Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 2 | * umip.c Emulation for instruction protected by the User-Mode Instruction |
| 3 | * Prevention feature |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4 | * |
| 5 | * Copyright (c) 2017, Intel Corporation. |
| 6 | * Ricardo Neri <ricardo.neri-calderon@linux.intel.com> |
| 7 | */ |
| 8 | |
| 9 | #include <linux/uaccess.h> |
| 10 | #include <asm/umip.h> |
| 11 | #include <asm/traps.h> |
| 12 | #include <asm/insn.h> |
| 13 | #include <asm/insn-eval.h> |
| 14 | #include <linux/ratelimit.h> |
| 15 | |
| 16 | #undef pr_fmt |
| 17 | #define pr_fmt(fmt) "umip: " fmt |
| 18 | |
| 19 | /** DOC: Emulation for User-Mode Instruction Prevention (UMIP) |
| 20 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 21 | * User-Mode Instruction Prevention is a security feature present in recent |
| 22 | * x86 processors that, when enabled, prevents a group of instructions (SGDT, |
| 23 | * SIDT, SLDT, SMSW and STR) from being run in user mode by issuing a general |
| 24 | * protection fault if the instruction is executed with CPL > 0. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 25 | * |
| 26 | * Rather than relaying to the user space the general protection fault caused by |
| 27 | * the UMIP-protected instructions (in the form of a SIGSEGV signal), it can be |
| 28 | * trapped and emulate the result of such instructions to provide dummy values. |
| 29 | * This allows to both conserve the current kernel behavior and not reveal the |
| 30 | * system resources that UMIP intends to protect (i.e., the locations of the |
| 31 | * global descriptor and interrupt descriptor tables, the segment selectors of |
| 32 | * the local descriptor table, the value of the task state register and the |
| 33 | * contents of the CR0 register). |
| 34 | * |
| 35 | * This emulation is needed because certain applications (e.g., WineHQ and |
| 36 | * DOSEMU2) rely on this subset of instructions to function. |
| 37 | * |
| 38 | * The instructions protected by UMIP can be split in two groups. Those which |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 39 | * return a kernel memory address (SGDT and SIDT) and those which return a |
| 40 | * value (SLDT, STR and SMSW). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 41 | * |
| 42 | * For the instructions that return a kernel memory address, applications |
| 43 | * such as WineHQ rely on the result being located in the kernel memory space, |
| 44 | * not the actual location of the table. The result is emulated as a hard-coded |
| 45 | * value that, lies close to the top of the kernel memory. The limit for the GDT |
| 46 | * and the IDT are set to zero. |
| 47 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 48 | * The instruction SMSW is emulated to return the value that the register CR0 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 49 | * has at boot time as set in the head_32. |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 50 | * SLDT and STR are emulated to return the values that the kernel programmatically |
| 51 | * assigns: |
| 52 | * - SLDT returns (GDT_ENTRY_LDT * 8) if an LDT has been set, 0 if not. |
| 53 | * - STR returns (GDT_ENTRY_TSS * 8). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 54 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 55 | * Emulation is provided for both 32-bit and 64-bit processes. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 56 | * |
| 57 | * Care is taken to appropriately emulate the results when segmentation is |
| 58 | * used. That is, rather than relying on USER_DS and USER_CS, the function |
| 59 | * insn_get_addr_ref() inspects the segment descriptor pointed by the |
| 60 | * registers in pt_regs. This ensures that we correctly obtain the segment |
| 61 | * base address and the address and operand sizes even if the user space |
| 62 | * application uses a local descriptor table. |
| 63 | */ |
| 64 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 65 | #define UMIP_DUMMY_GDT_BASE 0xfffffffffffe0000ULL |
| 66 | #define UMIP_DUMMY_IDT_BASE 0xffffffffffff0000ULL |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 67 | |
| 68 | /* |
| 69 | * The SGDT and SIDT instructions store the contents of the global descriptor |
| 70 | * table and interrupt table registers, respectively. The destination is a |
| 71 | * memory operand of X+2 bytes. X bytes are used to store the base address of |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 72 | * the table and 2 bytes are used to store the limit. In 32-bit processes X |
| 73 | * has a value of 4, in 64-bit processes X has a value of 8. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 74 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 75 | #define UMIP_GDT_IDT_BASE_SIZE_64BIT 8 |
| 76 | #define UMIP_GDT_IDT_BASE_SIZE_32BIT 4 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 77 | #define UMIP_GDT_IDT_LIMIT_SIZE 2 |
| 78 | |
| 79 | #define UMIP_INST_SGDT 0 /* 0F 01 /0 */ |
| 80 | #define UMIP_INST_SIDT 1 /* 0F 01 /1 */ |
| 81 | #define UMIP_INST_SMSW 2 /* 0F 01 /4 */ |
| 82 | #define UMIP_INST_SLDT 3 /* 0F 00 /0 */ |
| 83 | #define UMIP_INST_STR 4 /* 0F 00 /1 */ |
| 84 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 85 | static const char * const umip_insns[5] = { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 86 | [UMIP_INST_SGDT] = "SGDT", |
| 87 | [UMIP_INST_SIDT] = "SIDT", |
| 88 | [UMIP_INST_SMSW] = "SMSW", |
| 89 | [UMIP_INST_SLDT] = "SLDT", |
| 90 | [UMIP_INST_STR] = "STR", |
| 91 | }; |
| 92 | |
| 93 | #define umip_pr_err(regs, fmt, ...) \ |
| 94 | umip_printk(regs, KERN_ERR, fmt, ##__VA_ARGS__) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 95 | #define umip_pr_warn(regs, fmt, ...) \ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 96 | umip_printk(regs, KERN_WARNING, fmt, ##__VA_ARGS__) |
| 97 | |
| 98 | /** |
| 99 | * umip_printk() - Print a rate-limited message |
| 100 | * @regs: Register set with the context in which the warning is printed |
| 101 | * @log_level: Kernel log level to print the message |
| 102 | * @fmt: The text string to print |
| 103 | * |
| 104 | * Print the text contained in @fmt. The print rate is limited to bursts of 5 |
| 105 | * messages every two minutes. The purpose of this customized version of |
| 106 | * printk() is to print messages when user space processes use any of the |
| 107 | * UMIP-protected instructions. Thus, the printed text is prepended with the |
| 108 | * task name and process ID number of the current task as well as the |
| 109 | * instruction and stack pointers in @regs as seen when entering kernel mode. |
| 110 | * |
| 111 | * Returns: |
| 112 | * |
| 113 | * None. |
| 114 | */ |
| 115 | static __printf(3, 4) |
| 116 | void umip_printk(const struct pt_regs *regs, const char *log_level, |
| 117 | const char *fmt, ...) |
| 118 | { |
| 119 | /* Bursts of 5 messages every two minutes */ |
| 120 | static DEFINE_RATELIMIT_STATE(ratelimit, 2 * 60 * HZ, 5); |
| 121 | struct task_struct *tsk = current; |
| 122 | struct va_format vaf; |
| 123 | va_list args; |
| 124 | |
| 125 | if (!__ratelimit(&ratelimit)) |
| 126 | return; |
| 127 | |
| 128 | va_start(args, fmt); |
| 129 | vaf.fmt = fmt; |
| 130 | vaf.va = &args; |
| 131 | printk("%s" pr_fmt("%s[%d] ip:%lx sp:%lx: %pV"), log_level, tsk->comm, |
| 132 | task_pid_nr(tsk), regs->ip, regs->sp, &vaf); |
| 133 | va_end(args); |
| 134 | } |
| 135 | |
| 136 | /** |
| 137 | * identify_insn() - Identify a UMIP-protected instruction |
| 138 | * @insn: Instruction structure with opcode and ModRM byte. |
| 139 | * |
| 140 | * From the opcode and ModRM.reg in @insn identify, if any, a UMIP-protected |
| 141 | * instruction that can be emulated. |
| 142 | * |
| 143 | * Returns: |
| 144 | * |
| 145 | * On success, a constant identifying a specific UMIP-protected instruction that |
| 146 | * can be emulated. |
| 147 | * |
| 148 | * -EINVAL on error or when not an UMIP-protected instruction that can be |
| 149 | * emulated. |
| 150 | */ |
| 151 | static int identify_insn(struct insn *insn) |
| 152 | { |
| 153 | /* By getting modrm we also get the opcode. */ |
| 154 | insn_get_modrm(insn); |
| 155 | |
| 156 | if (!insn->modrm.nbytes) |
| 157 | return -EINVAL; |
| 158 | |
| 159 | /* All the instructions of interest start with 0x0f. */ |
| 160 | if (insn->opcode.bytes[0] != 0xf) |
| 161 | return -EINVAL; |
| 162 | |
| 163 | if (insn->opcode.bytes[1] == 0x1) { |
| 164 | switch (X86_MODRM_REG(insn->modrm.value)) { |
| 165 | case 0: |
| 166 | return UMIP_INST_SGDT; |
| 167 | case 1: |
| 168 | return UMIP_INST_SIDT; |
| 169 | case 4: |
| 170 | return UMIP_INST_SMSW; |
| 171 | default: |
| 172 | return -EINVAL; |
| 173 | } |
| 174 | } else if (insn->opcode.bytes[1] == 0x0) { |
| 175 | if (X86_MODRM_REG(insn->modrm.value) == 0) |
| 176 | return UMIP_INST_SLDT; |
| 177 | else if (X86_MODRM_REG(insn->modrm.value) == 1) |
| 178 | return UMIP_INST_STR; |
| 179 | else |
| 180 | return -EINVAL; |
| 181 | } else { |
| 182 | return -EINVAL; |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | /** |
| 187 | * emulate_umip_insn() - Emulate UMIP instructions and return dummy values |
| 188 | * @insn: Instruction structure with operands |
| 189 | * @umip_inst: A constant indicating the instruction to emulate |
| 190 | * @data: Buffer into which the dummy result is stored |
| 191 | * @data_size: Size of the emulated result |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 192 | * @x86_64: true if process is 64-bit, false otherwise |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 193 | * |
| 194 | * Emulate an instruction protected by UMIP and provide a dummy result. The |
| 195 | * result of the emulation is saved in @data. The size of the results depends |
| 196 | * on both the instruction and type of operand (register vs memory address). |
| 197 | * The size of the result is updated in @data_size. Caller is responsible |
| 198 | * of providing a @data buffer of at least UMIP_GDT_IDT_BASE_SIZE + |
| 199 | * UMIP_GDT_IDT_LIMIT_SIZE bytes. |
| 200 | * |
| 201 | * Returns: |
| 202 | * |
| 203 | * 0 on success, -EINVAL on error while emulating. |
| 204 | */ |
| 205 | static int emulate_umip_insn(struct insn *insn, int umip_inst, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 206 | unsigned char *data, int *data_size, bool x86_64) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 207 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 208 | if (!data || !data_size || !insn) |
| 209 | return -EINVAL; |
| 210 | /* |
| 211 | * These two instructions return the base address and limit of the |
| 212 | * global and interrupt descriptor table, respectively. According to the |
| 213 | * Intel Software Development manual, the base address can be 24-bit, |
| 214 | * 32-bit or 64-bit. Limit is always 16-bit. If the operand size is |
| 215 | * 16-bit, the returned value of the base address is supposed to be a |
| 216 | * zero-extended 24-byte number. However, it seems that a 32-byte number |
| 217 | * is always returned irrespective of the operand size. |
| 218 | */ |
| 219 | if (umip_inst == UMIP_INST_SGDT || umip_inst == UMIP_INST_SIDT) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 220 | u64 dummy_base_addr; |
| 221 | u16 dummy_limit = 0; |
| 222 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 223 | /* SGDT and SIDT do not use registers operands. */ |
| 224 | if (X86_MODRM_MOD(insn->modrm.value) == 3) |
| 225 | return -EINVAL; |
| 226 | |
| 227 | if (umip_inst == UMIP_INST_SGDT) |
| 228 | dummy_base_addr = UMIP_DUMMY_GDT_BASE; |
| 229 | else |
| 230 | dummy_base_addr = UMIP_DUMMY_IDT_BASE; |
| 231 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 232 | /* |
| 233 | * 64-bit processes use the entire dummy base address. |
| 234 | * 32-bit processes use the lower 32 bits of the base address. |
| 235 | * dummy_base_addr is always 64 bits, but we memcpy the correct |
| 236 | * number of bytes from it to the destination. |
| 237 | */ |
| 238 | if (x86_64) |
| 239 | *data_size = UMIP_GDT_IDT_BASE_SIZE_64BIT; |
| 240 | else |
| 241 | *data_size = UMIP_GDT_IDT_BASE_SIZE_32BIT; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 242 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 243 | memcpy(data + 2, &dummy_base_addr, *data_size); |
| 244 | |
| 245 | *data_size += UMIP_GDT_IDT_LIMIT_SIZE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 246 | memcpy(data, &dummy_limit, UMIP_GDT_IDT_LIMIT_SIZE); |
| 247 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 248 | } else if (umip_inst == UMIP_INST_SMSW || umip_inst == UMIP_INST_SLDT || |
| 249 | umip_inst == UMIP_INST_STR) { |
| 250 | unsigned long dummy_value; |
| 251 | |
| 252 | if (umip_inst == UMIP_INST_SMSW) { |
| 253 | dummy_value = CR0_STATE; |
| 254 | } else if (umip_inst == UMIP_INST_STR) { |
| 255 | dummy_value = GDT_ENTRY_TSS * 8; |
| 256 | } else if (umip_inst == UMIP_INST_SLDT) { |
| 257 | #ifdef CONFIG_MODIFY_LDT_SYSCALL |
| 258 | down_read(¤t->mm->context.ldt_usr_sem); |
| 259 | if (current->mm->context.ldt) |
| 260 | dummy_value = GDT_ENTRY_LDT * 8; |
| 261 | else |
| 262 | dummy_value = 0; |
| 263 | up_read(¤t->mm->context.ldt_usr_sem); |
| 264 | #else |
| 265 | dummy_value = 0; |
| 266 | #endif |
| 267 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 268 | |
| 269 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 270 | * For these 3 instructions, the number |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 271 | * of bytes to be copied in the result buffer is determined |
| 272 | * by whether the operand is a register or a memory location. |
| 273 | * If operand is a register, return as many bytes as the operand |
| 274 | * size. If operand is memory, return only the two least |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 275 | * siginificant bytes. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 276 | */ |
| 277 | if (X86_MODRM_MOD(insn->modrm.value) == 3) |
| 278 | *data_size = insn->opnd_bytes; |
| 279 | else |
| 280 | *data_size = 2; |
| 281 | |
| 282 | memcpy(data, &dummy_value, *data_size); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 283 | } else { |
| 284 | return -EINVAL; |
| 285 | } |
| 286 | |
| 287 | return 0; |
| 288 | } |
| 289 | |
| 290 | /** |
| 291 | * force_sig_info_umip_fault() - Force a SIGSEGV with SEGV_MAPERR |
| 292 | * @addr: Address that caused the signal |
| 293 | * @regs: Register set containing the instruction pointer |
| 294 | * |
| 295 | * Force a SIGSEGV signal with SEGV_MAPERR as the error code. This function is |
| 296 | * intended to be used to provide a segmentation fault when the result of the |
| 297 | * UMIP emulation could not be copied to the user space memory. |
| 298 | * |
| 299 | * Returns: none |
| 300 | */ |
| 301 | static void force_sig_info_umip_fault(void __user *addr, struct pt_regs *regs) |
| 302 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 303 | struct task_struct *tsk = current; |
| 304 | |
| 305 | tsk->thread.cr2 = (unsigned long)addr; |
| 306 | tsk->thread.error_code = X86_PF_USER | X86_PF_WRITE; |
| 307 | tsk->thread.trap_nr = X86_TRAP_PF; |
| 308 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 309 | force_sig_fault(SIGSEGV, SEGV_MAPERR, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 310 | |
| 311 | if (!(show_unhandled_signals && unhandled_signal(tsk, SIGSEGV))) |
| 312 | return; |
| 313 | |
| 314 | umip_pr_err(regs, "segfault in emulation. error%x\n", |
| 315 | X86_PF_USER | X86_PF_WRITE); |
| 316 | } |
| 317 | |
| 318 | /** |
| 319 | * fixup_umip_exception() - Fixup a general protection fault caused by UMIP |
| 320 | * @regs: Registers as saved when entering the #GP handler |
| 321 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 322 | * The instructions SGDT, SIDT, STR, SMSW and SLDT cause a general protection |
| 323 | * fault if executed with CPL > 0 (i.e., from user space). This function fixes |
| 324 | * the exception up and provides dummy results for SGDT, SIDT and SMSW; STR |
| 325 | * and SLDT are not fixed up. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 326 | * |
| 327 | * If operands are memory addresses, results are copied to user-space memory as |
| 328 | * indicated by the instruction pointed by eIP using the registers indicated in |
| 329 | * the instruction operands. If operands are registers, results are copied into |
| 330 | * the context that was saved when entering kernel mode. |
| 331 | * |
| 332 | * Returns: |
| 333 | * |
| 334 | * True if emulation was successful; false if not. |
| 335 | */ |
| 336 | bool fixup_umip_exception(struct pt_regs *regs) |
| 337 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 338 | int nr_copied, reg_offset, dummy_data_size, umip_inst; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 339 | /* 10 bytes is the maximum size of the result of UMIP instructions */ |
| 340 | unsigned char dummy_data[10] = { 0 }; |
| 341 | unsigned char buf[MAX_INSN_SIZE]; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 342 | unsigned long *reg_addr; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 343 | void __user *uaddr; |
| 344 | struct insn insn; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 345 | |
| 346 | if (!regs) |
| 347 | return false; |
| 348 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 349 | nr_copied = insn_fetch_from_user(regs, buf); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 350 | |
| 351 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 352 | * The insn_fetch_from_user above could have failed if user code |
| 353 | * is protected by a memory protection key. Give up on emulation |
| 354 | * in such a case. Should we issue a page fault? |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 355 | */ |
| 356 | if (!nr_copied) |
| 357 | return false; |
| 358 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 359 | if (!insn_decode(&insn, regs, buf, nr_copied)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 360 | return false; |
| 361 | |
| 362 | umip_inst = identify_insn(&insn); |
| 363 | if (umip_inst < 0) |
| 364 | return false; |
| 365 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 366 | umip_pr_warn(regs, "%s instruction cannot be used by applications.\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 367 | umip_insns[umip_inst]); |
| 368 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 369 | umip_pr_warn(regs, "For now, expensive software emulation returns the result.\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 370 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 371 | if (emulate_umip_insn(&insn, umip_inst, dummy_data, &dummy_data_size, |
| 372 | user_64bit_mode(regs))) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 373 | return false; |
| 374 | |
| 375 | /* |
| 376 | * If operand is a register, write result to the copy of the register |
| 377 | * value that was pushed to the stack when entering into kernel mode. |
| 378 | * Upon exit, the value we write will be restored to the actual hardware |
| 379 | * register. |
| 380 | */ |
| 381 | if (X86_MODRM_MOD(insn.modrm.value) == 3) { |
| 382 | reg_offset = insn_get_modrm_rm_off(&insn, regs); |
| 383 | |
| 384 | /* |
| 385 | * Negative values are usually errors. In memory addressing, |
| 386 | * the exception is -EDOM. Since we expect a register operand, |
| 387 | * all negative values are errors. |
| 388 | */ |
| 389 | if (reg_offset < 0) |
| 390 | return false; |
| 391 | |
| 392 | reg_addr = (unsigned long *)((unsigned long)regs + reg_offset); |
| 393 | memcpy(reg_addr, dummy_data, dummy_data_size); |
| 394 | } else { |
| 395 | uaddr = insn_get_addr_ref(&insn, regs); |
| 396 | if ((unsigned long)uaddr == -1L) |
| 397 | return false; |
| 398 | |
| 399 | nr_copied = copy_to_user(uaddr, dummy_data, dummy_data_size); |
| 400 | if (nr_copied > 0) { |
| 401 | /* |
| 402 | * If copy fails, send a signal and tell caller that |
| 403 | * fault was fixed up. |
| 404 | */ |
| 405 | force_sig_info_umip_fault(uaddr, regs); |
| 406 | return true; |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | /* increase IP to let the program keep going */ |
| 411 | regs->ip += insn.length; |
| 412 | return true; |
| 413 | } |