| 1699 | /* L4[273] -> level3_ident_pgt */ |
| 1700 | /* L4[511] -> level3_kernel_pgt */ |
| 1701 | convert_pfn_mfn(init_top_pgt); |
| 1702 | |
| 1703 | /* L3_i[0] -> level2_ident_pgt */ |
| 1704 | convert_pfn_mfn(level3_ident_pgt); |
| 1705 | /* L3_k[510] -> level2_kernel_pgt */ |
| 1706 | /* L3_k[511] -> level2_fixmap_pgt */ |
| 1707 | convert_pfn_mfn(level3_kernel_pgt); |
| 1708 | |
| 1709 | /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */ |
| 1710 | convert_pfn_mfn(level2_fixmap_pgt); |
| 1711 | |
| 1712 | /* We get [511][511] and have Xen's version of level2_kernel_pgt */ |
| 1713 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); |
| 1714 | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); |
| 1715 | |
| 1716 | addr[0] = (unsigned long)pgd; |
| 1717 | addr[1] = (unsigned long)l3; |
| 1718 | addr[2] = (unsigned long)l2; |
| 1719 | /* Graft it onto L4[273][0]. Note that we creating an aliasing problem: |
| 1720 | * Both L4[273][0] and L4[511][510] have entries that point to the same |
| 1721 | * L2 (PMD) tables. Meaning that if you modify it in __va space |
| 1722 | * it will be also modified in the __ka space! (But if you just |
| 1723 | * modify the PMD table to point to other PTE's or none, then you |
| 1724 | * are OK - which is what cleanup_highmap does) */ |
| 1725 | copy_page(level2_ident_pgt, l2); |
| 1726 | /* Graft it onto L4[511][510] */ |
| 1727 | copy_page(level2_kernel_pgt, l2); |
| 1728 | |
| 1729 | /* |
| 1730 | * Zap execute permission from the ident map. Due to the sharing of |
| 1731 | * L1 entries we need to do this in the L2. |
| 1732 | */ |
| 1733 | if (__supported_pte_mask & _PAGE_NX) { |
| 1734 | for (i = 0; i < PTRS_PER_PMD; ++i) { |
| 1735 | if (pmd_none(level2_ident_pgt[i])) |
| 1736 | continue; |
| 1737 | level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX); |
| 1738 | } |
| 1739 | } |
| 1740 | |
| 1741 | /* Copy the initial P->M table mappings if necessary. */ |
| 1742 | i = pgd_index(xen_start_info->mfn_list); |
| 1743 | if (i && i < pgd_index(__START_KERNEL_map)) |
| 1744 | init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; |
| 1745 | |
| 1746 | /* Make pagetable pieces RO */ |
| 1747 | set_page_prot(init_top_pgt, PAGE_KERNEL_RO); |
| 1748 | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); |
| 1749 | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); |
| 1750 | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); |
| 1751 | set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); |
| 1752 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); |
| 1753 | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); |
| 1754 | |
| 1755 | for (i = 0; i < FIXMAP_PMD_NUM; i++) { |
| 1756 | set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE, |
| 1757 | PAGE_KERNEL_RO); |
| 1758 | } |
| 1759 | |
| 1760 | /* Pin down new L4 */ |
| 1761 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, |
| 1762 | PFN_DOWN(__pa_symbol(init_top_pgt))); |
| 1763 | |
| 1764 | /* Unpin Xen-provided one */ |
| 1765 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
| 1766 | |
| 1767 | /* |
| 1768 | * At this stage there can be no user pgd, and no page structure to |
| 1769 | * attach it to, so make sure we just set kernel pgd. |
| 1770 | */ |
| 1771 | xen_mc_batch(); |
| 1772 | __xen_write_cr3(true, __pa(init_top_pgt)); |
| 1773 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
| 1774 | |
| 1775 | /* We can't that easily rip out L3 and L2, as the Xen pagetables are |
| 1776 | * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for |
| 1777 | * the initial domain. For guests using the toolstack, they are in: |
| 1778 | * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only |
| 1779 | * rip out the [L4] (pgd), but for guests we shave off three pages. |
| 1780 | */ |
| 1781 | for (i = 0; i < ARRAY_SIZE(addr); i++) |
| 1782 | check_pt_base(&pt_base, &pt_end, addr[i]); |
| 1783 | |
| 1784 | /* Our (by three pages) smaller Xen pagetable that we are using */ |
| 1785 | xen_pt_base = PFN_PHYS(pt_base); |
| 1786 | xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; |
| 1787 | memblock_reserve(xen_pt_base, xen_pt_size); |
| 1788 | |
| 1789 | /* Revector the xen_start_info */ |
| 1790 | xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); |
| 1791 | } |
| 1792 | |
| 1793 | /* |
| 1794 | * Read a value from a physical address. |
| 1795 | */ |
| 1796 | static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) |
| 1797 | { |
| 1798 | unsigned long *vaddr; |
| 1799 | unsigned long val; |
| 1800 | |
| 1801 | vaddr = early_memremap_ro(addr, sizeof(val)); |
| 1802 | val = *vaddr; |
| 1803 | early_memunmap(vaddr, sizeof(val)); |
| 1804 | return val; |
| 1805 | } |
| 1806 | |
| 1807 | /* |
| 1808 | * Translate a virtual address to a physical one without relying on mapped |
| 1809 | * page tables. Don't rely on big pages being aligned in (guest) physical |
| 1810 | * space! |
| 1811 | */ |
| 1812 | static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) |
| 1813 | { |
| 1814 | phys_addr_t pa; |
| 1815 | pgd_t pgd; |
| 1816 | pud_t pud; |
| 1817 | pmd_t pmd; |
| 1818 | pte_t pte; |
| 1819 | |
| 1820 | pa = read_cr3_pa(); |
| 1821 | pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * |
| 1822 | sizeof(pgd))); |
| 1823 | if (!pgd_present(pgd)) |
| 1824 | return 0; |
| 1825 | |
| 1826 | pa = pgd_val(pgd) & PTE_PFN_MASK; |
| 1827 | pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * |
| 1828 | sizeof(pud))); |
| 1829 | if (!pud_present(pud)) |
| 1830 | return 0; |
| 1831 | pa = pud_val(pud) & PTE_PFN_MASK; |
| 1832 | if (pud_large(pud)) |
| 1833 | return pa + (vaddr & ~PUD_MASK); |
| 1834 | |
| 1835 | pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * |
| 1836 | sizeof(pmd))); |
| 1837 | if (!pmd_present(pmd)) |
| 1838 | return 0; |
| 1839 | pa = pmd_val(pmd) & PTE_PFN_MASK; |
| 1840 | if (pmd_large(pmd)) |
| 1841 | return pa + (vaddr & ~PMD_MASK); |
| 1842 | |
| 1843 | pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * |
| 1844 | sizeof(pte))); |
| 1845 | if (!pte_present(pte)) |
| 1846 | return 0; |
| 1847 | pa = pte_pfn(pte) << PAGE_SHIFT; |
| 1848 | |
| 1849 | return pa | (vaddr & ~PAGE_MASK); |
| 1850 | } |
| 1851 | |
| 1852 | /* |
| 1853 | * Find a new area for the hypervisor supplied p2m list and relocate the p2m to |
| 1854 | * this area. |
| 1855 | */ |
| 1856 | void __init xen_relocate_p2m(void) |
| 1857 | { |
| 1858 | phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys; |
| 1859 | unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; |
| 1860 | int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud; |
| 1861 | pte_t *pt; |
| 1862 | pmd_t *pmd; |
| 1863 | pud_t *pud; |
| 1864 | pgd_t *pgd; |
| 1865 | unsigned long *new_p2m; |
| 1866 | |
| 1867 | size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); |
| 1868 | n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; |
| 1869 | n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; |
| 1870 | n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; |
| 1871 | n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; |
| 1872 | n_frames = n_pte + n_pt + n_pmd + n_pud; |
| 1873 | |
| 1874 | new_area = xen_find_free_area(PFN_PHYS(n_frames)); |
| 1875 | if (!new_area) { |
| 1876 | xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); |
| 1877 | BUG(); |
| 1878 | } |
| 1879 | |
| 1880 | /* |
| 1881 | * Setup the page tables for addressing the new p2m list. |
| 1882 | * We have asked the hypervisor to map the p2m list at the user address |
| 1883 | * PUD_SIZE. It may have done so, or it may have used a kernel space |
| 1884 | * address depending on the Xen version. |
| 1885 | * To avoid any possible virtual address collision, just use |
| 1886 | * 2 * PUD_SIZE for the new area. |
| 1887 | */ |
| 1888 | pud_phys = new_area; |
| 1889 | pmd_phys = pud_phys + PFN_PHYS(n_pud); |
| 1890 | pt_phys = pmd_phys + PFN_PHYS(n_pmd); |
| 1891 | p2m_pfn = PFN_DOWN(pt_phys) + n_pt; |
| 1892 | |
| 1893 | pgd = __va(read_cr3_pa()); |
| 1894 | new_p2m = (unsigned long *)(2 * PGDIR_SIZE); |
| 1895 | for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { |
| 1896 | pud = early_memremap(pud_phys, PAGE_SIZE); |
| 1897 | clear_page(pud); |
| 1898 | for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); |
| 1899 | idx_pmd++) { |
| 1900 | pmd = early_memremap(pmd_phys, PAGE_SIZE); |
| 1901 | clear_page(pmd); |
| 1902 | for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); |
| 1903 | idx_pt++) { |
| 1904 | pt = early_memremap(pt_phys, PAGE_SIZE); |
| 1905 | clear_page(pt); |
| 1906 | for (idx_pte = 0; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1907 | idx_pte < min(n_pte, PTRS_PER_PTE); |
| 1908 | idx_pte++) { |
| 1909 | pt[idx_pte] = pfn_pte(p2m_pfn, |
| 1910 | PAGE_KERNEL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1911 | p2m_pfn++; |
| 1912 | } |
| 1913 | n_pte -= PTRS_PER_PTE; |
| 1914 | early_memunmap(pt, PAGE_SIZE); |
| 1915 | make_lowmem_page_readonly(__va(pt_phys)); |
| 1916 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, |
| 1917 | PFN_DOWN(pt_phys)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1918 | pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1919 | pt_phys += PAGE_SIZE; |
| 1920 | } |
| 1921 | n_pt -= PTRS_PER_PMD; |
| 1922 | early_memunmap(pmd, PAGE_SIZE); |
| 1923 | make_lowmem_page_readonly(__va(pmd_phys)); |
| 1924 | pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, |
| 1925 | PFN_DOWN(pmd_phys)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1926 | pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1927 | pmd_phys += PAGE_SIZE; |
| 1928 | } |
| 1929 | n_pmd -= PTRS_PER_PUD; |
| 1930 | early_memunmap(pud, PAGE_SIZE); |
| 1931 | make_lowmem_page_readonly(__va(pud_phys)); |
| 1932 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); |
| 1933 | set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); |
| 1934 | pud_phys += PAGE_SIZE; |
| 1935 | } |
| 1936 | |
| 1937 | /* Now copy the old p2m info to the new area. */ |
| 1938 | memcpy(new_p2m, xen_p2m_addr, size); |
| 1939 | xen_p2m_addr = new_p2m; |
| 1940 | |
| 1941 | /* Release the old p2m list and set new list info. */ |
| 1942 | p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); |
| 1943 | BUG_ON(!p2m_pfn); |
| 1944 | p2m_pfn_end = p2m_pfn + PFN_DOWN(size); |
| 1945 | |
| 1946 | if (xen_start_info->mfn_list < __START_KERNEL_map) { |
| 1947 | pfn = xen_start_info->first_p2m_pfn; |
| 1948 | pfn_end = xen_start_info->first_p2m_pfn + |
| 1949 | xen_start_info->nr_p2m_frames; |
| 1950 | set_pgd(pgd + 1, __pgd(0)); |
| 1951 | } else { |
| 1952 | pfn = p2m_pfn; |
| 1953 | pfn_end = p2m_pfn_end; |
| 1954 | } |
| 1955 | |
| 1956 | memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); |
| 1957 | while (pfn < pfn_end) { |
| 1958 | if (pfn == p2m_pfn) { |
| 1959 | pfn = p2m_pfn_end; |
| 1960 | continue; |
| 1961 | } |
| 1962 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 1963 | pfn++; |
| 1964 | } |
| 1965 | |
| 1966 | xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; |
| 1967 | xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); |
| 1968 | xen_start_info->nr_p2m_frames = n_frames; |
| 1969 | } |
| 1970 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1971 | void __init xen_reserve_special_pages(void) |
| 1972 | { |
| 1973 | phys_addr_t paddr; |
| 1974 | |
| 1975 | memblock_reserve(__pa(xen_start_info), PAGE_SIZE); |
| 1976 | if (xen_start_info->store_mfn) { |
| 1977 | paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); |
| 1978 | memblock_reserve(paddr, PAGE_SIZE); |
| 1979 | } |
| 1980 | if (!xen_initial_domain()) { |
| 1981 | paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); |
| 1982 | memblock_reserve(paddr, PAGE_SIZE); |
| 1983 | } |
| 1984 | } |
| 1985 | |
| 1986 | void __init xen_pt_check_e820(void) |
| 1987 | { |
| 1988 | if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { |
| 1989 | xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); |
| 1990 | BUG(); |
| 1991 | } |
| 1992 | } |
| 1993 | |
| 1994 | static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; |
| 1995 | |
| 1996 | static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) |
| 1997 | { |
| 1998 | pte_t pte; |
| 1999 | |
| 2000 | phys >>= PAGE_SHIFT; |
| 2001 | |
| 2002 | switch (idx) { |
| 2003 | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2004 | #ifdef CONFIG_X86_VSYSCALL_EMULATION |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2005 | case VSYSCALL_PAGE: |
| 2006 | #endif |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2007 | /* All local page mappings */ |
| 2008 | pte = pfn_pte(phys, prot); |
| 2009 | break; |
| 2010 | |
| 2011 | #ifdef CONFIG_X86_LOCAL_APIC |
| 2012 | case FIX_APIC_BASE: /* maps dummy local APIC */ |
| 2013 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); |
| 2014 | break; |
| 2015 | #endif |
| 2016 | |
| 2017 | #ifdef CONFIG_X86_IO_APIC |
| 2018 | case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: |
| 2019 | /* |
| 2020 | * We just don't map the IO APIC - all access is via |
| 2021 | * hypercalls. Keep the address in the pte for reference. |
| 2022 | */ |
| 2023 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); |
| 2024 | break; |
| 2025 | #endif |
| 2026 | |
| 2027 | case FIX_PARAVIRT_BOOTMAP: |
| 2028 | /* This is an MFN, but it isn't an IO mapping from the |
| 2029 | IO domain */ |
| 2030 | pte = mfn_pte(phys, prot); |
| 2031 | break; |
| 2032 | |
| 2033 | default: |
| 2034 | /* By default, set_fixmap is used for hardware mappings */ |
| 2035 | pte = mfn_pte(phys, prot); |
| 2036 | break; |
| 2037 | } |
| 2038 | |
| 2039 | __native_set_fixmap(idx, pte); |
| 2040 | |
| 2041 | #ifdef CONFIG_X86_VSYSCALL_EMULATION |
| 2042 | /* Replicate changes to map the vsyscall page into the user |
| 2043 | pagetable vsyscall mapping. */ |
| 2044 | if (idx == VSYSCALL_PAGE) { |
| 2045 | unsigned long vaddr = __fix_to_virt(idx); |
| 2046 | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); |
| 2047 | } |
| 2048 | #endif |
| 2049 | } |
| 2050 | |
| 2051 | static void __init xen_post_allocator_init(void) |
| 2052 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2053 | pv_ops.mmu.set_pte = xen_set_pte; |
| 2054 | pv_ops.mmu.set_pmd = xen_set_pmd; |
| 2055 | pv_ops.mmu.set_pud = xen_set_pud; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2056 | pv_ops.mmu.set_p4d = xen_set_p4d; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2057 | |
| 2058 | /* This will work as long as patching hasn't happened yet |
| 2059 | (which it hasn't) */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2060 | pv_ops.mmu.alloc_pte = xen_alloc_pte; |
| 2061 | pv_ops.mmu.alloc_pmd = xen_alloc_pmd; |
| 2062 | pv_ops.mmu.release_pte = xen_release_pte; |
| 2063 | pv_ops.mmu.release_pmd = xen_release_pmd; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2064 | pv_ops.mmu.alloc_pud = xen_alloc_pud; |
| 2065 | pv_ops.mmu.release_pud = xen_release_pud; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2066 | pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2067 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2068 | pv_ops.mmu.write_cr3 = &xen_write_cr3; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2069 | } |
| 2070 | |
| 2071 | static void xen_leave_lazy_mmu(void) |
| 2072 | { |
| 2073 | preempt_disable(); |
| 2074 | xen_mc_flush(); |
| 2075 | paravirt_leave_lazy_mmu(); |
| 2076 | preempt_enable(); |
| 2077 | } |
| 2078 | |
| 2079 | static const struct pv_mmu_ops xen_mmu_ops __initconst = { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2080 | .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2), |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2081 | .write_cr2 = xen_write_cr2, |
| 2082 | |
| 2083 | .read_cr3 = xen_read_cr3, |
| 2084 | .write_cr3 = xen_write_cr3_init, |
| 2085 | |
| 2086 | .flush_tlb_user = xen_flush_tlb, |
| 2087 | .flush_tlb_kernel = xen_flush_tlb, |
| 2088 | .flush_tlb_one_user = xen_flush_tlb_one_user, |
| 2089 | .flush_tlb_others = xen_flush_tlb_others, |
| 2090 | .tlb_remove_table = tlb_remove_table, |
| 2091 | |
| 2092 | .pgd_alloc = xen_pgd_alloc, |
| 2093 | .pgd_free = xen_pgd_free, |
| 2094 | |
| 2095 | .alloc_pte = xen_alloc_pte_init, |
| 2096 | .release_pte = xen_release_pte_init, |
| 2097 | .alloc_pmd = xen_alloc_pmd_init, |
| 2098 | .release_pmd = xen_release_pmd_init, |
| 2099 | |
| 2100 | .set_pte = xen_set_pte_init, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2101 | .set_pmd = xen_set_pmd_hyper, |
| 2102 | |
| 2103 | .ptep_modify_prot_start = __ptep_modify_prot_start, |
| 2104 | .ptep_modify_prot_commit = __ptep_modify_prot_commit, |
| 2105 | |
| 2106 | .pte_val = PV_CALLEE_SAVE(xen_pte_val), |
| 2107 | .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), |
| 2108 | |
| 2109 | .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), |
| 2110 | .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), |
| 2111 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2112 | .set_pud = xen_set_pud_hyper, |
| 2113 | |
| 2114 | .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), |
| 2115 | .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), |
| 2116 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2117 | .pud_val = PV_CALLEE_SAVE(xen_pud_val), |
| 2118 | .make_pud = PV_CALLEE_SAVE(xen_make_pud), |
| 2119 | .set_p4d = xen_set_p4d_hyper, |
| 2120 | |
| 2121 | .alloc_pud = xen_alloc_pmd_init, |
| 2122 | .release_pud = xen_release_pmd_init, |
| 2123 | |
| 2124 | #if CONFIG_PGTABLE_LEVELS >= 5 |
| 2125 | .p4d_val = PV_CALLEE_SAVE(xen_p4d_val), |
| 2126 | .make_p4d = PV_CALLEE_SAVE(xen_make_p4d), |
| 2127 | #endif |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2128 | |
| 2129 | .activate_mm = xen_activate_mm, |
| 2130 | .dup_mmap = xen_dup_mmap, |
| 2131 | .exit_mmap = xen_exit_mmap, |
| 2132 | |
| 2133 | .lazy_mode = { |
| 2134 | .enter = paravirt_enter_lazy_mmu, |
| 2135 | .leave = xen_leave_lazy_mmu, |
| 2136 | .flush = paravirt_flush_lazy_mmu, |
| 2137 | }, |
| 2138 | |
| 2139 | .set_fixmap = xen_set_fixmap, |
| 2140 | }; |
| 2141 | |
| 2142 | void __init xen_init_mmu_ops(void) |
| 2143 | { |
| 2144 | x86_init.paging.pagetable_init = xen_pagetable_init; |
| 2145 | x86_init.hyper.init_after_bootmem = xen_after_bootmem; |
| 2146 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2147 | pv_ops.mmu = xen_mmu_ops; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2148 | |
| 2149 | memset(dummy_mapping, 0xff, PAGE_SIZE); |
| 2150 | } |
| 2151 | |
| 2152 | /* Protected by xen_reservation_lock. */ |
| 2153 | #define MAX_CONTIG_ORDER 9 /* 2MB */ |
| 2154 | static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; |
| 2155 | |
| 2156 | #define VOID_PTE (mfn_pte(0, __pgprot(0))) |
| 2157 | static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, |
| 2158 | unsigned long *in_frames, |
| 2159 | unsigned long *out_frames) |
| 2160 | { |
| 2161 | int i; |
| 2162 | struct multicall_space mcs; |
| 2163 | |
| 2164 | xen_mc_batch(); |
| 2165 | for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { |
| 2166 | mcs = __xen_mc_entry(0); |
| 2167 | |
| 2168 | if (in_frames) |
| 2169 | in_frames[i] = virt_to_mfn(vaddr); |
| 2170 | |
| 2171 | MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); |
| 2172 | __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); |
| 2173 | |
| 2174 | if (out_frames) |
| 2175 | out_frames[i] = virt_to_pfn(vaddr); |
| 2176 | } |
| 2177 | xen_mc_issue(0); |
| 2178 | } |
| 2179 | |
| 2180 | /* |
| 2181 | * Update the pfn-to-mfn mappings for a virtual address range, either to |
| 2182 | * point to an array of mfns, or contiguously from a single starting |
| 2183 | * mfn. |
| 2184 | */ |
| 2185 | static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, |
| 2186 | unsigned long *mfns, |
| 2187 | unsigned long first_mfn) |
| 2188 | { |
| 2189 | unsigned i, limit; |
| 2190 | unsigned long mfn; |
| 2191 | |
| 2192 | xen_mc_batch(); |
| 2193 | |
| 2194 | limit = 1u << order; |
| 2195 | for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { |
| 2196 | struct multicall_space mcs; |
| 2197 | unsigned flags; |
| 2198 | |
| 2199 | mcs = __xen_mc_entry(0); |
| 2200 | if (mfns) |
| 2201 | mfn = mfns[i]; |
| 2202 | else |
| 2203 | mfn = first_mfn + i; |
| 2204 | |
| 2205 | if (i < (limit - 1)) |
| 2206 | flags = 0; |
| 2207 | else { |
| 2208 | if (order == 0) |
| 2209 | flags = UVMF_INVLPG | UVMF_ALL; |
| 2210 | else |
| 2211 | flags = UVMF_TLB_FLUSH | UVMF_ALL; |
| 2212 | } |
| 2213 | |
| 2214 | MULTI_update_va_mapping(mcs.mc, vaddr, |
| 2215 | mfn_pte(mfn, PAGE_KERNEL), flags); |
| 2216 | |
| 2217 | set_phys_to_machine(virt_to_pfn(vaddr), mfn); |
| 2218 | } |
| 2219 | |
| 2220 | xen_mc_issue(0); |
| 2221 | } |
| 2222 | |
| 2223 | /* |
| 2224 | * Perform the hypercall to exchange a region of our pfns to point to |
| 2225 | * memory with the required contiguous alignment. Takes the pfns as |
| 2226 | * input, and populates mfns as output. |
| 2227 | * |
| 2228 | * Returns a success code indicating whether the hypervisor was able to |
| 2229 | * satisfy the request or not. |
| 2230 | */ |
| 2231 | static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, |
| 2232 | unsigned long *pfns_in, |
| 2233 | unsigned long extents_out, |
| 2234 | unsigned int order_out, |
| 2235 | unsigned long *mfns_out, |
| 2236 | unsigned int address_bits) |
| 2237 | { |
| 2238 | long rc; |
| 2239 | int success; |
| 2240 | |
| 2241 | struct xen_memory_exchange exchange = { |
| 2242 | .in = { |
| 2243 | .nr_extents = extents_in, |
| 2244 | .extent_order = order_in, |
| 2245 | .extent_start = pfns_in, |
| 2246 | .domid = DOMID_SELF |
| 2247 | }, |
| 2248 | .out = { |
| 2249 | .nr_extents = extents_out, |
| 2250 | .extent_order = order_out, |
| 2251 | .extent_start = mfns_out, |
| 2252 | .address_bits = address_bits, |
| 2253 | .domid = DOMID_SELF |
| 2254 | } |
| 2255 | }; |
| 2256 | |
| 2257 | BUG_ON(extents_in << order_in != extents_out << order_out); |
| 2258 | |
| 2259 | rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); |
| 2260 | success = (exchange.nr_exchanged == extents_in); |
| 2261 | |
| 2262 | BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); |
| 2263 | BUG_ON(success && (rc != 0)); |
| 2264 | |
| 2265 | return success; |
| 2266 | } |
| 2267 | |
| 2268 | int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, |
| 2269 | unsigned int address_bits, |
| 2270 | dma_addr_t *dma_handle) |
| 2271 | { |
| 2272 | unsigned long *in_frames = discontig_frames, out_frame; |
| 2273 | unsigned long flags; |
| 2274 | int success; |
| 2275 | unsigned long vstart = (unsigned long)phys_to_virt(pstart); |
| 2276 | |
| 2277 | /* |
| 2278 | * Currently an auto-translated guest will not perform I/O, nor will |
| 2279 | * it require PAE page directories below 4GB. Therefore any calls to |
| 2280 | * this function are redundant and can be ignored. |
| 2281 | */ |
| 2282 | |
| 2283 | if (unlikely(order > MAX_CONTIG_ORDER)) |
| 2284 | return -ENOMEM; |
| 2285 | |
| 2286 | memset((void *) vstart, 0, PAGE_SIZE << order); |
| 2287 | |
| 2288 | spin_lock_irqsave(&xen_reservation_lock, flags); |
| 2289 | |
| 2290 | /* 1. Zap current PTEs, remembering MFNs. */ |
| 2291 | xen_zap_pfn_range(vstart, order, in_frames, NULL); |
| 2292 | |
| 2293 | /* 2. Get a new contiguous memory extent. */ |
| 2294 | out_frame = virt_to_pfn(vstart); |
| 2295 | success = xen_exchange_memory(1UL << order, 0, in_frames, |
| 2296 | 1, order, &out_frame, |
| 2297 | address_bits); |
| 2298 | |
| 2299 | /* 3. Map the new extent in place of old pages. */ |
| 2300 | if (success) |
| 2301 | xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); |
| 2302 | else |
| 2303 | xen_remap_exchanged_ptes(vstart, order, in_frames, 0); |
| 2304 | |
| 2305 | spin_unlock_irqrestore(&xen_reservation_lock, flags); |
| 2306 | |
| 2307 | *dma_handle = virt_to_machine(vstart).maddr; |
| 2308 | return success ? 0 : -ENOMEM; |
| 2309 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2310 | |
| 2311 | void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) |
| 2312 | { |
| 2313 | unsigned long *out_frames = discontig_frames, in_frame; |
| 2314 | unsigned long flags; |
| 2315 | int success; |
| 2316 | unsigned long vstart; |
| 2317 | |
| 2318 | if (unlikely(order > MAX_CONTIG_ORDER)) |
| 2319 | return; |
| 2320 | |
| 2321 | vstart = (unsigned long)phys_to_virt(pstart); |
| 2322 | memset((void *) vstart, 0, PAGE_SIZE << order); |
| 2323 | |
| 2324 | spin_lock_irqsave(&xen_reservation_lock, flags); |
| 2325 | |
| 2326 | /* 1. Find start MFN of contiguous extent. */ |
| 2327 | in_frame = virt_to_mfn(vstart); |
| 2328 | |
| 2329 | /* 2. Zap current PTEs. */ |
| 2330 | xen_zap_pfn_range(vstart, order, NULL, out_frames); |
| 2331 | |
| 2332 | /* 3. Do the exchange for non-contiguous MFNs. */ |
| 2333 | success = xen_exchange_memory(1, order, &in_frame, 1UL << order, |
| 2334 | 0, out_frames, 0); |
| 2335 | |
| 2336 | /* 4. Map new pages in place of old pages. */ |
| 2337 | if (success) |
| 2338 | xen_remap_exchanged_ptes(vstart, order, out_frames, 0); |
| 2339 | else |
| 2340 | xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); |
| 2341 | |
| 2342 | spin_unlock_irqrestore(&xen_reservation_lock, flags); |
| 2343 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2344 | |
| 2345 | static noinline void xen_flush_tlb_all(void) |
| 2346 | { |
| 2347 | struct mmuext_op *op; |
| 2348 | struct multicall_space mcs; |
| 2349 | |
| 2350 | preempt_disable(); |
| 2351 | |
| 2352 | mcs = xen_mc_entry(sizeof(*op)); |
| 2353 | |
| 2354 | op = mcs.args; |
| 2355 | op->cmd = MMUEXT_TLB_FLUSH_ALL; |
| 2356 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| 2357 | |
| 2358 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 2359 | |
| 2360 | preempt_enable(); |
| 2361 | } |
| 2362 | |
| 2363 | #define REMAP_BATCH_SIZE 16 |
| 2364 | |
| 2365 | struct remap_data { |
| 2366 | xen_pfn_t *pfn; |
| 2367 | bool contiguous; |
| 2368 | bool no_translate; |
| 2369 | pgprot_t prot; |
| 2370 | struct mmu_update *mmu_update; |
| 2371 | }; |
| 2372 | |
| 2373 | static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data) |
| 2374 | { |
| 2375 | struct remap_data *rmd = data; |
| 2376 | pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot)); |
| 2377 | |
| 2378 | /* |
| 2379 | * If we have a contiguous range, just update the pfn itself, |
| 2380 | * else update pointer to be "next pfn". |
| 2381 | */ |
| 2382 | if (rmd->contiguous) |
| 2383 | (*rmd->pfn)++; |
| 2384 | else |
| 2385 | rmd->pfn++; |
| 2386 | |
| 2387 | rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; |
| 2388 | rmd->mmu_update->ptr |= rmd->no_translate ? |
| 2389 | MMU_PT_UPDATE_NO_TRANSLATE : |
| 2390 | MMU_NORMAL_PT_UPDATE; |
| 2391 | rmd->mmu_update->val = pte_val_ma(pte); |
| 2392 | rmd->mmu_update++; |
| 2393 | |
| 2394 | return 0; |
| 2395 | } |
| 2396 | |
| 2397 | int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr, |
| 2398 | xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot, |
| 2399 | unsigned int domid, bool no_translate, struct page **pages) |
| 2400 | { |
| 2401 | int err = 0; |
| 2402 | struct remap_data rmd; |
| 2403 | struct mmu_update mmu_update[REMAP_BATCH_SIZE]; |
| 2404 | unsigned long range; |
| 2405 | int mapped = 0; |
| 2406 | |
| 2407 | BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); |
| 2408 | |
| 2409 | rmd.pfn = pfn; |
| 2410 | rmd.prot = prot; |
| 2411 | /* |
| 2412 | * We use the err_ptr to indicate if there we are doing a contiguous |
| 2413 | * mapping or a discontigious mapping. |
| 2414 | */ |
| 2415 | rmd.contiguous = !err_ptr; |
| 2416 | rmd.no_translate = no_translate; |
| 2417 | |
| 2418 | while (nr) { |
| 2419 | int index = 0; |
| 2420 | int done = 0; |
| 2421 | int batch = min(REMAP_BATCH_SIZE, nr); |
| 2422 | int batch_left = batch; |
| 2423 | |
| 2424 | range = (unsigned long)batch << PAGE_SHIFT; |
| 2425 | |
| 2426 | rmd.mmu_update = mmu_update; |
| 2427 | err = apply_to_page_range(vma->vm_mm, addr, range, |
| 2428 | remap_area_pfn_pte_fn, &rmd); |
| 2429 | if (err) |
| 2430 | goto out; |
| 2431 | |
| 2432 | /* |
| 2433 | * We record the error for each page that gives an error, but |
| 2434 | * continue mapping until the whole set is done |
| 2435 | */ |
| 2436 | do { |
| 2437 | int i; |
| 2438 | |
| 2439 | err = HYPERVISOR_mmu_update(&mmu_update[index], |
| 2440 | batch_left, &done, domid); |
| 2441 | |
| 2442 | /* |
| 2443 | * @err_ptr may be the same buffer as @gfn, so |
| 2444 | * only clear it after each chunk of @gfn is |
| 2445 | * used. |
| 2446 | */ |
| 2447 | if (err_ptr) { |
| 2448 | for (i = index; i < index + done; i++) |
| 2449 | err_ptr[i] = 0; |
| 2450 | } |
| 2451 | if (err < 0) { |
| 2452 | if (!err_ptr) |
| 2453 | goto out; |
| 2454 | err_ptr[i] = err; |
| 2455 | done++; /* Skip failed frame. */ |
| 2456 | } else |
| 2457 | mapped += done; |
| 2458 | batch_left -= done; |
| 2459 | index += done; |
| 2460 | } while (batch_left); |
| 2461 | |
| 2462 | nr -= batch; |
| 2463 | addr += range; |
| 2464 | if (err_ptr) |
| 2465 | err_ptr += batch; |
| 2466 | cond_resched(); |
| 2467 | } |
| 2468 | out: |
| 2469 | |
| 2470 | xen_flush_tlb_all(); |
| 2471 | |
| 2472 | return err < 0 ? err : mapped; |
| 2473 | } |
| 2474 | EXPORT_SYMBOL_GPL(xen_remap_pfn); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2475 | |
| 2476 | #ifdef CONFIG_KEXEC_CORE |
| 2477 | phys_addr_t paddr_vmcoreinfo_note(void) |
| 2478 | { |
| 2479 | if (xen_pv_domain()) |
| 2480 | return virt_to_machine(vmcoreinfo_note).maddr; |
| 2481 | else |
| 2482 | return __pa(vmcoreinfo_note); |
| 2483 | } |
| 2484 | #endif /* CONFIG_KEXEC_CORE */ |