Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* Support for MMIO probes. |
| 3 | * Benfit many code from kprobes |
| 4 | * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>. |
| 5 | * 2007 Alexander Eichner |
| 6 | * 2008 Pekka Paalanen <pq@iki.fi> |
| 7 | */ |
| 8 | |
| 9 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 10 | |
| 11 | #include <linux/list.h> |
| 12 | #include <linux/rculist.h> |
| 13 | #include <linux/spinlock.h> |
| 14 | #include <linux/hash.h> |
| 15 | #include <linux/export.h> |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/uaccess.h> |
| 18 | #include <linux/ptrace.h> |
| 19 | #include <linux/preempt.h> |
| 20 | #include <linux/percpu.h> |
| 21 | #include <linux/kdebug.h> |
| 22 | #include <linux/mutex.h> |
| 23 | #include <linux/io.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <asm/cacheflush.h> |
| 26 | #include <asm/tlbflush.h> |
| 27 | #include <linux/errno.h> |
| 28 | #include <asm/debugreg.h> |
| 29 | #include <linux/mmiotrace.h> |
| 30 | |
| 31 | #define KMMIO_PAGE_HASH_BITS 4 |
| 32 | #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS) |
| 33 | |
| 34 | struct kmmio_fault_page { |
| 35 | struct list_head list; |
| 36 | struct kmmio_fault_page *release_next; |
| 37 | unsigned long addr; /* the requested address */ |
| 38 | pteval_t old_presence; /* page presence prior to arming */ |
| 39 | bool armed; |
| 40 | |
| 41 | /* |
| 42 | * Number of times this page has been registered as a part |
| 43 | * of a probe. If zero, page is disarmed and this may be freed. |
| 44 | * Used only by writers (RCU) and post_kmmio_handler(). |
| 45 | * Protected by kmmio_lock, when linked into kmmio_page_table. |
| 46 | */ |
| 47 | int count; |
| 48 | |
| 49 | bool scheduled_for_release; |
| 50 | }; |
| 51 | |
| 52 | struct kmmio_delayed_release { |
| 53 | struct rcu_head rcu; |
| 54 | struct kmmio_fault_page *release_list; |
| 55 | }; |
| 56 | |
| 57 | struct kmmio_context { |
| 58 | struct kmmio_fault_page *fpage; |
| 59 | struct kmmio_probe *probe; |
| 60 | unsigned long saved_flags; |
| 61 | unsigned long addr; |
| 62 | int active; |
| 63 | }; |
| 64 | |
| 65 | static DEFINE_SPINLOCK(kmmio_lock); |
| 66 | |
| 67 | /* Protected by kmmio_lock */ |
| 68 | unsigned int kmmio_count; |
| 69 | |
| 70 | /* Read-protected by RCU, write-protected by kmmio_lock. */ |
| 71 | static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE]; |
| 72 | static LIST_HEAD(kmmio_probes); |
| 73 | |
| 74 | static struct list_head *kmmio_page_list(unsigned long addr) |
| 75 | { |
| 76 | unsigned int l; |
| 77 | pte_t *pte = lookup_address(addr, &l); |
| 78 | |
| 79 | if (!pte) |
| 80 | return NULL; |
| 81 | addr &= page_level_mask(l); |
| 82 | |
| 83 | return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)]; |
| 84 | } |
| 85 | |
| 86 | /* Accessed per-cpu */ |
| 87 | static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx); |
| 88 | |
| 89 | /* |
| 90 | * this is basically a dynamic stabbing problem: |
| 91 | * Could use the existing prio tree code or |
| 92 | * Possible better implementations: |
| 93 | * The Interval Skip List: A Data Structure for Finding All Intervals That |
| 94 | * Overlap a Point (might be simple) |
| 95 | * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup |
| 96 | */ |
| 97 | /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */ |
| 98 | static struct kmmio_probe *get_kmmio_probe(unsigned long addr) |
| 99 | { |
| 100 | struct kmmio_probe *p; |
| 101 | list_for_each_entry_rcu(p, &kmmio_probes, list) { |
| 102 | if (addr >= p->addr && addr < (p->addr + p->len)) |
| 103 | return p; |
| 104 | } |
| 105 | return NULL; |
| 106 | } |
| 107 | |
| 108 | /* You must be holding RCU read lock. */ |
| 109 | static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr) |
| 110 | { |
| 111 | struct list_head *head; |
| 112 | struct kmmio_fault_page *f; |
| 113 | unsigned int l; |
| 114 | pte_t *pte = lookup_address(addr, &l); |
| 115 | |
| 116 | if (!pte) |
| 117 | return NULL; |
| 118 | addr &= page_level_mask(l); |
| 119 | head = kmmio_page_list(addr); |
| 120 | list_for_each_entry_rcu(f, head, list) { |
| 121 | if (f->addr == addr) |
| 122 | return f; |
| 123 | } |
| 124 | return NULL; |
| 125 | } |
| 126 | |
| 127 | static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old) |
| 128 | { |
| 129 | pmd_t new_pmd; |
| 130 | pmdval_t v = pmd_val(*pmd); |
| 131 | if (clear) { |
| 132 | *old = v; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 133 | new_pmd = pmd_mkinvalid(*pmd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 134 | } else { |
| 135 | /* Presume this has been called with clear==true previously */ |
| 136 | new_pmd = __pmd(*old); |
| 137 | } |
| 138 | set_pmd(pmd, new_pmd); |
| 139 | } |
| 140 | |
| 141 | static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old) |
| 142 | { |
| 143 | pteval_t v = pte_val(*pte); |
| 144 | if (clear) { |
| 145 | *old = v; |
| 146 | /* Nothing should care about address */ |
| 147 | pte_clear(&init_mm, 0, pte); |
| 148 | } else { |
| 149 | /* Presume this has been called with clear==true previously */ |
| 150 | set_pte_atomic(pte, __pte(*old)); |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | static int clear_page_presence(struct kmmio_fault_page *f, bool clear) |
| 155 | { |
| 156 | unsigned int level; |
| 157 | pte_t *pte = lookup_address(f->addr, &level); |
| 158 | |
| 159 | if (!pte) { |
| 160 | pr_err("no pte for addr 0x%08lx\n", f->addr); |
| 161 | return -1; |
| 162 | } |
| 163 | |
| 164 | switch (level) { |
| 165 | case PG_LEVEL_2M: |
| 166 | clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence); |
| 167 | break; |
| 168 | case PG_LEVEL_4K: |
| 169 | clear_pte_presence(pte, clear, &f->old_presence); |
| 170 | break; |
| 171 | default: |
| 172 | pr_err("unexpected page level 0x%x.\n", level); |
| 173 | return -1; |
| 174 | } |
| 175 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 176 | flush_tlb_one_kernel(f->addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 177 | return 0; |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * Mark the given page as not present. Access to it will trigger a fault. |
| 182 | * |
| 183 | * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the |
| 184 | * protection is ignored here. RCU read lock is assumed held, so the struct |
| 185 | * will not disappear unexpectedly. Furthermore, the caller must guarantee, |
| 186 | * that double arming the same virtual address (page) cannot occur. |
| 187 | * |
| 188 | * Double disarming on the other hand is allowed, and may occur when a fault |
| 189 | * and mmiotrace shutdown happen simultaneously. |
| 190 | */ |
| 191 | static int arm_kmmio_fault_page(struct kmmio_fault_page *f) |
| 192 | { |
| 193 | int ret; |
| 194 | WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n")); |
| 195 | if (f->armed) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 196 | pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n", |
| 197 | f->addr, f->count, !!f->old_presence); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 198 | } |
| 199 | ret = clear_page_presence(f, true); |
| 200 | WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"), |
| 201 | f->addr); |
| 202 | f->armed = true; |
| 203 | return ret; |
| 204 | } |
| 205 | |
| 206 | /** Restore the given page to saved presence state. */ |
| 207 | static void disarm_kmmio_fault_page(struct kmmio_fault_page *f) |
| 208 | { |
| 209 | int ret = clear_page_presence(f, false); |
| 210 | WARN_ONCE(ret < 0, |
| 211 | KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr); |
| 212 | f->armed = false; |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * This is being called from do_page_fault(). |
| 217 | * |
| 218 | * We may be in an interrupt or a critical section. Also prefecthing may |
| 219 | * trigger a page fault. We may be in the middle of process switch. |
| 220 | * We cannot take any locks, because we could be executing especially |
| 221 | * within a kmmio critical section. |
| 222 | * |
| 223 | * Local interrupts are disabled, so preemption cannot happen. |
| 224 | * Do not enable interrupts, do not sleep, and watch out for other CPUs. |
| 225 | */ |
| 226 | /* |
| 227 | * Interrupts are disabled on entry as trap3 is an interrupt gate |
| 228 | * and they remain disabled throughout this function. |
| 229 | */ |
| 230 | int kmmio_handler(struct pt_regs *regs, unsigned long addr) |
| 231 | { |
| 232 | struct kmmio_context *ctx; |
| 233 | struct kmmio_fault_page *faultpage; |
| 234 | int ret = 0; /* default to fault not handled */ |
| 235 | unsigned long page_base = addr; |
| 236 | unsigned int l; |
| 237 | pte_t *pte = lookup_address(addr, &l); |
| 238 | if (!pte) |
| 239 | return -EINVAL; |
| 240 | page_base &= page_level_mask(l); |
| 241 | |
| 242 | /* |
| 243 | * Preemption is now disabled to prevent process switch during |
| 244 | * single stepping. We can only handle one active kmmio trace |
| 245 | * per cpu, so ensure that we finish it before something else |
| 246 | * gets to run. We also hold the RCU read lock over single |
| 247 | * stepping to avoid looking up the probe and kmmio_fault_page |
| 248 | * again. |
| 249 | */ |
| 250 | preempt_disable(); |
| 251 | rcu_read_lock(); |
| 252 | |
| 253 | faultpage = get_kmmio_fault_page(page_base); |
| 254 | if (!faultpage) { |
| 255 | /* |
| 256 | * Either this page fault is not caused by kmmio, or |
| 257 | * another CPU just pulled the kmmio probe from under |
| 258 | * our feet. The latter case should not be possible. |
| 259 | */ |
| 260 | goto no_kmmio; |
| 261 | } |
| 262 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 263 | ctx = this_cpu_ptr(&kmmio_ctx); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 264 | if (ctx->active) { |
| 265 | if (page_base == ctx->addr) { |
| 266 | /* |
| 267 | * A second fault on the same page means some other |
| 268 | * condition needs handling by do_page_fault(), the |
| 269 | * page really not being present is the most common. |
| 270 | */ |
| 271 | pr_debug("secondary hit for 0x%08lx CPU %d.\n", |
| 272 | addr, smp_processor_id()); |
| 273 | |
| 274 | if (!faultpage->old_presence) |
| 275 | pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n", |
| 276 | addr, smp_processor_id()); |
| 277 | } else { |
| 278 | /* |
| 279 | * Prevent overwriting already in-flight context. |
| 280 | * This should not happen, let's hope disarming at |
| 281 | * least prevents a panic. |
| 282 | */ |
| 283 | pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n", |
| 284 | smp_processor_id(), addr); |
| 285 | pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr); |
| 286 | disarm_kmmio_fault_page(faultpage); |
| 287 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 288 | goto no_kmmio; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 289 | } |
| 290 | ctx->active++; |
| 291 | |
| 292 | ctx->fpage = faultpage; |
| 293 | ctx->probe = get_kmmio_probe(page_base); |
| 294 | ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); |
| 295 | ctx->addr = page_base; |
| 296 | |
| 297 | if (ctx->probe && ctx->probe->pre_handler) |
| 298 | ctx->probe->pre_handler(ctx->probe, regs, addr); |
| 299 | |
| 300 | /* |
| 301 | * Enable single-stepping and disable interrupts for the faulting |
| 302 | * context. Local interrupts must not get enabled during stepping. |
| 303 | */ |
| 304 | regs->flags |= X86_EFLAGS_TF; |
| 305 | regs->flags &= ~X86_EFLAGS_IF; |
| 306 | |
| 307 | /* Now we set present bit in PTE and single step. */ |
| 308 | disarm_kmmio_fault_page(ctx->fpage); |
| 309 | |
| 310 | /* |
| 311 | * If another cpu accesses the same page while we are stepping, |
| 312 | * the access will not be caught. It will simply succeed and the |
| 313 | * only downside is we lose the event. If this becomes a problem, |
| 314 | * the user should drop to single cpu before tracing. |
| 315 | */ |
| 316 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 317 | return 1; /* fault handled */ |
| 318 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 319 | no_kmmio: |
| 320 | rcu_read_unlock(); |
| 321 | preempt_enable_no_resched(); |
| 322 | return ret; |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * Interrupts are disabled on entry as trap1 is an interrupt gate |
| 327 | * and they remain disabled throughout this function. |
| 328 | * This must always get called as the pair to kmmio_handler(). |
| 329 | */ |
| 330 | static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) |
| 331 | { |
| 332 | int ret = 0; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 333 | struct kmmio_context *ctx = this_cpu_ptr(&kmmio_ctx); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 334 | |
| 335 | if (!ctx->active) { |
| 336 | /* |
| 337 | * debug traps without an active context are due to either |
| 338 | * something external causing them (f.e. using a debugger while |
| 339 | * mmio tracing enabled), or erroneous behaviour |
| 340 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 341 | pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id()); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 342 | goto out; |
| 343 | } |
| 344 | |
| 345 | if (ctx->probe && ctx->probe->post_handler) |
| 346 | ctx->probe->post_handler(ctx->probe, condition, regs); |
| 347 | |
| 348 | /* Prevent racing against release_kmmio_fault_page(). */ |
| 349 | spin_lock(&kmmio_lock); |
| 350 | if (ctx->fpage->count) |
| 351 | arm_kmmio_fault_page(ctx->fpage); |
| 352 | spin_unlock(&kmmio_lock); |
| 353 | |
| 354 | regs->flags &= ~X86_EFLAGS_TF; |
| 355 | regs->flags |= ctx->saved_flags; |
| 356 | |
| 357 | /* These were acquired in kmmio_handler(). */ |
| 358 | ctx->active--; |
| 359 | BUG_ON(ctx->active); |
| 360 | rcu_read_unlock(); |
| 361 | preempt_enable_no_resched(); |
| 362 | |
| 363 | /* |
| 364 | * if somebody else is singlestepping across a probe point, flags |
| 365 | * will have TF set, in which case, continue the remaining processing |
| 366 | * of do_debug, as if this is not a probe hit. |
| 367 | */ |
| 368 | if (!(regs->flags & X86_EFLAGS_TF)) |
| 369 | ret = 1; |
| 370 | out: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 371 | return ret; |
| 372 | } |
| 373 | |
| 374 | /* You must be holding kmmio_lock. */ |
| 375 | static int add_kmmio_fault_page(unsigned long addr) |
| 376 | { |
| 377 | struct kmmio_fault_page *f; |
| 378 | |
| 379 | f = get_kmmio_fault_page(addr); |
| 380 | if (f) { |
| 381 | if (!f->count) |
| 382 | arm_kmmio_fault_page(f); |
| 383 | f->count++; |
| 384 | return 0; |
| 385 | } |
| 386 | |
| 387 | f = kzalloc(sizeof(*f), GFP_ATOMIC); |
| 388 | if (!f) |
| 389 | return -1; |
| 390 | |
| 391 | f->count = 1; |
| 392 | f->addr = addr; |
| 393 | |
| 394 | if (arm_kmmio_fault_page(f)) { |
| 395 | kfree(f); |
| 396 | return -1; |
| 397 | } |
| 398 | |
| 399 | list_add_rcu(&f->list, kmmio_page_list(f->addr)); |
| 400 | |
| 401 | return 0; |
| 402 | } |
| 403 | |
| 404 | /* You must be holding kmmio_lock. */ |
| 405 | static void release_kmmio_fault_page(unsigned long addr, |
| 406 | struct kmmio_fault_page **release_list) |
| 407 | { |
| 408 | struct kmmio_fault_page *f; |
| 409 | |
| 410 | f = get_kmmio_fault_page(addr); |
| 411 | if (!f) |
| 412 | return; |
| 413 | |
| 414 | f->count--; |
| 415 | BUG_ON(f->count < 0); |
| 416 | if (!f->count) { |
| 417 | disarm_kmmio_fault_page(f); |
| 418 | if (!f->scheduled_for_release) { |
| 419 | f->release_next = *release_list; |
| 420 | *release_list = f; |
| 421 | f->scheduled_for_release = true; |
| 422 | } |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * With page-unaligned ioremaps, one or two armed pages may contain |
| 428 | * addresses from outside the intended mapping. Events for these addresses |
| 429 | * are currently silently dropped. The events may result only from programming |
| 430 | * mistakes by accessing addresses before the beginning or past the end of a |
| 431 | * mapping. |
| 432 | */ |
| 433 | int register_kmmio_probe(struct kmmio_probe *p) |
| 434 | { |
| 435 | unsigned long flags; |
| 436 | int ret = 0; |
| 437 | unsigned long size = 0; |
| 438 | unsigned long addr = p->addr & PAGE_MASK; |
| 439 | const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); |
| 440 | unsigned int l; |
| 441 | pte_t *pte; |
| 442 | |
| 443 | spin_lock_irqsave(&kmmio_lock, flags); |
| 444 | if (get_kmmio_probe(addr)) { |
| 445 | ret = -EEXIST; |
| 446 | goto out; |
| 447 | } |
| 448 | |
| 449 | pte = lookup_address(addr, &l); |
| 450 | if (!pte) { |
| 451 | ret = -EINVAL; |
| 452 | goto out; |
| 453 | } |
| 454 | |
| 455 | kmmio_count++; |
| 456 | list_add_rcu(&p->list, &kmmio_probes); |
| 457 | while (size < size_lim) { |
| 458 | if (add_kmmio_fault_page(addr + size)) |
| 459 | pr_err("Unable to set page fault.\n"); |
| 460 | size += page_level_size(l); |
| 461 | } |
| 462 | out: |
| 463 | spin_unlock_irqrestore(&kmmio_lock, flags); |
| 464 | /* |
| 465 | * XXX: What should I do here? |
| 466 | * Here was a call to global_flush_tlb(), but it does not exist |
| 467 | * anymore. It seems it's not needed after all. |
| 468 | */ |
| 469 | return ret; |
| 470 | } |
| 471 | EXPORT_SYMBOL(register_kmmio_probe); |
| 472 | |
| 473 | static void rcu_free_kmmio_fault_pages(struct rcu_head *head) |
| 474 | { |
| 475 | struct kmmio_delayed_release *dr = container_of( |
| 476 | head, |
| 477 | struct kmmio_delayed_release, |
| 478 | rcu); |
| 479 | struct kmmio_fault_page *f = dr->release_list; |
| 480 | while (f) { |
| 481 | struct kmmio_fault_page *next = f->release_next; |
| 482 | BUG_ON(f->count); |
| 483 | kfree(f); |
| 484 | f = next; |
| 485 | } |
| 486 | kfree(dr); |
| 487 | } |
| 488 | |
| 489 | static void remove_kmmio_fault_pages(struct rcu_head *head) |
| 490 | { |
| 491 | struct kmmio_delayed_release *dr = |
| 492 | container_of(head, struct kmmio_delayed_release, rcu); |
| 493 | struct kmmio_fault_page *f = dr->release_list; |
| 494 | struct kmmio_fault_page **prevp = &dr->release_list; |
| 495 | unsigned long flags; |
| 496 | |
| 497 | spin_lock_irqsave(&kmmio_lock, flags); |
| 498 | while (f) { |
| 499 | if (!f->count) { |
| 500 | list_del_rcu(&f->list); |
| 501 | prevp = &f->release_next; |
| 502 | } else { |
| 503 | *prevp = f->release_next; |
| 504 | f->release_next = NULL; |
| 505 | f->scheduled_for_release = false; |
| 506 | } |
| 507 | f = *prevp; |
| 508 | } |
| 509 | spin_unlock_irqrestore(&kmmio_lock, flags); |
| 510 | |
| 511 | /* This is the real RCU destroy call. */ |
| 512 | call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * Remove a kmmio probe. You have to synchronize_rcu() before you can be |
| 517 | * sure that the callbacks will not be called anymore. Only after that |
| 518 | * you may actually release your struct kmmio_probe. |
| 519 | * |
| 520 | * Unregistering a kmmio fault page has three steps: |
| 521 | * 1. release_kmmio_fault_page() |
| 522 | * Disarm the page, wait a grace period to let all faults finish. |
| 523 | * 2. remove_kmmio_fault_pages() |
| 524 | * Remove the pages from kmmio_page_table. |
| 525 | * 3. rcu_free_kmmio_fault_pages() |
| 526 | * Actually free the kmmio_fault_page structs as with RCU. |
| 527 | */ |
| 528 | void unregister_kmmio_probe(struct kmmio_probe *p) |
| 529 | { |
| 530 | unsigned long flags; |
| 531 | unsigned long size = 0; |
| 532 | unsigned long addr = p->addr & PAGE_MASK; |
| 533 | const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); |
| 534 | struct kmmio_fault_page *release_list = NULL; |
| 535 | struct kmmio_delayed_release *drelease; |
| 536 | unsigned int l; |
| 537 | pte_t *pte; |
| 538 | |
| 539 | pte = lookup_address(addr, &l); |
| 540 | if (!pte) |
| 541 | return; |
| 542 | |
| 543 | spin_lock_irqsave(&kmmio_lock, flags); |
| 544 | while (size < size_lim) { |
| 545 | release_kmmio_fault_page(addr + size, &release_list); |
| 546 | size += page_level_size(l); |
| 547 | } |
| 548 | list_del_rcu(&p->list); |
| 549 | kmmio_count--; |
| 550 | spin_unlock_irqrestore(&kmmio_lock, flags); |
| 551 | |
| 552 | if (!release_list) |
| 553 | return; |
| 554 | |
| 555 | drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC); |
| 556 | if (!drelease) { |
| 557 | pr_crit("leaking kmmio_fault_page objects.\n"); |
| 558 | return; |
| 559 | } |
| 560 | drelease->release_list = release_list; |
| 561 | |
| 562 | /* |
| 563 | * This is not really RCU here. We have just disarmed a set of |
| 564 | * pages so that they cannot trigger page faults anymore. However, |
| 565 | * we cannot remove the pages from kmmio_page_table, |
| 566 | * because a probe hit might be in flight on another CPU. The |
| 567 | * pages are collected into a list, and they will be removed from |
| 568 | * kmmio_page_table when it is certain that no probe hit related to |
| 569 | * these pages can be in flight. RCU grace period sounds like a |
| 570 | * good choice. |
| 571 | * |
| 572 | * If we removed the pages too early, kmmio page fault handler might |
| 573 | * not find the respective kmmio_fault_page and determine it's not |
| 574 | * a kmmio fault, when it actually is. This would lead to madness. |
| 575 | */ |
| 576 | call_rcu(&drelease->rcu, remove_kmmio_fault_pages); |
| 577 | } |
| 578 | EXPORT_SYMBOL(unregister_kmmio_probe); |
| 579 | |
| 580 | static int |
| 581 | kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args) |
| 582 | { |
| 583 | struct die_args *arg = args; |
| 584 | unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err); |
| 585 | |
| 586 | if (val == DIE_DEBUG && (*dr6_p & DR_STEP)) |
| 587 | if (post_kmmio_handler(*dr6_p, arg->regs) == 1) { |
| 588 | /* |
| 589 | * Reset the BS bit in dr6 (pointed by args->err) to |
| 590 | * denote completion of processing |
| 591 | */ |
| 592 | *dr6_p &= ~DR_STEP; |
| 593 | return NOTIFY_STOP; |
| 594 | } |
| 595 | |
| 596 | return NOTIFY_DONE; |
| 597 | } |
| 598 | |
| 599 | static struct notifier_block nb_die = { |
| 600 | .notifier_call = kmmio_die_notifier |
| 601 | }; |
| 602 | |
| 603 | int kmmio_init(void) |
| 604 | { |
| 605 | int i; |
| 606 | |
| 607 | for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) |
| 608 | INIT_LIST_HEAD(&kmmio_page_table[i]); |
| 609 | |
| 610 | return register_die_notifier(&nb_die); |
| 611 | } |
| 612 | |
| 613 | void kmmio_cleanup(void) |
| 614 | { |
| 615 | int i; |
| 616 | |
| 617 | unregister_die_notifier(&nb_die); |
| 618 | for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) { |
| 619 | WARN_ONCE(!list_empty(&kmmio_page_table[i]), |
| 620 | KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n"); |
| 621 | } |
| 622 | } |