blob: a8b5533cf601d686b21bd8e11dd874ae70f8c1a6 [file] [log] [blame]
Olivier Deprez157378f2022-04-04 15:47:50 +02001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
13 */
14
15#define pr_fmt(fmt) "SVM: " fmt
16
17#include <linux/kvm_types.h>
18#include <linux/hashtable.h>
19#include <linux/amd-iommu.h>
20#include <linux/kvm_host.h>
21
22#include <asm/irq_remapping.h>
23
24#include "trace.h"
25#include "lapic.h"
26#include "x86.h"
27#include "irq.h"
28#include "svm.h"
29
30/* enable / disable AVIC */
31int avic;
32#ifdef CONFIG_X86_LOCAL_APIC
33module_param(avic, int, S_IRUGO);
34#endif
35
36#define SVM_AVIC_DOORBELL 0xc001011b
37
38#define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
39
40/*
41 * 0xff is broadcast, so the max index allowed for physical APIC ID
42 * table is 0xfe. APIC IDs above 0xff are reserved.
43 */
44#define AVIC_MAX_PHYSICAL_ID_COUNT 255
45
46#define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
47#define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
48#define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
49
50/* AVIC GATAG is encoded using VM and VCPU IDs */
51#define AVIC_VCPU_ID_BITS 8
52#define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
53
54#define AVIC_VM_ID_BITS 24
55#define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
56#define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
57
58#define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
59 (y & AVIC_VCPU_ID_MASK))
60#define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
61#define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
62
63/* Note:
64 * This hash table is used to map VM_ID to a struct kvm_svm,
65 * when handling AMD IOMMU GALOG notification to schedule in
66 * a particular vCPU.
67 */
68#define SVM_VM_DATA_HASH_BITS 8
69static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
70static u32 next_vm_id = 0;
71static bool next_vm_id_wrapped = 0;
72static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
73
74/*
75 * This is a wrapper of struct amd_iommu_ir_data.
76 */
77struct amd_svm_iommu_ir {
78 struct list_head node; /* Used by SVM for per-vcpu ir_list */
79 void *data; /* Storing pointer to struct amd_ir_data */
80};
81
82enum avic_ipi_failure_cause {
83 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
84 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
85 AVIC_IPI_FAILURE_INVALID_TARGET,
86 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
87};
88
89/* Note:
90 * This function is called from IOMMU driver to notify
91 * SVM to schedule in a particular vCPU of a particular VM.
92 */
93int avic_ga_log_notifier(u32 ga_tag)
94{
95 unsigned long flags;
96 struct kvm_svm *kvm_svm;
97 struct kvm_vcpu *vcpu = NULL;
98 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
99 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
100
101 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
102 trace_kvm_avic_ga_log(vm_id, vcpu_id);
103
104 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
105 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
106 if (kvm_svm->avic_vm_id != vm_id)
107 continue;
108 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
109 break;
110 }
111 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
112
113 /* Note:
114 * At this point, the IOMMU should have already set the pending
115 * bit in the vAPIC backing page. So, we just need to schedule
116 * in the vcpu.
117 */
118 if (vcpu)
119 kvm_vcpu_wake_up(vcpu);
120
121 return 0;
122}
123
124void avic_vm_destroy(struct kvm *kvm)
125{
126 unsigned long flags;
127 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
128
129 if (!avic)
130 return;
131
132 if (kvm_svm->avic_logical_id_table_page)
133 __free_page(kvm_svm->avic_logical_id_table_page);
134 if (kvm_svm->avic_physical_id_table_page)
135 __free_page(kvm_svm->avic_physical_id_table_page);
136
137 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
138 hash_del(&kvm_svm->hnode);
139 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
140}
141
142int avic_vm_init(struct kvm *kvm)
143{
144 unsigned long flags;
145 int err = -ENOMEM;
146 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
147 struct kvm_svm *k2;
148 struct page *p_page;
149 struct page *l_page;
150 u32 vm_id;
151
152 if (!avic)
153 return 0;
154
155 /* Allocating physical APIC ID table (4KB) */
156 p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
157 if (!p_page)
158 goto free_avic;
159
160 kvm_svm->avic_physical_id_table_page = p_page;
161
162 /* Allocating logical APIC ID table (4KB) */
163 l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
164 if (!l_page)
165 goto free_avic;
166
167 kvm_svm->avic_logical_id_table_page = l_page;
168
169 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
170 again:
171 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
172 if (vm_id == 0) { /* id is 1-based, zero is not okay */
173 next_vm_id_wrapped = 1;
174 goto again;
175 }
176 /* Is it still in use? Only possible if wrapped at least once */
177 if (next_vm_id_wrapped) {
178 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
179 if (k2->avic_vm_id == vm_id)
180 goto again;
181 }
182 }
183 kvm_svm->avic_vm_id = vm_id;
184 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
185 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
186
187 return 0;
188
189free_avic:
190 avic_vm_destroy(kvm);
191 return err;
192}
193
194void avic_init_vmcb(struct vcpu_svm *svm)
195{
196 struct vmcb *vmcb = svm->vmcb;
197 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
198 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
199 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
200 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
201
202 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
203 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
204 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
205 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
206 if (kvm_apicv_activated(svm->vcpu.kvm))
207 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
208 else
209 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
210}
211
212static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
213 unsigned int index)
214{
215 u64 *avic_physical_id_table;
216 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
217
218 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
219 return NULL;
220
221 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
222
223 return &avic_physical_id_table[index];
224}
225
226/**
227 * Note:
228 * AVIC hardware walks the nested page table to check permissions,
229 * but does not use the SPA address specified in the leaf page
230 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
231 * field of the VMCB. Therefore, we set up the
232 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
233 */
234static int avic_update_access_page(struct kvm *kvm, bool activate)
235{
236 int ret = 0;
237
238 mutex_lock(&kvm->slots_lock);
239 /*
240 * During kvm_destroy_vm(), kvm_pit_set_reinject() could trigger
241 * APICv mode change, which update APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
242 * memory region. So, we need to ensure that kvm->mm == current->mm.
243 */
244 if ((kvm->arch.apic_access_page_done == activate) ||
245 (kvm->mm != current->mm))
246 goto out;
247
248 ret = __x86_set_memory_region(kvm,
249 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
250 APIC_DEFAULT_PHYS_BASE,
251 activate ? PAGE_SIZE : 0);
252 if (ret)
253 goto out;
254
255 kvm->arch.apic_access_page_done = activate;
256out:
257 mutex_unlock(&kvm->slots_lock);
258 return ret;
259}
260
261static int avic_init_backing_page(struct kvm_vcpu *vcpu)
262{
263 u64 *entry, new_entry;
264 int id = vcpu->vcpu_id;
265 struct vcpu_svm *svm = to_svm(vcpu);
266
267 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
268 return -EINVAL;
269
270 if (!svm->vcpu.arch.apic->regs)
271 return -EINVAL;
272
273 if (kvm_apicv_activated(vcpu->kvm)) {
274 int ret;
275
276 ret = avic_update_access_page(vcpu->kvm, true);
277 if (ret)
278 return ret;
279 }
280
281 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
282
283 /* Setting AVIC backing page address in the phy APIC ID table */
284 entry = avic_get_physical_id_entry(vcpu, id);
285 if (!entry)
286 return -EINVAL;
287
288 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
289 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
290 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
291 WRITE_ONCE(*entry, new_entry);
292
293 svm->avic_physical_id_cache = entry;
294
295 return 0;
296}
297
298int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
299{
300 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
301 u32 icrl = svm->vmcb->control.exit_info_1;
302 u32 id = svm->vmcb->control.exit_info_2 >> 32;
303 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
304 struct kvm_lapic *apic = svm->vcpu.arch.apic;
305
306 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
307
308 switch (id) {
309 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
310 /*
311 * AVIC hardware handles the generation of
312 * IPIs when the specified Message Type is Fixed
313 * (also known as fixed delivery mode) and
314 * the Trigger Mode is edge-triggered. The hardware
315 * also supports self and broadcast delivery modes
316 * specified via the Destination Shorthand(DSH)
317 * field of the ICRL. Logical and physical APIC ID
318 * formats are supported. All other IPI types cause
319 * a #VMEXIT, which needs to emulated.
320 */
321 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
322 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
323 break;
324 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
325 int i;
326 struct kvm_vcpu *vcpu;
327 struct kvm *kvm = svm->vcpu.kvm;
328 struct kvm_lapic *apic = svm->vcpu.arch.apic;
329
330 /*
331 * At this point, we expect that the AVIC HW has already
332 * set the appropriate IRR bits on the valid target
333 * vcpus. So, we just need to kick the appropriate vcpu.
334 */
335 kvm_for_each_vcpu(i, vcpu, kvm) {
336 bool m = kvm_apic_match_dest(vcpu, apic,
337 icrl & APIC_SHORT_MASK,
338 GET_APIC_DEST_FIELD(icrh),
339 icrl & APIC_DEST_MASK);
340
341 if (m && !avic_vcpu_is_running(vcpu))
342 kvm_vcpu_wake_up(vcpu);
343 }
344 break;
345 }
346 case AVIC_IPI_FAILURE_INVALID_TARGET:
347 break;
348 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
349 WARN_ONCE(1, "Invalid backing page\n");
350 break;
351 default:
352 pr_err("Unknown IPI interception\n");
353 }
354
355 return 1;
356}
357
358static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
359{
360 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
361 int index;
362 u32 *logical_apic_id_table;
363 int dlid = GET_APIC_LOGICAL_ID(ldr);
364
365 if (!dlid)
366 return NULL;
367
368 if (flat) { /* flat */
369 index = ffs(dlid) - 1;
370 if (index > 7)
371 return NULL;
372 } else { /* cluster */
373 int cluster = (dlid & 0xf0) >> 4;
374 int apic = ffs(dlid & 0x0f) - 1;
375
376 if ((apic < 0) || (apic > 7) ||
377 (cluster >= 0xf))
378 return NULL;
379 index = (cluster << 2) + apic;
380 }
381
382 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
383
384 return &logical_apic_id_table[index];
385}
386
387static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
388{
389 bool flat;
390 u32 *entry, new_entry;
391
392 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
393 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
394 if (!entry)
395 return -EINVAL;
396
397 new_entry = READ_ONCE(*entry);
398 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
399 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
400 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
401 WRITE_ONCE(*entry, new_entry);
402
403 return 0;
404}
405
406static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
407{
408 struct vcpu_svm *svm = to_svm(vcpu);
409 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
410 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
411
412 if (entry)
413 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
414}
415
416static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
417{
418 int ret = 0;
419 struct vcpu_svm *svm = to_svm(vcpu);
420 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
421 u32 id = kvm_xapic_id(vcpu->arch.apic);
422
423 if (ldr == svm->ldr_reg)
424 return 0;
425
426 avic_invalidate_logical_id_entry(vcpu);
427
428 if (ldr)
429 ret = avic_ldr_write(vcpu, id, ldr);
430
431 if (!ret)
432 svm->ldr_reg = ldr;
433
434 return ret;
435}
436
437static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
438{
439 u64 *old, *new;
440 struct vcpu_svm *svm = to_svm(vcpu);
441 u32 id = kvm_xapic_id(vcpu->arch.apic);
442
443 if (vcpu->vcpu_id == id)
444 return 0;
445
446 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
447 new = avic_get_physical_id_entry(vcpu, id);
448 if (!new || !old)
449 return 1;
450
451 /* We need to move physical_id_entry to new offset */
452 *new = *old;
453 *old = 0ULL;
454 to_svm(vcpu)->avic_physical_id_cache = new;
455
456 /*
457 * Also update the guest physical APIC ID in the logical
458 * APIC ID table entry if already setup the LDR.
459 */
460 if (svm->ldr_reg)
461 avic_handle_ldr_update(vcpu);
462
463 return 0;
464}
465
466static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
467{
468 struct vcpu_svm *svm = to_svm(vcpu);
469 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
470
471 if (svm->dfr_reg == dfr)
472 return;
473
474 avic_invalidate_logical_id_entry(vcpu);
475 svm->dfr_reg = dfr;
476}
477
478static int avic_unaccel_trap_write(struct vcpu_svm *svm)
479{
480 struct kvm_lapic *apic = svm->vcpu.arch.apic;
481 u32 offset = svm->vmcb->control.exit_info_1 &
482 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
483
484 switch (offset) {
485 case APIC_ID:
486 if (avic_handle_apic_id_update(&svm->vcpu))
487 return 0;
488 break;
489 case APIC_LDR:
490 if (avic_handle_ldr_update(&svm->vcpu))
491 return 0;
492 break;
493 case APIC_DFR:
494 avic_handle_dfr_update(&svm->vcpu);
495 break;
496 default:
497 break;
498 }
499
500 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
501
502 return 1;
503}
504
505static bool is_avic_unaccelerated_access_trap(u32 offset)
506{
507 bool ret = false;
508
509 switch (offset) {
510 case APIC_ID:
511 case APIC_EOI:
512 case APIC_RRR:
513 case APIC_LDR:
514 case APIC_DFR:
515 case APIC_SPIV:
516 case APIC_ESR:
517 case APIC_ICR:
518 case APIC_LVTT:
519 case APIC_LVTTHMR:
520 case APIC_LVTPC:
521 case APIC_LVT0:
522 case APIC_LVT1:
523 case APIC_LVTERR:
524 case APIC_TMICT:
525 case APIC_TDCR:
526 ret = true;
527 break;
528 default:
529 break;
530 }
531 return ret;
532}
533
534int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
535{
536 int ret = 0;
537 u32 offset = svm->vmcb->control.exit_info_1 &
538 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
539 u32 vector = svm->vmcb->control.exit_info_2 &
540 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
541 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
542 AVIC_UNACCEL_ACCESS_WRITE_MASK;
543 bool trap = is_avic_unaccelerated_access_trap(offset);
544
545 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
546 trap, write, vector);
547 if (trap) {
548 /* Handling Trap */
549 WARN_ONCE(!write, "svm: Handling trap read.\n");
550 ret = avic_unaccel_trap_write(svm);
551 } else {
552 /* Handling Fault */
553 ret = kvm_emulate_instruction(&svm->vcpu, 0);
554 }
555
556 return ret;
557}
558
559int avic_init_vcpu(struct vcpu_svm *svm)
560{
561 int ret;
562 struct kvm_vcpu *vcpu = &svm->vcpu;
563
564 if (!avic || !irqchip_in_kernel(vcpu->kvm))
565 return 0;
566
567 ret = avic_init_backing_page(&svm->vcpu);
568 if (ret)
569 return ret;
570
571 INIT_LIST_HEAD(&svm->ir_list);
572 spin_lock_init(&svm->ir_list_lock);
573 svm->dfr_reg = APIC_DFR_FLAT;
574
575 return ret;
576}
577
578void avic_post_state_restore(struct kvm_vcpu *vcpu)
579{
580 if (avic_handle_apic_id_update(vcpu) != 0)
581 return;
582 avic_handle_dfr_update(vcpu);
583 avic_handle_ldr_update(vcpu);
584}
585
586void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate)
587{
588 if (!avic || !lapic_in_kernel(vcpu))
589 return;
590
591 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
592 kvm_request_apicv_update(vcpu->kvm, activate,
593 APICV_INHIBIT_REASON_IRQWIN);
594 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
595}
596
597void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
598{
599 return;
600}
601
602void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
603{
604}
605
606void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
607{
608}
609
610static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
611{
612 int ret = 0;
613 unsigned long flags;
614 struct amd_svm_iommu_ir *ir;
615 struct vcpu_svm *svm = to_svm(vcpu);
616
617 if (!kvm_arch_has_assigned_device(vcpu->kvm))
618 return 0;
619
620 /*
621 * Here, we go through the per-vcpu ir_list to update all existing
622 * interrupt remapping table entry targeting this vcpu.
623 */
624 spin_lock_irqsave(&svm->ir_list_lock, flags);
625
626 if (list_empty(&svm->ir_list))
627 goto out;
628
629 list_for_each_entry(ir, &svm->ir_list, node) {
630 if (activate)
631 ret = amd_iommu_activate_guest_mode(ir->data);
632 else
633 ret = amd_iommu_deactivate_guest_mode(ir->data);
634 if (ret)
635 break;
636 }
637out:
638 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
639 return ret;
640}
641
642void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
643{
644 struct vcpu_svm *svm = to_svm(vcpu);
645 struct vmcb *vmcb = svm->vmcb;
646 bool activated = kvm_vcpu_apicv_active(vcpu);
647
648 if (!avic)
649 return;
650
651 if (activated) {
652 /**
653 * During AVIC temporary deactivation, guest could update
654 * APIC ID, DFR and LDR registers, which would not be trapped
655 * by avic_unaccelerated_access_interception(). In this case,
656 * we need to check and update the AVIC logical APIC ID table
657 * accordingly before re-activating.
658 */
659 avic_post_state_restore(vcpu);
660 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
661 } else {
662 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
663 }
664 vmcb_mark_dirty(vmcb, VMCB_AVIC);
665
666 svm_set_pi_irte_mode(vcpu, activated);
667}
668
669void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
670{
671 return;
672}
673
674int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
675{
676 if (!vcpu->arch.apicv_active)
677 return -1;
678
679 kvm_lapic_set_irr(vec, vcpu->arch.apic);
680 smp_mb__after_atomic();
681
682 if (avic_vcpu_is_running(vcpu)) {
683 int cpuid = vcpu->cpu;
684
685 if (cpuid != get_cpu())
686 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
687 put_cpu();
688 } else
689 kvm_vcpu_wake_up(vcpu);
690
691 return 0;
692}
693
694bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
695{
696 return false;
697}
698
699static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
700{
701 unsigned long flags;
702 struct amd_svm_iommu_ir *cur;
703
704 spin_lock_irqsave(&svm->ir_list_lock, flags);
705 list_for_each_entry(cur, &svm->ir_list, node) {
706 if (cur->data != pi->ir_data)
707 continue;
708 list_del(&cur->node);
709 kfree(cur);
710 break;
711 }
712 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
713}
714
715static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
716{
717 int ret = 0;
718 unsigned long flags;
719 struct amd_svm_iommu_ir *ir;
720
721 /**
722 * In some cases, the existing irte is updaed and re-set,
723 * so we need to check here if it's already been * added
724 * to the ir_list.
725 */
726 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
727 struct kvm *kvm = svm->vcpu.kvm;
728 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
729 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
730 struct vcpu_svm *prev_svm;
731
732 if (!prev_vcpu) {
733 ret = -EINVAL;
734 goto out;
735 }
736
737 prev_svm = to_svm(prev_vcpu);
738 svm_ir_list_del(prev_svm, pi);
739 }
740
741 /**
742 * Allocating new amd_iommu_pi_data, which will get
743 * add to the per-vcpu ir_list.
744 */
745 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
746 if (!ir) {
747 ret = -ENOMEM;
748 goto out;
749 }
750 ir->data = pi->ir_data;
751
752 spin_lock_irqsave(&svm->ir_list_lock, flags);
753 list_add(&ir->node, &svm->ir_list);
754 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
755out:
756 return ret;
757}
758
759/**
760 * Note:
761 * The HW cannot support posting multicast/broadcast
762 * interrupts to a vCPU. So, we still use legacy interrupt
763 * remapping for these kind of interrupts.
764 *
765 * For lowest-priority interrupts, we only support
766 * those with single CPU as the destination, e.g. user
767 * configures the interrupts via /proc/irq or uses
768 * irqbalance to make the interrupts single-CPU.
769 */
770static int
771get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
772 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
773{
774 struct kvm_lapic_irq irq;
775 struct kvm_vcpu *vcpu = NULL;
776
777 kvm_set_msi_irq(kvm, e, &irq);
778
779 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
780 !kvm_irq_is_postable(&irq)) {
781 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
782 __func__, irq.vector);
783 return -1;
784 }
785
786 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
787 irq.vector);
788 *svm = to_svm(vcpu);
789 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
790 vcpu_info->vector = irq.vector;
791
792 return 0;
793}
794
795/*
796 * svm_update_pi_irte - set IRTE for Posted-Interrupts
797 *
798 * @kvm: kvm
799 * @host_irq: host irq of the interrupt
800 * @guest_irq: gsi of the interrupt
801 * @set: set or unset PI
802 * returns 0 on success, < 0 on failure
803 */
804int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
805 uint32_t guest_irq, bool set)
806{
807 struct kvm_kernel_irq_routing_entry *e;
808 struct kvm_irq_routing_table *irq_rt;
809 int idx, ret = -EINVAL;
810
811 if (!kvm_arch_has_assigned_device(kvm) ||
812 !irq_remapping_cap(IRQ_POSTING_CAP))
813 return 0;
814
815 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
816 __func__, host_irq, guest_irq, set);
817
818 idx = srcu_read_lock(&kvm->irq_srcu);
819 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
820 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
821
822 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
823 struct vcpu_data vcpu_info;
824 struct vcpu_svm *svm = NULL;
825
826 if (e->type != KVM_IRQ_ROUTING_MSI)
827 continue;
828
829 /**
830 * Here, we setup with legacy mode in the following cases:
831 * 1. When cannot target interrupt to a specific vcpu.
832 * 2. Unsetting posted interrupt.
833 * 3. APIC virtialization is disabled for the vcpu.
834 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
835 */
836 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
837 kvm_vcpu_apicv_active(&svm->vcpu)) {
838 struct amd_iommu_pi_data pi;
839
840 /* Try to enable guest_mode in IRTE */
841 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
842 AVIC_HPA_MASK);
843 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
844 svm->vcpu.vcpu_id);
845 pi.is_guest_mode = true;
846 pi.vcpu_data = &vcpu_info;
847 ret = irq_set_vcpu_affinity(host_irq, &pi);
848
849 /**
850 * Here, we successfully setting up vcpu affinity in
851 * IOMMU guest mode. Now, we need to store the posted
852 * interrupt information in a per-vcpu ir_list so that
853 * we can reference to them directly when we update vcpu
854 * scheduling information in IOMMU irte.
855 */
856 if (!ret && pi.is_guest_mode)
857 svm_ir_list_add(svm, &pi);
858 } else {
859 /* Use legacy mode in IRTE */
860 struct amd_iommu_pi_data pi;
861
862 /**
863 * Here, pi is used to:
864 * - Tell IOMMU to use legacy mode for this interrupt.
865 * - Retrieve ga_tag of prior interrupt remapping data.
866 */
867 pi.prev_ga_tag = 0;
868 pi.is_guest_mode = false;
869 ret = irq_set_vcpu_affinity(host_irq, &pi);
870
871 /**
872 * Check if the posted interrupt was previously
873 * setup with the guest_mode by checking if the ga_tag
874 * was cached. If so, we need to clean up the per-vcpu
875 * ir_list.
876 */
877 if (!ret && pi.prev_ga_tag) {
878 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
879 struct kvm_vcpu *vcpu;
880
881 vcpu = kvm_get_vcpu_by_id(kvm, id);
882 if (vcpu)
883 svm_ir_list_del(to_svm(vcpu), &pi);
884 }
885 }
886
887 if (!ret && svm) {
888 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
889 e->gsi, vcpu_info.vector,
890 vcpu_info.pi_desc_addr, set);
891 }
892
893 if (ret < 0) {
894 pr_err("%s: failed to update PI IRTE\n", __func__);
895 goto out;
896 }
897 }
898
899 ret = 0;
900out:
901 srcu_read_unlock(&kvm->irq_srcu, idx);
902 return ret;
903}
904
905bool svm_check_apicv_inhibit_reasons(ulong bit)
906{
907 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
908 BIT(APICV_INHIBIT_REASON_HYPERV) |
909 BIT(APICV_INHIBIT_REASON_NESTED) |
910 BIT(APICV_INHIBIT_REASON_IRQWIN) |
911 BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
912 BIT(APICV_INHIBIT_REASON_X2APIC);
913
914 return supported & BIT(bit);
915}
916
917void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate)
918{
919 avic_update_access_page(kvm, activate);
920}
921
922static inline int
923avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
924{
925 int ret = 0;
926 unsigned long flags;
927 struct amd_svm_iommu_ir *ir;
928 struct vcpu_svm *svm = to_svm(vcpu);
929
930 if (!kvm_arch_has_assigned_device(vcpu->kvm))
931 return 0;
932
933 /*
934 * Here, we go through the per-vcpu ir_list to update all existing
935 * interrupt remapping table entry targeting this vcpu.
936 */
937 spin_lock_irqsave(&svm->ir_list_lock, flags);
938
939 if (list_empty(&svm->ir_list))
940 goto out;
941
942 list_for_each_entry(ir, &svm->ir_list, node) {
943 ret = amd_iommu_update_ga(cpu, r, ir->data);
944 if (ret)
945 break;
946 }
947out:
948 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
949 return ret;
950}
951
952void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
953{
954 u64 entry;
955 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
956 int h_physical_id = kvm_cpu_get_apicid(cpu);
957 struct vcpu_svm *svm = to_svm(vcpu);
958
959 if (!kvm_vcpu_apicv_active(vcpu))
960 return;
961
962 /*
963 * Since the host physical APIC id is 8 bits,
964 * we can support host APIC ID upto 255.
965 */
966 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
967 return;
968
969 entry = READ_ONCE(*(svm->avic_physical_id_cache));
970 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
971
972 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
973 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
974
975 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
976 if (svm->avic_is_running)
977 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
978
979 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
980 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
981 svm->avic_is_running);
982}
983
984void avic_vcpu_put(struct kvm_vcpu *vcpu)
985{
986 u64 entry;
987 struct vcpu_svm *svm = to_svm(vcpu);
988
989 if (!kvm_vcpu_apicv_active(vcpu))
990 return;
991
992 entry = READ_ONCE(*(svm->avic_physical_id_cache));
993 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
994 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
995
996 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
997 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
998}
999
1000/**
1001 * This function is called during VCPU halt/unhalt.
1002 */
1003static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1004{
1005 struct vcpu_svm *svm = to_svm(vcpu);
1006
1007 svm->avic_is_running = is_run;
1008 if (is_run)
1009 avic_vcpu_load(vcpu, vcpu->cpu);
1010 else
1011 avic_vcpu_put(vcpu);
1012}
1013
1014void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1015{
1016 avic_set_running(vcpu, false);
1017}
1018
1019void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1020{
1021 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
1022 kvm_vcpu_update_apicv(vcpu);
1023 avic_set_running(vcpu, true);
1024}