Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Common Ultravisor functions and initialization |
| 4 | * |
| 5 | * Copyright IBM Corp. 2019, 2020 |
| 6 | */ |
| 7 | #define KMSG_COMPONENT "prot_virt" |
| 8 | #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| 9 | |
| 10 | #include <linux/kernel.h> |
| 11 | #include <linux/types.h> |
| 12 | #include <linux/sizes.h> |
| 13 | #include <linux/bitmap.h> |
| 14 | #include <linux/memblock.h> |
| 15 | #include <linux/pagemap.h> |
| 16 | #include <linux/swap.h> |
| 17 | #include <asm/facility.h> |
| 18 | #include <asm/sections.h> |
| 19 | #include <asm/uv.h> |
| 20 | |
| 21 | /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */ |
| 22 | #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST |
| 23 | int __bootdata_preserved(prot_virt_guest); |
| 24 | #endif |
| 25 | |
| 26 | struct uv_info __bootdata_preserved(uv_info); |
| 27 | |
| 28 | #if IS_ENABLED(CONFIG_KVM) |
| 29 | int __bootdata_preserved(prot_virt_host); |
| 30 | EXPORT_SYMBOL(prot_virt_host); |
| 31 | EXPORT_SYMBOL(uv_info); |
| 32 | |
| 33 | static int __init uv_init(unsigned long stor_base, unsigned long stor_len) |
| 34 | { |
| 35 | struct uv_cb_init uvcb = { |
| 36 | .header.cmd = UVC_CMD_INIT_UV, |
| 37 | .header.len = sizeof(uvcb), |
| 38 | .stor_origin = stor_base, |
| 39 | .stor_len = stor_len, |
| 40 | }; |
| 41 | |
| 42 | if (uv_call(0, (uint64_t)&uvcb)) { |
| 43 | pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n", |
| 44 | uvcb.header.rc, uvcb.header.rrc); |
| 45 | return -1; |
| 46 | } |
| 47 | return 0; |
| 48 | } |
| 49 | |
| 50 | void __init setup_uv(void) |
| 51 | { |
| 52 | unsigned long uv_stor_base; |
| 53 | |
| 54 | /* |
| 55 | * keep these conditions in line with kasan init code has_uv_sec_stor_limit() |
| 56 | */ |
| 57 | if (!is_prot_virt_host()) |
| 58 | return; |
| 59 | |
| 60 | if (is_prot_virt_guest()) { |
| 61 | prot_virt_host = 0; |
| 62 | pr_warn("Protected virtualization not available in protected guests."); |
| 63 | return; |
| 64 | } |
| 65 | |
| 66 | if (!test_facility(158)) { |
| 67 | prot_virt_host = 0; |
| 68 | pr_warn("Protected virtualization not supported by the hardware."); |
| 69 | return; |
| 70 | } |
| 71 | |
| 72 | uv_stor_base = (unsigned long)memblock_alloc_try_nid( |
| 73 | uv_info.uv_base_stor_len, SZ_1M, SZ_2G, |
| 74 | MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); |
| 75 | if (!uv_stor_base) { |
| 76 | pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n", |
| 77 | uv_info.uv_base_stor_len); |
| 78 | goto fail; |
| 79 | } |
| 80 | |
| 81 | if (uv_init(uv_stor_base, uv_info.uv_base_stor_len)) { |
| 82 | memblock_free(uv_stor_base, uv_info.uv_base_stor_len); |
| 83 | goto fail; |
| 84 | } |
| 85 | |
| 86 | pr_info("Reserving %luMB as ultravisor base storage\n", |
| 87 | uv_info.uv_base_stor_len >> 20); |
| 88 | return; |
| 89 | fail: |
| 90 | pr_info("Disabling support for protected virtualization"); |
| 91 | prot_virt_host = 0; |
| 92 | } |
| 93 | |
| 94 | void adjust_to_uv_max(unsigned long *vmax) |
| 95 | { |
| 96 | if (uv_info.max_sec_stor_addr) |
| 97 | *vmax = min_t(unsigned long, *vmax, uv_info.max_sec_stor_addr); |
| 98 | } |
| 99 | |
| 100 | /* |
| 101 | * Requests the Ultravisor to pin the page in the shared state. This will |
| 102 | * cause an intercept when the guest attempts to unshare the pinned page. |
| 103 | */ |
| 104 | static int uv_pin_shared(unsigned long paddr) |
| 105 | { |
| 106 | struct uv_cb_cfs uvcb = { |
| 107 | .header.cmd = UVC_CMD_PIN_PAGE_SHARED, |
| 108 | .header.len = sizeof(uvcb), |
| 109 | .paddr = paddr, |
| 110 | }; |
| 111 | |
| 112 | if (uv_call(0, (u64)&uvcb)) |
| 113 | return -EINVAL; |
| 114 | return 0; |
| 115 | } |
| 116 | |
| 117 | /* |
| 118 | * Requests the Ultravisor to destroy a guest page and make it |
| 119 | * accessible to the host. The destroy clears the page instead of |
| 120 | * exporting. |
| 121 | * |
| 122 | * @paddr: Absolute host address of page to be destroyed |
| 123 | */ |
| 124 | int uv_destroy_page(unsigned long paddr) |
| 125 | { |
| 126 | struct uv_cb_cfs uvcb = { |
| 127 | .header.cmd = UVC_CMD_DESTR_SEC_STOR, |
| 128 | .header.len = sizeof(uvcb), |
| 129 | .paddr = paddr |
| 130 | }; |
| 131 | |
| 132 | if (uv_call(0, (u64)&uvcb)) { |
| 133 | /* |
| 134 | * Older firmware uses 107/d as an indication of a non secure |
| 135 | * page. Let us emulate the newer variant (no-op). |
| 136 | */ |
| 137 | if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd) |
| 138 | return 0; |
| 139 | return -EINVAL; |
| 140 | } |
| 141 | return 0; |
| 142 | } |
| 143 | |
| 144 | /* |
| 145 | * Requests the Ultravisor to encrypt a guest page and make it |
| 146 | * accessible to the host for paging (export). |
| 147 | * |
| 148 | * @paddr: Absolute host address of page to be exported |
| 149 | */ |
| 150 | int uv_convert_from_secure(unsigned long paddr) |
| 151 | { |
| 152 | struct uv_cb_cfs uvcb = { |
| 153 | .header.cmd = UVC_CMD_CONV_FROM_SEC_STOR, |
| 154 | .header.len = sizeof(uvcb), |
| 155 | .paddr = paddr |
| 156 | }; |
| 157 | |
| 158 | if (uv_call(0, (u64)&uvcb)) |
| 159 | return -EINVAL; |
| 160 | return 0; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * Calculate the expected ref_count for a page that would otherwise have no |
| 165 | * further pins. This was cribbed from similar functions in other places in |
| 166 | * the kernel, but with some slight modifications. We know that a secure |
| 167 | * page can not be a huge page for example. |
| 168 | */ |
| 169 | static int expected_page_refs(struct page *page) |
| 170 | { |
| 171 | int res; |
| 172 | |
| 173 | res = page_mapcount(page); |
| 174 | if (PageSwapCache(page)) { |
| 175 | res++; |
| 176 | } else if (page_mapping(page)) { |
| 177 | res++; |
| 178 | if (page_has_private(page)) |
| 179 | res++; |
| 180 | } |
| 181 | return res; |
| 182 | } |
| 183 | |
| 184 | static int make_secure_pte(pte_t *ptep, unsigned long addr, |
| 185 | struct page *exp_page, struct uv_cb_header *uvcb) |
| 186 | { |
| 187 | pte_t entry = READ_ONCE(*ptep); |
| 188 | struct page *page; |
| 189 | int expected, rc = 0; |
| 190 | |
| 191 | if (!pte_present(entry)) |
| 192 | return -ENXIO; |
| 193 | if (pte_val(entry) & _PAGE_INVALID) |
| 194 | return -ENXIO; |
| 195 | |
| 196 | page = pte_page(entry); |
| 197 | if (page != exp_page) |
| 198 | return -ENXIO; |
| 199 | if (PageWriteback(page)) |
| 200 | return -EAGAIN; |
| 201 | expected = expected_page_refs(page); |
| 202 | if (!page_ref_freeze(page, expected)) |
| 203 | return -EBUSY; |
| 204 | set_bit(PG_arch_1, &page->flags); |
| 205 | rc = uv_call(0, (u64)uvcb); |
| 206 | page_ref_unfreeze(page, expected); |
| 207 | /* Return -ENXIO if the page was not mapped, -EINVAL otherwise */ |
| 208 | if (rc) |
| 209 | rc = uvcb->rc == 0x10a ? -ENXIO : -EINVAL; |
| 210 | return rc; |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | * Requests the Ultravisor to make a page accessible to a guest. |
| 215 | * If it's brought in the first time, it will be cleared. If |
| 216 | * it has been exported before, it will be decrypted and integrity |
| 217 | * checked. |
| 218 | */ |
| 219 | int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb) |
| 220 | { |
| 221 | struct vm_area_struct *vma; |
| 222 | bool local_drain = false; |
| 223 | spinlock_t *ptelock; |
| 224 | unsigned long uaddr; |
| 225 | struct page *page; |
| 226 | pte_t *ptep; |
| 227 | int rc; |
| 228 | |
| 229 | again: |
| 230 | rc = -EFAULT; |
| 231 | mmap_read_lock(gmap->mm); |
| 232 | |
| 233 | uaddr = __gmap_translate(gmap, gaddr); |
| 234 | if (IS_ERR_VALUE(uaddr)) |
| 235 | goto out; |
| 236 | vma = find_vma(gmap->mm, uaddr); |
| 237 | if (!vma) |
| 238 | goto out; |
| 239 | /* |
| 240 | * Secure pages cannot be huge and userspace should not combine both. |
| 241 | * In case userspace does it anyway this will result in an -EFAULT for |
| 242 | * the unpack. The guest is thus never reaching secure mode. If |
| 243 | * userspace is playing dirty tricky with mapping huge pages later |
| 244 | * on this will result in a segmentation fault. |
| 245 | */ |
| 246 | if (is_vm_hugetlb_page(vma)) |
| 247 | goto out; |
| 248 | |
| 249 | rc = -ENXIO; |
| 250 | page = follow_page(vma, uaddr, FOLL_WRITE); |
| 251 | if (IS_ERR_OR_NULL(page)) |
| 252 | goto out; |
| 253 | |
| 254 | lock_page(page); |
| 255 | ptep = get_locked_pte(gmap->mm, uaddr, &ptelock); |
| 256 | rc = make_secure_pte(ptep, uaddr, page, uvcb); |
| 257 | pte_unmap_unlock(ptep, ptelock); |
| 258 | unlock_page(page); |
| 259 | out: |
| 260 | mmap_read_unlock(gmap->mm); |
| 261 | |
| 262 | if (rc == -EAGAIN) { |
| 263 | wait_on_page_writeback(page); |
| 264 | } else if (rc == -EBUSY) { |
| 265 | /* |
| 266 | * If we have tried a local drain and the page refcount |
| 267 | * still does not match our expected safe value, try with a |
| 268 | * system wide drain. This is needed if the pagevecs holding |
| 269 | * the page are on a different CPU. |
| 270 | */ |
| 271 | if (local_drain) { |
| 272 | lru_add_drain_all(); |
| 273 | /* We give up here, and let the caller try again */ |
| 274 | return -EAGAIN; |
| 275 | } |
| 276 | /* |
| 277 | * We are here if the page refcount does not match the |
| 278 | * expected safe value. The main culprits are usually |
| 279 | * pagevecs. With lru_add_drain() we drain the pagevecs |
| 280 | * on the local CPU so that hopefully the refcount will |
| 281 | * reach the expected safe value. |
| 282 | */ |
| 283 | lru_add_drain(); |
| 284 | local_drain = true; |
| 285 | /* And now we try again immediately after draining */ |
| 286 | goto again; |
| 287 | } else if (rc == -ENXIO) { |
| 288 | if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE)) |
| 289 | return -EFAULT; |
| 290 | return -EAGAIN; |
| 291 | } |
| 292 | return rc; |
| 293 | } |
| 294 | EXPORT_SYMBOL_GPL(gmap_make_secure); |
| 295 | |
| 296 | int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr) |
| 297 | { |
| 298 | struct uv_cb_cts uvcb = { |
| 299 | .header.cmd = UVC_CMD_CONV_TO_SEC_STOR, |
| 300 | .header.len = sizeof(uvcb), |
| 301 | .guest_handle = gmap->guest_handle, |
| 302 | .gaddr = gaddr, |
| 303 | }; |
| 304 | |
| 305 | return gmap_make_secure(gmap, gaddr, &uvcb); |
| 306 | } |
| 307 | EXPORT_SYMBOL_GPL(gmap_convert_to_secure); |
| 308 | |
| 309 | /* |
| 310 | * To be called with the page locked or with an extra reference! This will |
| 311 | * prevent gmap_make_secure from touching the page concurrently. Having 2 |
| 312 | * parallel make_page_accessible is fine, as the UV calls will become a |
| 313 | * no-op if the page is already exported. |
| 314 | */ |
| 315 | int arch_make_page_accessible(struct page *page) |
| 316 | { |
| 317 | int rc = 0; |
| 318 | |
| 319 | /* Hugepage cannot be protected, so nothing to do */ |
| 320 | if (PageHuge(page)) |
| 321 | return 0; |
| 322 | |
| 323 | /* |
| 324 | * PG_arch_1 is used in 3 places: |
| 325 | * 1. for kernel page tables during early boot |
| 326 | * 2. for storage keys of huge pages and KVM |
| 327 | * 3. As an indication that this page might be secure. This can |
| 328 | * overindicate, e.g. we set the bit before calling |
| 329 | * convert_to_secure. |
| 330 | * As secure pages are never huge, all 3 variants can co-exists. |
| 331 | */ |
| 332 | if (!test_bit(PG_arch_1, &page->flags)) |
| 333 | return 0; |
| 334 | |
| 335 | rc = uv_pin_shared(page_to_phys(page)); |
| 336 | if (!rc) { |
| 337 | clear_bit(PG_arch_1, &page->flags); |
| 338 | return 0; |
| 339 | } |
| 340 | |
| 341 | rc = uv_convert_from_secure(page_to_phys(page)); |
| 342 | if (!rc) { |
| 343 | clear_bit(PG_arch_1, &page->flags); |
| 344 | return 0; |
| 345 | } |
| 346 | |
| 347 | return rc; |
| 348 | } |
| 349 | EXPORT_SYMBOL_GPL(arch_make_page_accessible); |
| 350 | |
| 351 | #endif |
| 352 | |
| 353 | #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM) |
| 354 | static ssize_t uv_query_facilities(struct kobject *kobj, |
| 355 | struct kobj_attribute *attr, char *page) |
| 356 | { |
| 357 | return scnprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n", |
| 358 | uv_info.inst_calls_list[0], |
| 359 | uv_info.inst_calls_list[1], |
| 360 | uv_info.inst_calls_list[2], |
| 361 | uv_info.inst_calls_list[3]); |
| 362 | } |
| 363 | |
| 364 | static struct kobj_attribute uv_query_facilities_attr = |
| 365 | __ATTR(facilities, 0444, uv_query_facilities, NULL); |
| 366 | |
| 367 | static ssize_t uv_query_feature_indications(struct kobject *kobj, |
| 368 | struct kobj_attribute *attr, char *buf) |
| 369 | { |
| 370 | return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications); |
| 371 | } |
| 372 | |
| 373 | static struct kobj_attribute uv_query_feature_indications_attr = |
| 374 | __ATTR(feature_indications, 0444, uv_query_feature_indications, NULL); |
| 375 | |
| 376 | static ssize_t uv_query_max_guest_cpus(struct kobject *kobj, |
| 377 | struct kobj_attribute *attr, char *page) |
| 378 | { |
| 379 | return scnprintf(page, PAGE_SIZE, "%d\n", |
| 380 | uv_info.max_guest_cpu_id + 1); |
| 381 | } |
| 382 | |
| 383 | static struct kobj_attribute uv_query_max_guest_cpus_attr = |
| 384 | __ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL); |
| 385 | |
| 386 | static ssize_t uv_query_max_guest_vms(struct kobject *kobj, |
| 387 | struct kobj_attribute *attr, char *page) |
| 388 | { |
| 389 | return scnprintf(page, PAGE_SIZE, "%d\n", |
| 390 | uv_info.max_num_sec_conf); |
| 391 | } |
| 392 | |
| 393 | static struct kobj_attribute uv_query_max_guest_vms_attr = |
| 394 | __ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL); |
| 395 | |
| 396 | static ssize_t uv_query_max_guest_addr(struct kobject *kobj, |
| 397 | struct kobj_attribute *attr, char *page) |
| 398 | { |
| 399 | return scnprintf(page, PAGE_SIZE, "%lx\n", |
| 400 | uv_info.max_sec_stor_addr); |
| 401 | } |
| 402 | |
| 403 | static struct kobj_attribute uv_query_max_guest_addr_attr = |
| 404 | __ATTR(max_address, 0444, uv_query_max_guest_addr, NULL); |
| 405 | |
| 406 | static struct attribute *uv_query_attrs[] = { |
| 407 | &uv_query_facilities_attr.attr, |
| 408 | &uv_query_feature_indications_attr.attr, |
| 409 | &uv_query_max_guest_cpus_attr.attr, |
| 410 | &uv_query_max_guest_vms_attr.attr, |
| 411 | &uv_query_max_guest_addr_attr.attr, |
| 412 | NULL, |
| 413 | }; |
| 414 | |
| 415 | static struct attribute_group uv_query_attr_group = { |
| 416 | .attrs = uv_query_attrs, |
| 417 | }; |
| 418 | |
| 419 | static struct kset *uv_query_kset; |
| 420 | static struct kobject *uv_kobj; |
| 421 | |
| 422 | static int __init uv_info_init(void) |
| 423 | { |
| 424 | int rc = -ENOMEM; |
| 425 | |
| 426 | if (!test_facility(158)) |
| 427 | return 0; |
| 428 | |
| 429 | uv_kobj = kobject_create_and_add("uv", firmware_kobj); |
| 430 | if (!uv_kobj) |
| 431 | return -ENOMEM; |
| 432 | |
| 433 | uv_query_kset = kset_create_and_add("query", NULL, uv_kobj); |
| 434 | if (!uv_query_kset) |
| 435 | goto out_kobj; |
| 436 | |
| 437 | rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group); |
| 438 | if (!rc) |
| 439 | return 0; |
| 440 | |
| 441 | kset_unregister(uv_query_kset); |
| 442 | out_kobj: |
| 443 | kobject_del(uv_kobj); |
| 444 | kobject_put(uv_kobj); |
| 445 | return rc; |
| 446 | } |
| 447 | device_initcall(uv_info_init); |
| 448 | #endif |