Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * check TSC synchronization. |
| 4 | * |
| 5 | * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar |
| 6 | * |
| 7 | * We check whether all boot CPUs have their TSC's synchronized, |
| 8 | * print a warning if not and turn off the TSC clock-source. |
| 9 | * |
| 10 | * The warp-check is point-to-point between two CPUs, the CPU |
| 11 | * initiating the bootup is the 'source CPU', the freshly booting |
| 12 | * CPU is the 'target CPU'. |
| 13 | * |
| 14 | * Only two CPUs may participate - they can enter in any order. |
| 15 | * ( The serial nature of the boot logic and the CPU hotplug lock |
| 16 | * protects against more than 2 CPUs entering this code. ) |
| 17 | */ |
| 18 | #include <linux/topology.h> |
| 19 | #include <linux/spinlock.h> |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/smp.h> |
| 22 | #include <linux/nmi.h> |
| 23 | #include <asm/tsc.h> |
| 24 | |
| 25 | struct tsc_adjust { |
| 26 | s64 bootval; |
| 27 | s64 adjusted; |
| 28 | unsigned long nextcheck; |
| 29 | bool warned; |
| 30 | }; |
| 31 | |
| 32 | static DEFINE_PER_CPU(struct tsc_adjust, tsc_adjust); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 33 | static struct timer_list tsc_sync_check_timer; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 34 | |
| 35 | /* |
| 36 | * TSC's on different sockets may be reset asynchronously. |
| 37 | * This may cause the TSC ADJUST value on socket 0 to be NOT 0. |
| 38 | */ |
| 39 | bool __read_mostly tsc_async_resets; |
| 40 | |
| 41 | void mark_tsc_async_resets(char *reason) |
| 42 | { |
| 43 | if (tsc_async_resets) |
| 44 | return; |
| 45 | tsc_async_resets = true; |
| 46 | pr_info("tsc: Marking TSC async resets true due to %s\n", reason); |
| 47 | } |
| 48 | |
| 49 | void tsc_verify_tsc_adjust(bool resume) |
| 50 | { |
| 51 | struct tsc_adjust *adj = this_cpu_ptr(&tsc_adjust); |
| 52 | s64 curval; |
| 53 | |
| 54 | if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST)) |
| 55 | return; |
| 56 | |
| 57 | /* Skip unnecessary error messages if TSC already unstable */ |
| 58 | if (check_tsc_unstable()) |
| 59 | return; |
| 60 | |
| 61 | /* Rate limit the MSR check */ |
| 62 | if (!resume && time_before(jiffies, adj->nextcheck)) |
| 63 | return; |
| 64 | |
| 65 | adj->nextcheck = jiffies + HZ; |
| 66 | |
| 67 | rdmsrl(MSR_IA32_TSC_ADJUST, curval); |
| 68 | if (adj->adjusted == curval) |
| 69 | return; |
| 70 | |
| 71 | /* Restore the original value */ |
| 72 | wrmsrl(MSR_IA32_TSC_ADJUST, adj->adjusted); |
| 73 | |
| 74 | if (!adj->warned || resume) { |
| 75 | pr_warn(FW_BUG "TSC ADJUST differs: CPU%u %lld --> %lld. Restoring\n", |
| 76 | smp_processor_id(), adj->adjusted, curval); |
| 77 | adj->warned = true; |
| 78 | } |
| 79 | } |
| 80 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 81 | /* |
| 82 | * Normally the tsc_sync will be checked every time system enters idle |
| 83 | * state, but there is still caveat that a system won't enter idle, |
| 84 | * either because it's too busy or configured purposely to not enter |
| 85 | * idle. |
| 86 | * |
| 87 | * So setup a periodic timer (every 10 minutes) to make sure the check |
| 88 | * is always on. |
| 89 | */ |
| 90 | |
| 91 | #define SYNC_CHECK_INTERVAL (HZ * 600) |
| 92 | |
| 93 | static void tsc_sync_check_timer_fn(struct timer_list *unused) |
| 94 | { |
| 95 | int next_cpu; |
| 96 | |
| 97 | tsc_verify_tsc_adjust(false); |
| 98 | |
| 99 | /* Run the check for all onlined CPUs in turn */ |
| 100 | next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); |
| 101 | if (next_cpu >= nr_cpu_ids) |
| 102 | next_cpu = cpumask_first(cpu_online_mask); |
| 103 | |
| 104 | tsc_sync_check_timer.expires += SYNC_CHECK_INTERVAL; |
| 105 | add_timer_on(&tsc_sync_check_timer, next_cpu); |
| 106 | } |
| 107 | |
| 108 | static int __init start_sync_check_timer(void) |
| 109 | { |
| 110 | if (!cpu_feature_enabled(X86_FEATURE_TSC_ADJUST) || tsc_clocksource_reliable) |
| 111 | return 0; |
| 112 | |
| 113 | timer_setup(&tsc_sync_check_timer, tsc_sync_check_timer_fn, 0); |
| 114 | tsc_sync_check_timer.expires = jiffies + SYNC_CHECK_INTERVAL; |
| 115 | add_timer(&tsc_sync_check_timer); |
| 116 | |
| 117 | return 0; |
| 118 | } |
| 119 | late_initcall(start_sync_check_timer); |
| 120 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 121 | static void tsc_sanitize_first_cpu(struct tsc_adjust *cur, s64 bootval, |
| 122 | unsigned int cpu, bool bootcpu) |
| 123 | { |
| 124 | /* |
| 125 | * First online CPU in a package stores the boot value in the |
| 126 | * adjustment value. This value might change later via the sync |
| 127 | * mechanism. If that fails we still can yell about boot values not |
| 128 | * being consistent. |
| 129 | * |
| 130 | * On the boot cpu we just force set the ADJUST value to 0 if it's |
| 131 | * non zero. We don't do that on non boot cpus because physical |
| 132 | * hotplug should have set the ADJUST register to a value > 0 so |
| 133 | * the TSC is in sync with the already running cpus. |
| 134 | * |
| 135 | * Also don't force the ADJUST value to zero if that is a valid value |
| 136 | * for socket 0 as determined by the system arch. This is required |
| 137 | * when multiple sockets are reset asynchronously with each other |
| 138 | * and socket 0 may not have an TSC ADJUST value of 0. |
| 139 | */ |
| 140 | if (bootcpu && bootval != 0) { |
| 141 | if (likely(!tsc_async_resets)) { |
| 142 | pr_warn(FW_BUG "TSC ADJUST: CPU%u: %lld force to 0\n", |
| 143 | cpu, bootval); |
| 144 | wrmsrl(MSR_IA32_TSC_ADJUST, 0); |
| 145 | bootval = 0; |
| 146 | } else { |
| 147 | pr_info("TSC ADJUST: CPU%u: %lld NOT forced to 0\n", |
| 148 | cpu, bootval); |
| 149 | } |
| 150 | } |
| 151 | cur->adjusted = bootval; |
| 152 | } |
| 153 | |
| 154 | #ifndef CONFIG_SMP |
| 155 | bool __init tsc_store_and_check_tsc_adjust(bool bootcpu) |
| 156 | { |
| 157 | struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust); |
| 158 | s64 bootval; |
| 159 | |
| 160 | if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST)) |
| 161 | return false; |
| 162 | |
| 163 | /* Skip unnecessary error messages if TSC already unstable */ |
| 164 | if (check_tsc_unstable()) |
| 165 | return false; |
| 166 | |
| 167 | rdmsrl(MSR_IA32_TSC_ADJUST, bootval); |
| 168 | cur->bootval = bootval; |
| 169 | cur->nextcheck = jiffies + HZ; |
| 170 | tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(), bootcpu); |
| 171 | return false; |
| 172 | } |
| 173 | |
| 174 | #else /* !CONFIG_SMP */ |
| 175 | |
| 176 | /* |
| 177 | * Store and check the TSC ADJUST MSR if available |
| 178 | */ |
| 179 | bool tsc_store_and_check_tsc_adjust(bool bootcpu) |
| 180 | { |
| 181 | struct tsc_adjust *ref, *cur = this_cpu_ptr(&tsc_adjust); |
| 182 | unsigned int refcpu, cpu = smp_processor_id(); |
| 183 | struct cpumask *mask; |
| 184 | s64 bootval; |
| 185 | |
| 186 | if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST)) |
| 187 | return false; |
| 188 | |
| 189 | rdmsrl(MSR_IA32_TSC_ADJUST, bootval); |
| 190 | cur->bootval = bootval; |
| 191 | cur->nextcheck = jiffies + HZ; |
| 192 | cur->warned = false; |
| 193 | |
| 194 | /* |
| 195 | * If a non-zero TSC value for socket 0 may be valid then the default |
| 196 | * adjusted value cannot assumed to be zero either. |
| 197 | */ |
| 198 | if (tsc_async_resets) |
| 199 | cur->adjusted = bootval; |
| 200 | |
| 201 | /* |
| 202 | * Check whether this CPU is the first in a package to come up. In |
| 203 | * this case do not check the boot value against another package |
| 204 | * because the new package might have been physically hotplugged, |
| 205 | * where TSC_ADJUST is expected to be different. When called on the |
| 206 | * boot CPU topology_core_cpumask() might not be available yet. |
| 207 | */ |
| 208 | mask = topology_core_cpumask(cpu); |
| 209 | refcpu = mask ? cpumask_any_but(mask, cpu) : nr_cpu_ids; |
| 210 | |
| 211 | if (refcpu >= nr_cpu_ids) { |
| 212 | tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(), |
| 213 | bootcpu); |
| 214 | return false; |
| 215 | } |
| 216 | |
| 217 | ref = per_cpu_ptr(&tsc_adjust, refcpu); |
| 218 | /* |
| 219 | * Compare the boot value and complain if it differs in the |
| 220 | * package. |
| 221 | */ |
| 222 | if (bootval != ref->bootval) |
| 223 | printk_once(FW_BUG "TSC ADJUST differs within socket(s), fixing all errors\n"); |
| 224 | |
| 225 | /* |
| 226 | * The TSC_ADJUST values in a package must be the same. If the boot |
| 227 | * value on this newly upcoming CPU differs from the adjustment |
| 228 | * value of the already online CPU in this package, set it to that |
| 229 | * adjusted value. |
| 230 | */ |
| 231 | if (bootval != ref->adjusted) { |
| 232 | cur->adjusted = ref->adjusted; |
| 233 | wrmsrl(MSR_IA32_TSC_ADJUST, ref->adjusted); |
| 234 | } |
| 235 | /* |
| 236 | * We have the TSCs forced to be in sync on this package. Skip sync |
| 237 | * test: |
| 238 | */ |
| 239 | return true; |
| 240 | } |
| 241 | |
| 242 | /* |
| 243 | * Entry/exit counters that make sure that both CPUs |
| 244 | * run the measurement code at once: |
| 245 | */ |
| 246 | static atomic_t start_count; |
| 247 | static atomic_t stop_count; |
| 248 | static atomic_t skip_test; |
| 249 | static atomic_t test_runs; |
| 250 | |
| 251 | /* |
| 252 | * We use a raw spinlock in this exceptional case, because |
| 253 | * we want to have the fastest, inlined, non-debug version |
| 254 | * of a critical section, to be able to prove TSC time-warps: |
| 255 | */ |
| 256 | static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED; |
| 257 | |
| 258 | static cycles_t last_tsc; |
| 259 | static cycles_t max_warp; |
| 260 | static int nr_warps; |
| 261 | static int random_warps; |
| 262 | |
| 263 | /* |
| 264 | * TSC-warp measurement loop running on both CPUs. This is not called |
| 265 | * if there is no TSC. |
| 266 | */ |
| 267 | static cycles_t check_tsc_warp(unsigned int timeout) |
| 268 | { |
| 269 | cycles_t start, now, prev, end, cur_max_warp = 0; |
| 270 | int i, cur_warps = 0; |
| 271 | |
| 272 | start = rdtsc_ordered(); |
| 273 | /* |
| 274 | * The measurement runs for 'timeout' msecs: |
| 275 | */ |
| 276 | end = start + (cycles_t) tsc_khz * timeout; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 277 | |
| 278 | for (i = 0; ; i++) { |
| 279 | /* |
| 280 | * We take the global lock, measure TSC, save the |
| 281 | * previous TSC that was measured (possibly on |
| 282 | * another CPU) and update the previous TSC timestamp. |
| 283 | */ |
| 284 | arch_spin_lock(&sync_lock); |
| 285 | prev = last_tsc; |
| 286 | now = rdtsc_ordered(); |
| 287 | last_tsc = now; |
| 288 | arch_spin_unlock(&sync_lock); |
| 289 | |
| 290 | /* |
| 291 | * Be nice every now and then (and also check whether |
| 292 | * measurement is done [we also insert a 10 million |
| 293 | * loops safety exit, so we dont lock up in case the |
| 294 | * TSC readout is totally broken]): |
| 295 | */ |
| 296 | if (unlikely(!(i & 7))) { |
| 297 | if (now > end || i > 10000000) |
| 298 | break; |
| 299 | cpu_relax(); |
| 300 | touch_nmi_watchdog(); |
| 301 | } |
| 302 | /* |
| 303 | * Outside the critical section we can now see whether |
| 304 | * we saw a time-warp of the TSC going backwards: |
| 305 | */ |
| 306 | if (unlikely(prev > now)) { |
| 307 | arch_spin_lock(&sync_lock); |
| 308 | max_warp = max(max_warp, prev - now); |
| 309 | cur_max_warp = max_warp; |
| 310 | /* |
| 311 | * Check whether this bounces back and forth. Only |
| 312 | * one CPU should observe time going backwards. |
| 313 | */ |
| 314 | if (cur_warps != nr_warps) |
| 315 | random_warps++; |
| 316 | nr_warps++; |
| 317 | cur_warps = nr_warps; |
| 318 | arch_spin_unlock(&sync_lock); |
| 319 | } |
| 320 | } |
| 321 | WARN(!(now-start), |
| 322 | "Warning: zero tsc calibration delta: %Ld [max: %Ld]\n", |
| 323 | now-start, end-start); |
| 324 | return cur_max_warp; |
| 325 | } |
| 326 | |
| 327 | /* |
| 328 | * If the target CPU coming online doesn't have any of its core-siblings |
| 329 | * online, a timeout of 20msec will be used for the TSC-warp measurement |
| 330 | * loop. Otherwise a smaller timeout of 2msec will be used, as we have some |
| 331 | * information about this socket already (and this information grows as we |
| 332 | * have more and more logical-siblings in that socket). |
| 333 | * |
| 334 | * Ideally we should be able to skip the TSC sync check on the other |
| 335 | * core-siblings, if the first logical CPU in a socket passed the sync test. |
| 336 | * But as the TSC is per-logical CPU and can potentially be modified wrongly |
| 337 | * by the bios, TSC sync test for smaller duration should be able |
| 338 | * to catch such errors. Also this will catch the condition where all the |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 339 | * cores in the socket don't get reset at the same time. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 340 | */ |
| 341 | static inline unsigned int loop_timeout(int cpu) |
| 342 | { |
| 343 | return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20; |
| 344 | } |
| 345 | |
| 346 | /* |
| 347 | * Source CPU calls into this - it waits for the freshly booted |
| 348 | * target CPU to arrive and then starts the measurement: |
| 349 | */ |
| 350 | void check_tsc_sync_source(int cpu) |
| 351 | { |
| 352 | int cpus = 2; |
| 353 | |
| 354 | /* |
| 355 | * No need to check if we already know that the TSC is not |
| 356 | * synchronized or if we have no TSC. |
| 357 | */ |
| 358 | if (unsynchronized_tsc()) |
| 359 | return; |
| 360 | |
| 361 | /* |
| 362 | * Set the maximum number of test runs to |
| 363 | * 1 if the CPU does not provide the TSC_ADJUST MSR |
| 364 | * 3 if the MSR is available, so the target can try to adjust |
| 365 | */ |
| 366 | if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST)) |
| 367 | atomic_set(&test_runs, 1); |
| 368 | else |
| 369 | atomic_set(&test_runs, 3); |
| 370 | retry: |
| 371 | /* |
| 372 | * Wait for the target to start or to skip the test: |
| 373 | */ |
| 374 | while (atomic_read(&start_count) != cpus - 1) { |
| 375 | if (atomic_read(&skip_test) > 0) { |
| 376 | atomic_set(&skip_test, 0); |
| 377 | return; |
| 378 | } |
| 379 | cpu_relax(); |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Trigger the target to continue into the measurement too: |
| 384 | */ |
| 385 | atomic_inc(&start_count); |
| 386 | |
| 387 | check_tsc_warp(loop_timeout(cpu)); |
| 388 | |
| 389 | while (atomic_read(&stop_count) != cpus-1) |
| 390 | cpu_relax(); |
| 391 | |
| 392 | /* |
| 393 | * If the test was successful set the number of runs to zero and |
| 394 | * stop. If not, decrement the number of runs an check if we can |
| 395 | * retry. In case of random warps no retry is attempted. |
| 396 | */ |
| 397 | if (!nr_warps) { |
| 398 | atomic_set(&test_runs, 0); |
| 399 | |
| 400 | pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n", |
| 401 | smp_processor_id(), cpu); |
| 402 | |
| 403 | } else if (atomic_dec_and_test(&test_runs) || random_warps) { |
| 404 | /* Force it to 0 if random warps brought us here */ |
| 405 | atomic_set(&test_runs, 0); |
| 406 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 407 | pr_warn("TSC synchronization [CPU#%d -> CPU#%d]:\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 408 | smp_processor_id(), cpu); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 409 | pr_warn("Measured %Ld cycles TSC warp between CPUs, " |
| 410 | "turning off TSC clock.\n", max_warp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 411 | if (random_warps) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 412 | pr_warn("TSC warped randomly between CPUs\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 413 | mark_tsc_unstable("check_tsc_sync_source failed"); |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * Reset it - just in case we boot another CPU later: |
| 418 | */ |
| 419 | atomic_set(&start_count, 0); |
| 420 | random_warps = 0; |
| 421 | nr_warps = 0; |
| 422 | max_warp = 0; |
| 423 | last_tsc = 0; |
| 424 | |
| 425 | /* |
| 426 | * Let the target continue with the bootup: |
| 427 | */ |
| 428 | atomic_inc(&stop_count); |
| 429 | |
| 430 | /* |
| 431 | * Retry, if there is a chance to do so. |
| 432 | */ |
| 433 | if (atomic_read(&test_runs) > 0) |
| 434 | goto retry; |
| 435 | } |
| 436 | |
| 437 | /* |
| 438 | * Freshly booted CPUs call into this: |
| 439 | */ |
| 440 | void check_tsc_sync_target(void) |
| 441 | { |
| 442 | struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust); |
| 443 | unsigned int cpu = smp_processor_id(); |
| 444 | cycles_t cur_max_warp, gbl_max_warp; |
| 445 | int cpus = 2; |
| 446 | |
| 447 | /* Also aborts if there is no TSC. */ |
| 448 | if (unsynchronized_tsc()) |
| 449 | return; |
| 450 | |
| 451 | /* |
| 452 | * Store, verify and sanitize the TSC adjust register. If |
| 453 | * successful skip the test. |
| 454 | * |
| 455 | * The test is also skipped when the TSC is marked reliable. This |
| 456 | * is true for SoCs which have no fallback clocksource. On these |
| 457 | * SoCs the TSC is frequency synchronized, but still the TSC ADJUST |
| 458 | * register might have been wreckaged by the BIOS.. |
| 459 | */ |
| 460 | if (tsc_store_and_check_tsc_adjust(false) || tsc_clocksource_reliable) { |
| 461 | atomic_inc(&skip_test); |
| 462 | return; |
| 463 | } |
| 464 | |
| 465 | retry: |
| 466 | /* |
| 467 | * Register this CPU's participation and wait for the |
| 468 | * source CPU to start the measurement: |
| 469 | */ |
| 470 | atomic_inc(&start_count); |
| 471 | while (atomic_read(&start_count) != cpus) |
| 472 | cpu_relax(); |
| 473 | |
| 474 | cur_max_warp = check_tsc_warp(loop_timeout(cpu)); |
| 475 | |
| 476 | /* |
| 477 | * Store the maximum observed warp value for a potential retry: |
| 478 | */ |
| 479 | gbl_max_warp = max_warp; |
| 480 | |
| 481 | /* |
| 482 | * Ok, we are done: |
| 483 | */ |
| 484 | atomic_inc(&stop_count); |
| 485 | |
| 486 | /* |
| 487 | * Wait for the source CPU to print stuff: |
| 488 | */ |
| 489 | while (atomic_read(&stop_count) != cpus) |
| 490 | cpu_relax(); |
| 491 | |
| 492 | /* |
| 493 | * Reset it for the next sync test: |
| 494 | */ |
| 495 | atomic_set(&stop_count, 0); |
| 496 | |
| 497 | /* |
| 498 | * Check the number of remaining test runs. If not zero, the test |
| 499 | * failed and a retry with adjusted TSC is possible. If zero the |
| 500 | * test was either successful or failed terminally. |
| 501 | */ |
| 502 | if (!atomic_read(&test_runs)) |
| 503 | return; |
| 504 | |
| 505 | /* |
| 506 | * If the warp value of this CPU is 0, then the other CPU |
| 507 | * observed time going backwards so this TSC was ahead and |
| 508 | * needs to move backwards. |
| 509 | */ |
| 510 | if (!cur_max_warp) |
| 511 | cur_max_warp = -gbl_max_warp; |
| 512 | |
| 513 | /* |
| 514 | * Add the result to the previous adjustment value. |
| 515 | * |
| 516 | * The adjustement value is slightly off by the overhead of the |
| 517 | * sync mechanism (observed values are ~200 TSC cycles), but this |
| 518 | * really depends on CPU, node distance and frequency. So |
| 519 | * compensating for this is hard to get right. Experiments show |
| 520 | * that the warp is not longer detectable when the observed warp |
| 521 | * value is used. In the worst case the adjustment needs to go |
| 522 | * through a 3rd run for fine tuning. |
| 523 | */ |
| 524 | cur->adjusted += cur_max_warp; |
| 525 | |
| 526 | pr_warn("TSC ADJUST compensate: CPU%u observed %lld warp. Adjust: %lld\n", |
| 527 | cpu, cur_max_warp, cur->adjusted); |
| 528 | |
| 529 | wrmsrl(MSR_IA32_TSC_ADJUST, cur->adjusted); |
| 530 | goto retry; |
| 531 | |
| 532 | } |
| 533 | |
| 534 | #endif /* CONFIG_SMP */ |