Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * arch/sh/mm/ioremap.c |
| 3 | * |
| 4 | * (C) Copyright 1995 1996 Linus Torvalds |
| 5 | * (C) Copyright 2005 - 2010 Paul Mundt |
| 6 | * |
| 7 | * Re-map IO memory to kernel address space so that we can access it. |
| 8 | * This is needed for high PCI addresses that aren't mapped in the |
| 9 | * 640k-1MB IO memory area on PC's |
| 10 | * |
| 11 | * This file is subject to the terms and conditions of the GNU General |
| 12 | * Public License. See the file "COPYING" in the main directory of this |
| 13 | * archive for more details. |
| 14 | */ |
| 15 | #include <linux/vmalloc.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/mm.h> |
| 19 | #include <linux/pci.h> |
| 20 | #include <linux/io.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 21 | #include <asm/io_trapped.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 22 | #include <asm/page.h> |
| 23 | #include <asm/pgalloc.h> |
| 24 | #include <asm/addrspace.h> |
| 25 | #include <asm/cacheflush.h> |
| 26 | #include <asm/tlbflush.h> |
| 27 | #include <asm/mmu.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 28 | #include "ioremap.h" |
| 29 | |
| 30 | /* |
| 31 | * On 32-bit SH, we traditionally have the whole physical address space mapped |
| 32 | * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not need to do |
| 33 | * anything but place the address in the proper segment. This is true for P1 |
| 34 | * and P2 addresses, as well as some P3 ones. However, most of the P3 addresses |
| 35 | * and newer cores using extended addressing need to map through page tables, so |
| 36 | * the ioremap() implementation becomes a bit more complicated. |
| 37 | */ |
| 38 | #ifdef CONFIG_29BIT |
| 39 | static void __iomem * |
| 40 | __ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot) |
| 41 | { |
| 42 | phys_addr_t last_addr = offset + size - 1; |
| 43 | |
| 44 | /* |
| 45 | * For P1 and P2 space this is trivial, as everything is already |
| 46 | * mapped. Uncached access for P1 addresses are done through P2. |
| 47 | * In the P3 case or for addresses outside of the 29-bit space, |
| 48 | * mapping must be done by the PMB or by using page tables. |
| 49 | */ |
| 50 | if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) { |
| 51 | u64 flags = pgprot_val(prot); |
| 52 | |
| 53 | /* |
| 54 | * Anything using the legacy PTEA space attributes needs |
| 55 | * to be kicked down to page table mappings. |
| 56 | */ |
| 57 | if (unlikely(flags & _PAGE_PCC_MASK)) |
| 58 | return NULL; |
| 59 | if (unlikely(flags & _PAGE_CACHABLE)) |
| 60 | return (void __iomem *)P1SEGADDR(offset); |
| 61 | |
| 62 | return (void __iomem *)P2SEGADDR(offset); |
| 63 | } |
| 64 | |
| 65 | /* P4 above the store queues are always mapped. */ |
| 66 | if (unlikely(offset >= P3_ADDR_MAX)) |
| 67 | return (void __iomem *)P4SEGADDR(offset); |
| 68 | |
| 69 | return NULL; |
| 70 | } |
| 71 | #else |
| 72 | #define __ioremap_29bit(offset, size, prot) NULL |
| 73 | #endif /* CONFIG_29BIT */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 74 | |
| 75 | /* |
| 76 | * Remap an arbitrary physical address space into the kernel virtual |
| 77 | * address space. Needed when the kernel wants to access high addresses |
| 78 | * directly. |
| 79 | * |
| 80 | * NOTE! We need to allow non-page-aligned mappings too: we will obviously |
| 81 | * have to convert them into an offset in a page-aligned mapping, but the |
| 82 | * caller shouldn't need to know that small detail. |
| 83 | */ |
| 84 | void __iomem * __ref |
| 85 | __ioremap_caller(phys_addr_t phys_addr, unsigned long size, |
| 86 | pgprot_t pgprot, void *caller) |
| 87 | { |
| 88 | struct vm_struct *area; |
| 89 | unsigned long offset, last_addr, addr, orig_addr; |
| 90 | void __iomem *mapped; |
| 91 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 92 | mapped = __ioremap_trapped(phys_addr, size); |
| 93 | if (mapped) |
| 94 | return mapped; |
| 95 | |
| 96 | mapped = __ioremap_29bit(phys_addr, size, pgprot); |
| 97 | if (mapped) |
| 98 | return mapped; |
| 99 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 100 | /* Don't allow wraparound or zero size */ |
| 101 | last_addr = phys_addr + size - 1; |
| 102 | if (!size || last_addr < phys_addr) |
| 103 | return NULL; |
| 104 | |
| 105 | /* |
| 106 | * If we can't yet use the regular approach, go the fixmap route. |
| 107 | */ |
| 108 | if (!mem_init_done) |
| 109 | return ioremap_fixed(phys_addr, size, pgprot); |
| 110 | |
| 111 | /* |
| 112 | * First try to remap through the PMB. |
| 113 | * PMB entries are all pre-faulted. |
| 114 | */ |
| 115 | mapped = pmb_remap_caller(phys_addr, size, pgprot, caller); |
| 116 | if (mapped && !IS_ERR(mapped)) |
| 117 | return mapped; |
| 118 | |
| 119 | /* |
| 120 | * Mappings have to be page-aligned |
| 121 | */ |
| 122 | offset = phys_addr & ~PAGE_MASK; |
| 123 | phys_addr &= PAGE_MASK; |
| 124 | size = PAGE_ALIGN(last_addr+1) - phys_addr; |
| 125 | |
| 126 | /* |
| 127 | * Ok, go for it.. |
| 128 | */ |
| 129 | area = get_vm_area_caller(size, VM_IOREMAP, caller); |
| 130 | if (!area) |
| 131 | return NULL; |
| 132 | area->phys_addr = phys_addr; |
| 133 | orig_addr = addr = (unsigned long)area->addr; |
| 134 | |
| 135 | if (ioremap_page_range(addr, addr + size, phys_addr, pgprot)) { |
| 136 | vunmap((void *)orig_addr); |
| 137 | return NULL; |
| 138 | } |
| 139 | |
| 140 | return (void __iomem *)(offset + (char *)orig_addr); |
| 141 | } |
| 142 | EXPORT_SYMBOL(__ioremap_caller); |
| 143 | |
| 144 | /* |
| 145 | * Simple checks for non-translatable mappings. |
| 146 | */ |
| 147 | static inline int iomapping_nontranslatable(unsigned long offset) |
| 148 | { |
| 149 | #ifdef CONFIG_29BIT |
| 150 | /* |
| 151 | * In 29-bit mode this includes the fixed P1/P2 areas, as well as |
| 152 | * parts of P3. |
| 153 | */ |
| 154 | if (PXSEG(offset) < P3SEG || offset >= P3_ADDR_MAX) |
| 155 | return 1; |
| 156 | #endif |
| 157 | |
| 158 | return 0; |
| 159 | } |
| 160 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 161 | void iounmap(void __iomem *addr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 162 | { |
| 163 | unsigned long vaddr = (unsigned long __force)addr; |
| 164 | struct vm_struct *p; |
| 165 | |
| 166 | /* |
| 167 | * Nothing to do if there is no translatable mapping. |
| 168 | */ |
| 169 | if (iomapping_nontranslatable(vaddr)) |
| 170 | return; |
| 171 | |
| 172 | /* |
| 173 | * There's no VMA if it's from an early fixed mapping. |
| 174 | */ |
| 175 | if (iounmap_fixed(addr) == 0) |
| 176 | return; |
| 177 | |
| 178 | /* |
| 179 | * If the PMB handled it, there's nothing else to do. |
| 180 | */ |
| 181 | if (pmb_unmap(addr) == 0) |
| 182 | return; |
| 183 | |
| 184 | p = remove_vm_area((void *)(vaddr & PAGE_MASK)); |
| 185 | if (!p) { |
| 186 | printk(KERN_ERR "%s: bad address %p\n", __func__, addr); |
| 187 | return; |
| 188 | } |
| 189 | |
| 190 | kfree(p); |
| 191 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 192 | EXPORT_SYMBOL(iounmap); |