Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | #define pr_fmt(fmt) "SVM: " fmt |
| 2 | |
| 3 | #include <linux/kvm_host.h> |
| 4 | |
| 5 | #include "irq.h" |
| 6 | #include "mmu.h" |
| 7 | #include "kvm_cache_regs.h" |
| 8 | #include "x86.h" |
| 9 | #include "cpuid.h" |
| 10 | #include "pmu.h" |
| 11 | |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/mod_devicetable.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/vmalloc.h> |
| 16 | #include <linux/highmem.h> |
| 17 | #include <linux/amd-iommu.h> |
| 18 | #include <linux/sched.h> |
| 19 | #include <linux/trace_events.h> |
| 20 | #include <linux/slab.h> |
| 21 | #include <linux/hashtable.h> |
| 22 | #include <linux/objtool.h> |
| 23 | #include <linux/psp-sev.h> |
| 24 | #include <linux/file.h> |
| 25 | #include <linux/pagemap.h> |
| 26 | #include <linux/swap.h> |
| 27 | #include <linux/rwsem.h> |
| 28 | |
| 29 | #include <asm/apic.h> |
| 30 | #include <asm/perf_event.h> |
| 31 | #include <asm/tlbflush.h> |
| 32 | #include <asm/desc.h> |
| 33 | #include <asm/debugreg.h> |
| 34 | #include <asm/kvm_para.h> |
| 35 | #include <asm/irq_remapping.h> |
| 36 | #include <asm/mce.h> |
| 37 | #include <asm/spec-ctrl.h> |
| 38 | #include <asm/cpu_device_id.h> |
| 39 | |
| 40 | #include <asm/virtext.h> |
| 41 | #include "trace.h" |
| 42 | |
| 43 | #include "svm.h" |
| 44 | |
| 45 | #define __ex(x) __kvm_handle_fault_on_reboot(x) |
| 46 | |
| 47 | MODULE_AUTHOR("Qumranet"); |
| 48 | MODULE_LICENSE("GPL"); |
| 49 | |
| 50 | #ifdef MODULE |
| 51 | static const struct x86_cpu_id svm_cpu_id[] = { |
| 52 | X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), |
| 53 | {} |
| 54 | }; |
| 55 | MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); |
| 56 | #endif |
| 57 | |
| 58 | #define IOPM_ALLOC_ORDER 2 |
| 59 | #define MSRPM_ALLOC_ORDER 1 |
| 60 | |
| 61 | #define SEG_TYPE_LDT 2 |
| 62 | #define SEG_TYPE_BUSY_TSS16 3 |
| 63 | |
| 64 | #define SVM_FEATURE_LBRV (1 << 1) |
| 65 | #define SVM_FEATURE_SVML (1 << 2) |
| 66 | #define SVM_FEATURE_TSC_RATE (1 << 4) |
| 67 | #define SVM_FEATURE_VMCB_CLEAN (1 << 5) |
| 68 | #define SVM_FEATURE_FLUSH_ASID (1 << 6) |
| 69 | #define SVM_FEATURE_DECODE_ASSIST (1 << 7) |
| 70 | #define SVM_FEATURE_PAUSE_FILTER (1 << 10) |
| 71 | |
| 72 | #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) |
| 73 | |
| 74 | #define TSC_RATIO_RSVD 0xffffff0000000000ULL |
| 75 | #define TSC_RATIO_MIN 0x0000000000000001ULL |
| 76 | #define TSC_RATIO_MAX 0x000000ffffffffffULL |
| 77 | |
| 78 | static bool erratum_383_found __read_mostly; |
| 79 | |
| 80 | u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; |
| 81 | |
| 82 | /* |
| 83 | * Set osvw_len to higher value when updated Revision Guides |
| 84 | * are published and we know what the new status bits are |
| 85 | */ |
| 86 | static uint64_t osvw_len = 4, osvw_status; |
| 87 | |
| 88 | static DEFINE_PER_CPU(u64, current_tsc_ratio); |
| 89 | #define TSC_RATIO_DEFAULT 0x0100000000ULL |
| 90 | |
| 91 | static const struct svm_direct_access_msrs { |
| 92 | u32 index; /* Index of the MSR */ |
| 93 | bool always; /* True if intercept is always on */ |
| 94 | } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { |
| 95 | { .index = MSR_STAR, .always = true }, |
| 96 | { .index = MSR_IA32_SYSENTER_CS, .always = true }, |
| 97 | #ifdef CONFIG_X86_64 |
| 98 | { .index = MSR_GS_BASE, .always = true }, |
| 99 | { .index = MSR_FS_BASE, .always = true }, |
| 100 | { .index = MSR_KERNEL_GS_BASE, .always = true }, |
| 101 | { .index = MSR_LSTAR, .always = true }, |
| 102 | { .index = MSR_CSTAR, .always = true }, |
| 103 | { .index = MSR_SYSCALL_MASK, .always = true }, |
| 104 | #endif |
| 105 | { .index = MSR_IA32_SPEC_CTRL, .always = false }, |
| 106 | { .index = MSR_IA32_PRED_CMD, .always = false }, |
| 107 | { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, |
| 108 | { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, |
| 109 | { .index = MSR_IA32_LASTINTFROMIP, .always = false }, |
| 110 | { .index = MSR_IA32_LASTINTTOIP, .always = false }, |
| 111 | { .index = MSR_INVALID, .always = false }, |
| 112 | }; |
| 113 | |
| 114 | /* enable NPT for AMD64 and X86 with PAE */ |
| 115 | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) |
| 116 | bool npt_enabled = true; |
| 117 | #else |
| 118 | bool npt_enabled; |
| 119 | #endif |
| 120 | |
| 121 | /* |
| 122 | * These 2 parameters are used to config the controls for Pause-Loop Exiting: |
| 123 | * pause_filter_count: On processors that support Pause filtering(indicated |
| 124 | * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter |
| 125 | * count value. On VMRUN this value is loaded into an internal counter. |
| 126 | * Each time a pause instruction is executed, this counter is decremented |
| 127 | * until it reaches zero at which time a #VMEXIT is generated if pause |
| 128 | * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause |
| 129 | * Intercept Filtering for more details. |
| 130 | * This also indicate if ple logic enabled. |
| 131 | * |
| 132 | * pause_filter_thresh: In addition, some processor families support advanced |
| 133 | * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on |
| 134 | * the amount of time a guest is allowed to execute in a pause loop. |
| 135 | * In this mode, a 16-bit pause filter threshold field is added in the |
| 136 | * VMCB. The threshold value is a cycle count that is used to reset the |
| 137 | * pause counter. As with simple pause filtering, VMRUN loads the pause |
| 138 | * count value from VMCB into an internal counter. Then, on each pause |
| 139 | * instruction the hardware checks the elapsed number of cycles since |
| 140 | * the most recent pause instruction against the pause filter threshold. |
| 141 | * If the elapsed cycle count is greater than the pause filter threshold, |
| 142 | * then the internal pause count is reloaded from the VMCB and execution |
| 143 | * continues. If the elapsed cycle count is less than the pause filter |
| 144 | * threshold, then the internal pause count is decremented. If the count |
| 145 | * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is |
| 146 | * triggered. If advanced pause filtering is supported and pause filter |
| 147 | * threshold field is set to zero, the filter will operate in the simpler, |
| 148 | * count only mode. |
| 149 | */ |
| 150 | |
| 151 | static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; |
| 152 | module_param(pause_filter_thresh, ushort, 0444); |
| 153 | |
| 154 | static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; |
| 155 | module_param(pause_filter_count, ushort, 0444); |
| 156 | |
| 157 | /* Default doubles per-vcpu window every exit. */ |
| 158 | static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; |
| 159 | module_param(pause_filter_count_grow, ushort, 0444); |
| 160 | |
| 161 | /* Default resets per-vcpu window every exit to pause_filter_count. */ |
| 162 | static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; |
| 163 | module_param(pause_filter_count_shrink, ushort, 0444); |
| 164 | |
| 165 | /* Default is to compute the maximum so we can never overflow. */ |
| 166 | static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; |
| 167 | module_param(pause_filter_count_max, ushort, 0444); |
| 168 | |
| 169 | /* allow nested paging (virtualized MMU) for all guests */ |
| 170 | static int npt = true; |
| 171 | module_param(npt, int, S_IRUGO); |
| 172 | |
| 173 | /* allow nested virtualization in KVM/SVM */ |
| 174 | static int nested = true; |
| 175 | module_param(nested, int, S_IRUGO); |
| 176 | |
| 177 | /* enable/disable Next RIP Save */ |
| 178 | static int nrips = true; |
| 179 | module_param(nrips, int, 0444); |
| 180 | |
| 181 | /* enable/disable Virtual VMLOAD VMSAVE */ |
| 182 | static int vls = true; |
| 183 | module_param(vls, int, 0444); |
| 184 | |
| 185 | /* enable/disable Virtual GIF */ |
| 186 | static int vgif = true; |
| 187 | module_param(vgif, int, 0444); |
| 188 | |
| 189 | /* enable/disable SEV support */ |
| 190 | static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); |
| 191 | module_param(sev, int, 0444); |
| 192 | |
| 193 | static bool __read_mostly dump_invalid_vmcb = 0; |
| 194 | module_param(dump_invalid_vmcb, bool, 0644); |
| 195 | |
| 196 | static u8 rsm_ins_bytes[] = "\x0f\xaa"; |
| 197 | |
| 198 | static void svm_complete_interrupts(struct vcpu_svm *svm); |
| 199 | |
| 200 | static unsigned long iopm_base; |
| 201 | |
| 202 | struct kvm_ldttss_desc { |
| 203 | u16 limit0; |
| 204 | u16 base0; |
| 205 | unsigned base1:8, type:5, dpl:2, p:1; |
| 206 | unsigned limit1:4, zero0:3, g:1, base2:8; |
| 207 | u32 base3; |
| 208 | u32 zero1; |
| 209 | } __attribute__((packed)); |
| 210 | |
| 211 | DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); |
| 212 | |
| 213 | static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; |
| 214 | |
| 215 | #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) |
| 216 | #define MSRS_RANGE_SIZE 2048 |
| 217 | #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) |
| 218 | |
| 219 | u32 svm_msrpm_offset(u32 msr) |
| 220 | { |
| 221 | u32 offset; |
| 222 | int i; |
| 223 | |
| 224 | for (i = 0; i < NUM_MSR_MAPS; i++) { |
| 225 | if (msr < msrpm_ranges[i] || |
| 226 | msr >= msrpm_ranges[i] + MSRS_IN_RANGE) |
| 227 | continue; |
| 228 | |
| 229 | offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ |
| 230 | offset += (i * MSRS_RANGE_SIZE); /* add range offset */ |
| 231 | |
| 232 | /* Now we have the u8 offset - but need the u32 offset */ |
| 233 | return offset / 4; |
| 234 | } |
| 235 | |
| 236 | /* MSR not in any range */ |
| 237 | return MSR_INVALID; |
| 238 | } |
| 239 | |
| 240 | #define MAX_INST_SIZE 15 |
| 241 | |
| 242 | static inline void clgi(void) |
| 243 | { |
| 244 | asm volatile (__ex("clgi")); |
| 245 | } |
| 246 | |
| 247 | static inline void stgi(void) |
| 248 | { |
| 249 | asm volatile (__ex("stgi")); |
| 250 | } |
| 251 | |
| 252 | static inline void invlpga(unsigned long addr, u32 asid) |
| 253 | { |
| 254 | asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr)); |
| 255 | } |
| 256 | |
| 257 | static int get_max_npt_level(void) |
| 258 | { |
| 259 | #ifdef CONFIG_X86_64 |
| 260 | return PT64_ROOT_4LEVEL; |
| 261 | #else |
| 262 | return PT32E_ROOT_LEVEL; |
| 263 | #endif |
| 264 | } |
| 265 | |
| 266 | int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| 267 | { |
| 268 | struct vcpu_svm *svm = to_svm(vcpu); |
| 269 | u64 old_efer = vcpu->arch.efer; |
| 270 | vcpu->arch.efer = efer; |
| 271 | |
| 272 | if (!npt_enabled) { |
| 273 | /* Shadow paging assumes NX to be available. */ |
| 274 | efer |= EFER_NX; |
| 275 | |
| 276 | if (!(efer & EFER_LMA)) |
| 277 | efer &= ~EFER_LME; |
| 278 | } |
| 279 | |
| 280 | if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { |
| 281 | if (!(efer & EFER_SVME)) { |
| 282 | svm_leave_nested(vcpu); |
| 283 | svm_set_gif(svm, true); |
| 284 | |
| 285 | /* |
| 286 | * Free the nested guest state, unless we are in SMM. |
| 287 | * In this case we will return to the nested guest |
| 288 | * as soon as we leave SMM. |
| 289 | */ |
| 290 | if (!is_smm(&svm->vcpu)) |
| 291 | svm_free_nested(svm); |
| 292 | |
| 293 | } else { |
| 294 | int ret = svm_allocate_nested(svm); |
| 295 | |
| 296 | if (ret) { |
| 297 | vcpu->arch.efer = old_efer; |
| 298 | return ret; |
| 299 | } |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | svm->vmcb->save.efer = efer | EFER_SVME; |
| 304 | vmcb_mark_dirty(svm->vmcb, VMCB_CR); |
| 305 | return 0; |
| 306 | } |
| 307 | |
| 308 | static int is_external_interrupt(u32 info) |
| 309 | { |
| 310 | info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; |
| 311 | return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); |
| 312 | } |
| 313 | |
| 314 | static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) |
| 315 | { |
| 316 | struct vcpu_svm *svm = to_svm(vcpu); |
| 317 | u32 ret = 0; |
| 318 | |
| 319 | if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) |
| 320 | ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; |
| 321 | return ret; |
| 322 | } |
| 323 | |
| 324 | static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) |
| 325 | { |
| 326 | struct vcpu_svm *svm = to_svm(vcpu); |
| 327 | |
| 328 | if (mask == 0) |
| 329 | svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; |
| 330 | else |
| 331 | svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; |
| 332 | |
| 333 | } |
| 334 | |
| 335 | static int skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| 336 | { |
| 337 | struct vcpu_svm *svm = to_svm(vcpu); |
| 338 | |
| 339 | if (nrips && svm->vmcb->control.next_rip != 0) { |
| 340 | WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); |
| 341 | svm->next_rip = svm->vmcb->control.next_rip; |
| 342 | } |
| 343 | |
| 344 | if (!svm->next_rip) { |
| 345 | if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) |
| 346 | return 0; |
| 347 | } else { |
| 348 | kvm_rip_write(vcpu, svm->next_rip); |
| 349 | } |
| 350 | svm_set_interrupt_shadow(vcpu, 0); |
| 351 | |
| 352 | return 1; |
| 353 | } |
| 354 | |
| 355 | static void svm_queue_exception(struct kvm_vcpu *vcpu) |
| 356 | { |
| 357 | struct vcpu_svm *svm = to_svm(vcpu); |
| 358 | unsigned nr = vcpu->arch.exception.nr; |
| 359 | bool has_error_code = vcpu->arch.exception.has_error_code; |
| 360 | u32 error_code = vcpu->arch.exception.error_code; |
| 361 | |
| 362 | kvm_deliver_exception_payload(&svm->vcpu); |
| 363 | |
| 364 | if (nr == BP_VECTOR && !nrips) { |
| 365 | unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); |
| 366 | |
| 367 | /* |
| 368 | * For guest debugging where we have to reinject #BP if some |
| 369 | * INT3 is guest-owned: |
| 370 | * Emulate nRIP by moving RIP forward. Will fail if injection |
| 371 | * raises a fault that is not intercepted. Still better than |
| 372 | * failing in all cases. |
| 373 | */ |
| 374 | (void)skip_emulated_instruction(&svm->vcpu); |
| 375 | rip = kvm_rip_read(&svm->vcpu); |
| 376 | svm->int3_rip = rip + svm->vmcb->save.cs.base; |
| 377 | svm->int3_injected = rip - old_rip; |
| 378 | } |
| 379 | |
| 380 | svm->vmcb->control.event_inj = nr |
| 381 | | SVM_EVTINJ_VALID |
| 382 | | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) |
| 383 | | SVM_EVTINJ_TYPE_EXEPT; |
| 384 | svm->vmcb->control.event_inj_err = error_code; |
| 385 | } |
| 386 | |
| 387 | static void svm_init_erratum_383(void) |
| 388 | { |
| 389 | u32 low, high; |
| 390 | int err; |
| 391 | u64 val; |
| 392 | |
| 393 | if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) |
| 394 | return; |
| 395 | |
| 396 | /* Use _safe variants to not break nested virtualization */ |
| 397 | val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); |
| 398 | if (err) |
| 399 | return; |
| 400 | |
| 401 | val |= (1ULL << 47); |
| 402 | |
| 403 | low = lower_32_bits(val); |
| 404 | high = upper_32_bits(val); |
| 405 | |
| 406 | native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); |
| 407 | |
| 408 | erratum_383_found = true; |
| 409 | } |
| 410 | |
| 411 | static void svm_init_osvw(struct kvm_vcpu *vcpu) |
| 412 | { |
| 413 | /* |
| 414 | * Guests should see errata 400 and 415 as fixed (assuming that |
| 415 | * HLT and IO instructions are intercepted). |
| 416 | */ |
| 417 | vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; |
| 418 | vcpu->arch.osvw.status = osvw_status & ~(6ULL); |
| 419 | |
| 420 | /* |
| 421 | * By increasing VCPU's osvw.length to 3 we are telling the guest that |
| 422 | * all osvw.status bits inside that length, including bit 0 (which is |
| 423 | * reserved for erratum 298), are valid. However, if host processor's |
| 424 | * osvw_len is 0 then osvw_status[0] carries no information. We need to |
| 425 | * be conservative here and therefore we tell the guest that erratum 298 |
| 426 | * is present (because we really don't know). |
| 427 | */ |
| 428 | if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) |
| 429 | vcpu->arch.osvw.status |= 1; |
| 430 | } |
| 431 | |
| 432 | static int has_svm(void) |
| 433 | { |
| 434 | const char *msg; |
| 435 | |
| 436 | if (!cpu_has_svm(&msg)) { |
| 437 | printk(KERN_INFO "has_svm: %s\n", msg); |
| 438 | return 0; |
| 439 | } |
| 440 | |
| 441 | if (sev_active()) { |
| 442 | pr_info("KVM is unsupported when running as an SEV guest\n"); |
| 443 | return 0; |
| 444 | } |
| 445 | |
| 446 | return 1; |
| 447 | } |
| 448 | |
| 449 | static void svm_hardware_disable(void) |
| 450 | { |
| 451 | /* Make sure we clean up behind us */ |
| 452 | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) |
| 453 | wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); |
| 454 | |
| 455 | cpu_svm_disable(); |
| 456 | |
| 457 | amd_pmu_disable_virt(); |
| 458 | } |
| 459 | |
| 460 | static int svm_hardware_enable(void) |
| 461 | { |
| 462 | |
| 463 | struct svm_cpu_data *sd; |
| 464 | uint64_t efer; |
| 465 | struct desc_struct *gdt; |
| 466 | int me = raw_smp_processor_id(); |
| 467 | |
| 468 | rdmsrl(MSR_EFER, efer); |
| 469 | if (efer & EFER_SVME) |
| 470 | return -EBUSY; |
| 471 | |
| 472 | if (!has_svm()) { |
| 473 | pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); |
| 474 | return -EINVAL; |
| 475 | } |
| 476 | sd = per_cpu(svm_data, me); |
| 477 | if (!sd) { |
| 478 | pr_err("%s: svm_data is NULL on %d\n", __func__, me); |
| 479 | return -EINVAL; |
| 480 | } |
| 481 | |
| 482 | sd->asid_generation = 1; |
| 483 | sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; |
| 484 | sd->next_asid = sd->max_asid + 1; |
| 485 | sd->min_asid = max_sev_asid + 1; |
| 486 | |
| 487 | gdt = get_current_gdt_rw(); |
| 488 | sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); |
| 489 | |
| 490 | wrmsrl(MSR_EFER, efer | EFER_SVME); |
| 491 | |
| 492 | wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); |
| 493 | |
| 494 | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { |
| 495 | wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); |
| 496 | __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); |
| 497 | } |
| 498 | |
| 499 | |
| 500 | /* |
| 501 | * Get OSVW bits. |
| 502 | * |
| 503 | * Note that it is possible to have a system with mixed processor |
| 504 | * revisions and therefore different OSVW bits. If bits are not the same |
| 505 | * on different processors then choose the worst case (i.e. if erratum |
| 506 | * is present on one processor and not on another then assume that the |
| 507 | * erratum is present everywhere). |
| 508 | */ |
| 509 | if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { |
| 510 | uint64_t len, status = 0; |
| 511 | int err; |
| 512 | |
| 513 | len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); |
| 514 | if (!err) |
| 515 | status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, |
| 516 | &err); |
| 517 | |
| 518 | if (err) |
| 519 | osvw_status = osvw_len = 0; |
| 520 | else { |
| 521 | if (len < osvw_len) |
| 522 | osvw_len = len; |
| 523 | osvw_status |= status; |
| 524 | osvw_status &= (1ULL << osvw_len) - 1; |
| 525 | } |
| 526 | } else |
| 527 | osvw_status = osvw_len = 0; |
| 528 | |
| 529 | svm_init_erratum_383(); |
| 530 | |
| 531 | amd_pmu_enable_virt(); |
| 532 | |
| 533 | return 0; |
| 534 | } |
| 535 | |
| 536 | static void svm_cpu_uninit(int cpu) |
| 537 | { |
| 538 | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
| 539 | |
| 540 | if (!sd) |
| 541 | return; |
| 542 | |
| 543 | per_cpu(svm_data, cpu) = NULL; |
| 544 | kfree(sd->sev_vmcbs); |
| 545 | __free_page(sd->save_area); |
| 546 | kfree(sd); |
| 547 | } |
| 548 | |
| 549 | static int svm_cpu_init(int cpu) |
| 550 | { |
| 551 | struct svm_cpu_data *sd; |
| 552 | |
| 553 | sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); |
| 554 | if (!sd) |
| 555 | return -ENOMEM; |
| 556 | sd->cpu = cpu; |
| 557 | sd->save_area = alloc_page(GFP_KERNEL); |
| 558 | if (!sd->save_area) |
| 559 | goto free_cpu_data; |
| 560 | |
| 561 | if (svm_sev_enabled()) { |
| 562 | sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, |
| 563 | sizeof(void *), |
| 564 | GFP_KERNEL); |
| 565 | if (!sd->sev_vmcbs) |
| 566 | goto free_save_area; |
| 567 | } |
| 568 | |
| 569 | per_cpu(svm_data, cpu) = sd; |
| 570 | |
| 571 | return 0; |
| 572 | |
| 573 | free_save_area: |
| 574 | __free_page(sd->save_area); |
| 575 | free_cpu_data: |
| 576 | kfree(sd); |
| 577 | return -ENOMEM; |
| 578 | |
| 579 | } |
| 580 | |
| 581 | static int direct_access_msr_slot(u32 msr) |
| 582 | { |
| 583 | u32 i; |
| 584 | |
| 585 | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) |
| 586 | if (direct_access_msrs[i].index == msr) |
| 587 | return i; |
| 588 | |
| 589 | return -ENOENT; |
| 590 | } |
| 591 | |
| 592 | static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, |
| 593 | int write) |
| 594 | { |
| 595 | struct vcpu_svm *svm = to_svm(vcpu); |
| 596 | int slot = direct_access_msr_slot(msr); |
| 597 | |
| 598 | if (slot == -ENOENT) |
| 599 | return; |
| 600 | |
| 601 | /* Set the shadow bitmaps to the desired intercept states */ |
| 602 | if (read) |
| 603 | set_bit(slot, svm->shadow_msr_intercept.read); |
| 604 | else |
| 605 | clear_bit(slot, svm->shadow_msr_intercept.read); |
| 606 | |
| 607 | if (write) |
| 608 | set_bit(slot, svm->shadow_msr_intercept.write); |
| 609 | else |
| 610 | clear_bit(slot, svm->shadow_msr_intercept.write); |
| 611 | } |
| 612 | |
| 613 | static bool valid_msr_intercept(u32 index) |
| 614 | { |
| 615 | return direct_access_msr_slot(index) != -ENOENT; |
| 616 | } |
| 617 | |
| 618 | static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) |
| 619 | { |
| 620 | u8 bit_write; |
| 621 | unsigned long tmp; |
| 622 | u32 offset; |
| 623 | u32 *msrpm; |
| 624 | |
| 625 | msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: |
| 626 | to_svm(vcpu)->msrpm; |
| 627 | |
| 628 | offset = svm_msrpm_offset(msr); |
| 629 | bit_write = 2 * (msr & 0x0f) + 1; |
| 630 | tmp = msrpm[offset]; |
| 631 | |
| 632 | BUG_ON(offset == MSR_INVALID); |
| 633 | |
| 634 | return !!test_bit(bit_write, &tmp); |
| 635 | } |
| 636 | |
| 637 | static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, |
| 638 | u32 msr, int read, int write) |
| 639 | { |
| 640 | u8 bit_read, bit_write; |
| 641 | unsigned long tmp; |
| 642 | u32 offset; |
| 643 | |
| 644 | /* |
| 645 | * If this warning triggers extend the direct_access_msrs list at the |
| 646 | * beginning of the file |
| 647 | */ |
| 648 | WARN_ON(!valid_msr_intercept(msr)); |
| 649 | |
| 650 | /* Enforce non allowed MSRs to trap */ |
| 651 | if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) |
| 652 | read = 0; |
| 653 | |
| 654 | if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) |
| 655 | write = 0; |
| 656 | |
| 657 | offset = svm_msrpm_offset(msr); |
| 658 | bit_read = 2 * (msr & 0x0f); |
| 659 | bit_write = 2 * (msr & 0x0f) + 1; |
| 660 | tmp = msrpm[offset]; |
| 661 | |
| 662 | BUG_ON(offset == MSR_INVALID); |
| 663 | |
| 664 | read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); |
| 665 | write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); |
| 666 | |
| 667 | msrpm[offset] = tmp; |
| 668 | } |
| 669 | |
| 670 | static void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, |
| 671 | int read, int write) |
| 672 | { |
| 673 | set_shadow_msr_intercept(vcpu, msr, read, write); |
| 674 | set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); |
| 675 | } |
| 676 | |
| 677 | u32 *svm_vcpu_alloc_msrpm(void) |
| 678 | { |
| 679 | struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); |
| 680 | u32 *msrpm; |
| 681 | |
| 682 | if (!pages) |
| 683 | return NULL; |
| 684 | |
| 685 | msrpm = page_address(pages); |
| 686 | memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); |
| 687 | |
| 688 | return msrpm; |
| 689 | } |
| 690 | |
| 691 | void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) |
| 692 | { |
| 693 | int i; |
| 694 | |
| 695 | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { |
| 696 | if (!direct_access_msrs[i].always) |
| 697 | continue; |
| 698 | set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | |
| 703 | void svm_vcpu_free_msrpm(u32 *msrpm) |
| 704 | { |
| 705 | __free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER); |
| 706 | } |
| 707 | |
| 708 | static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) |
| 709 | { |
| 710 | struct vcpu_svm *svm = to_svm(vcpu); |
| 711 | u32 i; |
| 712 | |
| 713 | /* |
| 714 | * Set intercept permissions for all direct access MSRs again. They |
| 715 | * will automatically get filtered through the MSR filter, so we are |
| 716 | * back in sync after this. |
| 717 | */ |
| 718 | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { |
| 719 | u32 msr = direct_access_msrs[i].index; |
| 720 | u32 read = test_bit(i, svm->shadow_msr_intercept.read); |
| 721 | u32 write = test_bit(i, svm->shadow_msr_intercept.write); |
| 722 | |
| 723 | set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | static void add_msr_offset(u32 offset) |
| 728 | { |
| 729 | int i; |
| 730 | |
| 731 | for (i = 0; i < MSRPM_OFFSETS; ++i) { |
| 732 | |
| 733 | /* Offset already in list? */ |
| 734 | if (msrpm_offsets[i] == offset) |
| 735 | return; |
| 736 | |
| 737 | /* Slot used by another offset? */ |
| 738 | if (msrpm_offsets[i] != MSR_INVALID) |
| 739 | continue; |
| 740 | |
| 741 | /* Add offset to list */ |
| 742 | msrpm_offsets[i] = offset; |
| 743 | |
| 744 | return; |
| 745 | } |
| 746 | |
| 747 | /* |
| 748 | * If this BUG triggers the msrpm_offsets table has an overflow. Just |
| 749 | * increase MSRPM_OFFSETS in this case. |
| 750 | */ |
| 751 | BUG(); |
| 752 | } |
| 753 | |
| 754 | static void init_msrpm_offsets(void) |
| 755 | { |
| 756 | int i; |
| 757 | |
| 758 | memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); |
| 759 | |
| 760 | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { |
| 761 | u32 offset; |
| 762 | |
| 763 | offset = svm_msrpm_offset(direct_access_msrs[i].index); |
| 764 | BUG_ON(offset == MSR_INVALID); |
| 765 | |
| 766 | add_msr_offset(offset); |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | static void svm_enable_lbrv(struct kvm_vcpu *vcpu) |
| 771 | { |
| 772 | struct vcpu_svm *svm = to_svm(vcpu); |
| 773 | |
| 774 | svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; |
| 775 | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); |
| 776 | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); |
| 777 | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); |
| 778 | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); |
| 779 | } |
| 780 | |
| 781 | static void svm_disable_lbrv(struct kvm_vcpu *vcpu) |
| 782 | { |
| 783 | struct vcpu_svm *svm = to_svm(vcpu); |
| 784 | |
| 785 | svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; |
| 786 | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); |
| 787 | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); |
| 788 | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); |
| 789 | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); |
| 790 | } |
| 791 | |
| 792 | void disable_nmi_singlestep(struct vcpu_svm *svm) |
| 793 | { |
| 794 | svm->nmi_singlestep = false; |
| 795 | |
| 796 | if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { |
| 797 | /* Clear our flags if they were not set by the guest */ |
| 798 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) |
| 799 | svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; |
| 800 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) |
| 801 | svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | static void grow_ple_window(struct kvm_vcpu *vcpu) |
| 806 | { |
| 807 | struct vcpu_svm *svm = to_svm(vcpu); |
| 808 | struct vmcb_control_area *control = &svm->vmcb->control; |
| 809 | int old = control->pause_filter_count; |
| 810 | |
| 811 | control->pause_filter_count = __grow_ple_window(old, |
| 812 | pause_filter_count, |
| 813 | pause_filter_count_grow, |
| 814 | pause_filter_count_max); |
| 815 | |
| 816 | if (control->pause_filter_count != old) { |
| 817 | vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
| 818 | trace_kvm_ple_window_update(vcpu->vcpu_id, |
| 819 | control->pause_filter_count, old); |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | static void shrink_ple_window(struct kvm_vcpu *vcpu) |
| 824 | { |
| 825 | struct vcpu_svm *svm = to_svm(vcpu); |
| 826 | struct vmcb_control_area *control = &svm->vmcb->control; |
| 827 | int old = control->pause_filter_count; |
| 828 | |
| 829 | control->pause_filter_count = |
| 830 | __shrink_ple_window(old, |
| 831 | pause_filter_count, |
| 832 | pause_filter_count_shrink, |
| 833 | pause_filter_count); |
| 834 | if (control->pause_filter_count != old) { |
| 835 | vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
| 836 | trace_kvm_ple_window_update(vcpu->vcpu_id, |
| 837 | control->pause_filter_count, old); |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | /* |
| 842 | * The default MMIO mask is a single bit (excluding the present bit), |
| 843 | * which could conflict with the memory encryption bit. Check for |
| 844 | * memory encryption support and override the default MMIO mask if |
| 845 | * memory encryption is enabled. |
| 846 | */ |
| 847 | static __init void svm_adjust_mmio_mask(void) |
| 848 | { |
| 849 | unsigned int enc_bit, mask_bit; |
| 850 | u64 msr, mask; |
| 851 | |
| 852 | /* If there is no memory encryption support, use existing mask */ |
| 853 | if (cpuid_eax(0x80000000) < 0x8000001f) |
| 854 | return; |
| 855 | |
| 856 | /* If memory encryption is not enabled, use existing mask */ |
| 857 | rdmsrl(MSR_K8_SYSCFG, msr); |
| 858 | if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) |
| 859 | return; |
| 860 | |
| 861 | enc_bit = cpuid_ebx(0x8000001f) & 0x3f; |
| 862 | mask_bit = boot_cpu_data.x86_phys_bits; |
| 863 | |
| 864 | /* Increment the mask bit if it is the same as the encryption bit */ |
| 865 | if (enc_bit == mask_bit) |
| 866 | mask_bit++; |
| 867 | |
| 868 | /* |
| 869 | * If the mask bit location is below 52, then some bits above the |
| 870 | * physical addressing limit will always be reserved, so use the |
| 871 | * rsvd_bits() function to generate the mask. This mask, along with |
| 872 | * the present bit, will be used to generate a page fault with |
| 873 | * PFER.RSV = 1. |
| 874 | * |
| 875 | * If the mask bit location is 52 (or above), then clear the mask. |
| 876 | */ |
| 877 | mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; |
| 878 | |
| 879 | kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK); |
| 880 | } |
| 881 | |
| 882 | static void svm_hardware_teardown(void) |
| 883 | { |
| 884 | int cpu; |
| 885 | |
| 886 | if (svm_sev_enabled()) |
| 887 | sev_hardware_teardown(); |
| 888 | |
| 889 | for_each_possible_cpu(cpu) |
| 890 | svm_cpu_uninit(cpu); |
| 891 | |
| 892 | __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); |
| 893 | iopm_base = 0; |
| 894 | } |
| 895 | |
| 896 | static __init void svm_set_cpu_caps(void) |
| 897 | { |
| 898 | kvm_set_cpu_caps(); |
| 899 | |
| 900 | supported_xss = 0; |
| 901 | |
| 902 | /* CPUID 0x80000001 and 0x8000000A (SVM features) */ |
| 903 | if (nested) { |
| 904 | kvm_cpu_cap_set(X86_FEATURE_SVM); |
| 905 | |
| 906 | if (nrips) |
| 907 | kvm_cpu_cap_set(X86_FEATURE_NRIPS); |
| 908 | |
| 909 | if (npt_enabled) |
| 910 | kvm_cpu_cap_set(X86_FEATURE_NPT); |
| 911 | } |
| 912 | |
| 913 | /* CPUID 0x80000008 */ |
| 914 | if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || |
| 915 | boot_cpu_has(X86_FEATURE_AMD_SSBD)) |
| 916 | kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); |
| 917 | |
| 918 | /* Enable INVPCID feature */ |
| 919 | kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID); |
| 920 | } |
| 921 | |
| 922 | static __init int svm_hardware_setup(void) |
| 923 | { |
| 924 | int cpu; |
| 925 | struct page *iopm_pages; |
| 926 | void *iopm_va; |
| 927 | int r; |
| 928 | |
| 929 | iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); |
| 930 | |
| 931 | if (!iopm_pages) |
| 932 | return -ENOMEM; |
| 933 | |
| 934 | iopm_va = page_address(iopm_pages); |
| 935 | memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); |
| 936 | iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; |
| 937 | |
| 938 | init_msrpm_offsets(); |
| 939 | |
| 940 | supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); |
| 941 | |
| 942 | if (boot_cpu_has(X86_FEATURE_NX)) |
| 943 | kvm_enable_efer_bits(EFER_NX); |
| 944 | |
| 945 | if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) |
| 946 | kvm_enable_efer_bits(EFER_FFXSR); |
| 947 | |
| 948 | if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { |
| 949 | kvm_has_tsc_control = true; |
| 950 | kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; |
| 951 | kvm_tsc_scaling_ratio_frac_bits = 32; |
| 952 | } |
| 953 | |
| 954 | /* Check for pause filtering support */ |
| 955 | if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { |
| 956 | pause_filter_count = 0; |
| 957 | pause_filter_thresh = 0; |
| 958 | } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { |
| 959 | pause_filter_thresh = 0; |
| 960 | } |
| 961 | |
| 962 | if (nested) { |
| 963 | printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); |
| 964 | kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); |
| 965 | } |
| 966 | |
| 967 | if (sev) { |
| 968 | if (boot_cpu_has(X86_FEATURE_SEV) && |
| 969 | IS_ENABLED(CONFIG_KVM_AMD_SEV)) { |
| 970 | r = sev_hardware_setup(); |
| 971 | if (r) |
| 972 | sev = false; |
| 973 | } else { |
| 974 | sev = false; |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | svm_adjust_mmio_mask(); |
| 979 | |
| 980 | for_each_possible_cpu(cpu) { |
| 981 | r = svm_cpu_init(cpu); |
| 982 | if (r) |
| 983 | goto err; |
| 984 | } |
| 985 | |
| 986 | if (!boot_cpu_has(X86_FEATURE_NPT)) |
| 987 | npt_enabled = false; |
| 988 | |
| 989 | if (npt_enabled && !npt) |
| 990 | npt_enabled = false; |
| 991 | |
| 992 | kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); |
| 993 | pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); |
| 994 | |
| 995 | if (nrips) { |
| 996 | if (!boot_cpu_has(X86_FEATURE_NRIPS)) |
| 997 | nrips = false; |
| 998 | } |
| 999 | |
| 1000 | if (avic) { |
| 1001 | if (!npt_enabled || |
| 1002 | !boot_cpu_has(X86_FEATURE_AVIC) || |
| 1003 | !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { |
| 1004 | avic = false; |
| 1005 | } else { |
| 1006 | pr_info("AVIC enabled\n"); |
| 1007 | |
| 1008 | amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | if (vls) { |
| 1013 | if (!npt_enabled || |
| 1014 | !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || |
| 1015 | !IS_ENABLED(CONFIG_X86_64)) { |
| 1016 | vls = false; |
| 1017 | } else { |
| 1018 | pr_info("Virtual VMLOAD VMSAVE supported\n"); |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | if (vgif) { |
| 1023 | if (!boot_cpu_has(X86_FEATURE_VGIF)) |
| 1024 | vgif = false; |
| 1025 | else |
| 1026 | pr_info("Virtual GIF supported\n"); |
| 1027 | } |
| 1028 | |
| 1029 | svm_set_cpu_caps(); |
| 1030 | |
| 1031 | /* |
| 1032 | * It seems that on AMD processors PTE's accessed bit is |
| 1033 | * being set by the CPU hardware before the NPF vmexit. |
| 1034 | * This is not expected behaviour and our tests fail because |
| 1035 | * of it. |
| 1036 | * A workaround here is to disable support for |
| 1037 | * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. |
| 1038 | * In this case userspace can know if there is support using |
| 1039 | * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle |
| 1040 | * it |
| 1041 | * If future AMD CPU models change the behaviour described above, |
| 1042 | * this variable can be changed accordingly |
| 1043 | */ |
| 1044 | allow_smaller_maxphyaddr = !npt_enabled; |
| 1045 | |
| 1046 | return 0; |
| 1047 | |
| 1048 | err: |
| 1049 | svm_hardware_teardown(); |
| 1050 | return r; |
| 1051 | } |
| 1052 | |
| 1053 | static void init_seg(struct vmcb_seg *seg) |
| 1054 | { |
| 1055 | seg->selector = 0; |
| 1056 | seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | |
| 1057 | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ |
| 1058 | seg->limit = 0xffff; |
| 1059 | seg->base = 0; |
| 1060 | } |
| 1061 | |
| 1062 | static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) |
| 1063 | { |
| 1064 | seg->selector = 0; |
| 1065 | seg->attrib = SVM_SELECTOR_P_MASK | type; |
| 1066 | seg->limit = 0xffff; |
| 1067 | seg->base = 0; |
| 1068 | } |
| 1069 | |
| 1070 | static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) |
| 1071 | { |
| 1072 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1073 | u64 g_tsc_offset = 0; |
| 1074 | |
| 1075 | if (is_guest_mode(vcpu)) { |
| 1076 | /* Write L1's TSC offset. */ |
| 1077 | g_tsc_offset = svm->vmcb->control.tsc_offset - |
| 1078 | svm->nested.hsave->control.tsc_offset; |
| 1079 | svm->nested.hsave->control.tsc_offset = offset; |
| 1080 | } |
| 1081 | |
| 1082 | trace_kvm_write_tsc_offset(vcpu->vcpu_id, |
| 1083 | svm->vmcb->control.tsc_offset - g_tsc_offset, |
| 1084 | offset); |
| 1085 | |
| 1086 | svm->vmcb->control.tsc_offset = offset + g_tsc_offset; |
| 1087 | |
| 1088 | vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
| 1089 | return svm->vmcb->control.tsc_offset; |
| 1090 | } |
| 1091 | |
| 1092 | static void svm_check_invpcid(struct vcpu_svm *svm) |
| 1093 | { |
| 1094 | /* |
| 1095 | * Intercept INVPCID if shadow paging is enabled to sync/free shadow |
| 1096 | * roots, or if INVPCID is disabled in the guest to inject #UD. |
| 1097 | */ |
| 1098 | if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { |
| 1099 | if (!npt_enabled || |
| 1100 | !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) |
| 1101 | svm_set_intercept(svm, INTERCEPT_INVPCID); |
| 1102 | else |
| 1103 | svm_clr_intercept(svm, INTERCEPT_INVPCID); |
| 1104 | } |
| 1105 | } |
| 1106 | |
| 1107 | static void init_vmcb(struct vcpu_svm *svm) |
| 1108 | { |
| 1109 | struct vmcb_control_area *control = &svm->vmcb->control; |
| 1110 | struct vmcb_save_area *save = &svm->vmcb->save; |
| 1111 | |
| 1112 | svm->vcpu.arch.hflags = 0; |
| 1113 | |
| 1114 | svm_set_intercept(svm, INTERCEPT_CR0_READ); |
| 1115 | svm_set_intercept(svm, INTERCEPT_CR3_READ); |
| 1116 | svm_set_intercept(svm, INTERCEPT_CR4_READ); |
| 1117 | svm_set_intercept(svm, INTERCEPT_CR0_WRITE); |
| 1118 | svm_set_intercept(svm, INTERCEPT_CR3_WRITE); |
| 1119 | svm_set_intercept(svm, INTERCEPT_CR4_WRITE); |
| 1120 | if (!kvm_vcpu_apicv_active(&svm->vcpu)) |
| 1121 | svm_set_intercept(svm, INTERCEPT_CR8_WRITE); |
| 1122 | |
| 1123 | set_dr_intercepts(svm); |
| 1124 | |
| 1125 | set_exception_intercept(svm, PF_VECTOR); |
| 1126 | set_exception_intercept(svm, UD_VECTOR); |
| 1127 | set_exception_intercept(svm, MC_VECTOR); |
| 1128 | set_exception_intercept(svm, AC_VECTOR); |
| 1129 | set_exception_intercept(svm, DB_VECTOR); |
| 1130 | /* |
| 1131 | * Guest access to VMware backdoor ports could legitimately |
| 1132 | * trigger #GP because of TSS I/O permission bitmap. |
| 1133 | * We intercept those #GP and allow access to them anyway |
| 1134 | * as VMware does. |
| 1135 | */ |
| 1136 | if (enable_vmware_backdoor) |
| 1137 | set_exception_intercept(svm, GP_VECTOR); |
| 1138 | |
| 1139 | svm_set_intercept(svm, INTERCEPT_INTR); |
| 1140 | svm_set_intercept(svm, INTERCEPT_NMI); |
| 1141 | svm_set_intercept(svm, INTERCEPT_SMI); |
| 1142 | svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); |
| 1143 | svm_set_intercept(svm, INTERCEPT_RDPMC); |
| 1144 | svm_set_intercept(svm, INTERCEPT_CPUID); |
| 1145 | svm_set_intercept(svm, INTERCEPT_INVD); |
| 1146 | svm_set_intercept(svm, INTERCEPT_INVLPG); |
| 1147 | svm_set_intercept(svm, INTERCEPT_INVLPGA); |
| 1148 | svm_set_intercept(svm, INTERCEPT_IOIO_PROT); |
| 1149 | svm_set_intercept(svm, INTERCEPT_MSR_PROT); |
| 1150 | svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); |
| 1151 | svm_set_intercept(svm, INTERCEPT_SHUTDOWN); |
| 1152 | svm_set_intercept(svm, INTERCEPT_VMRUN); |
| 1153 | svm_set_intercept(svm, INTERCEPT_VMMCALL); |
| 1154 | svm_set_intercept(svm, INTERCEPT_VMLOAD); |
| 1155 | svm_set_intercept(svm, INTERCEPT_VMSAVE); |
| 1156 | svm_set_intercept(svm, INTERCEPT_STGI); |
| 1157 | svm_set_intercept(svm, INTERCEPT_CLGI); |
| 1158 | svm_set_intercept(svm, INTERCEPT_SKINIT); |
| 1159 | svm_set_intercept(svm, INTERCEPT_WBINVD); |
| 1160 | svm_set_intercept(svm, INTERCEPT_XSETBV); |
| 1161 | svm_set_intercept(svm, INTERCEPT_RDPRU); |
| 1162 | svm_set_intercept(svm, INTERCEPT_RSM); |
| 1163 | |
| 1164 | if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { |
| 1165 | svm_set_intercept(svm, INTERCEPT_MONITOR); |
| 1166 | svm_set_intercept(svm, INTERCEPT_MWAIT); |
| 1167 | } |
| 1168 | |
| 1169 | if (!kvm_hlt_in_guest(svm->vcpu.kvm)) |
| 1170 | svm_set_intercept(svm, INTERCEPT_HLT); |
| 1171 | |
| 1172 | control->iopm_base_pa = __sme_set(iopm_base); |
| 1173 | control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); |
| 1174 | control->int_ctl = V_INTR_MASKING_MASK; |
| 1175 | |
| 1176 | init_seg(&save->es); |
| 1177 | init_seg(&save->ss); |
| 1178 | init_seg(&save->ds); |
| 1179 | init_seg(&save->fs); |
| 1180 | init_seg(&save->gs); |
| 1181 | |
| 1182 | save->cs.selector = 0xf000; |
| 1183 | save->cs.base = 0xffff0000; |
| 1184 | /* Executable/Readable Code Segment */ |
| 1185 | save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | |
| 1186 | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; |
| 1187 | save->cs.limit = 0xffff; |
| 1188 | |
| 1189 | save->gdtr.limit = 0xffff; |
| 1190 | save->idtr.limit = 0xffff; |
| 1191 | |
| 1192 | init_sys_seg(&save->ldtr, SEG_TYPE_LDT); |
| 1193 | init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); |
| 1194 | |
| 1195 | svm_set_cr4(&svm->vcpu, 0); |
| 1196 | svm_set_efer(&svm->vcpu, 0); |
| 1197 | save->dr6 = 0xffff0ff0; |
| 1198 | kvm_set_rflags(&svm->vcpu, 2); |
| 1199 | save->rip = 0x0000fff0; |
| 1200 | svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; |
| 1201 | |
| 1202 | /* |
| 1203 | * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. |
| 1204 | * It also updates the guest-visible cr0 value. |
| 1205 | */ |
| 1206 | svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); |
| 1207 | kvm_mmu_reset_context(&svm->vcpu); |
| 1208 | |
| 1209 | save->cr4 = X86_CR4_PAE; |
| 1210 | /* rdx = ?? */ |
| 1211 | |
| 1212 | if (npt_enabled) { |
| 1213 | /* Setup VMCB for Nested Paging */ |
| 1214 | control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; |
| 1215 | svm_clr_intercept(svm, INTERCEPT_INVLPG); |
| 1216 | clr_exception_intercept(svm, PF_VECTOR); |
| 1217 | svm_clr_intercept(svm, INTERCEPT_CR3_READ); |
| 1218 | svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); |
| 1219 | save->g_pat = svm->vcpu.arch.pat; |
| 1220 | save->cr3 = 0; |
| 1221 | save->cr4 = 0; |
| 1222 | } |
| 1223 | svm->asid_generation = 0; |
| 1224 | |
| 1225 | svm->nested.vmcb12_gpa = 0; |
| 1226 | svm->vcpu.arch.hflags = 0; |
| 1227 | |
| 1228 | if (!kvm_pause_in_guest(svm->vcpu.kvm)) { |
| 1229 | control->pause_filter_count = pause_filter_count; |
| 1230 | if (pause_filter_thresh) |
| 1231 | control->pause_filter_thresh = pause_filter_thresh; |
| 1232 | svm_set_intercept(svm, INTERCEPT_PAUSE); |
| 1233 | } else { |
| 1234 | svm_clr_intercept(svm, INTERCEPT_PAUSE); |
| 1235 | } |
| 1236 | |
| 1237 | svm_check_invpcid(svm); |
| 1238 | |
| 1239 | if (kvm_vcpu_apicv_active(&svm->vcpu)) |
| 1240 | avic_init_vmcb(svm); |
| 1241 | |
| 1242 | /* |
| 1243 | * If hardware supports Virtual VMLOAD VMSAVE then enable it |
| 1244 | * in VMCB and clear intercepts to avoid #VMEXIT. |
| 1245 | */ |
| 1246 | if (vls) { |
| 1247 | svm_clr_intercept(svm, INTERCEPT_VMLOAD); |
| 1248 | svm_clr_intercept(svm, INTERCEPT_VMSAVE); |
| 1249 | svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; |
| 1250 | } |
| 1251 | |
| 1252 | if (vgif) { |
| 1253 | svm_clr_intercept(svm, INTERCEPT_STGI); |
| 1254 | svm_clr_intercept(svm, INTERCEPT_CLGI); |
| 1255 | svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; |
| 1256 | } |
| 1257 | |
| 1258 | if (sev_guest(svm->vcpu.kvm)) { |
| 1259 | svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; |
| 1260 | clr_exception_intercept(svm, UD_VECTOR); |
| 1261 | } |
| 1262 | |
| 1263 | vmcb_mark_all_dirty(svm->vmcb); |
| 1264 | |
| 1265 | enable_gif(svm); |
| 1266 | |
| 1267 | } |
| 1268 | |
| 1269 | static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
| 1270 | { |
| 1271 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1272 | u32 dummy; |
| 1273 | u32 eax = 1; |
| 1274 | |
| 1275 | svm->spec_ctrl = 0; |
| 1276 | svm->virt_spec_ctrl = 0; |
| 1277 | |
| 1278 | if (!init_event) { |
| 1279 | svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | |
| 1280 | MSR_IA32_APICBASE_ENABLE; |
| 1281 | if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) |
| 1282 | svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; |
| 1283 | } |
| 1284 | init_vmcb(svm); |
| 1285 | |
| 1286 | kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); |
| 1287 | kvm_rdx_write(vcpu, eax); |
| 1288 | |
| 1289 | if (kvm_vcpu_apicv_active(vcpu) && !init_event) |
| 1290 | avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); |
| 1291 | } |
| 1292 | |
| 1293 | static int svm_create_vcpu(struct kvm_vcpu *vcpu) |
| 1294 | { |
| 1295 | struct vcpu_svm *svm; |
| 1296 | struct page *vmcb_page; |
| 1297 | int err; |
| 1298 | |
| 1299 | BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); |
| 1300 | svm = to_svm(vcpu); |
| 1301 | |
| 1302 | err = -ENOMEM; |
| 1303 | vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| 1304 | if (!vmcb_page) |
| 1305 | goto out; |
| 1306 | |
| 1307 | err = avic_init_vcpu(svm); |
| 1308 | if (err) |
| 1309 | goto error_free_vmcb_page; |
| 1310 | |
| 1311 | /* We initialize this flag to true to make sure that the is_running |
| 1312 | * bit would be set the first time the vcpu is loaded. |
| 1313 | */ |
| 1314 | if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) |
| 1315 | svm->avic_is_running = true; |
| 1316 | |
| 1317 | svm->msrpm = svm_vcpu_alloc_msrpm(); |
| 1318 | if (!svm->msrpm) { |
| 1319 | err = -ENOMEM; |
| 1320 | goto error_free_vmcb_page; |
| 1321 | } |
| 1322 | |
| 1323 | svm_vcpu_init_msrpm(vcpu, svm->msrpm); |
| 1324 | |
| 1325 | svm->vmcb = page_address(vmcb_page); |
| 1326 | svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT); |
| 1327 | svm->asid_generation = 0; |
| 1328 | init_vmcb(svm); |
| 1329 | |
| 1330 | svm_init_osvw(vcpu); |
| 1331 | vcpu->arch.microcode_version = 0x01000065; |
| 1332 | |
| 1333 | return 0; |
| 1334 | |
| 1335 | error_free_vmcb_page: |
| 1336 | __free_page(vmcb_page); |
| 1337 | out: |
| 1338 | return err; |
| 1339 | } |
| 1340 | |
| 1341 | static void svm_clear_current_vmcb(struct vmcb *vmcb) |
| 1342 | { |
| 1343 | int i; |
| 1344 | |
| 1345 | for_each_online_cpu(i) |
| 1346 | cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); |
| 1347 | } |
| 1348 | |
| 1349 | static void svm_free_vcpu(struct kvm_vcpu *vcpu) |
| 1350 | { |
| 1351 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1352 | |
| 1353 | /* |
| 1354 | * The vmcb page can be recycled, causing a false negative in |
| 1355 | * svm_vcpu_load(). So, ensure that no logical CPU has this |
| 1356 | * vmcb page recorded as its current vmcb. |
| 1357 | */ |
| 1358 | svm_clear_current_vmcb(svm->vmcb); |
| 1359 | |
| 1360 | svm_free_nested(svm); |
| 1361 | |
| 1362 | __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); |
| 1363 | __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); |
| 1364 | } |
| 1365 | |
| 1366 | static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| 1367 | { |
| 1368 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1369 | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
| 1370 | int i; |
| 1371 | |
| 1372 | if (unlikely(cpu != vcpu->cpu)) { |
| 1373 | svm->asid_generation = 0; |
| 1374 | vmcb_mark_all_dirty(svm->vmcb); |
| 1375 | } |
| 1376 | |
| 1377 | #ifdef CONFIG_X86_64 |
| 1378 | rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); |
| 1379 | #endif |
| 1380 | savesegment(fs, svm->host.fs); |
| 1381 | savesegment(gs, svm->host.gs); |
| 1382 | svm->host.ldt = kvm_read_ldt(); |
| 1383 | |
| 1384 | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) |
| 1385 | rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); |
| 1386 | |
| 1387 | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { |
| 1388 | u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; |
| 1389 | if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { |
| 1390 | __this_cpu_write(current_tsc_ratio, tsc_ratio); |
| 1391 | wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); |
| 1392 | } |
| 1393 | } |
| 1394 | /* This assumes that the kernel never uses MSR_TSC_AUX */ |
| 1395 | if (static_cpu_has(X86_FEATURE_RDTSCP)) |
| 1396 | wrmsrl(MSR_TSC_AUX, svm->tsc_aux); |
| 1397 | |
| 1398 | if (sd->current_vmcb != svm->vmcb) { |
| 1399 | sd->current_vmcb = svm->vmcb; |
| 1400 | indirect_branch_prediction_barrier(); |
| 1401 | } |
| 1402 | avic_vcpu_load(vcpu, cpu); |
| 1403 | } |
| 1404 | |
| 1405 | static void svm_vcpu_put(struct kvm_vcpu *vcpu) |
| 1406 | { |
| 1407 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1408 | int i; |
| 1409 | |
| 1410 | avic_vcpu_put(vcpu); |
| 1411 | |
| 1412 | ++vcpu->stat.host_state_reload; |
| 1413 | kvm_load_ldt(svm->host.ldt); |
| 1414 | #ifdef CONFIG_X86_64 |
| 1415 | loadsegment(fs, svm->host.fs); |
| 1416 | wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase); |
| 1417 | load_gs_index(svm->host.gs); |
| 1418 | #else |
| 1419 | #ifdef CONFIG_X86_32_LAZY_GS |
| 1420 | loadsegment(gs, svm->host.gs); |
| 1421 | #endif |
| 1422 | #endif |
| 1423 | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) |
| 1424 | wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); |
| 1425 | } |
| 1426 | |
| 1427 | static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) |
| 1428 | { |
| 1429 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1430 | unsigned long rflags = svm->vmcb->save.rflags; |
| 1431 | |
| 1432 | if (svm->nmi_singlestep) { |
| 1433 | /* Hide our flags if they were not set by the guest */ |
| 1434 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) |
| 1435 | rflags &= ~X86_EFLAGS_TF; |
| 1436 | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) |
| 1437 | rflags &= ~X86_EFLAGS_RF; |
| 1438 | } |
| 1439 | return rflags; |
| 1440 | } |
| 1441 | |
| 1442 | static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| 1443 | { |
| 1444 | if (to_svm(vcpu)->nmi_singlestep) |
| 1445 | rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); |
| 1446 | |
| 1447 | /* |
| 1448 | * Any change of EFLAGS.VM is accompanied by a reload of SS |
| 1449 | * (caused by either a task switch or an inter-privilege IRET), |
| 1450 | * so we do not need to update the CPL here. |
| 1451 | */ |
| 1452 | to_svm(vcpu)->vmcb->save.rflags = rflags; |
| 1453 | } |
| 1454 | |
| 1455 | static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) |
| 1456 | { |
| 1457 | switch (reg) { |
| 1458 | case VCPU_EXREG_PDPTR: |
| 1459 | BUG_ON(!npt_enabled); |
| 1460 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); |
| 1461 | break; |
| 1462 | default: |
| 1463 | WARN_ON_ONCE(1); |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | static void svm_set_vintr(struct vcpu_svm *svm) |
| 1468 | { |
| 1469 | struct vmcb_control_area *control; |
| 1470 | |
| 1471 | /* The following fields are ignored when AVIC is enabled */ |
| 1472 | WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); |
| 1473 | svm_set_intercept(svm, INTERCEPT_VINTR); |
| 1474 | |
| 1475 | /* |
| 1476 | * This is just a dummy VINTR to actually cause a vmexit to happen. |
| 1477 | * Actual injection of virtual interrupts happens through EVENTINJ. |
| 1478 | */ |
| 1479 | control = &svm->vmcb->control; |
| 1480 | control->int_vector = 0x0; |
| 1481 | control->int_ctl &= ~V_INTR_PRIO_MASK; |
| 1482 | control->int_ctl |= V_IRQ_MASK | |
| 1483 | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); |
| 1484 | vmcb_mark_dirty(svm->vmcb, VMCB_INTR); |
| 1485 | } |
| 1486 | |
| 1487 | static void svm_clear_vintr(struct vcpu_svm *svm) |
| 1488 | { |
| 1489 | svm_clr_intercept(svm, INTERCEPT_VINTR); |
| 1490 | |
| 1491 | /* Drop int_ctl fields related to VINTR injection. */ |
| 1492 | svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; |
| 1493 | if (is_guest_mode(&svm->vcpu)) { |
| 1494 | svm->nested.hsave->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; |
| 1495 | |
| 1496 | WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != |
| 1497 | (svm->nested.ctl.int_ctl & V_TPR_MASK)); |
| 1498 | svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & |
| 1499 | V_IRQ_INJECTION_BITS_MASK; |
| 1500 | |
| 1501 | svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; |
| 1502 | } |
| 1503 | |
| 1504 | vmcb_mark_dirty(svm->vmcb, VMCB_INTR); |
| 1505 | } |
| 1506 | |
| 1507 | static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) |
| 1508 | { |
| 1509 | struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; |
| 1510 | |
| 1511 | switch (seg) { |
| 1512 | case VCPU_SREG_CS: return &save->cs; |
| 1513 | case VCPU_SREG_DS: return &save->ds; |
| 1514 | case VCPU_SREG_ES: return &save->es; |
| 1515 | case VCPU_SREG_FS: return &save->fs; |
| 1516 | case VCPU_SREG_GS: return &save->gs; |
| 1517 | case VCPU_SREG_SS: return &save->ss; |
| 1518 | case VCPU_SREG_TR: return &save->tr; |
| 1519 | case VCPU_SREG_LDTR: return &save->ldtr; |
| 1520 | } |
| 1521 | BUG(); |
| 1522 | return NULL; |
| 1523 | } |
| 1524 | |
| 1525 | static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| 1526 | { |
| 1527 | struct vmcb_seg *s = svm_seg(vcpu, seg); |
| 1528 | |
| 1529 | return s->base; |
| 1530 | } |
| 1531 | |
| 1532 | static void svm_get_segment(struct kvm_vcpu *vcpu, |
| 1533 | struct kvm_segment *var, int seg) |
| 1534 | { |
| 1535 | struct vmcb_seg *s = svm_seg(vcpu, seg); |
| 1536 | |
| 1537 | var->base = s->base; |
| 1538 | var->limit = s->limit; |
| 1539 | var->selector = s->selector; |
| 1540 | var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; |
| 1541 | var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; |
| 1542 | var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; |
| 1543 | var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; |
| 1544 | var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; |
| 1545 | var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; |
| 1546 | var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; |
| 1547 | |
| 1548 | /* |
| 1549 | * AMD CPUs circa 2014 track the G bit for all segments except CS. |
| 1550 | * However, the SVM spec states that the G bit is not observed by the |
| 1551 | * CPU, and some VMware virtual CPUs drop the G bit for all segments. |
| 1552 | * So let's synthesize a legal G bit for all segments, this helps |
| 1553 | * running KVM nested. It also helps cross-vendor migration, because |
| 1554 | * Intel's vmentry has a check on the 'G' bit. |
| 1555 | */ |
| 1556 | var->g = s->limit > 0xfffff; |
| 1557 | |
| 1558 | /* |
| 1559 | * AMD's VMCB does not have an explicit unusable field, so emulate it |
| 1560 | * for cross vendor migration purposes by "not present" |
| 1561 | */ |
| 1562 | var->unusable = !var->present; |
| 1563 | |
| 1564 | switch (seg) { |
| 1565 | case VCPU_SREG_TR: |
| 1566 | /* |
| 1567 | * Work around a bug where the busy flag in the tr selector |
| 1568 | * isn't exposed |
| 1569 | */ |
| 1570 | var->type |= 0x2; |
| 1571 | break; |
| 1572 | case VCPU_SREG_DS: |
| 1573 | case VCPU_SREG_ES: |
| 1574 | case VCPU_SREG_FS: |
| 1575 | case VCPU_SREG_GS: |
| 1576 | /* |
| 1577 | * The accessed bit must always be set in the segment |
| 1578 | * descriptor cache, although it can be cleared in the |
| 1579 | * descriptor, the cached bit always remains at 1. Since |
| 1580 | * Intel has a check on this, set it here to support |
| 1581 | * cross-vendor migration. |
| 1582 | */ |
| 1583 | if (!var->unusable) |
| 1584 | var->type |= 0x1; |
| 1585 | break; |
| 1586 | case VCPU_SREG_SS: |
| 1587 | /* |
| 1588 | * On AMD CPUs sometimes the DB bit in the segment |
| 1589 | * descriptor is left as 1, although the whole segment has |
| 1590 | * been made unusable. Clear it here to pass an Intel VMX |
| 1591 | * entry check when cross vendor migrating. |
| 1592 | */ |
| 1593 | if (var->unusable) |
| 1594 | var->db = 0; |
| 1595 | /* This is symmetric with svm_set_segment() */ |
| 1596 | var->dpl = to_svm(vcpu)->vmcb->save.cpl; |
| 1597 | break; |
| 1598 | } |
| 1599 | } |
| 1600 | |
| 1601 | static int svm_get_cpl(struct kvm_vcpu *vcpu) |
| 1602 | { |
| 1603 | struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; |
| 1604 | |
| 1605 | return save->cpl; |
| 1606 | } |
| 1607 | |
| 1608 | static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 1609 | { |
| 1610 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1611 | |
| 1612 | dt->size = svm->vmcb->save.idtr.limit; |
| 1613 | dt->address = svm->vmcb->save.idtr.base; |
| 1614 | } |
| 1615 | |
| 1616 | static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 1617 | { |
| 1618 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1619 | |
| 1620 | svm->vmcb->save.idtr.limit = dt->size; |
| 1621 | svm->vmcb->save.idtr.base = dt->address ; |
| 1622 | vmcb_mark_dirty(svm->vmcb, VMCB_DT); |
| 1623 | } |
| 1624 | |
| 1625 | static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 1626 | { |
| 1627 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1628 | |
| 1629 | dt->size = svm->vmcb->save.gdtr.limit; |
| 1630 | dt->address = svm->vmcb->save.gdtr.base; |
| 1631 | } |
| 1632 | |
| 1633 | static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 1634 | { |
| 1635 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1636 | |
| 1637 | svm->vmcb->save.gdtr.limit = dt->size; |
| 1638 | svm->vmcb->save.gdtr.base = dt->address ; |
| 1639 | vmcb_mark_dirty(svm->vmcb, VMCB_DT); |
| 1640 | } |
| 1641 | |
| 1642 | static void update_cr0_intercept(struct vcpu_svm *svm) |
| 1643 | { |
| 1644 | ulong gcr0 = svm->vcpu.arch.cr0; |
| 1645 | u64 *hcr0 = &svm->vmcb->save.cr0; |
| 1646 | |
| 1647 | *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) |
| 1648 | | (gcr0 & SVM_CR0_SELECTIVE_MASK); |
| 1649 | |
| 1650 | vmcb_mark_dirty(svm->vmcb, VMCB_CR); |
| 1651 | |
| 1652 | if (gcr0 == *hcr0) { |
| 1653 | svm_clr_intercept(svm, INTERCEPT_CR0_READ); |
| 1654 | svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); |
| 1655 | } else { |
| 1656 | svm_set_intercept(svm, INTERCEPT_CR0_READ); |
| 1657 | svm_set_intercept(svm, INTERCEPT_CR0_WRITE); |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| 1662 | { |
| 1663 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1664 | |
| 1665 | #ifdef CONFIG_X86_64 |
| 1666 | if (vcpu->arch.efer & EFER_LME) { |
| 1667 | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { |
| 1668 | vcpu->arch.efer |= EFER_LMA; |
| 1669 | svm->vmcb->save.efer |= EFER_LMA | EFER_LME; |
| 1670 | } |
| 1671 | |
| 1672 | if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { |
| 1673 | vcpu->arch.efer &= ~EFER_LMA; |
| 1674 | svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); |
| 1675 | } |
| 1676 | } |
| 1677 | #endif |
| 1678 | vcpu->arch.cr0 = cr0; |
| 1679 | |
| 1680 | if (!npt_enabled) |
| 1681 | cr0 |= X86_CR0_PG | X86_CR0_WP; |
| 1682 | |
| 1683 | /* |
| 1684 | * re-enable caching here because the QEMU bios |
| 1685 | * does not do it - this results in some delay at |
| 1686 | * reboot |
| 1687 | */ |
| 1688 | if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) |
| 1689 | cr0 &= ~(X86_CR0_CD | X86_CR0_NW); |
| 1690 | svm->vmcb->save.cr0 = cr0; |
| 1691 | vmcb_mark_dirty(svm->vmcb, VMCB_CR); |
| 1692 | update_cr0_intercept(svm); |
| 1693 | } |
| 1694 | |
| 1695 | int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| 1696 | { |
| 1697 | unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; |
| 1698 | unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; |
| 1699 | |
| 1700 | if (cr4 & X86_CR4_VMXE) |
| 1701 | return 1; |
| 1702 | |
| 1703 | if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) |
| 1704 | svm_flush_tlb(vcpu); |
| 1705 | |
| 1706 | vcpu->arch.cr4 = cr4; |
| 1707 | if (!npt_enabled) |
| 1708 | cr4 |= X86_CR4_PAE; |
| 1709 | cr4 |= host_cr4_mce; |
| 1710 | to_svm(vcpu)->vmcb->save.cr4 = cr4; |
| 1711 | vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); |
| 1712 | return 0; |
| 1713 | } |
| 1714 | |
| 1715 | static void svm_set_segment(struct kvm_vcpu *vcpu, |
| 1716 | struct kvm_segment *var, int seg) |
| 1717 | { |
| 1718 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1719 | struct vmcb_seg *s = svm_seg(vcpu, seg); |
| 1720 | |
| 1721 | s->base = var->base; |
| 1722 | s->limit = var->limit; |
| 1723 | s->selector = var->selector; |
| 1724 | s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); |
| 1725 | s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; |
| 1726 | s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; |
| 1727 | s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; |
| 1728 | s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; |
| 1729 | s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; |
| 1730 | s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; |
| 1731 | s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; |
| 1732 | |
| 1733 | /* |
| 1734 | * This is always accurate, except if SYSRET returned to a segment |
| 1735 | * with SS.DPL != 3. Intel does not have this quirk, and always |
| 1736 | * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it |
| 1737 | * would entail passing the CPL to userspace and back. |
| 1738 | */ |
| 1739 | if (seg == VCPU_SREG_SS) |
| 1740 | /* This is symmetric with svm_get_segment() */ |
| 1741 | svm->vmcb->save.cpl = (var->dpl & 3); |
| 1742 | |
| 1743 | vmcb_mark_dirty(svm->vmcb, VMCB_SEG); |
| 1744 | } |
| 1745 | |
| 1746 | static void update_exception_bitmap(struct kvm_vcpu *vcpu) |
| 1747 | { |
| 1748 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1749 | |
| 1750 | clr_exception_intercept(svm, BP_VECTOR); |
| 1751 | |
| 1752 | if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { |
| 1753 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| 1754 | set_exception_intercept(svm, BP_VECTOR); |
| 1755 | } |
| 1756 | } |
| 1757 | |
| 1758 | static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) |
| 1759 | { |
| 1760 | if (sd->next_asid > sd->max_asid) { |
| 1761 | ++sd->asid_generation; |
| 1762 | sd->next_asid = sd->min_asid; |
| 1763 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; |
| 1764 | } |
| 1765 | |
| 1766 | svm->asid_generation = sd->asid_generation; |
| 1767 | svm->vmcb->control.asid = sd->next_asid++; |
| 1768 | |
| 1769 | vmcb_mark_dirty(svm->vmcb, VMCB_ASID); |
| 1770 | } |
| 1771 | |
| 1772 | static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) |
| 1773 | { |
| 1774 | struct vmcb *vmcb = svm->vmcb; |
| 1775 | |
| 1776 | if (unlikely(value != vmcb->save.dr6)) { |
| 1777 | vmcb->save.dr6 = value; |
| 1778 | vmcb_mark_dirty(vmcb, VMCB_DR); |
| 1779 | } |
| 1780 | } |
| 1781 | |
| 1782 | static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) |
| 1783 | { |
| 1784 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1785 | |
| 1786 | get_debugreg(vcpu->arch.db[0], 0); |
| 1787 | get_debugreg(vcpu->arch.db[1], 1); |
| 1788 | get_debugreg(vcpu->arch.db[2], 2); |
| 1789 | get_debugreg(vcpu->arch.db[3], 3); |
| 1790 | /* |
| 1791 | * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here, |
| 1792 | * because db_interception might need it. We can do it before vmentry. |
| 1793 | */ |
| 1794 | vcpu->arch.dr6 = svm->vmcb->save.dr6; |
| 1795 | vcpu->arch.dr7 = svm->vmcb->save.dr7; |
| 1796 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; |
| 1797 | set_dr_intercepts(svm); |
| 1798 | } |
| 1799 | |
| 1800 | static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) |
| 1801 | { |
| 1802 | struct vcpu_svm *svm = to_svm(vcpu); |
| 1803 | |
| 1804 | svm->vmcb->save.dr7 = value; |
| 1805 | vmcb_mark_dirty(svm->vmcb, VMCB_DR); |
| 1806 | } |
| 1807 | |
| 1808 | static int pf_interception(struct vcpu_svm *svm) |
| 1809 | { |
| 1810 | u64 fault_address = svm->vmcb->control.exit_info_2; |
| 1811 | u64 error_code = svm->vmcb->control.exit_info_1; |
| 1812 | |
| 1813 | return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, |
| 1814 | static_cpu_has(X86_FEATURE_DECODEASSISTS) ? |
| 1815 | svm->vmcb->control.insn_bytes : NULL, |
| 1816 | svm->vmcb->control.insn_len); |
| 1817 | } |
| 1818 | |
| 1819 | static int npf_interception(struct vcpu_svm *svm) |
| 1820 | { |
| 1821 | u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); |
| 1822 | u64 error_code = svm->vmcb->control.exit_info_1; |
| 1823 | |
| 1824 | trace_kvm_page_fault(fault_address, error_code); |
| 1825 | return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, |
| 1826 | static_cpu_has(X86_FEATURE_DECODEASSISTS) ? |
| 1827 | svm->vmcb->control.insn_bytes : NULL, |
| 1828 | svm->vmcb->control.insn_len); |
| 1829 | } |
| 1830 | |
| 1831 | static int db_interception(struct vcpu_svm *svm) |
| 1832 | { |
| 1833 | struct kvm_run *kvm_run = svm->vcpu.run; |
| 1834 | struct kvm_vcpu *vcpu = &svm->vcpu; |
| 1835 | |
| 1836 | if (!(svm->vcpu.guest_debug & |
| 1837 | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && |
| 1838 | !svm->nmi_singlestep) { |
| 1839 | u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1; |
| 1840 | kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload); |
| 1841 | return 1; |
| 1842 | } |
| 1843 | |
| 1844 | if (svm->nmi_singlestep) { |
| 1845 | disable_nmi_singlestep(svm); |
| 1846 | /* Make sure we check for pending NMIs upon entry */ |
| 1847 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
| 1848 | } |
| 1849 | |
| 1850 | if (svm->vcpu.guest_debug & |
| 1851 | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { |
| 1852 | kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| 1853 | kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; |
| 1854 | kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; |
| 1855 | kvm_run->debug.arch.pc = |
| 1856 | svm->vmcb->save.cs.base + svm->vmcb->save.rip; |
| 1857 | kvm_run->debug.arch.exception = DB_VECTOR; |
| 1858 | return 0; |
| 1859 | } |
| 1860 | |
| 1861 | return 1; |
| 1862 | } |
| 1863 | |
| 1864 | static int bp_interception(struct vcpu_svm *svm) |
| 1865 | { |
| 1866 | struct kvm_run *kvm_run = svm->vcpu.run; |
| 1867 | |
| 1868 | kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| 1869 | kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; |
| 1870 | kvm_run->debug.arch.exception = BP_VECTOR; |
| 1871 | return 0; |
| 1872 | } |
| 1873 | |
| 1874 | static int ud_interception(struct vcpu_svm *svm) |
| 1875 | { |
| 1876 | return handle_ud(&svm->vcpu); |
| 1877 | } |
| 1878 | |
| 1879 | static int ac_interception(struct vcpu_svm *svm) |
| 1880 | { |
| 1881 | kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); |
| 1882 | return 1; |
| 1883 | } |
| 1884 | |
| 1885 | static int gp_interception(struct vcpu_svm *svm) |
| 1886 | { |
| 1887 | struct kvm_vcpu *vcpu = &svm->vcpu; |
| 1888 | u32 error_code = svm->vmcb->control.exit_info_1; |
| 1889 | |
| 1890 | WARN_ON_ONCE(!enable_vmware_backdoor); |
| 1891 | |
| 1892 | /* |
| 1893 | * VMware backdoor emulation on #GP interception only handles IN{S}, |
| 1894 | * OUT{S}, and RDPMC, none of which generate a non-zero error code. |
| 1895 | */ |
| 1896 | if (error_code) { |
| 1897 | kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); |
| 1898 | return 1; |
| 1899 | } |
| 1900 | return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); |
| 1901 | } |
| 1902 | |
| 1903 | static bool is_erratum_383(void) |
| 1904 | { |
| 1905 | int err, i; |
| 1906 | u64 value; |
| 1907 | |
| 1908 | if (!erratum_383_found) |
| 1909 | return false; |
| 1910 | |
| 1911 | value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); |
| 1912 | if (err) |
| 1913 | return false; |
| 1914 | |
| 1915 | /* Bit 62 may or may not be set for this mce */ |
| 1916 | value &= ~(1ULL << 62); |
| 1917 | |
| 1918 | if (value != 0xb600000000010015ULL) |
| 1919 | return false; |
| 1920 | |
| 1921 | /* Clear MCi_STATUS registers */ |
| 1922 | for (i = 0; i < 6; ++i) |
| 1923 | native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); |
| 1924 | |
| 1925 | value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); |
| 1926 | if (!err) { |
| 1927 | u32 low, high; |
| 1928 | |
| 1929 | value &= ~(1ULL << 2); |
| 1930 | low = lower_32_bits(value); |
| 1931 | high = upper_32_bits(value); |
| 1932 | |
| 1933 | native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); |
| 1934 | } |
| 1935 | |
| 1936 | /* Flush tlb to evict multi-match entries */ |
| 1937 | __flush_tlb_all(); |
| 1938 | |
| 1939 | return true; |
| 1940 | } |
| 1941 | |
| 1942 | /* |
| 1943 | * Trigger machine check on the host. We assume all the MSRs are already set up |
| 1944 | * by the CPU and that we still run on the same CPU as the MCE occurred on. |
| 1945 | * We pass a fake environment to the machine check handler because we want |
| 1946 | * the guest to be always treated like user space, no matter what context |
| 1947 | * it used internally. |
| 1948 | */ |
| 1949 | static void kvm_machine_check(void) |
| 1950 | { |
| 1951 | #if defined(CONFIG_X86_MCE) |
| 1952 | struct pt_regs regs = { |
| 1953 | .cs = 3, /* Fake ring 3 no matter what the guest ran on */ |
| 1954 | .flags = X86_EFLAGS_IF, |
| 1955 | }; |
| 1956 | |
| 1957 | do_machine_check(®s); |
| 1958 | #endif |
| 1959 | } |
| 1960 | |
| 1961 | static void svm_handle_mce(struct vcpu_svm *svm) |
| 1962 | { |
| 1963 | if (is_erratum_383()) { |
| 1964 | /* |
| 1965 | * Erratum 383 triggered. Guest state is corrupt so kill the |
| 1966 | * guest. |
| 1967 | */ |
| 1968 | pr_err("KVM: Guest triggered AMD Erratum 383\n"); |
| 1969 | |
| 1970 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); |
| 1971 | |
| 1972 | return; |
| 1973 | } |
| 1974 | |
| 1975 | /* |
| 1976 | * On an #MC intercept the MCE handler is not called automatically in |
| 1977 | * the host. So do it by hand here. |
| 1978 | */ |
| 1979 | kvm_machine_check(); |
| 1980 | } |
| 1981 | |
| 1982 | static int mc_interception(struct vcpu_svm *svm) |
| 1983 | { |
| 1984 | return 1; |
| 1985 | } |
| 1986 | |
| 1987 | static int shutdown_interception(struct vcpu_svm *svm) |
| 1988 | { |
| 1989 | struct kvm_run *kvm_run = svm->vcpu.run; |
| 1990 | |
| 1991 | /* |
| 1992 | * VMCB is undefined after a SHUTDOWN intercept |
| 1993 | * so reinitialize it. |
| 1994 | */ |
| 1995 | clear_page(svm->vmcb); |
| 1996 | init_vmcb(svm); |
| 1997 | |
| 1998 | kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; |
| 1999 | return 0; |
| 2000 | } |
| 2001 | |
| 2002 | static int io_interception(struct vcpu_svm *svm) |
| 2003 | { |
| 2004 | struct kvm_vcpu *vcpu = &svm->vcpu; |
| 2005 | u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ |
| 2006 | int size, in, string; |
| 2007 | unsigned port; |
| 2008 | |
| 2009 | ++svm->vcpu.stat.io_exits; |
| 2010 | string = (io_info & SVM_IOIO_STR_MASK) != 0; |
| 2011 | in = (io_info & SVM_IOIO_TYPE_MASK) != 0; |
| 2012 | if (string) |
| 2013 | return kvm_emulate_instruction(vcpu, 0); |
| 2014 | |
| 2015 | port = io_info >> 16; |
| 2016 | size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; |
| 2017 | svm->next_rip = svm->vmcb->control.exit_info_2; |
| 2018 | |
| 2019 | return kvm_fast_pio(&svm->vcpu, size, port, in); |
| 2020 | } |
| 2021 | |
| 2022 | static int nmi_interception(struct vcpu_svm *svm) |
| 2023 | { |
| 2024 | return 1; |
| 2025 | } |
| 2026 | |
| 2027 | static int intr_interception(struct vcpu_svm *svm) |
| 2028 | { |
| 2029 | ++svm->vcpu.stat.irq_exits; |
| 2030 | return 1; |
| 2031 | } |
| 2032 | |
| 2033 | static int nop_on_interception(struct vcpu_svm *svm) |
| 2034 | { |
| 2035 | return 1; |
| 2036 | } |
| 2037 | |
| 2038 | static int halt_interception(struct vcpu_svm *svm) |
| 2039 | { |
| 2040 | return kvm_emulate_halt(&svm->vcpu); |
| 2041 | } |
| 2042 | |
| 2043 | static int vmmcall_interception(struct vcpu_svm *svm) |
| 2044 | { |
| 2045 | return kvm_emulate_hypercall(&svm->vcpu); |
| 2046 | } |
| 2047 | |
| 2048 | static int vmload_interception(struct vcpu_svm *svm) |
| 2049 | { |
| 2050 | struct vmcb *nested_vmcb; |
| 2051 | struct kvm_host_map map; |
| 2052 | int ret; |
| 2053 | |
| 2054 | if (nested_svm_check_permissions(svm)) |
| 2055 | return 1; |
| 2056 | |
| 2057 | ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); |
| 2058 | if (ret) { |
| 2059 | if (ret == -EINVAL) |
| 2060 | kvm_inject_gp(&svm->vcpu, 0); |
| 2061 | return 1; |
| 2062 | } |
| 2063 | |
| 2064 | nested_vmcb = map.hva; |
| 2065 | |
| 2066 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
| 2067 | |
| 2068 | nested_svm_vmloadsave(nested_vmcb, svm->vmcb); |
| 2069 | kvm_vcpu_unmap(&svm->vcpu, &map, true); |
| 2070 | |
| 2071 | return ret; |
| 2072 | } |
| 2073 | |
| 2074 | static int vmsave_interception(struct vcpu_svm *svm) |
| 2075 | { |
| 2076 | struct vmcb *nested_vmcb; |
| 2077 | struct kvm_host_map map; |
| 2078 | int ret; |
| 2079 | |
| 2080 | if (nested_svm_check_permissions(svm)) |
| 2081 | return 1; |
| 2082 | |
| 2083 | ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); |
| 2084 | if (ret) { |
| 2085 | if (ret == -EINVAL) |
| 2086 | kvm_inject_gp(&svm->vcpu, 0); |
| 2087 | return 1; |
| 2088 | } |
| 2089 | |
| 2090 | nested_vmcb = map.hva; |
| 2091 | |
| 2092 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
| 2093 | |
| 2094 | nested_svm_vmloadsave(svm->vmcb, nested_vmcb); |
| 2095 | kvm_vcpu_unmap(&svm->vcpu, &map, true); |
| 2096 | |
| 2097 | return ret; |
| 2098 | } |
| 2099 | |
| 2100 | static int vmrun_interception(struct vcpu_svm *svm) |
| 2101 | { |
| 2102 | if (nested_svm_check_permissions(svm)) |
| 2103 | return 1; |
| 2104 | |
| 2105 | return nested_svm_vmrun(svm); |
| 2106 | } |
| 2107 | |
| 2108 | void svm_set_gif(struct vcpu_svm *svm, bool value) |
| 2109 | { |
| 2110 | if (value) { |
| 2111 | /* |
| 2112 | * If VGIF is enabled, the STGI intercept is only added to |
| 2113 | * detect the opening of the SMI/NMI window; remove it now. |
| 2114 | * Likewise, clear the VINTR intercept, we will set it |
| 2115 | * again while processing KVM_REQ_EVENT if needed. |
| 2116 | */ |
| 2117 | if (vgif_enabled(svm)) |
| 2118 | svm_clr_intercept(svm, INTERCEPT_STGI); |
| 2119 | if (svm_is_intercept(svm, INTERCEPT_VINTR)) |
| 2120 | svm_clear_vintr(svm); |
| 2121 | |
| 2122 | enable_gif(svm); |
| 2123 | if (svm->vcpu.arch.smi_pending || |
| 2124 | svm->vcpu.arch.nmi_pending || |
| 2125 | kvm_cpu_has_injectable_intr(&svm->vcpu)) |
| 2126 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| 2127 | } else { |
| 2128 | disable_gif(svm); |
| 2129 | |
| 2130 | /* |
| 2131 | * After a CLGI no interrupts should come. But if vGIF is |
| 2132 | * in use, we still rely on the VINTR intercept (rather than |
| 2133 | * STGI) to detect an open interrupt window. |
| 2134 | */ |
| 2135 | if (!vgif_enabled(svm)) |
| 2136 | svm_clear_vintr(svm); |
| 2137 | } |
| 2138 | } |
| 2139 | |
| 2140 | static int stgi_interception(struct vcpu_svm *svm) |
| 2141 | { |
| 2142 | int ret; |
| 2143 | |
| 2144 | if (nested_svm_check_permissions(svm)) |
| 2145 | return 1; |
| 2146 | |
| 2147 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
| 2148 | svm_set_gif(svm, true); |
| 2149 | return ret; |
| 2150 | } |
| 2151 | |
| 2152 | static int clgi_interception(struct vcpu_svm *svm) |
| 2153 | { |
| 2154 | int ret; |
| 2155 | |
| 2156 | if (nested_svm_check_permissions(svm)) |
| 2157 | return 1; |
| 2158 | |
| 2159 | ret = kvm_skip_emulated_instruction(&svm->vcpu); |
| 2160 | svm_set_gif(svm, false); |
| 2161 | return ret; |
| 2162 | } |
| 2163 | |
| 2164 | static int invlpga_interception(struct vcpu_svm *svm) |
| 2165 | { |
| 2166 | struct kvm_vcpu *vcpu = &svm->vcpu; |
| 2167 | |
| 2168 | trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu), |
| 2169 | kvm_rax_read(&svm->vcpu)); |
| 2170 | |
| 2171 | /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ |
| 2172 | kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu)); |
| 2173 | |
| 2174 | return kvm_skip_emulated_instruction(&svm->vcpu); |
| 2175 | } |
| 2176 | |
| 2177 | static int skinit_interception(struct vcpu_svm *svm) |
| 2178 | { |
| 2179 | trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu)); |
| 2180 | |
| 2181 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
| 2182 | return 1; |
| 2183 | } |
| 2184 | |
| 2185 | static int wbinvd_interception(struct vcpu_svm *svm) |
| 2186 | { |
| 2187 | return kvm_emulate_wbinvd(&svm->vcpu); |
| 2188 | } |
| 2189 | |
| 2190 | static int xsetbv_interception(struct vcpu_svm *svm) |
| 2191 | { |
| 2192 | u64 new_bv = kvm_read_edx_eax(&svm->vcpu); |
| 2193 | u32 index = kvm_rcx_read(&svm->vcpu); |
| 2194 | |
| 2195 | if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { |
| 2196 | return kvm_skip_emulated_instruction(&svm->vcpu); |
| 2197 | } |
| 2198 | |
| 2199 | return 1; |
| 2200 | } |
| 2201 | |
| 2202 | static int rdpru_interception(struct vcpu_svm *svm) |
| 2203 | { |
| 2204 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
| 2205 | return 1; |
| 2206 | } |
| 2207 | |
| 2208 | static int task_switch_interception(struct vcpu_svm *svm) |
| 2209 | { |
| 2210 | u16 tss_selector; |
| 2211 | int reason; |
| 2212 | int int_type = svm->vmcb->control.exit_int_info & |
| 2213 | SVM_EXITINTINFO_TYPE_MASK; |
| 2214 | int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; |
| 2215 | uint32_t type = |
| 2216 | svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; |
| 2217 | uint32_t idt_v = |
| 2218 | svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; |
| 2219 | bool has_error_code = false; |
| 2220 | u32 error_code = 0; |
| 2221 | |
| 2222 | tss_selector = (u16)svm->vmcb->control.exit_info_1; |
| 2223 | |
| 2224 | if (svm->vmcb->control.exit_info_2 & |
| 2225 | (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) |
| 2226 | reason = TASK_SWITCH_IRET; |
| 2227 | else if (svm->vmcb->control.exit_info_2 & |
| 2228 | (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) |
| 2229 | reason = TASK_SWITCH_JMP; |
| 2230 | else if (idt_v) |
| 2231 | reason = TASK_SWITCH_GATE; |
| 2232 | else |
| 2233 | reason = TASK_SWITCH_CALL; |
| 2234 | |
| 2235 | if (reason == TASK_SWITCH_GATE) { |
| 2236 | switch (type) { |
| 2237 | case SVM_EXITINTINFO_TYPE_NMI: |
| 2238 | svm->vcpu.arch.nmi_injected = false; |
| 2239 | break; |
| 2240 | case SVM_EXITINTINFO_TYPE_EXEPT: |
| 2241 | if (svm->vmcb->control.exit_info_2 & |
| 2242 | (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { |
| 2243 | has_error_code = true; |
| 2244 | error_code = |
| 2245 | (u32)svm->vmcb->control.exit_info_2; |
| 2246 | } |
| 2247 | kvm_clear_exception_queue(&svm->vcpu); |
| 2248 | break; |
| 2249 | case SVM_EXITINTINFO_TYPE_INTR: |
| 2250 | kvm_clear_interrupt_queue(&svm->vcpu); |
| 2251 | break; |
| 2252 | default: |
| 2253 | break; |
| 2254 | } |
| 2255 | } |
| 2256 | |
| 2257 | if (reason != TASK_SWITCH_GATE || |
| 2258 | int_type == SVM_EXITINTINFO_TYPE_SOFT || |
| 2259 | (int_type == SVM_EXITINTINFO_TYPE_EXEPT && |
| 2260 | (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { |
| 2261 | if (!skip_emulated_instruction(&svm->vcpu)) |
| 2262 | return 0; |
| 2263 | } |
| 2264 | |
| 2265 | if (int_type != SVM_EXITINTINFO_TYPE_SOFT) |
| 2266 | int_vec = -1; |
| 2267 | |
| 2268 | return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, |
| 2269 | has_error_code, error_code); |
| 2270 | } |
| 2271 | |
| 2272 | static int cpuid_interception(struct vcpu_svm *svm) |
| 2273 | { |
| 2274 | return kvm_emulate_cpuid(&svm->vcpu); |
| 2275 | } |
| 2276 | |
| 2277 | static int iret_interception(struct vcpu_svm *svm) |
| 2278 | { |
| 2279 | ++svm->vcpu.stat.nmi_window_exits; |
| 2280 | svm_clr_intercept(svm, INTERCEPT_IRET); |
| 2281 | svm->vcpu.arch.hflags |= HF_IRET_MASK; |
| 2282 | svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); |
| 2283 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| 2284 | return 1; |
| 2285 | } |
| 2286 | |
| 2287 | static int invd_interception(struct vcpu_svm *svm) |
| 2288 | { |
| 2289 | /* Treat an INVD instruction as a NOP and just skip it. */ |
| 2290 | return kvm_skip_emulated_instruction(&svm->vcpu); |
| 2291 | } |
| 2292 | |
| 2293 | static int invlpg_interception(struct vcpu_svm *svm) |
| 2294 | { |
| 2295 | if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) |
| 2296 | return kvm_emulate_instruction(&svm->vcpu, 0); |
| 2297 | |
| 2298 | kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); |
| 2299 | return kvm_skip_emulated_instruction(&svm->vcpu); |
| 2300 | } |
| 2301 | |
| 2302 | static int emulate_on_interception(struct vcpu_svm *svm) |
| 2303 | { |
| 2304 | return kvm_emulate_instruction(&svm->vcpu, 0); |
| 2305 | } |
| 2306 | |
| 2307 | static int rsm_interception(struct vcpu_svm *svm) |
| 2308 | { |
| 2309 | return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2); |
| 2310 | } |
| 2311 | |
| 2312 | static int rdpmc_interception(struct vcpu_svm *svm) |
| 2313 | { |
| 2314 | int err; |
| 2315 | |
| 2316 | if (!nrips) |
| 2317 | return emulate_on_interception(svm); |
| 2318 | |
| 2319 | err = kvm_rdpmc(&svm->vcpu); |
| 2320 | return kvm_complete_insn_gp(&svm->vcpu, err); |
| 2321 | } |
| 2322 | |
| 2323 | static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, |
| 2324 | unsigned long val) |
| 2325 | { |
| 2326 | unsigned long cr0 = svm->vcpu.arch.cr0; |
| 2327 | bool ret = false; |
| 2328 | |
| 2329 | if (!is_guest_mode(&svm->vcpu) || |
| 2330 | (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) |
| 2331 | return false; |
| 2332 | |
| 2333 | cr0 &= ~SVM_CR0_SELECTIVE_MASK; |
| 2334 | val &= ~SVM_CR0_SELECTIVE_MASK; |
| 2335 | |
| 2336 | if (cr0 ^ val) { |
| 2337 | svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; |
| 2338 | ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); |
| 2339 | } |
| 2340 | |
| 2341 | return ret; |
| 2342 | } |
| 2343 | |
| 2344 | #define CR_VALID (1ULL << 63) |
| 2345 | |
| 2346 | static int cr_interception(struct vcpu_svm *svm) |
| 2347 | { |
| 2348 | int reg, cr; |
| 2349 | unsigned long val; |
| 2350 | int err; |
| 2351 | |
| 2352 | if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) |
| 2353 | return emulate_on_interception(svm); |
| 2354 | |
| 2355 | if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) |
| 2356 | return emulate_on_interception(svm); |
| 2357 | |
| 2358 | reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; |
| 2359 | if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) |
| 2360 | cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; |
| 2361 | else |
| 2362 | cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; |
| 2363 | |
| 2364 | err = 0; |
| 2365 | if (cr >= 16) { /* mov to cr */ |
| 2366 | cr -= 16; |
| 2367 | val = kvm_register_readl(&svm->vcpu, reg); |
| 2368 | trace_kvm_cr_write(cr, val); |
| 2369 | switch (cr) { |
| 2370 | case 0: |
| 2371 | if (!check_selective_cr0_intercepted(svm, val)) |
| 2372 | err = kvm_set_cr0(&svm->vcpu, val); |
| 2373 | else |
| 2374 | return 1; |
| 2375 | |
| 2376 | break; |
| 2377 | case 3: |
| 2378 | err = kvm_set_cr3(&svm->vcpu, val); |
| 2379 | break; |
| 2380 | case 4: |
| 2381 | err = kvm_set_cr4(&svm->vcpu, val); |
| 2382 | break; |
| 2383 | case 8: |
| 2384 | err = kvm_set_cr8(&svm->vcpu, val); |
| 2385 | break; |
| 2386 | default: |
| 2387 | WARN(1, "unhandled write to CR%d", cr); |
| 2388 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
| 2389 | return 1; |
| 2390 | } |
| 2391 | } else { /* mov from cr */ |
| 2392 | switch (cr) { |
| 2393 | case 0: |
| 2394 | val = kvm_read_cr0(&svm->vcpu); |
| 2395 | break; |
| 2396 | case 2: |
| 2397 | val = svm->vcpu.arch.cr2; |
| 2398 | break; |
| 2399 | case 3: |
| 2400 | val = kvm_read_cr3(&svm->vcpu); |
| 2401 | break; |
| 2402 | case 4: |
| 2403 | val = kvm_read_cr4(&svm->vcpu); |
| 2404 | break; |
| 2405 | case 8: |
| 2406 | val = kvm_get_cr8(&svm->vcpu); |
| 2407 | break; |
| 2408 | default: |
| 2409 | WARN(1, "unhandled read from CR%d", cr); |
| 2410 | kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
| 2411 | return 1; |
| 2412 | } |
| 2413 | kvm_register_writel(&svm->vcpu, reg, val); |
| 2414 | trace_kvm_cr_read(cr, val); |
| 2415 | } |
| 2416 | return kvm_complete_insn_gp(&svm->vcpu, err); |
| 2417 | } |
| 2418 | |
| 2419 | static int dr_interception(struct vcpu_svm *svm) |
| 2420 | { |
| 2421 | int reg, dr; |
| 2422 | unsigned long val; |
| 2423 | |
| 2424 | if (svm->vcpu.guest_debug == 0) { |
| 2425 | /* |
| 2426 | * No more DR vmexits; force a reload of the debug registers |
| 2427 | * and reenter on this instruction. The next vmexit will |
| 2428 | * retrieve the full state of the debug registers. |
| 2429 | */ |
| 2430 | clr_dr_intercepts(svm); |
| 2431 | svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; |
| 2432 | return 1; |
| 2433 | } |
| 2434 | |
| 2435 | if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) |
| 2436 | return emulate_on_interception(svm); |
| 2437 | |
| 2438 | reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; |
| 2439 | dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; |
| 2440 | |
| 2441 | if (dr >= 16) { /* mov to DRn */ |
| 2442 | if (!kvm_require_dr(&svm->vcpu, dr - 16)) |
| 2443 | return 1; |
| 2444 | val = kvm_register_readl(&svm->vcpu, reg); |
| 2445 | kvm_set_dr(&svm->vcpu, dr - 16, val); |
| 2446 | } else { |
| 2447 | if (!kvm_require_dr(&svm->vcpu, dr)) |
| 2448 | return 1; |
| 2449 | kvm_get_dr(&svm->vcpu, dr, &val); |
| 2450 | kvm_register_writel(&svm->vcpu, reg, val); |
| 2451 | } |
| 2452 | |
| 2453 | return kvm_skip_emulated_instruction(&svm->vcpu); |
| 2454 | } |
| 2455 | |
| 2456 | static int cr8_write_interception(struct vcpu_svm *svm) |
| 2457 | { |
| 2458 | struct kvm_run *kvm_run = svm->vcpu.run; |
| 2459 | int r; |
| 2460 | |
| 2461 | u8 cr8_prev = kvm_get_cr8(&svm->vcpu); |
| 2462 | /* instruction emulation calls kvm_set_cr8() */ |
| 2463 | r = cr_interception(svm); |
| 2464 | if (lapic_in_kernel(&svm->vcpu)) |
| 2465 | return r; |
| 2466 | if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) |
| 2467 | return r; |
| 2468 | kvm_run->exit_reason = KVM_EXIT_SET_TPR; |
| 2469 | return 0; |
| 2470 | } |
| 2471 | |
| 2472 | static int svm_get_msr_feature(struct kvm_msr_entry *msr) |
| 2473 | { |
| 2474 | msr->data = 0; |
| 2475 | |
| 2476 | switch (msr->index) { |
| 2477 | case MSR_F10H_DECFG: |
| 2478 | if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) |
| 2479 | msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; |
| 2480 | break; |
| 2481 | case MSR_IA32_PERF_CAPABILITIES: |
| 2482 | return 0; |
| 2483 | default: |
| 2484 | return KVM_MSR_RET_INVALID; |
| 2485 | } |
| 2486 | |
| 2487 | return 0; |
| 2488 | } |
| 2489 | |
| 2490 | static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| 2491 | { |
| 2492 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2493 | |
| 2494 | switch (msr_info->index) { |
| 2495 | case MSR_STAR: |
| 2496 | msr_info->data = svm->vmcb->save.star; |
| 2497 | break; |
| 2498 | #ifdef CONFIG_X86_64 |
| 2499 | case MSR_LSTAR: |
| 2500 | msr_info->data = svm->vmcb->save.lstar; |
| 2501 | break; |
| 2502 | case MSR_CSTAR: |
| 2503 | msr_info->data = svm->vmcb->save.cstar; |
| 2504 | break; |
| 2505 | case MSR_KERNEL_GS_BASE: |
| 2506 | msr_info->data = svm->vmcb->save.kernel_gs_base; |
| 2507 | break; |
| 2508 | case MSR_SYSCALL_MASK: |
| 2509 | msr_info->data = svm->vmcb->save.sfmask; |
| 2510 | break; |
| 2511 | #endif |
| 2512 | case MSR_IA32_SYSENTER_CS: |
| 2513 | msr_info->data = svm->vmcb->save.sysenter_cs; |
| 2514 | break; |
| 2515 | case MSR_IA32_SYSENTER_EIP: |
| 2516 | msr_info->data = svm->sysenter_eip; |
| 2517 | break; |
| 2518 | case MSR_IA32_SYSENTER_ESP: |
| 2519 | msr_info->data = svm->sysenter_esp; |
| 2520 | break; |
| 2521 | case MSR_TSC_AUX: |
| 2522 | if (!boot_cpu_has(X86_FEATURE_RDTSCP)) |
| 2523 | return 1; |
| 2524 | if (!msr_info->host_initiated && |
| 2525 | !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) |
| 2526 | return 1; |
| 2527 | msr_info->data = svm->tsc_aux; |
| 2528 | break; |
| 2529 | /* |
| 2530 | * Nobody will change the following 5 values in the VMCB so we can |
| 2531 | * safely return them on rdmsr. They will always be 0 until LBRV is |
| 2532 | * implemented. |
| 2533 | */ |
| 2534 | case MSR_IA32_DEBUGCTLMSR: |
| 2535 | msr_info->data = svm->vmcb->save.dbgctl; |
| 2536 | break; |
| 2537 | case MSR_IA32_LASTBRANCHFROMIP: |
| 2538 | msr_info->data = svm->vmcb->save.br_from; |
| 2539 | break; |
| 2540 | case MSR_IA32_LASTBRANCHTOIP: |
| 2541 | msr_info->data = svm->vmcb->save.br_to; |
| 2542 | break; |
| 2543 | case MSR_IA32_LASTINTFROMIP: |
| 2544 | msr_info->data = svm->vmcb->save.last_excp_from; |
| 2545 | break; |
| 2546 | case MSR_IA32_LASTINTTOIP: |
| 2547 | msr_info->data = svm->vmcb->save.last_excp_to; |
| 2548 | break; |
| 2549 | case MSR_VM_HSAVE_PA: |
| 2550 | msr_info->data = svm->nested.hsave_msr; |
| 2551 | break; |
| 2552 | case MSR_VM_CR: |
| 2553 | msr_info->data = svm->nested.vm_cr_msr; |
| 2554 | break; |
| 2555 | case MSR_IA32_SPEC_CTRL: |
| 2556 | if (!msr_info->host_initiated && |
| 2557 | !guest_has_spec_ctrl_msr(vcpu)) |
| 2558 | return 1; |
| 2559 | |
| 2560 | msr_info->data = svm->spec_ctrl; |
| 2561 | break; |
| 2562 | case MSR_AMD64_VIRT_SPEC_CTRL: |
| 2563 | if (!msr_info->host_initiated && |
| 2564 | !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) |
| 2565 | return 1; |
| 2566 | |
| 2567 | msr_info->data = svm->virt_spec_ctrl; |
| 2568 | break; |
| 2569 | case MSR_F15H_IC_CFG: { |
| 2570 | |
| 2571 | int family, model; |
| 2572 | |
| 2573 | family = guest_cpuid_family(vcpu); |
| 2574 | model = guest_cpuid_model(vcpu); |
| 2575 | |
| 2576 | if (family < 0 || model < 0) |
| 2577 | return kvm_get_msr_common(vcpu, msr_info); |
| 2578 | |
| 2579 | msr_info->data = 0; |
| 2580 | |
| 2581 | if (family == 0x15 && |
| 2582 | (model >= 0x2 && model < 0x20)) |
| 2583 | msr_info->data = 0x1E; |
| 2584 | } |
| 2585 | break; |
| 2586 | case MSR_F10H_DECFG: |
| 2587 | msr_info->data = svm->msr_decfg; |
| 2588 | break; |
| 2589 | default: |
| 2590 | return kvm_get_msr_common(vcpu, msr_info); |
| 2591 | } |
| 2592 | return 0; |
| 2593 | } |
| 2594 | |
| 2595 | static int rdmsr_interception(struct vcpu_svm *svm) |
| 2596 | { |
| 2597 | return kvm_emulate_rdmsr(&svm->vcpu); |
| 2598 | } |
| 2599 | |
| 2600 | static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) |
| 2601 | { |
| 2602 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2603 | int svm_dis, chg_mask; |
| 2604 | |
| 2605 | if (data & ~SVM_VM_CR_VALID_MASK) |
| 2606 | return 1; |
| 2607 | |
| 2608 | chg_mask = SVM_VM_CR_VALID_MASK; |
| 2609 | |
| 2610 | if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) |
| 2611 | chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); |
| 2612 | |
| 2613 | svm->nested.vm_cr_msr &= ~chg_mask; |
| 2614 | svm->nested.vm_cr_msr |= (data & chg_mask); |
| 2615 | |
| 2616 | svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; |
| 2617 | |
| 2618 | /* check for svm_disable while efer.svme is set */ |
| 2619 | if (svm_dis && (vcpu->arch.efer & EFER_SVME)) |
| 2620 | return 1; |
| 2621 | |
| 2622 | return 0; |
| 2623 | } |
| 2624 | |
| 2625 | static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
| 2626 | { |
| 2627 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2628 | |
| 2629 | u32 ecx = msr->index; |
| 2630 | u64 data = msr->data; |
| 2631 | switch (ecx) { |
| 2632 | case MSR_IA32_CR_PAT: |
| 2633 | if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) |
| 2634 | return 1; |
| 2635 | vcpu->arch.pat = data; |
| 2636 | svm->vmcb->save.g_pat = data; |
| 2637 | vmcb_mark_dirty(svm->vmcb, VMCB_NPT); |
| 2638 | break; |
| 2639 | case MSR_IA32_SPEC_CTRL: |
| 2640 | if (!msr->host_initiated && |
| 2641 | !guest_has_spec_ctrl_msr(vcpu)) |
| 2642 | return 1; |
| 2643 | |
| 2644 | if (kvm_spec_ctrl_test_value(data)) |
| 2645 | return 1; |
| 2646 | |
| 2647 | svm->spec_ctrl = data; |
| 2648 | if (!data) |
| 2649 | break; |
| 2650 | |
| 2651 | /* |
| 2652 | * For non-nested: |
| 2653 | * When it's written (to non-zero) for the first time, pass |
| 2654 | * it through. |
| 2655 | * |
| 2656 | * For nested: |
| 2657 | * The handling of the MSR bitmap for L2 guests is done in |
| 2658 | * nested_svm_vmrun_msrpm. |
| 2659 | * We update the L1 MSR bit as well since it will end up |
| 2660 | * touching the MSR anyway now. |
| 2661 | */ |
| 2662 | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); |
| 2663 | break; |
| 2664 | case MSR_IA32_PRED_CMD: |
| 2665 | if (!msr->host_initiated && |
| 2666 | !guest_has_pred_cmd_msr(vcpu)) |
| 2667 | return 1; |
| 2668 | |
| 2669 | if (data & ~PRED_CMD_IBPB) |
| 2670 | return 1; |
| 2671 | if (!boot_cpu_has(X86_FEATURE_IBPB)) |
| 2672 | return 1; |
| 2673 | if (!data) |
| 2674 | break; |
| 2675 | |
| 2676 | wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); |
| 2677 | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); |
| 2678 | break; |
| 2679 | case MSR_AMD64_VIRT_SPEC_CTRL: |
| 2680 | if (!msr->host_initiated && |
| 2681 | !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) |
| 2682 | return 1; |
| 2683 | |
| 2684 | if (data & ~SPEC_CTRL_SSBD) |
| 2685 | return 1; |
| 2686 | |
| 2687 | svm->virt_spec_ctrl = data; |
| 2688 | break; |
| 2689 | case MSR_STAR: |
| 2690 | svm->vmcb->save.star = data; |
| 2691 | break; |
| 2692 | #ifdef CONFIG_X86_64 |
| 2693 | case MSR_LSTAR: |
| 2694 | svm->vmcb->save.lstar = data; |
| 2695 | break; |
| 2696 | case MSR_CSTAR: |
| 2697 | svm->vmcb->save.cstar = data; |
| 2698 | break; |
| 2699 | case MSR_KERNEL_GS_BASE: |
| 2700 | svm->vmcb->save.kernel_gs_base = data; |
| 2701 | break; |
| 2702 | case MSR_SYSCALL_MASK: |
| 2703 | svm->vmcb->save.sfmask = data; |
| 2704 | break; |
| 2705 | #endif |
| 2706 | case MSR_IA32_SYSENTER_CS: |
| 2707 | svm->vmcb->save.sysenter_cs = data; |
| 2708 | break; |
| 2709 | case MSR_IA32_SYSENTER_EIP: |
| 2710 | svm->sysenter_eip = data; |
| 2711 | svm->vmcb->save.sysenter_eip = data; |
| 2712 | break; |
| 2713 | case MSR_IA32_SYSENTER_ESP: |
| 2714 | svm->sysenter_esp = data; |
| 2715 | svm->vmcb->save.sysenter_esp = data; |
| 2716 | break; |
| 2717 | case MSR_TSC_AUX: |
| 2718 | if (!boot_cpu_has(X86_FEATURE_RDTSCP)) |
| 2719 | return 1; |
| 2720 | |
| 2721 | if (!msr->host_initiated && |
| 2722 | !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) |
| 2723 | return 1; |
| 2724 | |
| 2725 | /* |
| 2726 | * This is rare, so we update the MSR here instead of using |
| 2727 | * direct_access_msrs. Doing that would require a rdmsr in |
| 2728 | * svm_vcpu_put. |
| 2729 | */ |
| 2730 | svm->tsc_aux = data; |
| 2731 | wrmsrl(MSR_TSC_AUX, svm->tsc_aux); |
| 2732 | break; |
| 2733 | case MSR_IA32_DEBUGCTLMSR: |
| 2734 | if (!boot_cpu_has(X86_FEATURE_LBRV)) { |
| 2735 | vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", |
| 2736 | __func__, data); |
| 2737 | break; |
| 2738 | } |
| 2739 | if (data & DEBUGCTL_RESERVED_BITS) |
| 2740 | return 1; |
| 2741 | |
| 2742 | svm->vmcb->save.dbgctl = data; |
| 2743 | vmcb_mark_dirty(svm->vmcb, VMCB_LBR); |
| 2744 | if (data & (1ULL<<0)) |
| 2745 | svm_enable_lbrv(vcpu); |
| 2746 | else |
| 2747 | svm_disable_lbrv(vcpu); |
| 2748 | break; |
| 2749 | case MSR_VM_HSAVE_PA: |
| 2750 | /* |
| 2751 | * Old kernels did not validate the value written to |
| 2752 | * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid |
| 2753 | * value to allow live migrating buggy or malicious guests |
| 2754 | * originating from those kernels. |
| 2755 | */ |
| 2756 | if (!msr->host_initiated && !page_address_valid(vcpu, data)) |
| 2757 | return 1; |
| 2758 | |
| 2759 | svm->nested.hsave_msr = data & PAGE_MASK; |
| 2760 | break; |
| 2761 | case MSR_VM_CR: |
| 2762 | return svm_set_vm_cr(vcpu, data); |
| 2763 | case MSR_VM_IGNNE: |
| 2764 | vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); |
| 2765 | break; |
| 2766 | case MSR_F10H_DECFG: { |
| 2767 | struct kvm_msr_entry msr_entry; |
| 2768 | |
| 2769 | msr_entry.index = msr->index; |
| 2770 | if (svm_get_msr_feature(&msr_entry)) |
| 2771 | return 1; |
| 2772 | |
| 2773 | /* Check the supported bits */ |
| 2774 | if (data & ~msr_entry.data) |
| 2775 | return 1; |
| 2776 | |
| 2777 | /* Don't allow the guest to change a bit, #GP */ |
| 2778 | if (!msr->host_initiated && (data ^ msr_entry.data)) |
| 2779 | return 1; |
| 2780 | |
| 2781 | svm->msr_decfg = data; |
| 2782 | break; |
| 2783 | } |
| 2784 | case MSR_IA32_APICBASE: |
| 2785 | if (kvm_vcpu_apicv_active(vcpu)) |
| 2786 | avic_update_vapic_bar(to_svm(vcpu), data); |
| 2787 | fallthrough; |
| 2788 | default: |
| 2789 | return kvm_set_msr_common(vcpu, msr); |
| 2790 | } |
| 2791 | return 0; |
| 2792 | } |
| 2793 | |
| 2794 | static int wrmsr_interception(struct vcpu_svm *svm) |
| 2795 | { |
| 2796 | return kvm_emulate_wrmsr(&svm->vcpu); |
| 2797 | } |
| 2798 | |
| 2799 | static int msr_interception(struct vcpu_svm *svm) |
| 2800 | { |
| 2801 | if (svm->vmcb->control.exit_info_1) |
| 2802 | return wrmsr_interception(svm); |
| 2803 | else |
| 2804 | return rdmsr_interception(svm); |
| 2805 | } |
| 2806 | |
| 2807 | static int interrupt_window_interception(struct vcpu_svm *svm) |
| 2808 | { |
| 2809 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| 2810 | svm_clear_vintr(svm); |
| 2811 | |
| 2812 | /* |
| 2813 | * For AVIC, the only reason to end up here is ExtINTs. |
| 2814 | * In this case AVIC was temporarily disabled for |
| 2815 | * requesting the IRQ window and we have to re-enable it. |
| 2816 | */ |
| 2817 | svm_toggle_avic_for_irq_window(&svm->vcpu, true); |
| 2818 | |
| 2819 | ++svm->vcpu.stat.irq_window_exits; |
| 2820 | return 1; |
| 2821 | } |
| 2822 | |
| 2823 | static int pause_interception(struct vcpu_svm *svm) |
| 2824 | { |
| 2825 | struct kvm_vcpu *vcpu = &svm->vcpu; |
| 2826 | bool in_kernel = (svm_get_cpl(vcpu) == 0); |
| 2827 | |
| 2828 | if (!kvm_pause_in_guest(vcpu->kvm)) |
| 2829 | grow_ple_window(vcpu); |
| 2830 | |
| 2831 | kvm_vcpu_on_spin(vcpu, in_kernel); |
| 2832 | return 1; |
| 2833 | } |
| 2834 | |
| 2835 | static int nop_interception(struct vcpu_svm *svm) |
| 2836 | { |
| 2837 | return kvm_skip_emulated_instruction(&(svm->vcpu)); |
| 2838 | } |
| 2839 | |
| 2840 | static int monitor_interception(struct vcpu_svm *svm) |
| 2841 | { |
| 2842 | printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); |
| 2843 | return nop_interception(svm); |
| 2844 | } |
| 2845 | |
| 2846 | static int mwait_interception(struct vcpu_svm *svm) |
| 2847 | { |
| 2848 | printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); |
| 2849 | return nop_interception(svm); |
| 2850 | } |
| 2851 | |
| 2852 | static int invpcid_interception(struct vcpu_svm *svm) |
| 2853 | { |
| 2854 | struct kvm_vcpu *vcpu = &svm->vcpu; |
| 2855 | unsigned long type; |
| 2856 | gva_t gva; |
| 2857 | |
| 2858 | if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { |
| 2859 | kvm_queue_exception(vcpu, UD_VECTOR); |
| 2860 | return 1; |
| 2861 | } |
| 2862 | |
| 2863 | /* |
| 2864 | * For an INVPCID intercept: |
| 2865 | * EXITINFO1 provides the linear address of the memory operand. |
| 2866 | * EXITINFO2 provides the contents of the register operand. |
| 2867 | */ |
| 2868 | type = svm->vmcb->control.exit_info_2; |
| 2869 | gva = svm->vmcb->control.exit_info_1; |
| 2870 | |
| 2871 | if (type > 3) { |
| 2872 | kvm_inject_gp(vcpu, 0); |
| 2873 | return 1; |
| 2874 | } |
| 2875 | |
| 2876 | return kvm_handle_invpcid(vcpu, type, gva); |
| 2877 | } |
| 2878 | |
| 2879 | static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { |
| 2880 | [SVM_EXIT_READ_CR0] = cr_interception, |
| 2881 | [SVM_EXIT_READ_CR3] = cr_interception, |
| 2882 | [SVM_EXIT_READ_CR4] = cr_interception, |
| 2883 | [SVM_EXIT_READ_CR8] = cr_interception, |
| 2884 | [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, |
| 2885 | [SVM_EXIT_WRITE_CR0] = cr_interception, |
| 2886 | [SVM_EXIT_WRITE_CR3] = cr_interception, |
| 2887 | [SVM_EXIT_WRITE_CR4] = cr_interception, |
| 2888 | [SVM_EXIT_WRITE_CR8] = cr8_write_interception, |
| 2889 | [SVM_EXIT_READ_DR0] = dr_interception, |
| 2890 | [SVM_EXIT_READ_DR1] = dr_interception, |
| 2891 | [SVM_EXIT_READ_DR2] = dr_interception, |
| 2892 | [SVM_EXIT_READ_DR3] = dr_interception, |
| 2893 | [SVM_EXIT_READ_DR4] = dr_interception, |
| 2894 | [SVM_EXIT_READ_DR5] = dr_interception, |
| 2895 | [SVM_EXIT_READ_DR6] = dr_interception, |
| 2896 | [SVM_EXIT_READ_DR7] = dr_interception, |
| 2897 | [SVM_EXIT_WRITE_DR0] = dr_interception, |
| 2898 | [SVM_EXIT_WRITE_DR1] = dr_interception, |
| 2899 | [SVM_EXIT_WRITE_DR2] = dr_interception, |
| 2900 | [SVM_EXIT_WRITE_DR3] = dr_interception, |
| 2901 | [SVM_EXIT_WRITE_DR4] = dr_interception, |
| 2902 | [SVM_EXIT_WRITE_DR5] = dr_interception, |
| 2903 | [SVM_EXIT_WRITE_DR6] = dr_interception, |
| 2904 | [SVM_EXIT_WRITE_DR7] = dr_interception, |
| 2905 | [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, |
| 2906 | [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, |
| 2907 | [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, |
| 2908 | [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, |
| 2909 | [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, |
| 2910 | [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, |
| 2911 | [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, |
| 2912 | [SVM_EXIT_INTR] = intr_interception, |
| 2913 | [SVM_EXIT_NMI] = nmi_interception, |
| 2914 | [SVM_EXIT_SMI] = nop_on_interception, |
| 2915 | [SVM_EXIT_INIT] = nop_on_interception, |
| 2916 | [SVM_EXIT_VINTR] = interrupt_window_interception, |
| 2917 | [SVM_EXIT_RDPMC] = rdpmc_interception, |
| 2918 | [SVM_EXIT_CPUID] = cpuid_interception, |
| 2919 | [SVM_EXIT_IRET] = iret_interception, |
| 2920 | [SVM_EXIT_INVD] = invd_interception, |
| 2921 | [SVM_EXIT_PAUSE] = pause_interception, |
| 2922 | [SVM_EXIT_HLT] = halt_interception, |
| 2923 | [SVM_EXIT_INVLPG] = invlpg_interception, |
| 2924 | [SVM_EXIT_INVLPGA] = invlpga_interception, |
| 2925 | [SVM_EXIT_IOIO] = io_interception, |
| 2926 | [SVM_EXIT_MSR] = msr_interception, |
| 2927 | [SVM_EXIT_TASK_SWITCH] = task_switch_interception, |
| 2928 | [SVM_EXIT_SHUTDOWN] = shutdown_interception, |
| 2929 | [SVM_EXIT_VMRUN] = vmrun_interception, |
| 2930 | [SVM_EXIT_VMMCALL] = vmmcall_interception, |
| 2931 | [SVM_EXIT_VMLOAD] = vmload_interception, |
| 2932 | [SVM_EXIT_VMSAVE] = vmsave_interception, |
| 2933 | [SVM_EXIT_STGI] = stgi_interception, |
| 2934 | [SVM_EXIT_CLGI] = clgi_interception, |
| 2935 | [SVM_EXIT_SKINIT] = skinit_interception, |
| 2936 | [SVM_EXIT_WBINVD] = wbinvd_interception, |
| 2937 | [SVM_EXIT_MONITOR] = monitor_interception, |
| 2938 | [SVM_EXIT_MWAIT] = mwait_interception, |
| 2939 | [SVM_EXIT_XSETBV] = xsetbv_interception, |
| 2940 | [SVM_EXIT_RDPRU] = rdpru_interception, |
| 2941 | [SVM_EXIT_INVPCID] = invpcid_interception, |
| 2942 | [SVM_EXIT_NPF] = npf_interception, |
| 2943 | [SVM_EXIT_RSM] = rsm_interception, |
| 2944 | [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, |
| 2945 | [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, |
| 2946 | }; |
| 2947 | |
| 2948 | static void dump_vmcb(struct kvm_vcpu *vcpu) |
| 2949 | { |
| 2950 | struct vcpu_svm *svm = to_svm(vcpu); |
| 2951 | struct vmcb_control_area *control = &svm->vmcb->control; |
| 2952 | struct vmcb_save_area *save = &svm->vmcb->save; |
| 2953 | |
| 2954 | if (!dump_invalid_vmcb) { |
| 2955 | pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); |
| 2956 | return; |
| 2957 | } |
| 2958 | |
| 2959 | pr_err("VMCB Control Area:\n"); |
| 2960 | pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); |
| 2961 | pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); |
| 2962 | pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); |
| 2963 | pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); |
| 2964 | pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); |
| 2965 | pr_err("%-20s%08x %08x\n", "intercepts:", |
| 2966 | control->intercepts[INTERCEPT_WORD3], |
| 2967 | control->intercepts[INTERCEPT_WORD4]); |
| 2968 | pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); |
| 2969 | pr_err("%-20s%d\n", "pause filter threshold:", |
| 2970 | control->pause_filter_thresh); |
| 2971 | pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); |
| 2972 | pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); |
| 2973 | pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); |
| 2974 | pr_err("%-20s%d\n", "asid:", control->asid); |
| 2975 | pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); |
| 2976 | pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); |
| 2977 | pr_err("%-20s%08x\n", "int_vector:", control->int_vector); |
| 2978 | pr_err("%-20s%08x\n", "int_state:", control->int_state); |
| 2979 | pr_err("%-20s%08x\n", "exit_code:", control->exit_code); |
| 2980 | pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); |
| 2981 | pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); |
| 2982 | pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); |
| 2983 | pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); |
| 2984 | pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); |
| 2985 | pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); |
| 2986 | pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); |
| 2987 | pr_err("%-20s%08x\n", "event_inj:", control->event_inj); |
| 2988 | pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); |
| 2989 | pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); |
| 2990 | pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); |
| 2991 | pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); |
| 2992 | pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); |
| 2993 | pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); |
| 2994 | pr_err("VMCB State Save Area:\n"); |
| 2995 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 2996 | "es:", |
| 2997 | save->es.selector, save->es.attrib, |
| 2998 | save->es.limit, save->es.base); |
| 2999 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 3000 | "cs:", |
| 3001 | save->cs.selector, save->cs.attrib, |
| 3002 | save->cs.limit, save->cs.base); |
| 3003 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 3004 | "ss:", |
| 3005 | save->ss.selector, save->ss.attrib, |
| 3006 | save->ss.limit, save->ss.base); |
| 3007 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 3008 | "ds:", |
| 3009 | save->ds.selector, save->ds.attrib, |
| 3010 | save->ds.limit, save->ds.base); |
| 3011 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 3012 | "fs:", |
| 3013 | save->fs.selector, save->fs.attrib, |
| 3014 | save->fs.limit, save->fs.base); |
| 3015 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 3016 | "gs:", |
| 3017 | save->gs.selector, save->gs.attrib, |
| 3018 | save->gs.limit, save->gs.base); |
| 3019 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 3020 | "gdtr:", |
| 3021 | save->gdtr.selector, save->gdtr.attrib, |
| 3022 | save->gdtr.limit, save->gdtr.base); |
| 3023 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 3024 | "ldtr:", |
| 3025 | save->ldtr.selector, save->ldtr.attrib, |
| 3026 | save->ldtr.limit, save->ldtr.base); |
| 3027 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 3028 | "idtr:", |
| 3029 | save->idtr.selector, save->idtr.attrib, |
| 3030 | save->idtr.limit, save->idtr.base); |
| 3031 | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| 3032 | "tr:", |
| 3033 | save->tr.selector, save->tr.attrib, |
| 3034 | save->tr.limit, save->tr.base); |
| 3035 | pr_err("cpl: %d efer: %016llx\n", |
| 3036 | save->cpl, save->efer); |
| 3037 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3038 | "cr0:", save->cr0, "cr2:", save->cr2); |
| 3039 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3040 | "cr3:", save->cr3, "cr4:", save->cr4); |
| 3041 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3042 | "dr6:", save->dr6, "dr7:", save->dr7); |
| 3043 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3044 | "rip:", save->rip, "rflags:", save->rflags); |
| 3045 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3046 | "rsp:", save->rsp, "rax:", save->rax); |
| 3047 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3048 | "star:", save->star, "lstar:", save->lstar); |
| 3049 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3050 | "cstar:", save->cstar, "sfmask:", save->sfmask); |
| 3051 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3052 | "kernel_gs_base:", save->kernel_gs_base, |
| 3053 | "sysenter_cs:", save->sysenter_cs); |
| 3054 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3055 | "sysenter_esp:", save->sysenter_esp, |
| 3056 | "sysenter_eip:", save->sysenter_eip); |
| 3057 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3058 | "gpat:", save->g_pat, "dbgctl:", save->dbgctl); |
| 3059 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3060 | "br_from:", save->br_from, "br_to:", save->br_to); |
| 3061 | pr_err("%-15s %016llx %-13s %016llx\n", |
| 3062 | "excp_from:", save->last_excp_from, |
| 3063 | "excp_to:", save->last_excp_to); |
| 3064 | } |
| 3065 | |
| 3066 | static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, |
| 3067 | u32 *intr_info, u32 *error_code) |
| 3068 | { |
| 3069 | struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; |
| 3070 | |
| 3071 | *info1 = control->exit_info_1; |
| 3072 | *info2 = control->exit_info_2; |
| 3073 | *intr_info = control->exit_int_info; |
| 3074 | if ((*intr_info & SVM_EXITINTINFO_VALID) && |
| 3075 | (*intr_info & SVM_EXITINTINFO_VALID_ERR)) |
| 3076 | *error_code = control->exit_int_info_err; |
| 3077 | else |
| 3078 | *error_code = 0; |
| 3079 | } |
| 3080 | |
| 3081 | static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) |
| 3082 | { |
| 3083 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3084 | struct kvm_run *kvm_run = vcpu->run; |
| 3085 | u32 exit_code = svm->vmcb->control.exit_code; |
| 3086 | |
| 3087 | trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); |
| 3088 | |
| 3089 | if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) |
| 3090 | vcpu->arch.cr0 = svm->vmcb->save.cr0; |
| 3091 | if (npt_enabled) |
| 3092 | vcpu->arch.cr3 = svm->vmcb->save.cr3; |
| 3093 | |
| 3094 | if (is_guest_mode(vcpu)) { |
| 3095 | int vmexit; |
| 3096 | |
| 3097 | trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); |
| 3098 | |
| 3099 | vmexit = nested_svm_exit_special(svm); |
| 3100 | |
| 3101 | if (vmexit == NESTED_EXIT_CONTINUE) |
| 3102 | vmexit = nested_svm_exit_handled(svm); |
| 3103 | |
| 3104 | if (vmexit == NESTED_EXIT_DONE) |
| 3105 | return 1; |
| 3106 | } |
| 3107 | |
| 3108 | if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { |
| 3109 | kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| 3110 | kvm_run->fail_entry.hardware_entry_failure_reason |
| 3111 | = svm->vmcb->control.exit_code; |
| 3112 | kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; |
| 3113 | dump_vmcb(vcpu); |
| 3114 | return 0; |
| 3115 | } |
| 3116 | |
| 3117 | if (is_external_interrupt(svm->vmcb->control.exit_int_info) && |
| 3118 | exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && |
| 3119 | exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && |
| 3120 | exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) |
| 3121 | printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " |
| 3122 | "exit_code 0x%x\n", |
| 3123 | __func__, svm->vmcb->control.exit_int_info, |
| 3124 | exit_code); |
| 3125 | |
| 3126 | if (exit_fastpath != EXIT_FASTPATH_NONE) |
| 3127 | return 1; |
| 3128 | |
| 3129 | if (exit_code >= ARRAY_SIZE(svm_exit_handlers) |
| 3130 | || !svm_exit_handlers[exit_code]) { |
| 3131 | vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code); |
| 3132 | dump_vmcb(vcpu); |
| 3133 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 3134 | vcpu->run->internal.suberror = |
| 3135 | KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; |
| 3136 | vcpu->run->internal.ndata = 2; |
| 3137 | vcpu->run->internal.data[0] = exit_code; |
| 3138 | vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; |
| 3139 | return 0; |
| 3140 | } |
| 3141 | |
| 3142 | #ifdef CONFIG_RETPOLINE |
| 3143 | if (exit_code == SVM_EXIT_MSR) |
| 3144 | return msr_interception(svm); |
| 3145 | else if (exit_code == SVM_EXIT_VINTR) |
| 3146 | return interrupt_window_interception(svm); |
| 3147 | else if (exit_code == SVM_EXIT_INTR) |
| 3148 | return intr_interception(svm); |
| 3149 | else if (exit_code == SVM_EXIT_HLT) |
| 3150 | return halt_interception(svm); |
| 3151 | else if (exit_code == SVM_EXIT_NPF) |
| 3152 | return npf_interception(svm); |
| 3153 | #endif |
| 3154 | return svm_exit_handlers[exit_code](svm); |
| 3155 | } |
| 3156 | |
| 3157 | static void reload_tss(struct kvm_vcpu *vcpu) |
| 3158 | { |
| 3159 | struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); |
| 3160 | |
| 3161 | sd->tss_desc->type = 9; /* available 32/64-bit TSS */ |
| 3162 | load_TR_desc(); |
| 3163 | } |
| 3164 | |
| 3165 | static void pre_svm_run(struct vcpu_svm *svm) |
| 3166 | { |
| 3167 | struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu); |
| 3168 | |
| 3169 | if (sev_guest(svm->vcpu.kvm)) |
| 3170 | return pre_sev_run(svm, svm->vcpu.cpu); |
| 3171 | |
| 3172 | /* FIXME: handle wraparound of asid_generation */ |
| 3173 | if (svm->asid_generation != sd->asid_generation) |
| 3174 | new_asid(svm, sd); |
| 3175 | } |
| 3176 | |
| 3177 | static void svm_inject_nmi(struct kvm_vcpu *vcpu) |
| 3178 | { |
| 3179 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3180 | |
| 3181 | svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; |
| 3182 | vcpu->arch.hflags |= HF_NMI_MASK; |
| 3183 | svm_set_intercept(svm, INTERCEPT_IRET); |
| 3184 | ++vcpu->stat.nmi_injections; |
| 3185 | } |
| 3186 | |
| 3187 | static void svm_set_irq(struct kvm_vcpu *vcpu) |
| 3188 | { |
| 3189 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3190 | |
| 3191 | BUG_ON(!(gif_set(svm))); |
| 3192 | |
| 3193 | trace_kvm_inj_virq(vcpu->arch.interrupt.nr); |
| 3194 | ++vcpu->stat.irq_injections; |
| 3195 | |
| 3196 | svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | |
| 3197 | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; |
| 3198 | } |
| 3199 | |
| 3200 | static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) |
| 3201 | { |
| 3202 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3203 | |
| 3204 | if (nested_svm_virtualize_tpr(vcpu)) |
| 3205 | return; |
| 3206 | |
| 3207 | svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); |
| 3208 | |
| 3209 | if (irr == -1) |
| 3210 | return; |
| 3211 | |
| 3212 | if (tpr >= irr) |
| 3213 | svm_set_intercept(svm, INTERCEPT_CR8_WRITE); |
| 3214 | } |
| 3215 | |
| 3216 | bool svm_nmi_blocked(struct kvm_vcpu *vcpu) |
| 3217 | { |
| 3218 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3219 | struct vmcb *vmcb = svm->vmcb; |
| 3220 | bool ret; |
| 3221 | |
| 3222 | if (!gif_set(svm)) |
| 3223 | return true; |
| 3224 | |
| 3225 | if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) |
| 3226 | return false; |
| 3227 | |
| 3228 | ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || |
| 3229 | (svm->vcpu.arch.hflags & HF_NMI_MASK); |
| 3230 | |
| 3231 | return ret; |
| 3232 | } |
| 3233 | |
| 3234 | static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) |
| 3235 | { |
| 3236 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3237 | if (svm->nested.nested_run_pending) |
| 3238 | return -EBUSY; |
| 3239 | |
| 3240 | /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ |
| 3241 | if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) |
| 3242 | return -EBUSY; |
| 3243 | |
| 3244 | return !svm_nmi_blocked(vcpu); |
| 3245 | } |
| 3246 | |
| 3247 | static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) |
| 3248 | { |
| 3249 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3250 | |
| 3251 | return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); |
| 3252 | } |
| 3253 | |
| 3254 | static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) |
| 3255 | { |
| 3256 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3257 | |
| 3258 | if (masked) { |
| 3259 | svm->vcpu.arch.hflags |= HF_NMI_MASK; |
| 3260 | svm_set_intercept(svm, INTERCEPT_IRET); |
| 3261 | } else { |
| 3262 | svm->vcpu.arch.hflags &= ~HF_NMI_MASK; |
| 3263 | svm_clr_intercept(svm, INTERCEPT_IRET); |
| 3264 | } |
| 3265 | } |
| 3266 | |
| 3267 | bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) |
| 3268 | { |
| 3269 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3270 | struct vmcb *vmcb = svm->vmcb; |
| 3271 | |
| 3272 | if (!gif_set(svm)) |
| 3273 | return true; |
| 3274 | |
| 3275 | if (is_guest_mode(vcpu)) { |
| 3276 | /* As long as interrupts are being delivered... */ |
| 3277 | if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) |
| 3278 | ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF) |
| 3279 | : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) |
| 3280 | return true; |
| 3281 | |
| 3282 | /* ... vmexits aren't blocked by the interrupt shadow */ |
| 3283 | if (nested_exit_on_intr(svm)) |
| 3284 | return false; |
| 3285 | } else { |
| 3286 | if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) |
| 3287 | return true; |
| 3288 | } |
| 3289 | |
| 3290 | return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); |
| 3291 | } |
| 3292 | |
| 3293 | static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) |
| 3294 | { |
| 3295 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3296 | if (svm->nested.nested_run_pending) |
| 3297 | return -EBUSY; |
| 3298 | |
| 3299 | /* |
| 3300 | * An IRQ must not be injected into L2 if it's supposed to VM-Exit, |
| 3301 | * e.g. if the IRQ arrived asynchronously after checking nested events. |
| 3302 | */ |
| 3303 | if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) |
| 3304 | return -EBUSY; |
| 3305 | |
| 3306 | return !svm_interrupt_blocked(vcpu); |
| 3307 | } |
| 3308 | |
| 3309 | static void enable_irq_window(struct kvm_vcpu *vcpu) |
| 3310 | { |
| 3311 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3312 | |
| 3313 | /* |
| 3314 | * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes |
| 3315 | * 1, because that's a separate STGI/VMRUN intercept. The next time we |
| 3316 | * get that intercept, this function will be called again though and |
| 3317 | * we'll get the vintr intercept. However, if the vGIF feature is |
| 3318 | * enabled, the STGI interception will not occur. Enable the irq |
| 3319 | * window under the assumption that the hardware will set the GIF. |
| 3320 | */ |
| 3321 | if (vgif_enabled(svm) || gif_set(svm)) { |
| 3322 | /* |
| 3323 | * IRQ window is not needed when AVIC is enabled, |
| 3324 | * unless we have pending ExtINT since it cannot be injected |
| 3325 | * via AVIC. In such case, we need to temporarily disable AVIC, |
| 3326 | * and fallback to injecting IRQ via V_IRQ. |
| 3327 | */ |
| 3328 | svm_toggle_avic_for_irq_window(vcpu, false); |
| 3329 | svm_set_vintr(svm); |
| 3330 | } |
| 3331 | } |
| 3332 | |
| 3333 | static void enable_nmi_window(struct kvm_vcpu *vcpu) |
| 3334 | { |
| 3335 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3336 | |
| 3337 | if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) |
| 3338 | == HF_NMI_MASK) |
| 3339 | return; /* IRET will cause a vm exit */ |
| 3340 | |
| 3341 | if (!gif_set(svm)) { |
| 3342 | if (vgif_enabled(svm)) |
| 3343 | svm_set_intercept(svm, INTERCEPT_STGI); |
| 3344 | return; /* STGI will cause a vm exit */ |
| 3345 | } |
| 3346 | |
| 3347 | /* |
| 3348 | * Something prevents NMI from been injected. Single step over possible |
| 3349 | * problem (IRET or exception injection or interrupt shadow) |
| 3350 | */ |
| 3351 | svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); |
| 3352 | svm->nmi_singlestep = true; |
| 3353 | svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); |
| 3354 | } |
| 3355 | |
| 3356 | static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) |
| 3357 | { |
| 3358 | return 0; |
| 3359 | } |
| 3360 | |
| 3361 | static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) |
| 3362 | { |
| 3363 | return 0; |
| 3364 | } |
| 3365 | |
| 3366 | void svm_flush_tlb(struct kvm_vcpu *vcpu) |
| 3367 | { |
| 3368 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3369 | |
| 3370 | /* |
| 3371 | * Flush only the current ASID even if the TLB flush was invoked via |
| 3372 | * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all |
| 3373 | * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and |
| 3374 | * unconditionally does a TLB flush on both nested VM-Enter and nested |
| 3375 | * VM-Exit (via kvm_mmu_reset_context()). |
| 3376 | */ |
| 3377 | if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) |
| 3378 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; |
| 3379 | else |
| 3380 | svm->asid_generation--; |
| 3381 | } |
| 3382 | |
| 3383 | static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) |
| 3384 | { |
| 3385 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3386 | |
| 3387 | invlpga(gva, svm->vmcb->control.asid); |
| 3388 | } |
| 3389 | |
| 3390 | static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) |
| 3391 | { |
| 3392 | } |
| 3393 | |
| 3394 | static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) |
| 3395 | { |
| 3396 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3397 | |
| 3398 | if (nested_svm_virtualize_tpr(vcpu)) |
| 3399 | return; |
| 3400 | |
| 3401 | if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { |
| 3402 | int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; |
| 3403 | kvm_set_cr8(vcpu, cr8); |
| 3404 | } |
| 3405 | } |
| 3406 | |
| 3407 | static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) |
| 3408 | { |
| 3409 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3410 | u64 cr8; |
| 3411 | |
| 3412 | if (nested_svm_virtualize_tpr(vcpu) || |
| 3413 | kvm_vcpu_apicv_active(vcpu)) |
| 3414 | return; |
| 3415 | |
| 3416 | cr8 = kvm_get_cr8(vcpu); |
| 3417 | svm->vmcb->control.int_ctl &= ~V_TPR_MASK; |
| 3418 | svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; |
| 3419 | } |
| 3420 | |
| 3421 | static void svm_complete_interrupts(struct vcpu_svm *svm) |
| 3422 | { |
| 3423 | u8 vector; |
| 3424 | int type; |
| 3425 | u32 exitintinfo = svm->vmcb->control.exit_int_info; |
| 3426 | unsigned int3_injected = svm->int3_injected; |
| 3427 | |
| 3428 | svm->int3_injected = 0; |
| 3429 | |
| 3430 | /* |
| 3431 | * If we've made progress since setting HF_IRET_MASK, we've |
| 3432 | * executed an IRET and can allow NMI injection. |
| 3433 | */ |
| 3434 | if ((svm->vcpu.arch.hflags & HF_IRET_MASK) |
| 3435 | && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) { |
| 3436 | svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); |
| 3437 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| 3438 | } |
| 3439 | |
| 3440 | svm->vcpu.arch.nmi_injected = false; |
| 3441 | kvm_clear_exception_queue(&svm->vcpu); |
| 3442 | kvm_clear_interrupt_queue(&svm->vcpu); |
| 3443 | |
| 3444 | if (!(exitintinfo & SVM_EXITINTINFO_VALID)) |
| 3445 | return; |
| 3446 | |
| 3447 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| 3448 | |
| 3449 | vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; |
| 3450 | type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; |
| 3451 | |
| 3452 | switch (type) { |
| 3453 | case SVM_EXITINTINFO_TYPE_NMI: |
| 3454 | svm->vcpu.arch.nmi_injected = true; |
| 3455 | break; |
| 3456 | case SVM_EXITINTINFO_TYPE_EXEPT: |
| 3457 | /* |
| 3458 | * In case of software exceptions, do not reinject the vector, |
| 3459 | * but re-execute the instruction instead. Rewind RIP first |
| 3460 | * if we emulated INT3 before. |
| 3461 | */ |
| 3462 | if (kvm_exception_is_soft(vector)) { |
| 3463 | if (vector == BP_VECTOR && int3_injected && |
| 3464 | kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) |
| 3465 | kvm_rip_write(&svm->vcpu, |
| 3466 | kvm_rip_read(&svm->vcpu) - |
| 3467 | int3_injected); |
| 3468 | break; |
| 3469 | } |
| 3470 | if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { |
| 3471 | u32 err = svm->vmcb->control.exit_int_info_err; |
| 3472 | kvm_requeue_exception_e(&svm->vcpu, vector, err); |
| 3473 | |
| 3474 | } else |
| 3475 | kvm_requeue_exception(&svm->vcpu, vector); |
| 3476 | break; |
| 3477 | case SVM_EXITINTINFO_TYPE_INTR: |
| 3478 | kvm_queue_interrupt(&svm->vcpu, vector, false); |
| 3479 | break; |
| 3480 | default: |
| 3481 | break; |
| 3482 | } |
| 3483 | } |
| 3484 | |
| 3485 | static void svm_cancel_injection(struct kvm_vcpu *vcpu) |
| 3486 | { |
| 3487 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3488 | struct vmcb_control_area *control = &svm->vmcb->control; |
| 3489 | |
| 3490 | control->exit_int_info = control->event_inj; |
| 3491 | control->exit_int_info_err = control->event_inj_err; |
| 3492 | control->event_inj = 0; |
| 3493 | svm_complete_interrupts(svm); |
| 3494 | } |
| 3495 | |
| 3496 | static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) |
| 3497 | { |
| 3498 | if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && |
| 3499 | to_svm(vcpu)->vmcb->control.exit_info_1) |
| 3500 | return handle_fastpath_set_msr_irqoff(vcpu); |
| 3501 | |
| 3502 | return EXIT_FASTPATH_NONE; |
| 3503 | } |
| 3504 | |
| 3505 | void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs); |
| 3506 | |
| 3507 | static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, |
| 3508 | struct vcpu_svm *svm) |
| 3509 | { |
| 3510 | /* |
| 3511 | * VMENTER enables interrupts (host state), but the kernel state is |
| 3512 | * interrupts disabled when this is invoked. Also tell RCU about |
| 3513 | * it. This is the same logic as for exit_to_user_mode(). |
| 3514 | * |
| 3515 | * This ensures that e.g. latency analysis on the host observes |
| 3516 | * guest mode as interrupt enabled. |
| 3517 | * |
| 3518 | * guest_enter_irqoff() informs context tracking about the |
| 3519 | * transition to guest mode and if enabled adjusts RCU state |
| 3520 | * accordingly. |
| 3521 | */ |
| 3522 | instrumentation_begin(); |
| 3523 | trace_hardirqs_on_prepare(); |
| 3524 | lockdep_hardirqs_on_prepare(CALLER_ADDR0); |
| 3525 | instrumentation_end(); |
| 3526 | |
| 3527 | guest_enter_irqoff(); |
| 3528 | lockdep_hardirqs_on(CALLER_ADDR0); |
| 3529 | |
| 3530 | __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs); |
| 3531 | |
| 3532 | #ifdef CONFIG_X86_64 |
| 3533 | native_wrmsrl(MSR_GS_BASE, svm->host.gs_base); |
| 3534 | #else |
| 3535 | loadsegment(fs, svm->host.fs); |
| 3536 | #ifndef CONFIG_X86_32_LAZY_GS |
| 3537 | loadsegment(gs, svm->host.gs); |
| 3538 | #endif |
| 3539 | #endif |
| 3540 | |
| 3541 | /* |
| 3542 | * VMEXIT disables interrupts (host state), but tracing and lockdep |
| 3543 | * have them in state 'on' as recorded before entering guest mode. |
| 3544 | * Same as enter_from_user_mode(). |
| 3545 | * |
| 3546 | * context_tracking_guest_exit() restores host context and reinstates |
| 3547 | * RCU if enabled and required. |
| 3548 | * |
| 3549 | * This needs to be done before the below as native_read_msr() |
| 3550 | * contains a tracepoint and x86_spec_ctrl_restore_host() calls |
| 3551 | * into world and some more. |
| 3552 | */ |
| 3553 | lockdep_hardirqs_off(CALLER_ADDR0); |
| 3554 | context_tracking_guest_exit(); |
| 3555 | |
| 3556 | instrumentation_begin(); |
| 3557 | trace_hardirqs_off_finish(); |
| 3558 | instrumentation_end(); |
| 3559 | } |
| 3560 | |
| 3561 | static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) |
| 3562 | { |
| 3563 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3564 | |
| 3565 | svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; |
| 3566 | svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; |
| 3567 | svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; |
| 3568 | |
| 3569 | /* |
| 3570 | * Disable singlestep if we're injecting an interrupt/exception. |
| 3571 | * We don't want our modified rflags to be pushed on the stack where |
| 3572 | * we might not be able to easily reset them if we disabled NMI |
| 3573 | * singlestep later. |
| 3574 | */ |
| 3575 | if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { |
| 3576 | /* |
| 3577 | * Event injection happens before external interrupts cause a |
| 3578 | * vmexit and interrupts are disabled here, so smp_send_reschedule |
| 3579 | * is enough to force an immediate vmexit. |
| 3580 | */ |
| 3581 | disable_nmi_singlestep(svm); |
| 3582 | smp_send_reschedule(vcpu->cpu); |
| 3583 | } |
| 3584 | |
| 3585 | pre_svm_run(svm); |
| 3586 | |
| 3587 | sync_lapic_to_cr8(vcpu); |
| 3588 | |
| 3589 | svm->vmcb->save.cr2 = vcpu->arch.cr2; |
| 3590 | |
| 3591 | /* |
| 3592 | * Run with all-zero DR6 unless needed, so that we can get the exact cause |
| 3593 | * of a #DB. |
| 3594 | */ |
| 3595 | if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) |
| 3596 | svm_set_dr6(svm, vcpu->arch.dr6); |
| 3597 | else |
| 3598 | svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM); |
| 3599 | |
| 3600 | clgi(); |
| 3601 | kvm_load_guest_xsave_state(vcpu); |
| 3602 | |
| 3603 | kvm_wait_lapic_expire(vcpu); |
| 3604 | |
| 3605 | /* |
| 3606 | * If this vCPU has touched SPEC_CTRL, restore the guest's value if |
| 3607 | * it's non-zero. Since vmentry is serialising on affected CPUs, there |
| 3608 | * is no need to worry about the conditional branch over the wrmsr |
| 3609 | * being speculatively taken. |
| 3610 | */ |
| 3611 | x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); |
| 3612 | |
| 3613 | svm_vcpu_enter_exit(vcpu, svm); |
| 3614 | |
| 3615 | /* |
| 3616 | * We do not use IBRS in the kernel. If this vCPU has used the |
| 3617 | * SPEC_CTRL MSR it may have left it on; save the value and |
| 3618 | * turn it off. This is much more efficient than blindly adding |
| 3619 | * it to the atomic save/restore list. Especially as the former |
| 3620 | * (Saving guest MSRs on vmexit) doesn't even exist in KVM. |
| 3621 | * |
| 3622 | * For non-nested case: |
| 3623 | * If the L01 MSR bitmap does not intercept the MSR, then we need to |
| 3624 | * save it. |
| 3625 | * |
| 3626 | * For nested case: |
| 3627 | * If the L02 MSR bitmap does not intercept the MSR, then we need to |
| 3628 | * save it. |
| 3629 | */ |
| 3630 | if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) |
| 3631 | svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); |
| 3632 | |
| 3633 | reload_tss(vcpu); |
| 3634 | |
| 3635 | x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); |
| 3636 | |
| 3637 | vcpu->arch.cr2 = svm->vmcb->save.cr2; |
| 3638 | vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; |
| 3639 | vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; |
| 3640 | vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; |
| 3641 | |
| 3642 | if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) |
| 3643 | kvm_before_interrupt(&svm->vcpu); |
| 3644 | |
| 3645 | kvm_load_host_xsave_state(vcpu); |
| 3646 | stgi(); |
| 3647 | |
| 3648 | /* Any pending NMI will happen here */ |
| 3649 | |
| 3650 | if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) |
| 3651 | kvm_after_interrupt(&svm->vcpu); |
| 3652 | |
| 3653 | sync_cr8_to_lapic(vcpu); |
| 3654 | |
| 3655 | svm->next_rip = 0; |
| 3656 | if (is_guest_mode(&svm->vcpu)) { |
| 3657 | sync_nested_vmcb_control(svm); |
| 3658 | svm->nested.nested_run_pending = 0; |
| 3659 | } |
| 3660 | |
| 3661 | svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; |
| 3662 | vmcb_mark_all_clean(svm->vmcb); |
| 3663 | |
| 3664 | /* if exit due to PF check for async PF */ |
| 3665 | if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) |
| 3666 | svm->vcpu.arch.apf.host_apf_flags = |
| 3667 | kvm_read_and_reset_apf_flags(); |
| 3668 | |
| 3669 | if (npt_enabled) { |
| 3670 | vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); |
| 3671 | vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); |
| 3672 | } |
| 3673 | |
| 3674 | /* |
| 3675 | * We need to handle MC intercepts here before the vcpu has a chance to |
| 3676 | * change the physical cpu |
| 3677 | */ |
| 3678 | if (unlikely(svm->vmcb->control.exit_code == |
| 3679 | SVM_EXIT_EXCP_BASE + MC_VECTOR)) |
| 3680 | svm_handle_mce(svm); |
| 3681 | |
| 3682 | svm_complete_interrupts(svm); |
| 3683 | |
| 3684 | if (is_guest_mode(vcpu)) |
| 3685 | return EXIT_FASTPATH_NONE; |
| 3686 | |
| 3687 | return svm_exit_handlers_fastpath(vcpu); |
| 3688 | } |
| 3689 | |
| 3690 | static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root, |
| 3691 | int root_level) |
| 3692 | { |
| 3693 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3694 | unsigned long cr3; |
| 3695 | |
| 3696 | cr3 = __sme_set(root); |
| 3697 | if (npt_enabled) { |
| 3698 | svm->vmcb->control.nested_cr3 = cr3; |
| 3699 | vmcb_mark_dirty(svm->vmcb, VMCB_NPT); |
| 3700 | |
| 3701 | /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ |
| 3702 | if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) |
| 3703 | return; |
| 3704 | cr3 = vcpu->arch.cr3; |
| 3705 | } |
| 3706 | |
| 3707 | svm->vmcb->save.cr3 = cr3; |
| 3708 | vmcb_mark_dirty(svm->vmcb, VMCB_CR); |
| 3709 | } |
| 3710 | |
| 3711 | static int is_disabled(void) |
| 3712 | { |
| 3713 | u64 vm_cr; |
| 3714 | |
| 3715 | rdmsrl(MSR_VM_CR, vm_cr); |
| 3716 | if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) |
| 3717 | return 1; |
| 3718 | |
| 3719 | return 0; |
| 3720 | } |
| 3721 | |
| 3722 | static void |
| 3723 | svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) |
| 3724 | { |
| 3725 | /* |
| 3726 | * Patch in the VMMCALL instruction: |
| 3727 | */ |
| 3728 | hypercall[0] = 0x0f; |
| 3729 | hypercall[1] = 0x01; |
| 3730 | hypercall[2] = 0xd9; |
| 3731 | } |
| 3732 | |
| 3733 | static int __init svm_check_processor_compat(void) |
| 3734 | { |
| 3735 | return 0; |
| 3736 | } |
| 3737 | |
| 3738 | static bool svm_cpu_has_accelerated_tpr(void) |
| 3739 | { |
| 3740 | return false; |
| 3741 | } |
| 3742 | |
| 3743 | static bool svm_has_emulated_msr(u32 index) |
| 3744 | { |
| 3745 | switch (index) { |
| 3746 | case MSR_IA32_MCG_EXT_CTL: |
| 3747 | case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: |
| 3748 | return false; |
| 3749 | default: |
| 3750 | break; |
| 3751 | } |
| 3752 | |
| 3753 | return true; |
| 3754 | } |
| 3755 | |
| 3756 | static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) |
| 3757 | { |
| 3758 | return 0; |
| 3759 | } |
| 3760 | |
| 3761 | static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) |
| 3762 | { |
| 3763 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3764 | struct kvm_cpuid_entry2 *best; |
| 3765 | |
| 3766 | vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && |
| 3767 | boot_cpu_has(X86_FEATURE_XSAVE) && |
| 3768 | boot_cpu_has(X86_FEATURE_XSAVES); |
| 3769 | |
| 3770 | /* Update nrips enabled cache */ |
| 3771 | svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && |
| 3772 | guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); |
| 3773 | |
| 3774 | /* Check again if INVPCID interception if required */ |
| 3775 | svm_check_invpcid(svm); |
| 3776 | |
| 3777 | /* For sev guests, the memory encryption bit is not reserved in CR3. */ |
| 3778 | if (sev_guest(vcpu->kvm)) { |
| 3779 | best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); |
| 3780 | if (best) |
| 3781 | vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f)); |
| 3782 | } |
| 3783 | |
| 3784 | if (!kvm_vcpu_apicv_active(vcpu)) |
| 3785 | return; |
| 3786 | |
| 3787 | /* |
| 3788 | * AVIC does not work with an x2APIC mode guest. If the X2APIC feature |
| 3789 | * is exposed to the guest, disable AVIC. |
| 3790 | */ |
| 3791 | if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) |
| 3792 | kvm_request_apicv_update(vcpu->kvm, false, |
| 3793 | APICV_INHIBIT_REASON_X2APIC); |
| 3794 | |
| 3795 | /* |
| 3796 | * Currently, AVIC does not work with nested virtualization. |
| 3797 | * So, we disable AVIC when cpuid for SVM is set in the L1 guest. |
| 3798 | */ |
| 3799 | if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) |
| 3800 | kvm_request_apicv_update(vcpu->kvm, false, |
| 3801 | APICV_INHIBIT_REASON_NESTED); |
| 3802 | } |
| 3803 | |
| 3804 | static bool svm_has_wbinvd_exit(void) |
| 3805 | { |
| 3806 | return true; |
| 3807 | } |
| 3808 | |
| 3809 | #define PRE_EX(exit) { .exit_code = (exit), \ |
| 3810 | .stage = X86_ICPT_PRE_EXCEPT, } |
| 3811 | #define POST_EX(exit) { .exit_code = (exit), \ |
| 3812 | .stage = X86_ICPT_POST_EXCEPT, } |
| 3813 | #define POST_MEM(exit) { .exit_code = (exit), \ |
| 3814 | .stage = X86_ICPT_POST_MEMACCESS, } |
| 3815 | |
| 3816 | static const struct __x86_intercept { |
| 3817 | u32 exit_code; |
| 3818 | enum x86_intercept_stage stage; |
| 3819 | } x86_intercept_map[] = { |
| 3820 | [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), |
| 3821 | [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), |
| 3822 | [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), |
| 3823 | [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), |
| 3824 | [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), |
| 3825 | [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), |
| 3826 | [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), |
| 3827 | [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), |
| 3828 | [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), |
| 3829 | [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), |
| 3830 | [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), |
| 3831 | [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), |
| 3832 | [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), |
| 3833 | [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), |
| 3834 | [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), |
| 3835 | [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), |
| 3836 | [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), |
| 3837 | [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), |
| 3838 | [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), |
| 3839 | [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), |
| 3840 | [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), |
| 3841 | [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), |
| 3842 | [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), |
| 3843 | [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), |
| 3844 | [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), |
| 3845 | [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), |
| 3846 | [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), |
| 3847 | [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), |
| 3848 | [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), |
| 3849 | [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), |
| 3850 | [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), |
| 3851 | [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), |
| 3852 | [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), |
| 3853 | [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), |
| 3854 | [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), |
| 3855 | [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), |
| 3856 | [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), |
| 3857 | [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), |
| 3858 | [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), |
| 3859 | [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), |
| 3860 | [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), |
| 3861 | [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), |
| 3862 | [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), |
| 3863 | [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), |
| 3864 | [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), |
| 3865 | [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), |
| 3866 | [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), |
| 3867 | }; |
| 3868 | |
| 3869 | #undef PRE_EX |
| 3870 | #undef POST_EX |
| 3871 | #undef POST_MEM |
| 3872 | |
| 3873 | static int svm_check_intercept(struct kvm_vcpu *vcpu, |
| 3874 | struct x86_instruction_info *info, |
| 3875 | enum x86_intercept_stage stage, |
| 3876 | struct x86_exception *exception) |
| 3877 | { |
| 3878 | struct vcpu_svm *svm = to_svm(vcpu); |
| 3879 | int vmexit, ret = X86EMUL_CONTINUE; |
| 3880 | struct __x86_intercept icpt_info; |
| 3881 | struct vmcb *vmcb = svm->vmcb; |
| 3882 | |
| 3883 | if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) |
| 3884 | goto out; |
| 3885 | |
| 3886 | icpt_info = x86_intercept_map[info->intercept]; |
| 3887 | |
| 3888 | if (stage != icpt_info.stage) |
| 3889 | goto out; |
| 3890 | |
| 3891 | switch (icpt_info.exit_code) { |
| 3892 | case SVM_EXIT_READ_CR0: |
| 3893 | if (info->intercept == x86_intercept_cr_read) |
| 3894 | icpt_info.exit_code += info->modrm_reg; |
| 3895 | break; |
| 3896 | case SVM_EXIT_WRITE_CR0: { |
| 3897 | unsigned long cr0, val; |
| 3898 | |
| 3899 | if (info->intercept == x86_intercept_cr_write) |
| 3900 | icpt_info.exit_code += info->modrm_reg; |
| 3901 | |
| 3902 | if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || |
| 3903 | info->intercept == x86_intercept_clts) |
| 3904 | break; |
| 3905 | |
| 3906 | if (!(vmcb_is_intercept(&svm->nested.ctl, |
| 3907 | INTERCEPT_SELECTIVE_CR0))) |
| 3908 | break; |
| 3909 | |
| 3910 | cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; |
| 3911 | val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; |
| 3912 | |
| 3913 | if (info->intercept == x86_intercept_lmsw) { |
| 3914 | cr0 &= 0xfUL; |
| 3915 | val &= 0xfUL; |
| 3916 | /* lmsw can't clear PE - catch this here */ |
| 3917 | if (cr0 & X86_CR0_PE) |
| 3918 | val |= X86_CR0_PE; |
| 3919 | } |
| 3920 | |
| 3921 | if (cr0 ^ val) |
| 3922 | icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; |
| 3923 | |
| 3924 | break; |
| 3925 | } |
| 3926 | case SVM_EXIT_READ_DR0: |
| 3927 | case SVM_EXIT_WRITE_DR0: |
| 3928 | icpt_info.exit_code += info->modrm_reg; |
| 3929 | break; |
| 3930 | case SVM_EXIT_MSR: |
| 3931 | if (info->intercept == x86_intercept_wrmsr) |
| 3932 | vmcb->control.exit_info_1 = 1; |
| 3933 | else |
| 3934 | vmcb->control.exit_info_1 = 0; |
| 3935 | break; |
| 3936 | case SVM_EXIT_PAUSE: |
| 3937 | /* |
| 3938 | * We get this for NOP only, but pause |
| 3939 | * is rep not, check this here |
| 3940 | */ |
| 3941 | if (info->rep_prefix != REPE_PREFIX) |
| 3942 | goto out; |
| 3943 | break; |
| 3944 | case SVM_EXIT_IOIO: { |
| 3945 | u64 exit_info; |
| 3946 | u32 bytes; |
| 3947 | |
| 3948 | if (info->intercept == x86_intercept_in || |
| 3949 | info->intercept == x86_intercept_ins) { |
| 3950 | exit_info = ((info->src_val & 0xffff) << 16) | |
| 3951 | SVM_IOIO_TYPE_MASK; |
| 3952 | bytes = info->dst_bytes; |
| 3953 | } else { |
| 3954 | exit_info = (info->dst_val & 0xffff) << 16; |
| 3955 | bytes = info->src_bytes; |
| 3956 | } |
| 3957 | |
| 3958 | if (info->intercept == x86_intercept_outs || |
| 3959 | info->intercept == x86_intercept_ins) |
| 3960 | exit_info |= SVM_IOIO_STR_MASK; |
| 3961 | |
| 3962 | if (info->rep_prefix) |
| 3963 | exit_info |= SVM_IOIO_REP_MASK; |
| 3964 | |
| 3965 | bytes = min(bytes, 4u); |
| 3966 | |
| 3967 | exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; |
| 3968 | |
| 3969 | exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); |
| 3970 | |
| 3971 | vmcb->control.exit_info_1 = exit_info; |
| 3972 | vmcb->control.exit_info_2 = info->next_rip; |
| 3973 | |
| 3974 | break; |
| 3975 | } |
| 3976 | default: |
| 3977 | break; |
| 3978 | } |
| 3979 | |
| 3980 | /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ |
| 3981 | if (static_cpu_has(X86_FEATURE_NRIPS)) |
| 3982 | vmcb->control.next_rip = info->next_rip; |
| 3983 | vmcb->control.exit_code = icpt_info.exit_code; |
| 3984 | vmexit = nested_svm_exit_handled(svm); |
| 3985 | |
| 3986 | ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED |
| 3987 | : X86EMUL_CONTINUE; |
| 3988 | |
| 3989 | out: |
| 3990 | return ret; |
| 3991 | } |
| 3992 | |
| 3993 | static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) |
| 3994 | { |
| 3995 | } |
| 3996 | |
| 3997 | static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) |
| 3998 | { |
| 3999 | if (!kvm_pause_in_guest(vcpu->kvm)) |
| 4000 | shrink_ple_window(vcpu); |
| 4001 | } |
| 4002 | |
| 4003 | static void svm_setup_mce(struct kvm_vcpu *vcpu) |
| 4004 | { |
| 4005 | /* [63:9] are reserved. */ |
| 4006 | vcpu->arch.mcg_cap &= 0x1ff; |
| 4007 | } |
| 4008 | |
| 4009 | bool svm_smi_blocked(struct kvm_vcpu *vcpu) |
| 4010 | { |
| 4011 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4012 | |
| 4013 | /* Per APM Vol.2 15.22.2 "Response to SMI" */ |
| 4014 | if (!gif_set(svm)) |
| 4015 | return true; |
| 4016 | |
| 4017 | return is_smm(vcpu); |
| 4018 | } |
| 4019 | |
| 4020 | static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) |
| 4021 | { |
| 4022 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4023 | if (svm->nested.nested_run_pending) |
| 4024 | return -EBUSY; |
| 4025 | |
| 4026 | /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ |
| 4027 | if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) |
| 4028 | return -EBUSY; |
| 4029 | |
| 4030 | return !svm_smi_blocked(vcpu); |
| 4031 | } |
| 4032 | |
| 4033 | static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) |
| 4034 | { |
| 4035 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4036 | int ret; |
| 4037 | |
| 4038 | if (is_guest_mode(vcpu)) { |
| 4039 | /* FED8h - SVM Guest */ |
| 4040 | put_smstate(u64, smstate, 0x7ed8, 1); |
| 4041 | /* FEE0h - SVM Guest VMCB Physical Address */ |
| 4042 | put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); |
| 4043 | |
| 4044 | svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; |
| 4045 | svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; |
| 4046 | svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; |
| 4047 | |
| 4048 | ret = nested_svm_vmexit(svm); |
| 4049 | if (ret) |
| 4050 | return ret; |
| 4051 | } |
| 4052 | return 0; |
| 4053 | } |
| 4054 | |
| 4055 | static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) |
| 4056 | { |
| 4057 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4058 | struct kvm_host_map map; |
| 4059 | int ret = 0; |
| 4060 | |
| 4061 | if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) { |
| 4062 | u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); |
| 4063 | u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8); |
| 4064 | u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); |
| 4065 | |
| 4066 | if (guest) { |
| 4067 | if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) |
| 4068 | return 1; |
| 4069 | |
| 4070 | if (!(saved_efer & EFER_SVME)) |
| 4071 | return 1; |
| 4072 | |
| 4073 | if (kvm_vcpu_map(&svm->vcpu, |
| 4074 | gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) |
| 4075 | return 1; |
| 4076 | |
| 4077 | if (svm_allocate_nested(svm)) |
| 4078 | return 1; |
| 4079 | |
| 4080 | ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva); |
| 4081 | kvm_vcpu_unmap(&svm->vcpu, &map, true); |
| 4082 | } |
| 4083 | } |
| 4084 | |
| 4085 | return ret; |
| 4086 | } |
| 4087 | |
| 4088 | static void enable_smi_window(struct kvm_vcpu *vcpu) |
| 4089 | { |
| 4090 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4091 | |
| 4092 | if (!gif_set(svm)) { |
| 4093 | if (vgif_enabled(svm)) |
| 4094 | svm_set_intercept(svm, INTERCEPT_STGI); |
| 4095 | /* STGI will cause a vm exit */ |
| 4096 | } else { |
| 4097 | /* We must be in SMM; RSM will cause a vmexit anyway. */ |
| 4098 | } |
| 4099 | } |
| 4100 | |
| 4101 | static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) |
| 4102 | { |
| 4103 | bool smep, smap, is_user; |
| 4104 | unsigned long cr4; |
| 4105 | |
| 4106 | /* Emulation is always possible when KVM has access to all guest state. */ |
| 4107 | if (!sev_guest(vcpu->kvm)) |
| 4108 | return true; |
| 4109 | |
| 4110 | /* |
| 4111 | * Detect and workaround Errata 1096 Fam_17h_00_0Fh. |
| 4112 | * |
| 4113 | * Errata: |
| 4114 | * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is |
| 4115 | * possible that CPU microcode implementing DecodeAssist will fail |
| 4116 | * to read bytes of instruction which caused #NPF. In this case, |
| 4117 | * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly |
| 4118 | * return 0 instead of the correct guest instruction bytes. |
| 4119 | * |
| 4120 | * This happens because CPU microcode reading instruction bytes |
| 4121 | * uses a special opcode which attempts to read data using CPL=0 |
| 4122 | * priviledges. The microcode reads CS:RIP and if it hits a SMAP |
| 4123 | * fault, it gives up and returns no instruction bytes. |
| 4124 | * |
| 4125 | * Detection: |
| 4126 | * We reach here in case CPU supports DecodeAssist, raised #NPF and |
| 4127 | * returned 0 in GuestIntrBytes field of the VMCB. |
| 4128 | * First, errata can only be triggered in case vCPU CR4.SMAP=1. |
| 4129 | * Second, if vCPU CR4.SMEP=1, errata could only be triggered |
| 4130 | * in case vCPU CPL==3 (Because otherwise guest would have triggered |
| 4131 | * a SMEP fault instead of #NPF). |
| 4132 | * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. |
| 4133 | * As most guests enable SMAP if they have also enabled SMEP, use above |
| 4134 | * logic in order to attempt minimize false-positive of detecting errata |
| 4135 | * while still preserving all cases semantic correctness. |
| 4136 | * |
| 4137 | * Workaround: |
| 4138 | * To determine what instruction the guest was executing, the hypervisor |
| 4139 | * will have to decode the instruction at the instruction pointer. |
| 4140 | * |
| 4141 | * In non SEV guest, hypervisor will be able to read the guest |
| 4142 | * memory to decode the instruction pointer when insn_len is zero |
| 4143 | * so we return true to indicate that decoding is possible. |
| 4144 | * |
| 4145 | * But in the SEV guest, the guest memory is encrypted with the |
| 4146 | * guest specific key and hypervisor will not be able to decode the |
| 4147 | * instruction pointer so we will not able to workaround it. Lets |
| 4148 | * print the error and request to kill the guest. |
| 4149 | */ |
| 4150 | if (likely(!insn || insn_len)) |
| 4151 | return true; |
| 4152 | |
| 4153 | cr4 = kvm_read_cr4(vcpu); |
| 4154 | smep = cr4 & X86_CR4_SMEP; |
| 4155 | smap = cr4 & X86_CR4_SMAP; |
| 4156 | is_user = svm_get_cpl(vcpu) == 3; |
| 4157 | if (smap && (!smep || is_user)) { |
| 4158 | pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); |
| 4159 | |
| 4160 | /* |
| 4161 | * If the fault occurred in userspace, arbitrarily inject #GP |
| 4162 | * to avoid killing the guest and to hopefully avoid confusing |
| 4163 | * the guest kernel too much, e.g. injecting #PF would not be |
| 4164 | * coherent with respect to the guest's page tables. Request |
| 4165 | * triple fault if the fault occurred in the kernel as there's |
| 4166 | * no fault that KVM can inject without confusing the guest. |
| 4167 | * In practice, the triple fault is moot as no sane SEV kernel |
| 4168 | * will execute from user memory while also running with SMAP=1. |
| 4169 | */ |
| 4170 | if (is_user) |
| 4171 | kvm_inject_gp(vcpu, 0); |
| 4172 | else |
| 4173 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| 4174 | } |
| 4175 | |
| 4176 | return false; |
| 4177 | } |
| 4178 | |
| 4179 | static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) |
| 4180 | { |
| 4181 | struct vcpu_svm *svm = to_svm(vcpu); |
| 4182 | |
| 4183 | /* |
| 4184 | * TODO: Last condition latch INIT signals on vCPU when |
| 4185 | * vCPU is in guest-mode and vmcb12 defines intercept on INIT. |
| 4186 | * To properly emulate the INIT intercept, |
| 4187 | * svm_check_nested_events() should call nested_svm_vmexit() |
| 4188 | * if an INIT signal is pending. |
| 4189 | */ |
| 4190 | return !gif_set(svm) || |
| 4191 | (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); |
| 4192 | } |
| 4193 | |
| 4194 | static void svm_vm_destroy(struct kvm *kvm) |
| 4195 | { |
| 4196 | avic_vm_destroy(kvm); |
| 4197 | sev_vm_destroy(kvm); |
| 4198 | } |
| 4199 | |
| 4200 | static int svm_vm_init(struct kvm *kvm) |
| 4201 | { |
| 4202 | if (!pause_filter_count || !pause_filter_thresh) |
| 4203 | kvm->arch.pause_in_guest = true; |
| 4204 | |
| 4205 | if (avic) { |
| 4206 | int ret = avic_vm_init(kvm); |
| 4207 | if (ret) |
| 4208 | return ret; |
| 4209 | } |
| 4210 | |
| 4211 | kvm_apicv_init(kvm, avic); |
| 4212 | return 0; |
| 4213 | } |
| 4214 | |
| 4215 | static struct kvm_x86_ops svm_x86_ops __initdata = { |
| 4216 | .hardware_unsetup = svm_hardware_teardown, |
| 4217 | .hardware_enable = svm_hardware_enable, |
| 4218 | .hardware_disable = svm_hardware_disable, |
| 4219 | .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, |
| 4220 | .has_emulated_msr = svm_has_emulated_msr, |
| 4221 | |
| 4222 | .vcpu_create = svm_create_vcpu, |
| 4223 | .vcpu_free = svm_free_vcpu, |
| 4224 | .vcpu_reset = svm_vcpu_reset, |
| 4225 | |
| 4226 | .vm_size = sizeof(struct kvm_svm), |
| 4227 | .vm_init = svm_vm_init, |
| 4228 | .vm_destroy = svm_vm_destroy, |
| 4229 | |
| 4230 | .prepare_guest_switch = svm_prepare_guest_switch, |
| 4231 | .vcpu_load = svm_vcpu_load, |
| 4232 | .vcpu_put = svm_vcpu_put, |
| 4233 | .vcpu_blocking = svm_vcpu_blocking, |
| 4234 | .vcpu_unblocking = svm_vcpu_unblocking, |
| 4235 | |
| 4236 | .update_exception_bitmap = update_exception_bitmap, |
| 4237 | .get_msr_feature = svm_get_msr_feature, |
| 4238 | .get_msr = svm_get_msr, |
| 4239 | .set_msr = svm_set_msr, |
| 4240 | .get_segment_base = svm_get_segment_base, |
| 4241 | .get_segment = svm_get_segment, |
| 4242 | .set_segment = svm_set_segment, |
| 4243 | .get_cpl = svm_get_cpl, |
| 4244 | .get_cs_db_l_bits = kvm_get_cs_db_l_bits, |
| 4245 | .set_cr0 = svm_set_cr0, |
| 4246 | .set_cr4 = svm_set_cr4, |
| 4247 | .set_efer = svm_set_efer, |
| 4248 | .get_idt = svm_get_idt, |
| 4249 | .set_idt = svm_set_idt, |
| 4250 | .get_gdt = svm_get_gdt, |
| 4251 | .set_gdt = svm_set_gdt, |
| 4252 | .set_dr7 = svm_set_dr7, |
| 4253 | .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, |
| 4254 | .cache_reg = svm_cache_reg, |
| 4255 | .get_rflags = svm_get_rflags, |
| 4256 | .set_rflags = svm_set_rflags, |
| 4257 | |
| 4258 | .tlb_flush_all = svm_flush_tlb, |
| 4259 | .tlb_flush_current = svm_flush_tlb, |
| 4260 | .tlb_flush_gva = svm_flush_tlb_gva, |
| 4261 | .tlb_flush_guest = svm_flush_tlb, |
| 4262 | |
| 4263 | .run = svm_vcpu_run, |
| 4264 | .handle_exit = handle_exit, |
| 4265 | .skip_emulated_instruction = skip_emulated_instruction, |
| 4266 | .update_emulated_instruction = NULL, |
| 4267 | .set_interrupt_shadow = svm_set_interrupt_shadow, |
| 4268 | .get_interrupt_shadow = svm_get_interrupt_shadow, |
| 4269 | .patch_hypercall = svm_patch_hypercall, |
| 4270 | .set_irq = svm_set_irq, |
| 4271 | .set_nmi = svm_inject_nmi, |
| 4272 | .queue_exception = svm_queue_exception, |
| 4273 | .cancel_injection = svm_cancel_injection, |
| 4274 | .interrupt_allowed = svm_interrupt_allowed, |
| 4275 | .nmi_allowed = svm_nmi_allowed, |
| 4276 | .get_nmi_mask = svm_get_nmi_mask, |
| 4277 | .set_nmi_mask = svm_set_nmi_mask, |
| 4278 | .enable_nmi_window = enable_nmi_window, |
| 4279 | .enable_irq_window = enable_irq_window, |
| 4280 | .update_cr8_intercept = update_cr8_intercept, |
| 4281 | .set_virtual_apic_mode = svm_set_virtual_apic_mode, |
| 4282 | .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, |
| 4283 | .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, |
| 4284 | .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, |
| 4285 | .load_eoi_exitmap = svm_load_eoi_exitmap, |
| 4286 | .hwapic_irr_update = svm_hwapic_irr_update, |
| 4287 | .hwapic_isr_update = svm_hwapic_isr_update, |
| 4288 | .sync_pir_to_irr = kvm_lapic_find_highest_irr, |
| 4289 | .apicv_post_state_restore = avic_post_state_restore, |
| 4290 | |
| 4291 | .set_tss_addr = svm_set_tss_addr, |
| 4292 | .set_identity_map_addr = svm_set_identity_map_addr, |
| 4293 | .get_mt_mask = svm_get_mt_mask, |
| 4294 | |
| 4295 | .get_exit_info = svm_get_exit_info, |
| 4296 | |
| 4297 | .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, |
| 4298 | |
| 4299 | .has_wbinvd_exit = svm_has_wbinvd_exit, |
| 4300 | |
| 4301 | .write_l1_tsc_offset = svm_write_l1_tsc_offset, |
| 4302 | |
| 4303 | .load_mmu_pgd = svm_load_mmu_pgd, |
| 4304 | |
| 4305 | .check_intercept = svm_check_intercept, |
| 4306 | .handle_exit_irqoff = svm_handle_exit_irqoff, |
| 4307 | |
| 4308 | .request_immediate_exit = __kvm_request_immediate_exit, |
| 4309 | |
| 4310 | .sched_in = svm_sched_in, |
| 4311 | |
| 4312 | .pmu_ops = &amd_pmu_ops, |
| 4313 | .nested_ops = &svm_nested_ops, |
| 4314 | |
| 4315 | .deliver_posted_interrupt = svm_deliver_avic_intr, |
| 4316 | .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, |
| 4317 | .update_pi_irte = svm_update_pi_irte, |
| 4318 | .setup_mce = svm_setup_mce, |
| 4319 | |
| 4320 | .smi_allowed = svm_smi_allowed, |
| 4321 | .pre_enter_smm = svm_pre_enter_smm, |
| 4322 | .pre_leave_smm = svm_pre_leave_smm, |
| 4323 | .enable_smi_window = enable_smi_window, |
| 4324 | |
| 4325 | .mem_enc_op = svm_mem_enc_op, |
| 4326 | .mem_enc_reg_region = svm_register_enc_region, |
| 4327 | .mem_enc_unreg_region = svm_unregister_enc_region, |
| 4328 | |
| 4329 | .can_emulate_instruction = svm_can_emulate_instruction, |
| 4330 | |
| 4331 | .apic_init_signal_blocked = svm_apic_init_signal_blocked, |
| 4332 | |
| 4333 | .msr_filter_changed = svm_msr_filter_changed, |
| 4334 | }; |
| 4335 | |
| 4336 | static struct kvm_x86_init_ops svm_init_ops __initdata = { |
| 4337 | .cpu_has_kvm_support = has_svm, |
| 4338 | .disabled_by_bios = is_disabled, |
| 4339 | .hardware_setup = svm_hardware_setup, |
| 4340 | .check_processor_compatibility = svm_check_processor_compat, |
| 4341 | |
| 4342 | .runtime_ops = &svm_x86_ops, |
| 4343 | }; |
| 4344 | |
| 4345 | static int __init svm_init(void) |
| 4346 | { |
| 4347 | __unused_size_checks(); |
| 4348 | |
| 4349 | return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), |
| 4350 | __alignof__(struct vcpu_svm), THIS_MODULE); |
| 4351 | } |
| 4352 | |
| 4353 | static void __exit svm_exit(void) |
| 4354 | { |
| 4355 | kvm_exit(); |
| 4356 | } |
| 4357 | |
| 4358 | module_init(svm_init) |
| 4359 | module_exit(svm_exit) |