David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * AMD Memory Encryption Support |
| 4 | * |
| 5 | * Copyright (C) 2016 Advanced Micro Devices, Inc. |
| 6 | * |
| 7 | * Author: Tom Lendacky <thomas.lendacky@amd.com> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 8 | */ |
| 9 | |
| 10 | #define DISABLE_BRANCH_PROFILING |
| 11 | |
| 12 | #include <linux/linkage.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/mm.h> |
| 15 | #include <linux/dma-direct.h> |
| 16 | #include <linux/swiotlb.h> |
| 17 | #include <linux/mem_encrypt.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 18 | #include <linux/device.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/bitops.h> |
| 21 | #include <linux/dma-mapping.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 22 | #include <linux/cc_platform.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 23 | |
| 24 | #include <asm/tlbflush.h> |
| 25 | #include <asm/fixmap.h> |
| 26 | #include <asm/setup.h> |
| 27 | #include <asm/bootparam.h> |
| 28 | #include <asm/set_memory.h> |
| 29 | #include <asm/cacheflush.h> |
| 30 | #include <asm/processor-flags.h> |
| 31 | #include <asm/msr.h> |
| 32 | #include <asm/cmdline.h> |
| 33 | |
| 34 | #include "mm_internal.h" |
| 35 | |
| 36 | /* |
| 37 | * Since SME related variables are set early in the boot process they must |
| 38 | * reside in the .data section so as not to be zeroed out when the .bss |
| 39 | * section is later cleared. |
| 40 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 41 | u64 sme_me_mask __section(".data") = 0; |
| 42 | u64 sev_status __section(".data") = 0; |
| 43 | u64 sev_check_data __section(".data") = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 44 | EXPORT_SYMBOL(sme_me_mask); |
| 45 | DEFINE_STATIC_KEY_FALSE(sev_enable_key); |
| 46 | EXPORT_SYMBOL_GPL(sev_enable_key); |
| 47 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 48 | bool sev_enabled __section(".data"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 49 | |
| 50 | /* Buffer used for early in-place encryption by BSP, no locking needed */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 51 | static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 52 | |
| 53 | /* |
| 54 | * This routine does not change the underlying encryption setting of the |
| 55 | * page(s) that map this memory. It assumes that eventually the memory is |
| 56 | * meant to be accessed as either encrypted or decrypted but the contents |
| 57 | * are currently not in the desired state. |
| 58 | * |
| 59 | * This routine follows the steps outlined in the AMD64 Architecture |
| 60 | * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. |
| 61 | */ |
| 62 | static void __init __sme_early_enc_dec(resource_size_t paddr, |
| 63 | unsigned long size, bool enc) |
| 64 | { |
| 65 | void *src, *dst; |
| 66 | size_t len; |
| 67 | |
| 68 | if (!sme_me_mask) |
| 69 | return; |
| 70 | |
| 71 | wbinvd(); |
| 72 | |
| 73 | /* |
| 74 | * There are limited number of early mapping slots, so map (at most) |
| 75 | * one page at time. |
| 76 | */ |
| 77 | while (size) { |
| 78 | len = min_t(size_t, sizeof(sme_early_buffer), size); |
| 79 | |
| 80 | /* |
| 81 | * Create mappings for the current and desired format of |
| 82 | * the memory. Use a write-protected mapping for the source. |
| 83 | */ |
| 84 | src = enc ? early_memremap_decrypted_wp(paddr, len) : |
| 85 | early_memremap_encrypted_wp(paddr, len); |
| 86 | |
| 87 | dst = enc ? early_memremap_encrypted(paddr, len) : |
| 88 | early_memremap_decrypted(paddr, len); |
| 89 | |
| 90 | /* |
| 91 | * If a mapping can't be obtained to perform the operation, |
| 92 | * then eventual access of that area in the desired mode |
| 93 | * will cause a crash. |
| 94 | */ |
| 95 | BUG_ON(!src || !dst); |
| 96 | |
| 97 | /* |
| 98 | * Use a temporary buffer, of cache-line multiple size, to |
| 99 | * avoid data corruption as documented in the APM. |
| 100 | */ |
| 101 | memcpy(sme_early_buffer, src, len); |
| 102 | memcpy(dst, sme_early_buffer, len); |
| 103 | |
| 104 | early_memunmap(dst, len); |
| 105 | early_memunmap(src, len); |
| 106 | |
| 107 | paddr += len; |
| 108 | size -= len; |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) |
| 113 | { |
| 114 | __sme_early_enc_dec(paddr, size, true); |
| 115 | } |
| 116 | |
| 117 | void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) |
| 118 | { |
| 119 | __sme_early_enc_dec(paddr, size, false); |
| 120 | } |
| 121 | |
| 122 | static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, |
| 123 | bool map) |
| 124 | { |
| 125 | unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; |
| 126 | pmdval_t pmd_flags, pmd; |
| 127 | |
| 128 | /* Use early_pmd_flags but remove the encryption mask */ |
| 129 | pmd_flags = __sme_clr(early_pmd_flags); |
| 130 | |
| 131 | do { |
| 132 | pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; |
| 133 | __early_make_pgtable((unsigned long)vaddr, pmd); |
| 134 | |
| 135 | vaddr += PMD_SIZE; |
| 136 | paddr += PMD_SIZE; |
| 137 | size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; |
| 138 | } while (size); |
| 139 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 140 | flush_tlb_local(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 141 | } |
| 142 | |
| 143 | void __init sme_unmap_bootdata(char *real_mode_data) |
| 144 | { |
| 145 | struct boot_params *boot_data; |
| 146 | unsigned long cmdline_paddr; |
| 147 | |
| 148 | if (!sme_active()) |
| 149 | return; |
| 150 | |
| 151 | /* Get the command line address before unmapping the real_mode_data */ |
| 152 | boot_data = (struct boot_params *)real_mode_data; |
| 153 | cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); |
| 154 | |
| 155 | __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); |
| 156 | |
| 157 | if (!cmdline_paddr) |
| 158 | return; |
| 159 | |
| 160 | __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); |
| 161 | } |
| 162 | |
| 163 | void __init sme_map_bootdata(char *real_mode_data) |
| 164 | { |
| 165 | struct boot_params *boot_data; |
| 166 | unsigned long cmdline_paddr; |
| 167 | |
| 168 | if (!sme_active()) |
| 169 | return; |
| 170 | |
| 171 | __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); |
| 172 | |
| 173 | /* Get the command line address after mapping the real_mode_data */ |
| 174 | boot_data = (struct boot_params *)real_mode_data; |
| 175 | cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); |
| 176 | |
| 177 | if (!cmdline_paddr) |
| 178 | return; |
| 179 | |
| 180 | __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); |
| 181 | } |
| 182 | |
| 183 | void __init sme_early_init(void) |
| 184 | { |
| 185 | unsigned int i; |
| 186 | |
| 187 | if (!sme_me_mask) |
| 188 | return; |
| 189 | |
| 190 | early_pmd_flags = __sme_set(early_pmd_flags); |
| 191 | |
| 192 | __supported_pte_mask = __sme_set(__supported_pte_mask); |
| 193 | |
| 194 | /* Update the protection map with memory encryption mask */ |
| 195 | for (i = 0; i < ARRAY_SIZE(protection_map); i++) |
| 196 | protection_map[i] = pgprot_encrypted(protection_map[i]); |
| 197 | |
| 198 | if (sev_active()) |
| 199 | swiotlb_force = SWIOTLB_FORCE; |
| 200 | } |
| 201 | |
| 202 | static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) |
| 203 | { |
| 204 | pgprot_t old_prot, new_prot; |
| 205 | unsigned long pfn, pa, size; |
| 206 | pte_t new_pte; |
| 207 | |
| 208 | switch (level) { |
| 209 | case PG_LEVEL_4K: |
| 210 | pfn = pte_pfn(*kpte); |
| 211 | old_prot = pte_pgprot(*kpte); |
| 212 | break; |
| 213 | case PG_LEVEL_2M: |
| 214 | pfn = pmd_pfn(*(pmd_t *)kpte); |
| 215 | old_prot = pmd_pgprot(*(pmd_t *)kpte); |
| 216 | break; |
| 217 | case PG_LEVEL_1G: |
| 218 | pfn = pud_pfn(*(pud_t *)kpte); |
| 219 | old_prot = pud_pgprot(*(pud_t *)kpte); |
| 220 | break; |
| 221 | default: |
| 222 | return; |
| 223 | } |
| 224 | |
| 225 | new_prot = old_prot; |
| 226 | if (enc) |
| 227 | pgprot_val(new_prot) |= _PAGE_ENC; |
| 228 | else |
| 229 | pgprot_val(new_prot) &= ~_PAGE_ENC; |
| 230 | |
| 231 | /* If prot is same then do nothing. */ |
| 232 | if (pgprot_val(old_prot) == pgprot_val(new_prot)) |
| 233 | return; |
| 234 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 235 | pa = pfn << PAGE_SHIFT; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 236 | size = page_level_size(level); |
| 237 | |
| 238 | /* |
| 239 | * We are going to perform in-place en-/decryption and change the |
| 240 | * physical page attribute from C=1 to C=0 or vice versa. Flush the |
| 241 | * caches to ensure that data gets accessed with the correct C-bit. |
| 242 | */ |
| 243 | clflush_cache_range(__va(pa), size); |
| 244 | |
| 245 | /* Encrypt/decrypt the contents in-place */ |
| 246 | if (enc) |
| 247 | sme_early_encrypt(pa, size); |
| 248 | else |
| 249 | sme_early_decrypt(pa, size); |
| 250 | |
| 251 | /* Change the page encryption mask. */ |
| 252 | new_pte = pfn_pte(pfn, new_prot); |
| 253 | set_pte_atomic(kpte, new_pte); |
| 254 | } |
| 255 | |
| 256 | static int __init early_set_memory_enc_dec(unsigned long vaddr, |
| 257 | unsigned long size, bool enc) |
| 258 | { |
| 259 | unsigned long vaddr_end, vaddr_next; |
| 260 | unsigned long psize, pmask; |
| 261 | int split_page_size_mask; |
| 262 | int level, ret; |
| 263 | pte_t *kpte; |
| 264 | |
| 265 | vaddr_next = vaddr; |
| 266 | vaddr_end = vaddr + size; |
| 267 | |
| 268 | for (; vaddr < vaddr_end; vaddr = vaddr_next) { |
| 269 | kpte = lookup_address(vaddr, &level); |
| 270 | if (!kpte || pte_none(*kpte)) { |
| 271 | ret = 1; |
| 272 | goto out; |
| 273 | } |
| 274 | |
| 275 | if (level == PG_LEVEL_4K) { |
| 276 | __set_clr_pte_enc(kpte, level, enc); |
| 277 | vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; |
| 278 | continue; |
| 279 | } |
| 280 | |
| 281 | psize = page_level_size(level); |
| 282 | pmask = page_level_mask(level); |
| 283 | |
| 284 | /* |
| 285 | * Check whether we can change the large page in one go. |
| 286 | * We request a split when the address is not aligned and |
| 287 | * the number of pages to set/clear encryption bit is smaller |
| 288 | * than the number of pages in the large page. |
| 289 | */ |
| 290 | if (vaddr == (vaddr & pmask) && |
| 291 | ((vaddr_end - vaddr) >= psize)) { |
| 292 | __set_clr_pte_enc(kpte, level, enc); |
| 293 | vaddr_next = (vaddr & pmask) + psize; |
| 294 | continue; |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * The virtual address is part of a larger page, create the next |
| 299 | * level page table mapping (4K or 2M). If it is part of a 2M |
| 300 | * page then we request a split of the large page into 4K |
| 301 | * chunks. A 1GB large page is split into 2M pages, resp. |
| 302 | */ |
| 303 | if (level == PG_LEVEL_2M) |
| 304 | split_page_size_mask = 0; |
| 305 | else |
| 306 | split_page_size_mask = 1 << PG_LEVEL_2M; |
| 307 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 308 | /* |
| 309 | * kernel_physical_mapping_change() does not flush the TLBs, so |
| 310 | * a TLB flush is required after we exit from the for loop. |
| 311 | */ |
| 312 | kernel_physical_mapping_change(__pa(vaddr & pmask), |
| 313 | __pa((vaddr_end & pmask) + psize), |
| 314 | split_page_size_mask); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 315 | } |
| 316 | |
| 317 | ret = 0; |
| 318 | |
| 319 | out: |
| 320 | __flush_tlb_all(); |
| 321 | return ret; |
| 322 | } |
| 323 | |
| 324 | int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) |
| 325 | { |
| 326 | return early_set_memory_enc_dec(vaddr, size, false); |
| 327 | } |
| 328 | |
| 329 | int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) |
| 330 | { |
| 331 | return early_set_memory_enc_dec(vaddr, size, true); |
| 332 | } |
| 333 | |
| 334 | /* |
| 335 | * SME and SEV are very similar but they are not the same, so there are |
| 336 | * times that the kernel will need to distinguish between SME and SEV. The |
| 337 | * sme_active() and sev_active() functions are used for this. When a |
| 338 | * distinction isn't needed, the mem_encrypt_active() function can be used. |
| 339 | * |
| 340 | * The trampoline code is a good example for this requirement. Before |
| 341 | * paging is activated, SME will access all memory as decrypted, but SEV |
| 342 | * will access all memory as encrypted. So, when APs are being brought |
| 343 | * up under SME the trampoline area cannot be encrypted, whereas under SEV |
| 344 | * the trampoline area must be encrypted. |
| 345 | */ |
| 346 | bool sme_active(void) |
| 347 | { |
| 348 | return sme_me_mask && !sev_enabled; |
| 349 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 350 | |
| 351 | bool sev_active(void) |
| 352 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 353 | return sev_status & MSR_AMD64_SEV_ENABLED; |
| 354 | } |
| 355 | EXPORT_SYMBOL_GPL(sev_active); |
| 356 | |
| 357 | /* Needs to be called from non-instrumentable code */ |
| 358 | bool noinstr sev_es_active(void) |
| 359 | { |
| 360 | return sev_status & MSR_AMD64_SEV_ES_ENABLED; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 361 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 362 | |
| 363 | /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */ |
| 364 | bool force_dma_unencrypted(struct device *dev) |
| 365 | { |
| 366 | /* |
| 367 | * For SEV, all DMA must be to unencrypted addresses. |
| 368 | */ |
| 369 | if (sev_active()) |
| 370 | return true; |
| 371 | |
| 372 | /* |
| 373 | * For SME, all DMA must be to unencrypted addresses if the |
| 374 | * device does not support DMA to addresses that include the |
| 375 | * encryption mask. |
| 376 | */ |
| 377 | if (sme_active()) { |
| 378 | u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask)); |
| 379 | u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 380 | dev->bus_dma_limit); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 381 | |
| 382 | if (dma_dev_mask <= dma_enc_mask) |
| 383 | return true; |
| 384 | } |
| 385 | |
| 386 | return false; |
| 387 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 388 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 389 | void __init mem_encrypt_free_decrypted_mem(void) |
| 390 | { |
| 391 | unsigned long vaddr, vaddr_end, npages; |
| 392 | int r; |
| 393 | |
| 394 | vaddr = (unsigned long)__start_bss_decrypted_unused; |
| 395 | vaddr_end = (unsigned long)__end_bss_decrypted; |
| 396 | npages = (vaddr_end - vaddr) >> PAGE_SHIFT; |
| 397 | |
| 398 | /* |
| 399 | * The unused memory range was mapped decrypted, change the encryption |
| 400 | * attribute from decrypted to encrypted before freeing it. |
| 401 | */ |
| 402 | if (mem_encrypt_active()) { |
| 403 | r = set_memory_encrypted(vaddr, npages); |
| 404 | if (r) { |
| 405 | pr_warn("failed to free unused decrypted pages\n"); |
| 406 | return; |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | free_init_pages("unused decrypted", vaddr, vaddr_end); |
| 411 | } |
| 412 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 413 | static void print_mem_encrypt_feature_info(void) |
| 414 | { |
| 415 | pr_info("AMD Memory Encryption Features active:"); |
| 416 | |
| 417 | /* Secure Memory Encryption */ |
| 418 | if (sme_active()) { |
| 419 | /* |
| 420 | * SME is mutually exclusive with any of the SEV |
| 421 | * features below. |
| 422 | */ |
| 423 | pr_cont(" SME\n"); |
| 424 | return; |
| 425 | } |
| 426 | |
| 427 | /* Secure Encrypted Virtualization */ |
| 428 | if (sev_active()) |
| 429 | pr_cont(" SEV"); |
| 430 | |
| 431 | /* Encrypted Register State */ |
| 432 | if (sev_es_active()) |
| 433 | pr_cont(" SEV-ES"); |
| 434 | |
| 435 | pr_cont("\n"); |
| 436 | } |
| 437 | |
| 438 | /* Architecture __weak replacement functions */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 439 | void __init mem_encrypt_init(void) |
| 440 | { |
| 441 | if (!sme_me_mask) |
| 442 | return; |
| 443 | |
| 444 | /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ |
| 445 | swiotlb_update_mem_attributes(); |
| 446 | |
| 447 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 448 | * With SEV, we need to unroll the rep string I/O instructions. |
| 449 | */ |
| 450 | if (sev_active()) |
| 451 | static_branch_enable(&sev_enable_key); |
| 452 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 453 | print_mem_encrypt_feature_info(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 454 | } |
| 455 | |